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VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS1

BY

MICHAEL G. CRANDALL AND PIERRE-LOUIS LIONS

Abstract. Problems involving Hamilton-Jacobi equations—which we take to be

either of the stationary form H(x, u, Du) = 0 or of the evolution form u, +

H(x, t, u, Du) = 0, where Du is the spatial gradient of u—arise in many contexts.

Classical analysis of associated problems under boundary and/or initial conditions

by the method of characteristics is limited to local considerations owing to the

crossing of characteristics. Global analysis of these problems has been hindered by

the lack of an appropriate notion of solution for which one has the desired existence

and uniqueness properties. In this work a notion of solution is proposed which

allows, for example, solutions to be nowhere differentiable but for which strong

uniqueness theorems, stability theorems and general existence theorems, as discussed

herein, are all valid.

Introduction. This paper introduces a new notion of solution for first order

equations of Hamilton-Jacobi type (which we call HJ equations below). Attention

will be focused on the following two classes of problems:

(0.1) H(x,u,Du) = 0   inö,       u = z   on 9B,

which will be called the Dirichlet problem for HJ equations; and

u, + H(x,t,u,Du) = 0   inOx]0,r],

u = z   on9fix]0,7:],       u(x,0) = u0(x)   inö,

which will be called the Cauchy problem HJ equations. Here and below ß is any open

domain in R^, z and u0 are given functions (boundary conditions) and H(x, u, p)

(respectively, H(x, t, u, p)) is a given function on Q X R X R" (respectively, fi X

[0, F| X R X R") which is called the Hamiltonian. The notation Du indicates the

gradient of u with respect to the x variables: Du = («^.ux ). We often take

ß = R^ in which case the boundary condition z is replaced by requirements on the

behaviour of m at oo.

Problems (0.1), (0.2) are global nonlinear first-order problems and it is well known

that they do not have classical solutions—that is solutions m E C'(fi) or u E

C'(fiX]0, T])—in general, even if the Hamiltonian and boundary conditions are

smooth. Thus these problems have been approached by looking for generalized

solutions—usually solutions u E W¿.°°(H) or u E Wx1£c(SlX]Q,T])—which satisfy
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2 M. G. CRANDALL AND P.-L. LIONS

the equations almost everywhere. In this context existence results have been ob-

tained by several authors—e.g., A. Doughs [10], S. N. Kruikov [18,19,20], W. H.

Fleming [13,14,15], A. Friedman [16], S. H. Benton [4], with the most general results

being given by P. L. Lions [22].

The question of uniqueness of the solutions seems to be more difficult. The

problems (0.1) and (0.2) may have many distinct generalized solutions. For example,

if fi = R, X > 0, and H(x, u, Du) =\ux\ +Xu — 1, one checks easily that u = l/X

is a classical solution of (0.1) while

_ \\/X- AeXx forx<x0,

{ l/X - AeM2x"~x)    foTx^x0,

is a bounded, Lipschitz continuous and piecewise analytic function which satisfies

the equation except at x — x0 for all choices of the parameters A > 0 and x0£R.

Similarly, setting fi = R, u0 = 0, H(x, t, u, Du) = (ux)2 in (0.2), we have the

classical solution u = 0 and the piecewise linear function

Í0 for|x|>?s*0,

1 — t + | x |     f or / > | x | ,

which satisfies the equation classically except on the lines t = ±x, x = 0. In

addition, if u, v are generalized solutions of (0.1) or (0.2) then so are min(w, v) and

max(u, v). In fact, if the problems are nonlinear, one expects infinitely many Wx¿¿°

solutions (e.g., Conway and Hopf [6]).

The uniqueness problem is resolved in this paper by introducing a new notion of

solution. We call these solutions viscosity solutions.2 This notion of solution is given

in §1 where we also develop basic results needed in the sequel. Later we establish, for

each of the Cauchy and Dirichlet problems, uniqueness results for viscosity solu-

tions. The question of existence in the class of viscosity solutions is also treated.

This, however, usually reduces to checking that the standard existence mechanism

provides viscosity solutions and passages to limits.

The nature of the results is illustrated quite well by the following special case.

Take (0.1) with fi = RN and H(x, u, p) replaced by H(p) + u- n(x) where H E

C(RN), n E BUQR"),3 i.e. (0.1) reads H(Du) + u = n(x). In this case we take a

viscosity solution of (0.1 ) to be a function u E C^R^ ) which satisfies

(0.3)

V<p E C^(RN), <p > 0, VA: E R if max <p(u - k) > 0 (respectively,

minm(« — k) < 0), then there exists x0 E {x: <p(u — k) — max<p(w — k)}

(respectively, {x: <p(u — k) = min<p(u — k)}) such that

//(-((« - k)Dtp/q>)(xQ)) + u(x0) < n(x0) (respectively, > n(x0)).

"This name refers to the "vanishing viscosity" method used in the existence results, and was chosen for

want of a better idea.

3BUC(ß) (respectively, Q(í2)) denotes the space of bounded and uniformly continuous (respectively,

bounded and continuous) functions on Q.
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VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS 3

Under these assumptions, the results to follow imply:

(i) If « is a classical solution of (0.1), then u satisfies (0.3) (§1).

(ii) If « is a viscosity solution of (0.1), and u is differentiable at some x0> then

H(Du(x0)) + u(x0) — n(x0); in particular, if u is locally Lipschitz then (0.1) holds

a.e. (§1).

(iii) If u, v are two viscosity solutions of (0.1), then u = v (§11).

(iv) Let {Hm(p) + u — nm)be a sequence of Hamiltonians of the above form and

um be a viscosity solution of the corresponding problem. If Hm -> H, um^ u, and

nm^ n locally uniformly, then u satisfies (0.3) (§1).

(v) The problem (0.1) has a viscosity solution u and \u(x+y) — u(x)\<

sup{| n(z +y)~ n(z) \:zE RN}. In particular, u E BUQR*) and if n E C°>a(RN)

then u E C°'a(RN), 0 < a < 1 (§IV).

It is of interest here that the viscosity solution of (0.1) with H(p) + u — n(x) as

above exists and is unique in such generality. Indeed, the solution may be nowhere

differentiable as is seen by taking H = 0 and n to be nowhere differentiable. Thus

we have a notion of solution of HJ equations which admits nowhere differentiable

functions and permits a good existence and uniqueness theory. It is akin to the

standard distribution theory, but "integration by parts" is replaced by "differenta-

tion by parts" and is done "inside" the nonlinearity. It is extremely convenient (as is

the distribution theory) for passages to limits. Closely related ideas may be found in

L. C. Evans [11], and there is also a parallel with the so-called "entropy condition"

for scalar hyperbolic equations of the form u, + 2 f(u)x = 0. See E. Hopf [17],

Vol'pert [26] and, especially, S. N. Kruzkov [20].

Finally we recall that in the case of a convex Hamiltonian other uniqueness

criteria are known (A. Doughs [10], S. N. Kruzkov [18], P. L. Lions [22]). Some of

the current results were announced in [8].

A few words about the presentation are in order. There are many interesting

theorems in this subject. We have chosen what seem to us to be the most basic to

discuss in some detail and then we make some remarks on variants. To keep the

ideas clear we give a "layered" presentation—some proofs are given in simple cases

and then more technical and general results are presented which subsume the simple

ones. However, there is little redundancy, for we use the arguments given in the

simple cases without repetition. Toward the end of the paper we give proofs in

simple cases and refer the reader to previous arguments which show how to

generalize. A first reading of this paper for the basic ideas could consist of §§1.1 and

1.2 through Corollary 1.6, §11.1, §IV and §§V.l, V.2.

§1.5 deserves a special remark. The results of this section, which were established

rather late, provide two criteria which are each equivalent to the notion of a viscosity

solution. One utilizes local extremals of u — tp rather than global extremals of

<p(u — k) while the second eliminates reference to "test" functions tp altogether (see

Proposition 1.19). L. C. Evans has observed that the criterion utilizing extremals of

u — (pis more convenient in various situations, and the virtues of proceeding directly

from these alternative notions is exhibited in [27].

We remark that the current results can be used in the study of numerical

approximation of HJ equations. The authors have obtained convergence theorems
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4 M. G. CRANDALL AND P.-L. LIONS

(with error estimates) showing the convergence of a class of difference approxima-

tions to the viscosity solutions [9]. The definitions of the current paper obviously

extend to second order equations, which will be considered elsewhere.

I. Viscosity solutions.

1.1. Notation and definitions. Let 0 be an open set in RM and F(y, s, p) be a

continuous function from 0 X R X RM into R. We consider the equation

(1.1) F(y,u,Du) = Q   in0,

where Du = (uy,...,uy ). We have in mind that (1.1) includes both (0.1) and (0.2)

of the introduction. In the first case fi = 0 and F — H while in the second

0 = fiX]0,r[, v = (x, t) and F(x, t, u, p) = PN+X + H(x, t, px,...,pN).

If X is a set of functions on 0, then X+ denotes the nonnegative functions in X

and Xc denotes those functions in X which vanish off a compact subset of 0. ^(0)

denotes the C°° functions on 0 vanishing off a compact subset of 0, i.e. 60(0) =

Cc°°(0). Convergence in C(0) means uniform convergence on compact subsets of 0,

etc.

To partially motivate the definitions to follow, consider a classical (i.e., C1)

solution u of (1.1). Let <p E C'(fi) and <¡p( v)w( v) = max (pu > 0. Then D(<pu\y) =

m(v)o«(v) + M(v)Z><p(v) = 0or

My) = -44^00-<p(y)
It follows that

F^y,u(y),-^D9(y)^=0.

We could do a similar computation at a positive maximum point v of <p(u — \p)

where ^ E C'(fi) as well to conclude

FÍy, u(y), - u{y);\{y)D(p(y) + D+iy)) = 0.
\ <p(y) !

In the definitions which follow we specialize to \p — k E R.

We need some more notation. For \p E C(0), set E+(\p) = {y E 0: \p(y) =

max \¡/ > 0} (the positive extreme set of i|/), and E_(*p) = {v E 0: \p(y) = min \p < 0}

(the negative extreme set of <//), with the understanding that E+(\p) — 0 if i// does

not assume a positive maximum value in 0, etc. When necessary, the dependence on

0 will be recalled by writing E+ (<//; 0), E_(i¡r, 0).

We now define viscosity solutions of (1.1) as well as the corresponding notions of

subsolutions and supersolutions.

Definition 1.1. A viscosity subsolution (respectively, supersolution) of (1.1) is a

function u E C(0) such that for every <p E oD(0)+ and k E R

(1.2)

E+ (<p(« - k)) ¥= 0 => 3 v E E+ (<p(M - A:)) such that

FÍy,u(y),-^-^D(p(y))^0,
\ ny) 1
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VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS 5

(respectively,

E_(<p(u - k)) ¥* 0 => 3y E E_(tp(u - k)) such that

(1'3) {^yMyh-^^My))^).

A viscosity solution is a m E C(0) for which both (1.2) and (1.3) hold, i.e. u is both a

viscosity subsolution and a viscosity supersolution.

It will be convenient at times to speak of viscosity solutions of F < 0 rather than

viscosity subsolutions of F = 0, etc. The reader should notice at this stage that the

equations F = 0 and -F = 0 are not equivalent in the viscosity sense. For example,

u(x) ~\x\ is a viscosity solution of (ux)2 — 1 = 0 on R, but it is not a viscosity

solution of -(ux)2 + 1 =0 on R. (The reader can verify this as an exercise or turn to

§1.4.) However, we do have:

Remark 1.4. « is a viscosity solution of F(y, u, Du) < 0 if and only if v = -u is a

viscosity solution of -F(y, -v, -Dv) > 0.

According to our "motivation", admittedly meager at this point, classical solu-

tions are clearly viscosity solutions. Complete consistency of the classical and

viscosity notions of solution requires that a viscosity solution u which happens to be

C1 will also be a classical solution. This is indeed the case; it is a consequence of

subtler facts presented in the next paragraph.

1.2. Basic properties of viscosity solutions. In this paragraph we develop a variety of

basic results concerning viscosity solutions. A matter of concern will be showing that

the weak assumptions in Definition 1.1—e.g., the small classes of functions <p E

^(fi)"1", \¡/ = k E R occurring in the definition as well as the "3" in place of "V" in

(1.2), (1.3)— can be strengthened without altering the notion defined. Before stating

results to this effect, we will prove one which illustrates the convenience of the

weakness of the definition.

In order to set the stage for this result, we first give an example showing it to be

totally false for Lipschitz continuous solutions. Consider the problem

(tO2-l=0 on]-l,l[,

„(_!) = „(l)=0.

This problem has a largest Lipschitz solution um3X(x) — \ — \x\ and a smallest

Lipschitz solution u„¿n — -wmax. It has many others; e.g., h„(-1) = 0, and u'n = (-iy

on ]-l +7/2«, -l + (j + l)/2«[ for y = 0,... ,4« — 1, defines a solution for which

0 < un < 1/2« for each «. Clearly u„ -» 0 uniformly as « -» oo, but u = 0 is not a

solution of (ux)2 = 1 anywhere. More generally, given any gEC([-l,l]) with

Lipschitz constant 1 and g(-l) = g(l) = 0, it can be uniformly approximated by

Lipschitz continuous solutions of the above problem.

In contrast, for viscosity solutions we have

Theorem 1.2 (Stablility of viscosity solutions). Let {F¡} be a sequence of

continuous functions on 6 X R X RM converging in C(0 X R X RM) to F E

C(0 X R X RM) and let u, E C(0) be a viscosity solution of F,(y, u„ Du,)<0

(respectively, F¡ > 0). Let u¡ -* u in C(0). Then u is a viscosity solution of F < 0

(respectively, F^ 0).
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M. G. CRANDALL AND P.-L. LIONS

Proof of Theorem 1.2. Assume u¡ is a viscosity solution of F¡ «s 0. Let (p£<i)(6)+

and v E E+((p(u — k)). Then for large /, (p(y)(u¡(y) — k) > 0 so E+((p(u¡ — k))

=£ 0 and, by assumption, there exists y, E E+((p(u¡ — k)) for which

(1.5) FÍy^^-^'^D^y,)) < 0.

Now y, E supp <p,4 and thus there is a subsequence yv convergent to some

y E 0. Moreover (p(u — k) <hmmax(m(«/ — k)) =lim (p(y/)(u,(yi) — k) <

<p(y)(u(y) — A:) so>> E £+ (m(« — A:)). Letting / -> oo through the subsequence /' in

(1.5) and using the assumed convergence F, -» F we have

\ <p(.v) /

Thus « is a viscosity subsolution. The proof for the case F¡ > 0 is the same or one

may use Remark 1.4. The proof is complete.

The next result summarizes the implications of the sequence of arguments which

follow it and outlines the extent to which the definition of viscosity solution could be

strengthened without changing the class of such solutions. If (p E C(0) we set

d(q>) — [y E 6: q> is differentiable at v}.

Theorem 1.3. Let u be a viscosity subsolution of F = 0, <p E C(0)+ and yp E C(0).

Then

(1.6) íjjí.a,- —flç + fl^Uo   onE+((p(u-4<))nd((p)nd(xP).

If u is a viscosity supersolution, then

(1.7) F l y, u, - " ~ * D(p + Dip] > 0    onE_(q>(u-xP)) Dd((p) D d(xP),

while if u is a viscosity solution both ( 1.6) and ( 1.7) hold.

We prepare two lemmas. A key ingredient is the following formulation of a result

of L. C. Evans [11].

Lemma 1.4. Let <p E C(0) be differentiable at y0 E 0. Then there exist functions \p+

and rp_ such that xp± E Cc\6), \p±(y0) = <p(y0), DxP±(y0) = D(p(y0) and i//+ > cp,

\p_< cp on B(y0, r)\{y0},5 for some r > 0.

Proof of Lemma 1.4. Replacing <p by <p( v) = (p(y0 + v) — cp(y0) — D(p(y ) ■ y,6

we can assume y0 = 0, <p(0) = 0, and Dy(0) = 0. It suffices to exhibit \p+ . By

assumption, (p(y) =\y\p(y) where p E C(0) and p(y) -* 0 as |y\-> 0. Set p(r) =

sup{p(v): v E 0 n B(0, r)} and

t+(y)=fmp(s)ds + \y\2.

Supp (p denotes the support of cp.

5B(y0, r) denotes the open ball of radius r and center y0.

6a ■ b denotes the Euclidean inner-product of a, b G RM.
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VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS

Let B(0, A) C 0. Then $+ E C\B(0, «)), ¡p+ (0) = 0, xp+ (y)>\y | ¡5(|y |) + \y \2 >

\y I P(y) = f(y) f°r y G ^(0» «)\{0} °y me monotonicity of ¡5, and D\p+ (0) = 0.

This \p+ may be modified outside B(0, A/2) if necessary to achieve i//+ E Cc'(0).

We next prove

Lemma 1.5. The assertions of Theorem 1.3 are valid if also \p = k ER is a constant.

Proof of Lemma 1.5. It suffices to show (1.6) holds for viscosity subsolutions

(recall   Remark   1.4).   Let  tp E C(0)+   be  differentiable  at y0 E 0   and y0 E

E+ ((p(u — k)). It follows at once from Lemma 1.4 that there is a t//_E Cx(®)+ such

that ip_(y0) = «PÍJo). Dyp_(y0) = D(p(y0) and t//_< <p on supp ^\{^o}- Then

(1.8) {y0}=E+(ip_(u-k)).

Next choose a sequence {cp7}^L, C uD(0)+ with supports contained in a fixed

compact subset of 0 so that <p, -» ^_ and D(p¡ -» £><//_ uniformly. For large /,

<P/(j;o)(M(>'o) — Ac) > 0 so £+ (<P/(w — A:)) ̂  0 and, by assumption, there exist y, E

£+ ((Pi(u — k)) such that

(1.9) F(y'>u(yi)'-uiy(\~)kDv(yi)) ^°-

Passing to a subsequence if necessary we may assume y¡ converges to a limit v.

Clearly v E E+ (¡p_(u ~ k)) ana then y = y0 by (1.8). Sending / to oo in (1.9) and

using (p, -* ip_ in C\ i_(yQ) = <p(y0), D\p_(y0) = Dtp(y0) we conclude

*(*.«<*).J*^^U))<°.

hence the result.

Proof of Theorem 1.3. It suffices to consider the subsolution case. Let tp E

C(0)+ , xP E C(0),jo E £+ (<p(n - *)) n ¿(<p) n «/(*). Set

where x E ^(O)4" satisfies 0<xs£l>X(j'o)=l> aml X vanishes off a neighborhood

of y0 on which u(y)> \p(y0). Then

*(>')("(>') - *Ky0)) = x(y)v(y)("(y) ~ 4>(y))

which is clearly at most (p(y0)(u(y0) ~~ "K^o))* i-e- 7o G ^+ (<P(M ~~ »fOo)))- Since <p

and ^ are differentiable at y0 and

«(^)-^(^) _ j +_t(yo)-Hy)_
»(y) - Hyo) u(yo) - *(%) + u(y) ~ "(a)

= 1+»U)-*U)+°(I^Ä|)>

we have

^u) = ̂ u)-mU),iU)^u).
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8 M. G. CRANDALL AND P-L. LIONS

The result now follows from Lemma 1.5 applied with k = \p(y0) and tp in place of <p.

Using the above results it is now simple to prove

Corollary 1.6 (Consistency). Let u be a viscosity subsolution (respectively;

supersolution, solution) of F(y, u, Du) = 0. Then F(y, u, Du) < 0 (respectively;

F(y, u, Du) > 0, F(y, u, Du) = 0) on d(u).

Proof of Corollary 1.6. It suffices to treat the supersolution case. Lety0 E d(u).

Choose \p+ E Cc'(0) such that \p+ (y0) = u(y0), D\p+ (y0) — Du(y0) and \p+ > u in a

deleted ball B(y0, A)\{y0}. Choose tp E 6Î>(6)+ with supp <p C B(yQ, A), 0 < <p < 1,

•PCjo) = 1 (so D<P(yo) = 0)- Then {y0} = £_(<p(u — ip+ +1)). By Theorem 1.3 and

the assumption that « is a viscosity supersolution, we have

J        (    \    "(-ft) ~^+(>'o)+ ! „  1    uni   (    \
F\ ä. "(^0)-7—^-D<p(y0) + D4>+ (y0)

= F(yQ,u(yQ),Du(yQ))>0,

and the proof is complete.

The next two results are concerned with changes of variables.

Corollary 1.7. Let u be a viscosity subsolution (respectively; supersolution, solu-

tion) of (I A). Then:

(i) If gE C'(0), g > 0 in 0, xp E C'(0) and v - g(u - t//), then v is a viscosity

solution (respectively; supersolution, solution) ofG(y, v, Dv) = 0 where

(ii) 7/0: 0 -> 0 is a Cx diffeomorphism of the domain 0 onto the domain 0, then

t)($(v)) = u(y) defines a viscosity subsolution (respectively; supersolution, solution)

of G(y, v, Dv) = 0 where

G(y, r, p) = F($-X(y), r, pD<P(<î>-x(y)))

and pD$(y) denotes the action of D$(y) on the cotangent vector p.

We omit the proof of Corollary 1.7 as it is an easy exercise given Theorem 1.3. To

conclude this section we obtain a partial result concerning nonlinear changes of the

unknown.

Corollary 1.8. Let u be a viscosity subsolution (respectively; supersolution, solu-

tion) of (I A) and let O £ C'(R), *' > 0 everywhere and $(R) = R. Then v = $(m) is

a viscosity subsolution (respectively; supersolution, solution) of

(1.10) F(y,^-l(v),(<t>-x)'(v)Dv) = 0.

Proof of Corollary 1.8. We treat the subsolution case. Let u be a viscosity

subsolution of F = 0. We claim that, if x0 E E+(<p(v - k)) (with <p E öD(fi)+ ,

k ER) then there exists <p E Cc'(fi)+ , k £ R such that

x0 £ E+ ((p(u - k)),      -M(f;}~Sy(x0) = -nv(x0))v(x^ ~kD^ixo),
(p{x0) <p(x0)
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VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS 9

where ^(t) = <b~x(t). This obviously implies the corollary.

Now, to prove our claim, we argue as follows: we have for | x — x01 small,

(1.11)    v(x)<^(v(x0)-k) + k
(p(x )

< o(*o)--°(    \    Dv(xo) ■ (x-x0) + \x-x0\e(\x- x0 I)
<p(x0)

where e £ C(R+ , RM) and e(i) -» 0 as t -> 0 + . Thus, for | x — x0 | small, we

obtain, since ^ is nondecreasing,

°(*o) -    -fx~Y~   D(P(xo) ' (x ~~ xo) + I x - x0 | e(| x - x0 |)

I v(x ) - k\
< ü(x) = u(x0) - *'(v(x0))\       y \D(p(x0) -\x-x0\

+ \x-x0\ë(\x- x0\)

for | jc — jc0 | small enough and e E C(R+ , RM), ë(t) -» 0 as t -» 0 + . But the

right-hand member ü of the above inequality is a continuous function differentiable

at x0 and therefore by Lemma 1.4 we may find k and <p E Cc'(fi)+ such that:

u(x0) - k > 0; x0 £ E+ (rp(w - k));

-Dip(x0)U *y     k = -*'(v(x0))V{X°/~ k D(p(x0);        supptpC B(x0,h),
ryXo) H>\xo)

where A is small enough in order to have u(x) < ü(x) on B(x0, A). We are done

since we have for all x,

(1.12)

<P(*)(«(*) - k) <<p(x)(ü(x) - k)y(x0)(ü(x0) - k) = (p(x0)(u(x0)k)

and thus x0 £ E+ (q>(u — k)).

Remark 1.13. We pause here to consider the case in which 0 is not an open subset

of RN. Indeed, in later sections we will want to use some of the above results when 0

has the form 0 = fi X (]0,T]). We claim that all we have done is correct in general if

one interprets the definitions appropriately. This means: ^(ß), C'(0), etc., should

denote restrictions of functions in ^(R^), CX(RN), etc. to 0 (where, in the case of

^(0), {x £ 0: u(x) ¥= 0} lies in a compact subset of 0, etc.). The other point is the

notion of "differentiable". We will say <p £ C(0) is differentiable at y0 £ 0 and

D<P(y<)) = 2 if there is an extension of <p to <p E C(RN) such that D<p(y0) = z and

moreover, for any extension of <p to tp £ C(R^) differentiable at^0, D(p(y0) = z. (In

the case where 0 has some boundary which is sufficiently smooth, e.g. 0 = fiX]0,T],

all notions coincide.) The reader can think through these claims.

1.3. Piecewise smooth viscosity soloutions. In this section we consider piecewise Cx

functions and determine conditions on the discontinuities of their derivatives equiva-

lent to being viscosity solutions of F = 0. Consider the situation in which 0 = 0+

U 0_ U T is divided into two open parts 0+ and 0_ by a surface T. The unit normal to

u(x) <^

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



10 M. G. CRANDALL AND P.-L. LIONS

r aty0 £ r is denoted by ñ(y0) which points into 0+ . A function u E C(0) is given

as u+ in 0+ UT and u_ in 0_ur. We assume T is of class C1 and so may be

represented by a relation of the typical form y¡ = fiy2,... ,ym) near y0 E T, where

/£ Cx. We assume u E C(0) and u± E Cx(6± UT). When is u a viscosity solution

of F = 0 in 0? We will use the following observations.

Proposition 1.9. (i) Ifu is a viscosity solution of F — 0 in 6 and 0' is an open subset

ofB then u |e-7 is a viscosity solution of F = 0 in 0'.

(ii) Ifu £ C(0), 0 is the union of relatively open subsets 0, and&2, 0 = 0, U 02 and

u |e is a viscosity solution of F = 0 in 0,, i = 1,2, íAe« u is a viscosity solution of F = 0

W0.

That is, the property of being a viscosity solution is purely local. Part (i) of the

proposition is completely trivial and we leave part (ii) as a very simple exercise.

To continue, assume u E C(6) is a viscosity solution. Then u± is a viscosity

solution in 0 ± . But u± lie in C'(0 ±),som± are classical solutions by Corollary 1.6.

Let <p £ <>D(0)+ ,y0 £ E±((p(u - k)). Uy0 E 0+ U 0. we then have

^"WM"U)-*)^^)=o

by the opening remarks of this section. It remains to consider y0 £ T. Let

TVo={TER":n(yo)-T = 0}

be the tangent space to T toy0 andpT,pN = I — pTbe the orthogonal projections on

Tyo, span{n(y0)}, i.e. pNy = (n(y0) • y)n(y0). Since u+ , u_ agree on T, pTDu+ (y0)

= pTDuXy0). When y0 E E+(tp(u - k)) (1 T we clearly have Tv¡¡ 3 t -» $(t) =

<P(y0 + t)(«(^o + t) - it) satisfies Dr$(0) = 0,

j.    <p(y0 + ««)(m+ (jq + an) - k)- (p(y0)(u(y0) - k) ^

aiO a

lim «p(7q + ttw)(M_(j>0 + a«) - k) - <p(y0)(u(y0) - k) ^

«to a

These relations amount to

"(.Vo) -A:

•PÍJo)

u(y0) ~ k

<p(y0)

»(yo) ~k

<p(y0)

PrD(p(yo) =PTI)u+(y0) =pTDu_(y0),

D<p{y0) • "(yo) > Du+ ( Jo) • ñ~(y0),

D<p(y0) ■ Hy0) "= Du_(y0) ■ ñ(y0).

1u |e- means the restriction of u to 0'.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS 11

Hence

-u^~kD<p{y0) = pTDu_(y0) + &{y0)

for some |E [£>«+(.y0) ■ n(y0), Du_(y0) ■ n(yQ)].

We conclude that the condition

¡Vy0 ETM E[Du+(y0) ■ h-(y0), Du_(y0) ■ ¿(y»)],

{F(yo> "(ä). PTF>u±(y0) + tñ(y0)) < 0

implies « is a viscosity subsolution of F = 0. Similarly

(1 15) \Vy0 £T,n E[Du_(y0) ■ ¿(y,), Du+(y0) ■ h(y0)],

[F(yQ, u(y0), pTDu±(y0) + £«(;/„)) > 0

implies u is a viscosity supersolution of F = 0. Note that if, e.g., Z)w_(y0) • ñ*(>>0) >

Du+(y0) • n(y0) then (1.15) is an empty condition, etc. In fact, (1.14), (1.15) are

necessary as well as sufficient. We prove

Theorem 1.10. Let 0, 0+ , 0_, T, u, u± be as above. Then u is a viscosity solution of

F = 0 in 0 // and only if u± are classical solutions in 0 ± and (1.14) and (1.15) hold.

Proof. The sufficiency has been shown. We consider the necessity. First let

£ = Du+(y0) ■ n(y0) = Z)w_(y0) • n(y0). In this case u is differentiable at y0 and

F>u(y0) = pTDu±(y0) + £«(y0). By Theorem 1.2 we have

F(y<), u(y0), Du(y0)) = F(y0, u(y0), pTDu±(y0) + ¿«(y0)) = 0

so (1.14) and (1.15) hold. Next assume that Du_(y0) ■ n(y0) > | > Du+ (y0) ■ n(y0).

We claim that then there is a \p £ C'(0) such that \p(y0) = u(y0), \p > u in a deleted

neighborhood of y0 and D\p(y0) — pTDu±(y0) + |«(y0). If this is so, choose

<p £ oD(0), 0 < <p < 1, (p(y0) = 1 and <p( v) < 1 for v =^y0 so that \><p(\p-u)> 0.

Then {y0} = E+((p(u - \p + 1)) and by Theorem 1.3

F(y0, u(y0), DxP(y0)) = F(y0, u(y0), pTDu±(y0) + &(y0)) « 0,

so we have (1.14). The case in which (1.14) is an empty requirement is similar. It

remains to exhibit \p. By Proposition 1.9 and Corollary 1.7 we may localize and

change variables. Hence assume y0 = 0 and T is yx = 0. We have

u+(yx,---,ym)   ifj', >o,

and

»(y\>--->ym)
\u.(yx,...,ym)    ifyx<0,

du_ , .      du+ , .
-T—(0,y2,...,ym) =-j—(0,y2,...,ym),       i = 2,...,m,

|f<°.°.0)<i<^(0,0,...,0).
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12 M. G. CRANDALL AND P.-L. LIONS

Let xP0(y2,... ,ym) >u±(0,y2,... ,ym) with strict inequality if (y2,... ,ym) =£ (0,... ,0)

in some neighborhood of (0,...,0), t|/0(0,... ,0) = «± (0,0,... ,0), 3^0(0,...,0)/3y¡ =

3«±(0,...,0)/9y, for i = 2,...,m.\pQ exists by Lemma 1.4. Then set ip(yx,...,ym) =

ipQ(y2,... ,ym) + | v,. Clearly \p has the desired properties and the proof is complete.

To illustrate this result, consider the example solution w = 0 for | x | s* t > 0,

u = -t + \x\ if I x \< t of u, + (ux)2 — 0 in the introduction. Let T be x = 0,

n(0, t) — (1,0). Then F((x, t), u, (/?,, p2)) = p2 + (px)2, u+ = -t + x and u_ = -i

— x in the appropriate domains. We have

(pTDu±(0,t) = (0,l),

[Du+ (0, t) ■ «"(0, i) = 1 > -1 = Du_(0, t) • «"(0, t),

but F(pTu±(0, t) + £w(0, i)) = -1 + ¿2 < 0 for -1< £ < 1 so (1.15) fails.

We remark that the conditions (1.14) and (1.15) were anticipated by Oleinik [24]

in a special case. Moreover, an alternative way to obtain these results is given in §1.5.

1.4. Differential inequalities in the viscosity sense. In this section we treat some

elementary inequalities in the viscosity sense. The first result concerns the one

dimensional case.

Proposition 1.11. Let T > 0 and g, A E C([0, T]). Assume g is a viscosity solution

of

(1.16) g'^h

in ]0, T[. Then

(1.17) g(t) < g(s) + ['h(r) dr   for0<s<t<T.
•'s

Proof. It is enough to show (1.17) for s = 0 and for this it suffices to prove that

for e > 0

(1.18) g(t)^g(0)+ f'h(s)ds +e +et,       0 < t < T.

Assume (1.18) is false and let tE]0, T[ be the least t for which equality holds in

(1.18). Set xp(t) = g(0) + f¿h(s)ds + e and note ^(0) > g(0), $(t) < g(t). Choose

S > 0 such that ¡P(t) > g(t) on [0, S] and tj £ C'([0, T])+ such that tj' < 0 on [8, T]

and 7)(T) = 0. Then there is a r0 £ E+ (r\(g — \p)) and /0£]5, T[. By Theorem 1.3

-3$4(«(ío)-*(ío)) + *'('o)<*('o)-
Wo)

Since 7]'(t0) < 0 we have ¡p'(t0) = A(i0) < A(i0) which is a contradiction.

Remark 1.19. It follows from Proposition 1.11 that (1.16) holds in the viscosity

sense if and only if it holds in the sense of distributions.

Corollary 1.12. Let T> 0, y £ R and g, A £ C([0, T]). Let g be a viscosity

solution of

(1.20) g' + Yg<A    on]0,T[.

Then

(1.21) ey'g(t) <eysg(s) + /VtA(t)</t   forO^s^t^T.
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Proof. By Remark 1.19, (1.20) holds in the sense of distributions and then it is

known that (1.21) holds. (Of course, one could prove (1.21) directly by adapting the

proof of the proposition or by using Corollary 1.7 to find (ey'g)' < ey'h in the

viscosity sense.)

In the next result we show that u is a viscosity subsolution of

(1-22) jru(yx,y2,...,ym) = g(yx,...,ym)

exactly when the corresponding statement holds for the functions of one variable

r -> u(r, y2,...,ym) obtained by fixing (y2,...,ym).

Proposition 1.13. Let u, g £ C(ß). For z = (y2,...,ym) E RMX, let ßz = {r:

(r, z) £ ß}. Let uz(r) = u(r, z), gz(r) = g(r, z) on 6Z. Then the following are equiva-

lent:

j For each z E RM~ ', uz is a viscosity solution of

U<g2/«0z.

(1.24)

u is a viscosity subsolution of

j^u(yx,...,ym) =g(yx,...,ym)in<

Proof. We show (1.24) implies (1.23). Let z0 E Rm_1 be such that 0Zq =£ 0. Let

T) E ^(Q^ , k E R and r0 E E+(t](uZo - k): 6Z<¡). Using Lemma 1.4 in the usual

way we may assume {r0} = E+ (tj(wZo — k): 0Z ). Pick rp £ 6î)(B(z0,1))+ such that

9(z0) = 1. Set qpe(z) = m(z/e). For e°>0 and "small, v(yx)(pe(y2,. ..,ym) E ¿D(0)+

and there exists (re, ze) E E+ (rj(p(u — k): 0). By assumption,

(1-25) -^(M(rE,zE)-*)<g(rE,zE).

Clearly zE -» z0 and re -» r0 as ej,0. Thus the result follows by letting ej,0 in (1.25).

It remains to show that (1.23) implies (1.24). However, this amounts to checking

the definitions and is left to the reader.

The next result is concerned with more general directional derivatives.

Theorem 1.14. Let v: 0 -» RM be continuously differentiable. Denote by Y(t, y0) the

solution of

(1.26)
Y(0,yo)=yo,

which is defined on a maximal interval of existence Iy .(By assumption Y(Iy, y0) C 0.)

Let u, g E C(0) and u be a viscosity solution of

(1.27) (Du)-v^g   /«0.

Then fory0 EQ,s, t E I   and s « t one has

(1.28) u(Y(t, y0)) - u(Y(s, yQ)) <fg(Y(r, y0)) dr.
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14 M. G. CRANDALL AND P.-L. LIONS

Proof. If v(y0) = 0, then Y(t, y0) = y0 and there is nothing to show. If v(y0) =h 0,

we may rotate coordinates so that v(y0) = (vx(y0),0,... ,0). Without loss of general-

ity we also assume y0 — 0. Consider the change of variables $ defined near y0 = 0 by

®(yu- ■■>ym) = (y\,---,yJ~(y\,---,ym) = Y(yx,(o,y2,...,ym)).

Then, with the notation of Corollary 1.7 and H(y, r, p) = p ■ v(y) — g(y), we have

G(y, r, p) = pD<S>($-x(y)) ■ p(^x(y)) - g(4>-'(y))

= P¡-g{*-\y)).

(Of course, this is merely the statement that 3/3y, = v ■ (3/3v,,... ,3/3ym).) Thus,

by Corollary 1.7, u(<b~x(y)) is a viscosity solution of

Propositions 1.13 and 1.11 then yield

u(^-x(t,0,...,0))-u(^-x(s,0,...,0))<f'g(^-x(r,0,...,0))dT.
Js

for 5 < t and | s \ , 11 \ small. But this means

u(l(t,0))-u(Y(s,0))<f'g(Y(r,0))dr.

While this inequality is only established for \s\ , \t\ small, it is then trivially

extendable to t, s E I0, s ^ t.

Corollary 1.15. Let 0 be convex, u E C(0) and L ER. If for every <p E oD(0)+

and Ac E R

(1.29) (u~k) \D(p\<L   onE+((p(u-k))

then | u(y) — u(y) |< L\y — y \ for y, y £ 0.

Proof. Fix y, y E 0 with y ¥= y. Put v = (\y - y\)~\y - p). From (1.29) it

follows that m is a viscosity solution of Du ■ v *£ L in 0. By Theorem 1.14

u(y0 + tv) - u(y0 + sv) *£ f Ldr = L(t - s)
•'s

whenever s < t and y0, y0 + tv, y0 + ív E 0. Set y0 = y, t = | y — y \ , s = 0 to obtain

u(y) — u(y) < L \y — y \ . Since we may interchange y and y, the proof is complete.

1.5. Characterization of points in some E+ ((p(u — t/>)). According to Theorem 1.3, if

m is a viscosity solution of F *£ 0, then

Fly, «,-—-—D(p + Dxp\ <0    on£+(<p(«-^)) n d(q>) n d(¡p).

One is naturally led to ask: What are the points y belonging to some E+ ((p(u — \p))

n d(cp) n d(\p) and what are the possible values of -((u — \p)(Dcp)/(p) + D\p at

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS 15

such points? We prove

Theorem 1.16. Let u E C(0) andy0 E ß, a E RM. Then the problem

y0 £ E+ (<p(u - *)) n d(q>) n d(>p),

"(jo) - Hyo)(1.30)
<p(y0)

D<p(y0) + DxP(y0) = a

has a solution ip E C(6)+, f E C(6) if and only if there exists yp E C'(0) such that y0

is a local maximum point for u — \p and D\p(y0) = a. If E+ is replaced by E_ in (1.30)

and "maximum" is replaced by "minimum" the statement is true.

Proof. We first observe the sufficiency. Let \p E C'(0) and y0 be a local

maximum for u — yp. Assume, changing yp by a constant if necessary, that u( y0 ) =

4>(y0). Choose tp £ C'(ß)+ with a strict maximum value of 1 aty0 and supp tp C {yp

> u). Theny0 E E+ ((p(u — yp + 1)) and

"(jo) -$(yp) + i

<p(>b)
-D(p(y0)+D,p(y0) = Dt(y0)

since D(p(y0) = 0. The necessity is equally simple. Since y0 E E+((p(u — \p)) D.

rf(<p) n d(\p) implies

"(j') <-rr (vU)(«U) - iKä))) + <rO)
flj)

near y0 and the right-hand side is differentiable at y0 with the derivative

-7—v-D<p(y0) + D4>(y0),
<p(y0)

we may majorize it neary0 by a tf £ C'(ß) which agrees to first order aty0 (Lemma

1.4). This completes the proof.

Remark 1.31. By Lemma 1.4 we may equally well characterize the pairs (y0, a) for

which (1.30) has a solution by the condition

,.     max{u(y) - (u(y0) + a- (y-y0)),0}
lim-:-:- = 0.

J--Ä \y-yo\

Corollary 1.17. Lei m £ C(0). Then

A+={AÊS:3f£ C'(0), $ (y0) = u(y0) and^ > u near y0)

is dense in 0. Similarly, the set A^ defined as above with \p 3= u replaced by u> \p is

dense in 0.

Proof. If y0 £ 0 and e > 0, choose <p £ Cc'(0)+ so that (p(y0) > 0 and supp <p C

B(y0, e). Then E+((p(u — (u(y0) — 1))) is nonempty and it follows from Theorem

1.16 that it is contained in B(y0, e) D A + , hence the result.

Remark 1.32. One cannot expect A+ to be much more than dense (e.g.., of full

measure, second category, etc.) since A+ C\A_= d(u) may well be empty.

We may also use these results to reformulate the notion of a viscosity solution as

follows.
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16 M. G. CRANDALL AND P.-L. LIONS

Let m £ C(0)andyoE0. Set

. («(y) - u(y0) -a-(y -y0)) +
D+u(y0) =   a ER":  lim v  vy/       "»'        , "     ™"    = 0

y-+y« \y-y<>\

and

D'u{y0) = \aERN: lim
. (u(y) - u(y0) - a ■ (y-y0))~

y^ya \y-yo\ J

where r+ — max(r,0), r~= -min(r,0). In general, D± u(y0) may be empty, but by

Corollary 1.17 each is nonempty for a dense set of y0 £ 0. The next result is an

immediate consequence of the above considerations.

Proposition 1.18. Le/ m £ C(0). 77ien:

(i) u is a viscosity solution of F =£ 0 if and only if

(1.33) F(y,u(y),a)<0   for every y £ 0 and a E D+u(y).

(ii) u is a viscosity solution F > 0 if and only if

(1.34) F(y, u(y),a) >0   for every y Eß anda E D'u(y).

(iii) u is a viscosity solution of F = 0 if and only if (1.33) and (1.34) hold.

One can use Proposition 1.18 to give another proof of Theorem 1.10.

II. Uniqueness for the Dirichlet problem in R". In §11.1 we treat the simple case

(2.1) u + H(Du) = n(x)   in R".

After this the general case

(2.2) H(x,u,Du) = 0   inR",

which involves technical assumptions, is discussed.

ILL 77ie equation u + H(Du) = n(x). We consider two problems

(i)      u + H(Du) = n(x),
(2 3)

'(ii)     v + H(Dv) = m(x),

where

(2.4) HEC(RN),    «EBUC(RA'),    m 6 BU^).

The main result concerning (2.3) is

Theorem ILL Let (2.4) hold. Let u,vE Cb(RN) be a viscosity subsolution and a

viscosity supersolution o/(2.3)(i) and (ii) respectively. Then

(2.5) Hu-v^U^^l^n-m^U^y*

Remark 2.6. It follows from (2.5) that « « m implies u < v. It is also an

immediate consequence of the theorem that if u, v are viscosity solutions of their

8r+ (/■") denotes the maximum of r (respectively, -r) and 0.
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respective problems, then \\(u — v)\\l^^rn) < ||(« — m)!!^^,. In particular,

bounded viscosity solutions of (2.1) are unique.

Proof of Theorem ILL The basic arguments are best illustrated by first running

through the proof under the stronger assumption

(2.7) u(x) -* 0   and   v(x) -» 0   as|x|->oo.

The condition (2.7) is natural if H(0) — 0 and «, m -» 0 at oo. After the proof is

sketched for the case (2.7), we give the general argument.

Case 1. u, v -> 0 as | x | -» oo. If u(x) < v(x) everywhere there is nothing to show.

Hence assume u(x) — v(x) > 0 for some 3c. Let <p E 6¡)(RN)+ , 0 =£ rp < 1, and

<p(0) = 1. Define

(2.8) M=  max (q>(x - y)(u(x) - v(y))).
R*XR"

The maximum in (2.8) is assumed and M > 0 since (p(x — x)(u(x) — v(x)) = u(x)

- v(x) >0 while (p(x - y)(u(x) - v(y)) ->0as|x|+|y|->ooby (2.7) and <p £

^(R"). Notice also that for xER*

u(x) — v(x) — q>(x — x)(u(x) — v(x)) < M

so

(2.9) ||(M-u)+||Loo(Rv)<M.

Let M = <p(x0 - y0)(u(x0) - v(y0)), kx = v(y0), k2 = u(x0). We then have

xo<EE+{<p(--yo)(u(-)-ki))   and  y0£E_((p(x0- -)(v(-) -k2)).

It now follows from Theorem 1.3 and the assumptions that

u(x0) + H[-U{xf~VÍyo)(D(p)(x0-y0)) < n(x0),

v(y0) + J_^o)-^(^o)(j)<p)(;Co_^o)| > m(yo)
\    <p\xo   yp> i

where we used Dx(<p(x —y))= -Dy((p(x — y)). Subtracting the above inequalities

yields

(2.10) u(x0) - v(y0) < n(x0) - m(y0) = n(y0) - m(y0) + «(x0) - n(y0).

Choosing <p to be supported in B(0, a) (so | xQ — y0 |< a), (2.10) and 0 < tp < 1

imply

M < ||(« - m)+ || t»(RW) + pn(a)

where the modulus of continuity p„ of « is given by

(2.11) p„(a) = sup{|«(x) - «(y)| : \x-y\<a).

Since « £ BUC(R"), we have pn(a) -> 0 as a -» 0 and the result follows.

Case 2. The general case. Let <p £ ^(R^ be as above: 0 < <p < 1, <p(0) = 1 and

supp tp C B(0, à). We are first going to prove, via a truncation argument, that

(2.12) M=    sup   (p(x-y)(u(x)-v(y))^\\(n-m)+\\L^) + pn(a)

x,yGKN
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18 M. G. CRANDALL AND P.-L. LIONS

where p„ is given by (2.11). The result then follows as before. (The difference

between this case and the previous one is that we cannot write "max" in place of

"sup" in (2.12).) We may assume M > 0.

Remark (added in proof). We belatedly observe that the proof below can be

improved by using the maximum of (p(x — y)exp(-e(| x \2 + \y \2))(u(x) — v(y)) in

place of Me below or by noting that £ | xe \2 -» 0 (which improves (2.13)).

Let e > 0,

ME=   max (p(x-y)(e-c^u(x)-e-^v(y)),
jt,.|i6RÄ

and

Me = <p(xe-ye)(e-^2u(xe) " «-W©(ä)).

Let us first prove that A/E -» M as £ J,0. Since u and v are continuous it is clear that

lim Mc 5* M > 0.

elO

Hence, for £ small, ME > M/2. Moreover, | xE — yE | < a, and one then easily deduces

that

(2.13) fE\xe\,fe\ye\<C

for some C independent of £. Now

(2.14) Me = (p(xc - yE)(e-wy xE) - e-W\>U))

<<p(xE-yE)(«(xE)-e*»l2-W2)t;(yt))

< (p(xe - y.)(u(x.) - v(yc) + (l - e^2-^)v(yt))

<M+ | 1 -et(W2-W2>||u(yE)| .

However, | e(| xe \2 — \ye \2) |= e | (xe — ye, xe + ye) |< JE2aC by (2.13). Therefore,

by the above, limEi0Me < M and we have ME -» M as e|0.

We next prove (2.12). By

xE E E+ (<p(. -ye)e-^(u(.) - *,(•))), ^(x) = e<rf-wy,.),

yE E £_(<p(;cE - -)e-^2(v(-) - yp2(-))), ^2(y) = e^-^u(xe),

and Theorem 1.3 we have

«(*J + //(- («(*,) - fc^y-"^ + 2«(x.k) < «(*.).
(2.15) | \ <Pl*«_J'J /

A:i=ee(|^-W2)t;(>,e)
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and

(2.15)'

Set

»U) + h\-(k2-°(y.))iDf(x{xLyf + *«>U)äI >"(ä).

*  = e^2-^u(xe).

(2.16)

*. = -(«(*.)-°U))
«PÍJC.-J'J

5E = -(l-exp(£(|xE|2-|yE|2)))t;(yE)(^)(^    *> + 2eH(*t)*„

C = (1 - exp(e(|yE|2 - |*.|»)))«(;c.) (^^;je) + 2ev(yt)y..

Subtracting the inequalities of (2.15) and (2.15)' yields (recall (2.14))

ME + H(Xe + fij - //(XE + ÔE) < n(xc) - m(yt) + g(e)

«£ ||(« - m)   II ¿»(rWj + p„(a) + g(e),     where g(fi) —»0 as e|0.

The proof is completed by showing that Xe remains bounded as eJ,0 while 5E and

S£ -» 0, for then letting e|0 above yields (2.12). Since Me > M/2 > 0 for £ small,

<p(xE — yE) is bounded away from zero, proving AE remains bounded. Similarly, 5E, 5E

tend to zero for exe, eye and e(| xt \2 — \ye \2) tends to zero by (2.13) and the remarks

thereafter. This completes the proof.

Remark 2.17. The proof (especially Case 1) is vaguely reminiscent of the proof of

uniqueness of entropy solutions of conservation laws in S. N. Kruzkov [21].

Remark 2.18. The proofs given used only that « is uniformly continuous and m is

continuous. Similarly, we could have used uniform continuity of m and continuity of

«. Boundedness of « and m is irrelevant, although the result is not very interesting if

n — m is not bounded above. We do not know if the result holds without uniform

continuity of at least one of « and m. It is also possible, for example, to replace the

boundedness assumptions on u and v by | u \ , \ v \< C(l + \ x f), 0 < p < 1, if

either H is bounded and uniformly continuous or u and v are Lipschitz continuous.

We conjecture that one can take/? = 1 if u and t> are Lipschitz continuous.

II.2 77ie equation H(x, u, Du) = n(x). It will be assumed throughout that

H(x, r, p) satisfies

For each R > 0, H is uniformly continuous

onR^X [-R,R] XB(0,R),
(2.19)

and

(2.20)

For each R > 0 there is a continuous nondecreasing function

yR: [0,2R] -> R such that yÄ(0) = 0 and

(H(x, r, p) - H(x, s, p)) > yR(r - s)

for* ERN, p ERN, -R ^ s ^ r ^ R.
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We will need to restrict the nature of the joint continuity of H. The condition

(2.21)

limsup{|/y(x, r,p) - H(y,r,p)\ :\x -y\(\ + \p |) < e, \ r |=£ R) =0
eiO

for all R > 0,

and the stronger requirement

(2.21*)

lim supíj H(x, r, p) - H(y, r, p) | : | x - y | \p \< Rx, \ x - y |< e, | r |< R2) = 0
elO

for all/?,, R2>0,

will be used.

We may now state our main result.

Theorem II.2. Let u be a bounded viscosity subsolution of H(x, u, Du) — 0 and v be

a bounded viscosity supersolution of H(x, v, Dv) = m(x) where m E C^R^). Let

(2.19) and (2.20) hold, R0 = max(\\u\\^^^ II»H^»,,,*,) and y = yR(¡ as in (2.19).

Then:

(i) If (2.21*) holds we have

(2.22) ||Y((t( - f>)+ )ll£-o^, « H»i+ llt-^,.

(ii) 7/(2.21) holds and u,vE BUQR"), then (2.22) holds.

(iii) Ifu,vE WX-°°(RN), then (2.22) holds.

Remark 2.23. Remarks analogous to (2.6) and (2.18) apply to Theorem II.2.

Remark 2.24. It is not possible to relax the assumptions (2.21) and (2.21*) in an

essential way. This can be seen in the linear case H(x, r, p) = r + b(x) ■ p, where

(2.21) is equivalent to the Lipschitz continuity of b. See §V.4 concerning this remark.

Proof of Theorem II.2. With the notation and assumptions of step 2 in the proof

of Theorem 1.2 we have, in the same way,

(2.25)       H(xc, u(xc), Xc + 8,) - H(ye, v(yt), AE + 8t) < ||m+ H^*,,

where XE, 8t, 5E are given by (2.16). Rewrite (2.25) as

(H(xe, «(*,), Xt + 8t) - H(xe, v(ye), Xc + oj)

+ (H(xt, v(yt), XE + i.)-H(y„ v(ye), XE + fij)

+ (H(ye, v(ye), Xe + oE)-//(yE, v(ye), Xe + 8e)) < \\m+ \\L^y

By (2.20), (2.14) and y = yR(¡, this implies

(2-26) y(Mc + g(£)) < ||m+ \\Lm(ßfl) + Ae + Be

where limEl 0 g(e) = 0 and

(2 27) \A< =l //(Xf' UU)' Xf + 6f) " H{y" V{ye)' K + Ôe) ' '

[Bt =\H(yt, v(ye), Xt + oe) - 7/(yE, v(ye), Xs + 8e)\.
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As we showed before, SE, 8e -> 0 while Xe remains bounded. Thus, by (2.19), Be -> 0

as eiO. We need to estimate At. To this end we reintroduce the support of tp explicity

by replacing <p by <pa(x) = (p(x/a) where <p E ^(5(0,1))+ , 0 < <p < 1, <p(0) = 1,

Dtp(0) — 0. Since y>((xe — yE)/«) remains bounded away from zero as £¿0 we see

from (2.16) and (2.13) that

limsup(|XE + o£|)<f

for some K. Since | xe — ye | < a,

limsup^E <sup{\H(x,r, p) - H(y,r,p)\ :\x-y\<a,
e|0

\r\<R0,\x-y\\p\<K\}

= A(a).

Then (2.25) implies y(M) < II w+ || Loo(Rn, + A(a). If (2.21*) holds, A(a) - 0 as a |0

and this proves (i).

To establish case (ii) we will prove that <p can be chosen so that limEj0 | xt — ye \<

olk(cl) for some k(-) satisfying k(0 + ) = 0. Then for £ small, | xe — yE 11 XE + 5E |<

Kk(ol) and the result follows as above. Assume v E BUC(R'V) and let pv be the

modulus of continuity of v. Recalling the proof of Theorem 1.1 we have

sup(«(a:) - v(x)) < sup (pi-)(u(x) — v(y)) <  lim Me

eiO

« hmm(^-^)((„(xE)-ü(yE)) + ||t;||L»(R,)|exp(2aC^)-l|)

eiO

«  lim <p(^-^)((u(;cE) - v(xe)) + pv(a) + \\v\\L^N) | exp(2«Ci/e") - 1 |).

f 10

Without loss of generality we assume A/0 = sup(w(x) — v(x)) > 0. The above

inequality then implies, with new constants cx, c2 independent of small a and e,

M0

M0 + p„(«) + cxct][ê
JíLZJk) >-£-    -=r > 1 - c2(Pv(a) + cxafs)

provided that e is small enough (depending on a). If we choose <p to be decreasing,

radial and ¡p(x) = 1 — | x \2 in 0 < 2 | x |2 < 1, the above inequality implies

«2c2(pK(«) + c,üh/£) >|xE-yE|2

when c2(pv(a) + qavi") < { and we are done.

For the final case (iii) we use the special case of the following lemma in which w is

Lipschitz continuous:

Lemma II.3. Let w be continuous on RN, 0 E C^R") andx0 E E+(w$). Set

Pw(X) = max{|w(x0) - w(x)\ : |x0-x|^X},
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22 M. G. CRANDALL AND P.-L. LIONS

and

pDi>(X) = max{\D$(x0) - D®(x)\ : \x0- x\^X).

Then forX>0 with w(x0) > pw(X)

i   AdHxp)\ „ pw(x)      w(xp)       , w(x0)     ,.,
w(xp)—^7—\— ** —\-1—\-7V\  +   *.t   \ Pd<i>(X).

9(x0) X     w(x0)-Pw(X)       Q(x)

In particular, if Dw E Lcc(B(x0, R))for some R > 0, iAe«

\D$(x0)\
w(xo)   g,   )   < ii^IIl»(B(x0,«)).

We first complete the proof of the theorem and then prove the lemma. Recall

(2.26), (2.27) and that

XE + 8C = - („(,.) - ^(Xe))^A + Z>^,(xe)

where $(x) = e^V«* -yt)/a), ix = e^^A y/i(\xt\ +\yt\) «c and xE E

E+((u — ypx)&). It follows from Lemma II.3 that the first term on the right above is

bounded by

\\Du\\L^, + \\2xe^2-^\\LX{B{x¡Xt))

which is bounded independent of £, a. The term D\px(xE) -* 0 as e|0 uniformly in a.

Thus (2.19) implies limai0^e = 0 uniformly in e, and the proof is complete.

Proof of Lemma II.3. Let X > 0, pw(X) < w(x0) and set x = | D<i>(x0) \~xD<b(x0).

Set

X32<D(X) = $(jc0 + Xx) - (*(*„) + XD<t>(x0)x)

= $(x0 + Xx) - (*(x0) + X | Z)*(x0) |).

Then

w(x0 + Xx)$(x0 + Xx) < w(x0)®(x0)

implies

w(x0 + \x){9(xQ) + X | D9(x0) | + X32«>(X)) < w(x0)1>(x0)

or

/     v |£>^(jc0)| w(x0)       (w(x0) - w(x0 + Xx))       w(x0)

W(Xo)    *(x0) w(*0 + A*) X ■ *(*o)        ^'

where the manipulations are justified by w(x0 + Xx) > w(x0) — pw(X) > 0. The

result now follows from | w(x0) — w(x0 + Xx) |< pw(X), w(x0 + Xx) > w(x0) —

PW(X), | 32$(X) |< pD4,(X). The final assertion follows from the relations pw(X)/X =£

\\Dw\\ l°°ib(x ,R)) ^or ^ ^ ^> Pd*(0 + ) = O» an(l letting X |0 in the inequality.

III. Uniqueness for the Dirichlet problem in fi. In this section we turn to the

uniqueness question for

H(x,u,Du) = 0    infi,
Í3 1)

xu(x) = z(x) on3fi,
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in the case where fi is an open subset of R'*' and 3fi ¥= 0. In this section the

restrictions (2.19)—(2.21 *) on H are to be understood by replacing R^ by fi. The

main result is

Theorem III. 1. Let u,vE Q(fi) and (2.19) and (2.20) hold. Let u, v be viscosity

solutions of H(x, u, Du) — 0 and H(x, v, Dv) = m in fi where m £ Ch(Q).  Let

R0 = max(\\u\\L«,(a),\\v\\L^(Q))andy = yRofrom (2.20). 77ie«:

(i) If (2.21*) holds and u |9a or v |8a is uniformly continuous and

lim (| u(x) — u(x0) | +| v(x) — v(x0) |) = 0
xeSi
x^x0

uniformly for x0 E 3fi, then

(3.2)        ||y((n - t;)+)||L»(a) < max(||m-||L«,(0), ||y((« - v)+ )||L»(8B)).

(ii) If (2A9), (2.20) and (2.2\) hold and u,v £ BUC(fi), then (3.2) holds.

(iii) 7/(2.19) and (2.20) hold and u, v E WU">(Q), then (3.2) holds.

Remark 3.3. Remarks analogous to (2.6) and (2.18) are valid here.

Proof of Theorem III. 1. We give the proof only in the case when fi is bounded.

The general case follows from a combination of the arguments given below and in

the proof of Theorem II.2.

Without loss of generality we may assume ||(w — v)+ || t»(0) > ||(« — t>)+ II ¿»(3a).

Then (3.2) reduces to

\\y((u-v)+)\\L~(il)< ll«J+llL»(a).

Let (pa(x) = (p(x/a) as in the end of the proof of Theorem II.2 and

Ma =   sup_(pa(x -y)(u(x) -v(y)).

Now u, v E Cfc(fi) = BUC(fi) since fi is compact. With M0 — \\(u — v)+ \\ L*,(U) we

therefore clearly have

(3.4) M0^Ma^(pa(xa-ya)(M0 + Pv(a))

where pc is the modulus of continuity of v and

xa, ya E fi,       <Pa(xa-ya)(u(xa) - v(yj) = Ma.

From (3.4) and the choice of tpa we deduce | xa — ya \ < a8(a) where 5(0 + ) = 0 as

in the proof of Theorem II.2(ii). Finally, as alO all limit points of xa, ya lie in

E+ ((u — v)) C fi. Therefore, there is a compact K C fi such that xa, ya E K for a

small. It follows that <pa(- —ya), cpa(xa — ■) E ^(fi^ for small a. From the assump-

tions we conclude

H[X«' U{X°]>- (UM - V{yj)    (pa(xa-ya)     j < °'

hL. c(ju).- («(»,) - t>(yj) (^l(x:7f} ) >*(y.)
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which implies (recall the proof of Theorem II.2)

y(Afa)<||m-||z.-(a)+        sup      \H(x, r, p) - H(y, r, p)\
\x-y\^aS(a)

M<Ro
\p\<c/a

for some c. Moreover, if Du, Dv E L°°(fi) we may replace |p |< c/a by \p\< c. The

argument concludes in the usual way.

Remark 3.5. The condition (2.20) can be weakened to H(x, r, p) — H(x, s, p) >

yRS(r - s) for -R < 5 < r < R, p E RN and x E fis = {x: distance^, 3fi) > 8}

with the conclusion being u < v if m > 0 and «<oon 3fi.

All the above results require that H(x, r, p) be strictly increasing in r. Moreover

uniqueness fails without some monotonicity in this sense. An extreme example is

// = 0. We treat one case without strict monotonicity in r via an adaptation of a

device of S. N. Kruzkov [18].

For simplicity consider the example

(3.6) H(Du) = n(x)   in fi,

where we assume

f H(0) = 0,     H is convex, continuous and H > 0,
(3 7) < — -

[n £ C(fi),    «>Oinfi,fiisbounded.

Proposition III.2. Let (3.7) hold and u,vE C(fi) be viscosity sub- and supersolu-

tions, respectively, of (3.6). FAe«

||(u - v)+ ||£«(80) < ll(« - v)+ llL«.(80).

Proof. Let ^ E C°°(R) satisfy *' > 0, ¥" > 0 everywhere and ^(R) = R. Let

0 = ^"'. By Corollary 1.8, ü = <b(u), û = í>(u) are viscosity sub- and supersolu-

tions, respectively, of

(3.8) -*-mr(w)Dw) = ^n(x)   infi.

The Hamiltonian

Ñ{X> r> P) = *kr)~H(nr)p) - *iöM(x)

is locally Lipschitz in r and a computation yields

A# =    *"(r>. [(D/y)(*'(r)/>)*'(r)/> - H(*'{r)p)] +    *"(r)2«(;t).
9r (*'(' ))2 (*'(r))

Since //" is convex, DH(q) ■ q — H(q)> -H(0) — 0 and we deduce

3/7        *"(r)     ,   ,

3r       (*'(r))2

Therefore /7 satisfies the conditions of Theorem IILl(i) and we obtain

||(*(ii) - *(v))+ II /.-to, < ll(*(«) - ®(v))+ Ht-oa,.
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Since ¥ can be replaced by %(r) - 0^(r) + (1 - 0)r for any 0E]0,1], we deduce

\\(%(u) - %(v))+ ||L.(0) < \\(%(u) - %(v))+ ||L.(a0)

where % = (%)~x. To conclude, we observe that %(r) -> r locally uniformly as

Remark 3.9. It is worth noting that uniqueness of (viscosity) solutions of (3.6)

may fail if we assume only:

ÍH(0) = 0,     His convex, continuous and H > 0,
(3.10) \

[«EC(fi),    «>Oinfi,fiisbounded.

Actually it is enough for « to vanish at one point to have nonuniqueness, as is shown

in the following example: Letfi = [-1, + 1], H(p) =\p\2,n(x) — x4. Clearly U(x) —

\ — \ | x |3 is a C1 solution of

|i7'|2=|x|4   in fi,       « = 0   on3fi.

On the other hand, if we let u(x) = j — | | x |3 for | x \ ̂  t0 and u(x) = | | x |3 for

| x |< r0, where r0 = 2"1/3, « is a solution of the same equation which is also C1

except at ±t0 where the discontinuity of u' is such that u is still a viscosity solution.

Therefore in this example we have two different viscosity solutions.

As remarked in the introduction, all the above uniqueness results are new. No

uniqueness criteria (even for generalized solutions in JF1,0O(fi)) are known except in

the case of a convex Hamiltonian. In the convex case, A. Doughs [10] and S. N.

Kruzkov [18] have introduced the class of semiconcave functions, that is functions u

such that 32u/3x2 « Q in ^'(fig) for all 8 > 0 and for all x: I X |= 1 with fis

defined in (3.5) and x denoting an arbitrary direction. Uniqueness in this class is

proved by the above authors. P. L. Lions [22] (see also [23]) extends these results to

the class of functions satisfying

Au*sCs   in6D'(fi5)forallá>0.

All these results require convex Hamiltonians and some degree of regularity of the

solutions.

To conclude this section, we observe that in the convex case any Lipschitz

subsolution is a viscosity subsolution and any Lipschitz, semiconcave supersolution

is a viscosity supersolution. (This implies, by the way, that the uniqueness results of

Doughs and Kruzkov are completely contained in ours.)

Proposition III.3. Let H(x, r, p) be a continuous Hamiltonian, convex in p.

(i) Let u £ Wx]^(il) satisfy: H(x, u, Du) < 0 in fi. FAe« u is a viscosity subsolution

ofH(x, v, Dv) = 0.

(ii) Let u be a locally bounded semiconcave function satisfying

H(x, u, Du) > 0   in fi.

FAe« u is a viscosity supersolution of H(x, v, Dv) = 0.
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Proof of Proposition III.3. (i) We first remark that if m is a locally Lipschitz

subsolution of

H(x,u,Du)<0   infi,

then an easy argument shows that we have

H(x,ue,Due)^f(x)   infiE

where fE -» 0 uniformly on compact sets of fi and u£ — u*pe with pe = p(-/e)/eN,

pE6Ù+ (RN), supp/> C Bx, \\p\\ L> = 1. (Observe that H(Due) < H(Du) * pe if H is

convex.)

Now since uc is C00, ue is obviously a viscosity subsolution of the equation:

H(x, v, Dv) — fe(x) in fiEo (for any 0 < e < £0). Thus we conclude by a simple

application of Theorem 1.2.

(ii) Let w be a locally bounded semiconcave function satisfying: H(x, u, Du) > 0

on fi. Without loss of generality (restricting, if necessary, our attention to each fis,

and making a translation) we may assume: u E Wx-X(íl), u is concave on fi or more

precisely: 32w/3x2 ^ 0 in ^'(fi) Vx: |x|= 1- (This implies that u is concave on

every convex subset of fi.)

Now let <p, k be such that £_(<p(w - k)) ¥= 0, <p £ ^+(0), k £ R, and let

x0 E £_(<p(w — k)). Obviously, there exists p > 0 small enough such that on B(x0, p),

we have

u(x0) >k+        °   {u(x0) - k)
(p(x)

= u(x0)-—Mm(x0) - k) • (x- x0) + \x - x0\e(x)
<P(x0)

where e(x) -» 0 as | x — xQ\^> 0. Since u is concave on B(x0, p), this inequality

implies that u is differentiable at jc0 and Du(x0) = -D<p(x0)(u(x0) — k)/q>(x0). To

conclude we just have to prove that H(x0, u(x0), Du(x0)) 3= 0. But by assumption

3xn E fi, xn ->n^ + x x0, u is differentiable at xn and

H(xn,u(xn),Du(xn))^0.

And since u is concave, we have Du(xn) -» Du(x0) (all limit points of Du(xn) are

superdifferentials of u at x0 and therefore reduce to Du(x0)).

IV. Existence of viscosity solutions of the Dirichlet problem. In this section we

establish that the most common method of obtaining generalized solutions of HJ

equations actually provides viscosity solutions. This is done in §IV.l and roughly

means that we could take all known existence theorems and generalize (using

Theorem IV. 1 in the process) and restate them as results concerning viscosity

solutions. Of course we will not do this—we refer the reader instead to [22] for a

complete treatment of general results of this sort and references to the earlier

literature. However, it seems worthwhile to illustrate the situation by giving very

general new results for a simple model problem, which we do in §IV.2.
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IV. 1. FAe method of vanishing viscosity and viscosity solutions of HJ equations. The

vanishing viscosity method for obtaining solutions of

(4.1) H(x,u,Du) = 0   infi,       w = z   on 3fi

consists of approximating the problem by ones of the form

(a)     -eAhe + He(x, ue, Due) = 0   infi,

( ' )e (b)    ue = zc   on3fi

where e > 0, He, z£ are adequately smooth and converge locally uniformly to H, z

respectively. One attempts to prove (4.1)E is solvable for e > 0, and to obtain

precompactness of the family {ue: 0 < e < 1} in C(fi) (or C(fi)). Typically this is

done by obtaining (perhaps local) estimates on ue and Dut in L°°. See [18] and §IV.2

below in this regard. We prove

Proposition IV. 1. Let ut £ C2(fi) be a solution o/(4.1)E(a) where i/£ -» H as eJ,0

in C(fi X R X R"). Assume en J.0 and wE -* u in C(fi) and n -» oo. FAe« u is a

viscosity solution of H(x, u, Du) — 0. // also ue — z£ on 3fi, ze -> z in C(3fi) and

uc -» u in C(fi) then u |aa = z.

Proof. Let w£ -» u in C(fi) as in the assumptions. Fix tp £ ^(fi)"1", k E RN and

assume E+((p(u — k)) ¥= 0. Then for large n there exists xn E E+(w(ue — k))

and, passing to a subsequence if necessary, we may assume xn -» x £ E+ (<p(u — Ac)).

By a simple computation we have, on supp <p,

0=^((p(-eAue + H(x,ue,Duc)))

1    /   / n        - „ Aw Dm ■ D((p(u— k))
= -e-A((p(ue - k)) + e(ue - k)-*- + 2e—-^+^-JJ-

<p <p 4>2

(«, — A:) ,       ,- / 1     ,   , .,       u—k      \
-2e    e  ,    ^   Dtp 2 + /7 x, ii,, -F>(<p(«£ - *)) --F><P   .

<p2 I <P <P /

Evaluating this identity at e = en, x = xn and using (A(<p(wE — A:)))(*„) < 0,

(Dw(ue - k))(xn) = 0 (because xn E E+ (<p(«En - A:))) we conclude

"P(^J (p(x„)

■//(x„,WJxJ,-(M£n(x„)-^)^^)<0.

Since j,->x££+ (tp(w — k)) we find, letting « -> oo,

//(x, m(x), - («(jc) - A:)D(p(x)/<p(x)) < 0.

Thus u is a viscosity subsolution. Similarly, it is a viscosity supersolution and the

result follows.

Remark 4.2. We could replace ue £ C2(fi) above by wE £ W2¿p(ü), p > N, via

Bony's maximum principle [5].
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Remark 4.3. If we obtain a viscosity solution of (4.1) in this way and one of our

uniqueness results applies, it follows that ue converges to this unique solution as e 10.

This is known in some particular cases via arguments using considerations of control

theory or differential games (W. H. Fleming [14,15], A. Friedman [16]).

Remark 4.4. This result also shows that the optimal cost function ü of the control

problem associated with (4.1) (or the value function in the case of differential games

—see S. H. Ben ton [4], W. H. Fleming [13,14,15]) is indeed a (or the) viscosity

solution. Indeed, in these contexts it is easy to show ue converges to ü, and the

theorem applies.

IV.2. A model equation. We will assume

(i)      HEC(RN),

(4.5) - (ii)     ß: R -* R is an increasing homeomorphism of R onto R,

(iii)    « £ BUC(R")

and consider the model problem

(4.6) ¿8(h) + H(Du) = «   in R".

It simplifies the discussion to follow to assume

(4.7) H(0) = 0,       0(0) = 0,

which amounts to changing « by a constant. We will consider solutions of approxi-

mate problems of the form

(4.8) -eA«£ + ßX ue) + eMe + HA Due) = ne

under assumptions given later. Before doing so we obtain the key estimates we need.

This also motivates Proposition IV.3 concerning (4.6).

Lemma IV.2. Let F £ C(RN), F(0) = 0, and y be an increasing homeomorphism of

R, y(0) = 0. Assume v,vE C2(RN) D Lco(RN), F(Dv), F(Dv) E LX(RN) and

(a) -eAd + y(v) + F(Dv) = m E Cb(RN),

(b) -eAv + y(v) +F(Dv) = mECb(RN).
(4-9)

Then for v £{ + ,-}

(4.10) IIy(ü)"II¿»(R«)< llm'llí-tR",,    llY(t5)"llL»<R^)< Ilia'II¿-(gv,

and

(4.11) uv-vyw^^

< sup[\y'x(s + \\(m - m)+ \\L„(RN)) - y~x(s)\ :\s\< \\m\\Lx,(Rfl)}.

Sketch of Proof. If x £ E+(v) then Av(x) *c 0 and F(Dv(x)) = F(0) = 0.

Hence, from (4.9), y(v(x)) < m(x), and we would have (4.10) with v— +. If

E+ (v) = 0 but v > 0 somewhere, one chooses xx £ E+ (e'x^2v), makes the associ-

ated computation and uses X | xx \2 < C to let X 10 and reach the same conclusion.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS 29

For this we need to observe that Dv £ L°°(RN) because v E L°°(RN) and -eAv = m

- F(Dv) ~ y(v) E L°°(RN) by assumption. To understand (4.11), let xE

E+ (v — v). Forming the difference of (4.9)(a) and (b) and using A(v — v)(x) < 0,

F(Dv) = F(Dv) at x, one finds y(v(x)) — y(t5(x)) < m(x) — m(x). Writing v(x)

= v(x) + \\(v — v)+ || L«=(Rs) we have

y(n + r) - y(n) < ||(w - m)+ \\ L~(R»},        n = v(x),    r = \\(v - v)+ || L«,(R»y

But then

r^y-'iyM + lKm-m^^^-y-^y^))

and we have (4.11). If E+ (v — v) = 0 but v — v > 0 somewhere, approximate by

xx E E+ (e"A|'!(« — v)) and let X J,0. This completes the discussion of Lemma IV.2.

The main result concerning (4.6) is

Proposition IV.3. Let (4.5) and (4.7) hold. Then (4.6) has a unique viscosity

solution u £ Cb(RN ). Moreover,

(4.12) ttßWU^^Un'K«^,       "£{ + ,-}•

(4.13) IfmE BUC(R^) and vis the viscosity solution of ß(v) + H(Dv) — m, then

\\(U-V)+\\L^(RN)

< sup{| j8-'(i + ||(« - m)+ H^^j) - ß-\s) | : |5|< llm||L„(R,,}.

(4.14) If pu, p„ are the moduli of continuity ofu,n, respectively, then

pu(r) < sup{ß-x(s + p„(r)) - ß-'(s): \s\< llmll^^}.

Sketch of Proof of Proposition IV.3. The uniqueness of viscosity solutions of

(4.6) follows from Theorem II.2. The Hamiltonian H(x, r, p) = ß(r) + H(p) —

n(x) clearly satisfies (2.19). For (2.20) we note that

H(x, r, p) - H(x, s, p) = ß(r) - ß(s) > yR(r -s),       -R < s < r < R,

with yR(r) = inf{ß(s + t) - ß(s): | s |< R} for t > 0. Finally, (2.21*) reduces to

the uniform continuity of «.

For the existence, let ße, He, «E E C°° be approximations of ß, H, n such that

(4.15)

ßc, ß'c EL°°(R), ß't > 0, ß(0) = 0, ße - ß in C(R) as ei0,

«E E BUC(RN) and «E -» « uniformly as eJ,0,

//E E L"(RW), //£(0) = 0, and He-*Hin C(RN) as eiO.

It is then nearly trivial that

(4.16) -eAme + ße(ut) + £M{ + Ht(Due) = «E

has a solution wE E C2(R;v) D LX(RN). One can simply solve the associated trun-

cated problem inß(0, R) for ueR subject to ueR = 0 on | x \ = R. Then

\ße(ueR) + £WE/!|< H"eIIl-(B(0,R))

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



30 M. G. CRANDALL AND P.-L. LIONS

follows as in Lemma IV.2. Using He E L°° and interior estimates we conclude

-eAueR is bounded in L°°(B(0, R)) as R -» oo and by compactness there is a

sequence R„ -» oo and uc E Cl(RN), Ame £ LCC(RN), such that uR^ -* ut boundedly

in ClJRN) while AucRn -» AwE weakly in L^R"). Then (4.15) implies ut E C°°(RN).

Using Lemma IV.2 we conclude

(4.17) II(&(O + «01l-<r")<KIIl*(r»).

Since ße -» ß locally uniformly and ß(R) = R, (4.5) implies ue is bounded in

L°°(RN). Moreover, ue(- +y) solves (4.16) with «E replaced by «E(- +y). By Lemma

IV.2 we therefore have

(4.18)

\"e(X+y) ~"e(*)l

< sup{| (ße + el)-\s + p„((|y I)) - (ße + el)-\s) \:\s\< H«.IIl»(rW))

where p„ is the modulus of continuity of «E. It is easy to choose «£ so that pn¡ < p„,

and we assume we have done so. Moreover, since ße + el -» ß locally uniformly,

(ße + el)'x -» /5"1 locally uniformly. It thus follows from (4.18) that {ut} is equicon-

tinuous. Then there is a sequence e„ |0 and u £ BUC(RiV) such that u^ -» u locally

uniformly. In view of Proposition IV. 1, the existence assertion is proved.

We have in fact shown (4.14) in the process of constructing u. It follows equally

well from (4.13) by noting that if u is the solution u of ß(u) + H(Du) — n, then

v(-) = w(- +y) is the solution of ß(v) + H(Dv) = m, m(-) = «(• +y). One simi-

larly verifies (4.13) by the construction, however let us observe that it essentially

follows from Theorem II.2. Indeed, if u + H(Du) — « = 0 and v + H(Dv) — n =

m — «, Theorem II.2 implies

Y*((« - Ü)+ ) < IK" - m)+ u i.«(R").

7? = max(||i<||L»(Rw),||ü||Loo(Rjv)),

yR(T) = mi{ß(s + r)-ß(s):\s\<R}

which is equivalent to

(u - v)+ < sup{j8-'(j + ||(« - m)+ ||¿-(RW)) - ß~x(s):

\s\< max(||m\\ l«(rN)||«|| ¿-(„W))}.

The estimate (4.12) follows from the construction. This ends the sketch of the proof.

V. Uniqueness for the Cauchy problem. We consider the Cauchy problem for HJ

equations. More precisely, we consider the problem

(a)     u, + H(x, t, u, Du) = 0    inßX]0,F],

(5.1) \(b)     u(x,t) = z(x,t) on3fix]0,F],

(c)     u(t, x) = u0(x) onfi.
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V.l. Viscosity solutions of the Cauchy problem. The notations

(5.2) QT = QX]0,T],       ß° = fiX]0,F[

will be used below. The notions of viscosity solutions of (5.1)(a) in QT or QT is

contained in §11 (in particular, recall Remark 1.13). Let us restate them explicitly

for the particular equation (5.1)(a).

Definition 5.3. Let H £ C(fi X [0, T] X R X RN). Then a viscosity subsolution

(respectively, supersolution, solution) of u, + H(x, t, u, Du) = 0 on QT is a function

u E C(QT) such that: V<p E 6D(Ô?)+, k E R,

(5.4)

E+ (w(u - Ac), Q°T)^0 ^ 3(x0, t0) E E+ (w(u - k), Q°T)

"(^o.'o) - k
such that

9(^0^0)
-<Pr(*0.'o)

+ H\ x0, t0, u(x0, t0),-°'  ° Dw(x0, (0)|<0
w\xo^ lp)

(respectively,

(5.5)

E_{w(u -k),Q°r)^ 0 =» 3(x0, /„) £ E_{w(u - k), Q°T)

u(x0,t0) - k
such that

w(x0,t0)
-w,(x0,t0)

+ H\ x0, t0, u(x0, t0),--V °    ,    Dw(x0, t0) I > 0;
w\xp> lo)

respectively (5.4) and (5.5)).

One defines viscosity subsolutions, etc., in QT by replacing Qj by QT everywhere

above. A viscosity subsolution (etc.) of (5.1) is a u £ C(QT) which is a viscosity

solution of (5.1)(a) in QT such that u < z on 3fi X [0, F], u(x, 0) *£ u0(x) in fi (etc.).

Owing to the special form of the equation (5.1)(a) with respect to the domain QT

we have

Proposition V.l. Let u £ C(QT) be a viscosity subsolution (respectively, supersolu-

tion, solution) of (5.1)(a) in Qj. Then u is a viscosity subsolution (respectively,

supersolution, solution) o/(5.1)(a) in QT.

Proof. It suffices to treat the subsolution case. Let <p £ ^(Qt-)"1" , k £ R, u be a

viscosity subsolution in Qj and (x0, t0) £ £+(<p(« — k), QT). If 0 < t0 < T we

choose x £ ^((O, F)) such that 0 < x ^ 1 and x('0) = 1- Then X<P ̂ ^(Qt)+ and

(x0, t0) E E+(x<p(u — k), Qj). By Theorem 1.3 and xX'o) = 0> tne inequality of

(5.4) holds. If t0 = T we choose xE £ C°°([0, F]) so that 0 < x. < 1, X* — 1 on

[0, F - 2e], xe = 0 on [F - e, F] and xÉ < 0. Again xf<P £ öÖ(ör)+ ■ Moreover,

w(u — Ac) > 0 at (x0, F) implies xE<P(M — ̂ ) nas a positive value for £ small. Let

(xE, tt) £ E+(xe<p(u — Ac), <2r)- Passing to a subsequence if necessary, we assume
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(xE, f.) -> (x, t) E E+ (œ(u - k), QT). Then, by Theorem 1.3,

><*•■'■>-*> ,,(>„,.) -<"(*".';).-*)x;«.)
<p(*E,0 x('E)

+ hL, te, u(xt, tt),-{u{xV^~k)Dw(xe, te)\ < 0.
\ <P(xe,te) I

Now -(u(xe, te) — Ac)x'E(/E) ̂ 0 so we deduce the inequality of (5.4) with (x, t) in

place of (x0, t0) in the limit. This completes the proof.

Remark 5.6. In the general context of §1, if 0 C 0, n 0 U 30 we roughly have

that if u E C(0|) is a viscosity subsolution of F = 0 in 0 and F(y, r, p + Xv(y)) is

nondecreasing in X for y £ 0,\0 and v(y) the exterior normal to 0 aty, then m is a

viscosity subsolution in 0,. However, we will not make the assumptions precise.

We will freely use the assertions of §1 concerning viscosity subsolutions, etc., in Q®

and QT. In this connection we again recall Remark 1.13 as well as the fact that if

u E Cx(Qj) and u and Du extend continuously to all of QT, then u E CX(QT), etc.

V.2. Uniqueness of solutions of the Cauchy problem. We first formulate the various

assumptions we will use in what follows:

(5.7)

(5.8)

J H E C(fi X [0, F] X R X R*) is uniformly continuous in

[fi X [0, F] X [-R, R] X B(0, R) for each R > 0.

For R > 0 there is a yR £ R such that

H(x,t,r, p) - H(x,t,s,p) >yR(r- s) îor x £ fi, -R < s < r < R,

0<t < Fand/? ER".

(5.9)    lim sup{| H(x, t, s, p) - H(y, t, s, p) | : | x - y \ (1 + \p |) < a,

0</< T,\s\<R) =0

for any R > 0.

(5.9*)    lim sup{| H(x, t, s, p) — H(y, t, s, p) \ : \ x — y \< a,
alO

\x-y\\p\<R,0<t<T,\s\<R} =0

for any R > 0.

These conditions are obvious analogues of (2.19)—(2.21*). See §V.4 concerning their

necessity.

The main uniqueness result is

Theorem V.2. Let (5.7) and (5.8) hold. Let u E Cb(QT) be a viscosity subsolution of

u, + H(x, t, u, Du) = 0 in QT and v £ Cb(QT) be a viscosity supersolution of v, +

H(x, t, v, Dv) - g(x, t) in QT where g £ Cb(QT). Let

Ä0 = max( Il m II ¿-.(G7.),II » Il ¿-(er))
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and y = yR¡¡ as in (5.8). Sei d0QT = 3fi X [0, F] U (fi X {0}). FAe«:

(i) 7/(5.9*) holds and u |8oßr, v \doQr E BUC(30Qr) and

lim        | u(x, t) — u(x0, tQ) | +| v(x, t) — v(x0, t0) |= 0
(x,t)£QT

(x,r)-(*<»'o)

uniformly for (x0, t0) E d0QT, then

(5.10)    ||e*(« - v) + llt-(0r) < lle"(« - v)+ 11^ ß    + /V||g(-, i)lL.o(0)ds.

(ii) 7/(5.9) holds and u, v E BUC(ôr), ?Ae« (5.10) holds.

(iii) 7/7J>w, Dv E U°(QT), then (5.10) holds.

Remark 5.11. Remarks parallel to (2.6) and (2.18) are valid here.

Much of the proof of Theorem V.2 consists of straightforward adaptation of the

arguments given in earher sections and we will not repeat these. Instead we treat a

simple model case to exhibit the only new features. To this end, assume y E R,

(5.12) H(x,t,u,p) = yu + H(p)

and

(5.13) Ü = RN   and   u(x, t), v(x, t) -+ 0   as | x | -* oo uniformly for 0 < t < F.

We will write 77 in place of 77 above. Now choose <p„(x) = w(x/a), xpa(t) = yp(t/a)

where w £ %RS)+ , <p(0) = 1, i/<(0) = 1, 0 < <p, ̂  < 1, supp w C B(0,1), supp t|/ C

[-1,1]. (In the case of (x, t) dependence of 77 we would require w(x) = 1 — | x \2,

yp(t) = 1 - t2 near x = 0, t = 0.) Set

(5.14) m0(t) = max (u(x, t) — v(x, t)).
xGRN

Finally, let tj £ öD(]0, F[)+ and assume

(5.15) E+(r,(m0-k):]0,T[)^ 0.

Now define

(5.16) Ma=     sup   vl^A)^a(t-s)(pa(x-y)(u(x,t)-v(y,s)~ k).

0<i,s<7"

Clearly Ma > tj(«i0 _ k) on [°- T\ and

(5.17) M ^ maxri(m0 — k)   asalO.
[0,T]

Let xa, ya E R*, ta, sa E [0, F] be such that

(5.18) Ma = r,( t-^-^yPa(ta - sa)wa(xa - ya)(u(xa, ta) - v(ya, sa) - k).

Because | xa — ya |< a and u, v -» 0 at oo uniformly (5.13), we may assume (using

subsequences if necessary) that xa, ya -* x0, x0 and ta, sa -* t0, t0 as alO. Moreover,

by (5.17),

(5.19) i0££+(T,(m0-Ac))
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and so t0 > 0. Then

ij((-+0/2)*a(---Ü<pa(--ya)    and   i,((/„ + -)/2)*,(í« - •)*«(*. ~ 0

are in 6D(ßr)+ for a small and using the assumed properties of w, v we find

**(('« + 0/2)        tó'„ - íj
2tï((/„ + sa)/2)       ypa(ta - sa)

(u(xa,ta) -v(ya,sa) - k)

(u(Xa,ta)-v(ya,Sa) -k) tn \
+ yu(xa,ta) + 77---(Dwa)(xa-ya)\ < 0,

<Pc\xa-ya) I

and

V(('« + sa)/2)       yP'a(ta - sa)

2i?((r„ + i.)/2)      *„(*„ - O

+Hl ("(*«> ü - v(ya> sa) - k)

<p»(xa-ya)

Combining these inequalities we find

v'((ta + sa)/2)

(v(ya, sa) - u(xa, ta) + Ac) + yv(ya, sa)

(D(pa)(xa-ya)\ >g(ya,sa).

r,((ta + sa)/2)
(u(xa, ta) - v(ya, sa) - Ac) + y(u(xa, ta) - v(ya, sa))

-?(^«.*«)< Hg(''J«r í/»(RV

Now let a I0 to find

(5.20)    -    ,\ (u(x0, t0) - v(x0, t0) - k) + y(u(x0, t0) - v(x0, t0))
v(tQ)

\g(-,toYÏÏL<*(R»)

We also claim that m0(t0) = "(^o- ro) ~~ v(xo< ?o)' which is in fact clear. Let us

review the outcome of the above that we need. If m0 is given by (5.14), tj E ^(JO,^),

and (5.15) holds, we have produced t0 E E+ (t](m0(t) — Ac)) such that (5.20) holds,

which is

l'('o)
(m0(t0)-k) +ym0(t0)^\\g(-,t0Y ¿"(R*)-

v(t0)

By Corollary 1.12 we conclude,

ey'm0(t) < m0(0) +  f'eys\\g(-, sY^^ds,
Jo

which completes the proof.

Remark (added in proof). If u and v are merely continuous and bounded, then

m0(t) is not necessarily continuous and one works with its upper-semicontinuous

envelope. (Corollary 1.12—and other results herein—are valid for use functions.)

The alternative proof introduced in [27] is probably more convenient then.

V.3. FAe cone of dependence. We are out to show that if u, v are two viscosity

solutions of

(5.21) u, + H(x, t, u, Du) = 0    inR^XjO, F]
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with u(x,0) = v(x,0) on some ball \x\< R, then—under natural assumptions—u

= v on the cone | x | =s R — Lt where L is a Lipschitz constant for 77(x, t, r, p) in p.

We assume

f 77 E C(R* X [0, F] X R X RN) and 77(x, t, r, p) is nondecreasing in r

[for(jc,/,/))eRA'x[0,r]XRN

The main result is

Theorem V.3. Let u,vE C(RN X [0, F]) be viscosity solutions of (5.21) on QT =

RN X [0, T]. Let (5.22) hold and

(5.23) u(x,0) < v(x,0)   on\x\<R,

(5.24) C = max(||7)w|| Loo(ßr),117)1)11^^,),   m = max(||w|| l«,(Qt), \\v\\ l*(Qt))

and

(5 25) Í ' H^X, t,r,p^~ H(-X' '' r' q) '* L ̂  ~ q I

[/or|i?| ,|i|< C, |r|<m, |^|<7< - Lí,a«í/0</< F.

FAe«

(5.26) w<u   o« |jc|<7? - Lf,       0</<F.

Moreover, this is correct if C = oo /« (5.25), w, v E C(QT), and H(x, t, r, p) is

continuous in (x,t) uniformly for | r | < m, p E RN.

This result is a consequence of the following proposition.

Proposition V.4. Let (5.22) hold and u, v E C(QT) be viscosity solutions of (5.21)

o« gr. Lei A E CX(QT), A ^ 0, A = 0/or | x | large and

(5.27) -A, > L | DA |    /'« (supp A )  (the interior of supp A).

Assume (5.24) a«¿ that (5.25) Ao/ifc /or (x, t) E (supp A)0. If u(x,0) « u(x,0) o«

{(x, 0): A(x, 0) > 0}, iAe« u < v on supp A. Moreover, the result is valid if C = oo in

(5.25), u, v E C(ör) and H(x, t,r, p) is continuous in (x, t) uniformly for \ r |*£ m,

PERN.

We prove the theorem from the proposition and then prove the proposition.

Proof of Theorem V.3. Consider

A(x,t) = g{R0-Lt-X\x\l+a)

where g E C°°(R), g(r) = 0 if r *s 0, g'(r) > 0 if r > 0. One has

supp A = [(x, t): 0 < / « Ä/L, | x |« (X-*(Ä0 " Lt))V(l+a)}

so {x: A(jc,0) > 0} = {| x |< (X-X)I/(1+a)}- We choose X, a so that

(5.28) {X-xRQ)V0+a) ̂ R   or    l«X7{1+y7?0,

whence (5.23) implies u(x,0) «£ u(;c,0) on suppA(-,0). Now

g'(/?0-Lr-X|x|1+a) >0   on(suppA)0
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and

L | 7)A |= LX(1 + a) \ x |"g'(/î0 - Lt - X \ x \x+a),

-At = Lg'{R(>-Lt-X\x\x+a).

If

(5.29) X(l+a)R0<l

we have -A, > L \ DA | on (supp A)0. The proposition imphes u < v on supp A. We

will be done once we show that we can choose X = X(a), R0 = R0(a) so that (5.28)

and (5.29) hold and X(a) -* 1, R0(a) -> R as alO. Put (1 + 2a)Rx0+a = Rx+a. Then

(5.28) and (5.29) become

1 ,      (1 + 2a)a/(l+a)
< X < v

(l + 2«)1/(,+aV (l + a)R"

so we may use X(a) = 1/((1 + 2a)1/(1+a)7?a). The proof is complete.

Proof of Proposition V.4. Let <pa, \pa be as in the proof of Theorem V.2 and

u, v, A as in the proposition. We assume

M =   max A2(u - v) >0
supp A
o°£i«r

and will reach a contradiction.

Set

Ma=   max wa(x - y)ypa(t - s)A(x, t)A(y, s)(u(x, t) - v(y, s))
QTXQT

= <Pa(xa-yaHa(ta - i„)A(^„, ta)A(ya, sa)(u(xa, ta) - v(ya, sa)).

Clearly Ma -* M > 0 and so ta, sa > 8 > 0 and (xa, ta), (ya, sa) E supp A0 for a

small. Thus

where the reader can keep track of the correct arguments in each term. Subtracting

these yields

3A , .    w — v 3A , ,    u — v
~~xT\xa> 'o/TT"    7~\ ~   a, yyw Sa)

+ 77(xa,ia,M,(M-,)(^ + ^))
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Since u(xa, ta) > v(ya, sa), (5.22) allows us to replace v by u in the third argument

of 77 above. Now, since (xa, ta),(ya, sa) -» (x0, t0) E (supp A)0 and

(t ,\ i u/(fl«Pq)(*«->'«)     |     DA(Xa,tg)
(u(xa,ta)-v(ya,sa))\    ^Xa_ya)     + j^-jj

(u(Xa>ta)-v(ya<Sa))
(£><pa)(xa-ya)     ¿>A(y„,Q

<PÁx«-y*) A(ya,i„)

<c,

by (5.24) and Lemma II.3 we may let a ¿0 above and use (5.25) to conclude

-2-^-(x0, t0)(u - v)(x0, t0) - 2L | DA(x0, t0) \ (u - v)(x0, t0) < 0

which contradicts -A, > L \ DA | on (supp A)0. This passage to the limit is valid if

C < oo. If C = oo it is valid under the assumption that H(x, t, r, p) is uniformly

continuous in (x, t) for | r |< m,p £ R^.

Remark 5.30. There are many possible variants of these results, including continu-

ous dependence of solutions of u, + H(x, t, u, Du) — g in the cone of dependence

on u(x, 0) in | x \ < R and g in | x \ «£ R — LT. But it is obvious how to obtain these.

Remark 5.31. Results in the spirit of Theorem V.3 are given in A. Friedman [16],

S. N. Kruzkov [20] and P. L. Lions [22]. However, these all deal with generalized

(Wx,x) solutions obtained via the vanishing viscosity method rather than intrinsi-

cally characterized solutions.

Remark 5.32. The assumption C < oo in (5.24) is a stringent requirement—but

certainly a necessary one in general. Typical existence theorems provide H/'00

solutions in any case (e.g. [13,16,22]).

V.4. Examples of nonuniqueness. Let b £ C(R). If the solutions of

(5.33)
f$ =b(x),

x(0) = x0

are " too" nonunique, then bounded viscosity solutions of

\ut + b(x)ux = 0,   r>0,xER,

[m(x,0) = M0(x),

will also not be unique.

Let us make this precise. Assume for every x0 £ R we may choose a solution

x — X(t, x0) of (5.33) defined for t E R in such a way that: X(t, x0) is continuous in

(t, x0), x0 -» X(t, x0) is a homeomorphism of R for each t E R and X(t, X(t, x0))

= X(t + t, x0) for t, t, x0 E R (i.e., X is a "flow" or one parameter group). We

claim that then

(5.35) u(x,t) =u0(X(-t,x))
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is a viscosity solution of (5.34). The initial condition is clearly satisfied. Let <p

6D(R X (0, oo))+ , k E R and (x, i) E E+ (w(u - k)). Then, by (5.35),

w(x, t)(u(x, i) - k) = w(x, t)(u0(X(-t, x)) - k)

>w(x,t)(u0(X(-t,x))-k)

for all t and x. Put x = X(t — t, x) in this inequality to find

w(x, t )(u(x, t) - k)^ w(X(t - t, x), t)(u(x, t) - k)

for all t. This implies that t -> w(X(t — /, 3c), /) is maximized ait — t and so

d
dt

w(X(t- t,x),t) w,(x, t ) + b(x )wx(x, t) = 0.

Multiplying this relation by (u(x, t) — k)/w(x, t) we find « is a viscosity subsolu-

tion of ut + bux — 0. Similarly, it is a supersolution and so a solution.

Nonuniqueness arises when X may be chosen in more than one way. In [3]

examples of this may be found. The simplest have the following structure: There are

classes 'iFof continuously difierentiable homeomorphisms of R such that for/, g £ <5

one hasf'(f-\x)) = g'(g-x(x)).Uf^gandb(x)=f'(f-x(x)), then

Xx(t, x0) =f{t+f'\x0)),       X2(t, x0) = g(t + g-x(x0))

are distinct flows with the desired properties. More complex examples in higher

dimensions are also given in [3].

While this example is for the pure Cauchy problem, it may be regarded as a

Dirichlet problem in a half-space. To get the Hamiltonian to be increasing in the

unknown, set v = e~y'u in (5.34) so that it becomes

ft),+ 70 + b(x)vx = 0,

\v(x,0) = u0(x).

VI. Existence of viscosity solutions for the Cauchy problem. As in §IV, we will

restrict ourselves to a few remarks. Two of the basic ways to produce solutions of the

Cauchy problem are the vanishing viscosity method and numerical approximation. If

the method of vanishing viscosity converges, the result will be a viscosity solution

(Theorem VI. 1). This fact may be used in a straightforward way to obtain many new

existence and uniqueness theorems. This is indicated by the very general results

stated for the simple model problem of §IV.2. The relationship to the nonlinear

semigroup theory is touched on in §VI.3. Convergence of numerical schemes to

viscosity solutions is discussed in [8].

VI. 1. Vanishing viscosity and viscosity solutions. Avoiding useless repetition, we

rely on the reader to adapt the proof of Proposition IV. 1 and establish

Proposition VI. 1. Let uE be a solution of

f«£, - eAme + 77£(x,/, «£, Due) = 0    inQT,

\ue = ze   o«3fiX[0, F],       uAx,0) = uoAx)   inü,

with me„ uex x E C(QT) and u E Cb(QT). Assume He -> 77 in  C(QT X R X R"),
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ze^> z in C(3fi X [0, F]) and u0e -» u0 in C(fi). 7/e„ ¿0 and ue -> u in C(QT), then u

is a viscosity solution of

(6.2) u, + H(x,t,u, Du) = 0   inQT.

If the convergence ue -» u is in C(QT), then u also satisfies

(6.3) u = z   o«3fiX[0, F],       u(x,0) = uo(x)   z'«fi.

VI.2. A model problem. Let

(6.4) HEC(RN),       u0EB\JC(RN)

and consider the problem

f(i)      u, + H(Du) = 0       inR*X]0,oo[ = ß,

{(ii) u(x,0) = u0(x)     inR^.

Our main existence result for (6.5) is

Theorem VI.2. Let (6.4) hold. Then there is a unique u E C(Q) n Cb(QT) for all

F > 0 which is a viscosity solution ofu, + H(Du) — 0 and Q and satisfies

(6.6) lim||«(-, t) - u0(-)\\l«=(Rn, - 0.
no

Moreover,

(6.7) \u(x,t)-u(y,t)\<  sup  \u0(t) - u0(t +y - x)\   for x, y ERN, t > 0.

Finally, if S(t): BUQR") -» BUQR") is defined for t > 0 ¿>y S(í)k0 = «(•> 0, <*e»
S is a strongly continuous nonexpansive semigroup on BUCÍR^ ) ímcA /Aa/

(6.8) ll(S(/)ii0 - S(t)v0)+ ||L„(RW) < ||(m0 - t)0)+ IIt»(RW)

/orwoüoEBUCÍR^).

The existence of u satisfying (6.6) and (6.7) is easily established by the vanishing

viscosity method, and we will not carry this out. (The proof of Proposition IV.3

indicates the main points.) The uniqueness and the estimate (6.8) follow from

Theorem V.2. The uniqueness implies the semigroup property S(t)S(r) — S(t + t)

for t, t > 0 as usual. We remark that (6.7) also follows from (6.8) and the translation

invariance of this model problem as reflected in

v0(x +y) = u0(x) ^(S(t)v0)(x+y) = (S(t)u0)(x).

Actually, Theorem VI.2 follows directly from Proposition IV.3 and nonlinear

semigroup theory, as recalled next.

VI.3. An m-accretive operator. Several authors, in particular Aizawa [1] and

Tamburro [25], recognized that nonlinear semigroup theory provides solutions to the

Cauchy problem for HJ equations. We just sketch this here in our new context for

our model problem.

Let 77 E C(RN). Define an operator A in BUC (RN) by u E BUQR") is in D(A)

if there is a g £ BUQR^) for which 77(7)«) = g in the viscosity sense and then set

Au - g. It follows from Proposition IV.3 that for each m E BUQR*') and X > 0 the
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problem u + XAu = m has a unique viscosity solution u £ D(A). Denote this

solution by u — Jxm, Jx = (I + XA)'X. It also follows from Proposition IV.3 that

(6.9)
(i)      ll(A"»-A»)+lli.-(Bw)< ll(W-")+»L~(R").

(ü)    ||(/x«i-/xn)||Loo(RN)<||(w-«)||L<»(R«),

for m, n E BUQR*'). The condition (6.9)(ii) is the definition of "A is accretive" in

BUCÍR"). The fact that also 7?(7 + XA) = BUQR") is by definition "A is m-

accretive" in BUCtR*). Clearly D(A) is dense in BUCiR"). By the Crandall-Liggett

Theorem (see, e.g., [2,7,11]), the functions ue: [0, oo] -> BUCiR") defined for e > 0

by

(i)      M£(0) = M0,

(6.10) .   .        U At + e) - uÁt)
(ii)    -&-— +^m£(í + e) = 0   for?>0

converge in BUCiR*') uniformly on compact i-sets as e |0 to a limit

lima/r) = hm(7 + ev4j~['a1m0 = S(t)u0
fiO elO

where 5(0 is a strongly continuous nonexpansive semigroup on BUQR*'). We claim

S(t)u0 is the viscosity solution of (6.5). Indeed, let u = S(t)u0, k £ R, <p £ ÓD(Q)+

and E+(w(u — Ac)) = {(xQ, t0)}. Set ue(x, t) = ue(t)(x). Since ut -* u locally uni-

formly, there will be an (xE, rE) in E+ (w(ue — Ac)) for all sufficiently small £ > 0 for

which t0 is not a discontinuity (a multiple of e) of wE. In the discussion below we let

e |0 in the complement of {t0/j:j = 1,2,...}. Clearly (x£, te) -* (x0, t0). We have

(6.11) w(xe, 0(«£(xE, te) ~k)> <p(x, t)(ue(x, t) - Ac).

Sincex£ £ F+(<p(-, i£)(w£(-, /E) - k),RN), the definition of A and (6.10)(ii) yield

(6 12)     «.(*., r.) - uAxe, tt - e) + H[ -(^,0-Ac)^^    A < 0

<p(*e, Ü

Now, by (6.11)

(6.13)

<Ï>(*E, 0("e(*«> '«) - "EUE> '« - «))

= <P(*E, Ü(M«(*8> Ü - *) - «K*.. '« - e)(« (X., /. - E) - Ac)

- (<P(*£> Ü - <P(*E> ie - e))(ii.(*e, Í, - e) - k)

> -(<p(x£, r.) - <p(x£, re - e))(m£(xe, <„ -e) - Ac).

Using (6.13) in (6.12) yields

1 (<p(xe>te)-m(xe,te-e))

<P(*E>0 £
(«,(*., r.-e) -Ac)

(m£(x£,Q-Ac)
+ 77

K>(*„0
7)<p(xE,iE)   <0.
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Letting e|0 we find

(u(x0,t0) -k) I   (u(x0,t0) -Ac) \
-7-~\-<M*o. h) + H\-7-7^-Dw(x0, t0)\ < 0

<p(xp,tp) \ «Pv^o-'o) /

and « is a viscosity subsolution. Similarly, it is a supersolution and the claim is

proved.

Remark. The notation used above assumed, for simplicity, that H(Du) = g, and

77(7)«) = g2 implies g, = g2. This has been established by L. C. Evans if 77 is

uniformly continuous and follows from results herein if | H(p) |-> oo as \p |-> oo.

The general case remains unsettled at the moment, so the A above might be

" multivalued" for some choices of 77.

We make some further remarks below which help to clarify the relationship

between the notions of viscosity solutions and accretivity. (Only the reader who is

familiar with accretivity in spaces of continuous functions and its characterization

via duality will see the remarks in this light.) Assume 77 E C(fi X R X RN), g £ C(fi)

and u £ Cfe(fi). By Theorem 1.3 and Proposition 1.18, « is a viscosity solution of

(6.14) 77(x, u,Du) <g(x)   in fi

if and only if for ̂  E C'(fi)

(6.15) H(x,u(x),Dyp(x))<g(x)

at each local maximum of u — \p. Since we assumed that u is bounded, simple

arguments show that this condition be rewritten as

(6.16) H(x,u(x),Dyp(x))<g(x)   on E + (u-\¡>) for ^ G C¿(Q).

Similarly, u is a supersolution if and only if

(6.17) H(x,u(x),D(x))>g(x)    on E_(u - yp) for yp E C&Q)

and, combining (6.16) and (6.17), u is a viscosity solution of 77(x, u, Du) = g if and

only if

(6.18) (H(x, u(x), Dyp(x)) - g(x))(u(x) - yp(x)) > 0

onF+(w ~yp)U E_(u -\p)ioryp E C¿(fi).

In the case in which 77 is independent of (x, u) and fi = R^, this implies that A

constructed above is the unique maximal F-accretive extension of its restriction to

smooth functions.
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