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The previously developed particle mesh Ewald method is reformulated in terms of efficientB-spline
interpolation of the structure factors. This reformulation allows a natural extension of the method to
potentials of the form 1/r p with p>1. Furthermore, efficient calculation of the virial tensor follows.
Use of B-splines in place of Lagrange interpolation leads to analytic gradients as well as a
significant improvement in the accuracy. We demonstrate that arbitrary accuracy can be achieved,
independent of system sizeN, at a cost that scales asN log(N). For biomolecular systems with
many thousands of atoms this method permits the use of Ewald summation at a computational cost
comparable to that of a simple truncation method of 10 Å or less. ©1995 American Institute of
Physics.
r

rc
r
e
h

g
f
c
t
o

d
d
th

e
l

l
e

-

io

T

ar
d
l

.

l
-
-

,
o

g

d

-
-
-

is
I. INTRODUCTION

The accurate calculation of macromolecular structu
and dynamics remains a formidable challenge. In addition
the presently intractable problem of sufficient conform
tional sampling, the inadequacies of the empirical fo
fields currently in use are frequently cited as limiting facto
Indeed, although molecular dynamics simulations using
plicit solvent molecules rarely exceed a nanosecond, t
often exhibit unrealistic behavior on this time scale, such
large deviations from the experimental structure and de
dation of secondary structure, making the problem of e
cient conformational sampling seem rather pointless. Re
work by us1–4 as well as others,5–10however, has shown tha
simulations using current force fields without truncation
Coulombic interactions do not exhibit this unrealistic beha
ior. Furthermore, simulations of peptides11~a! and
membranes11~b! as well as of ions in aqueous solutions12–16

have provided clear-cut evidence of artifactual behavior
to the use of cutoffs.~Note however, that Steinbach an
Brooks17 have traced some of the artifactual behavior to
use of improper switching functions.! Thus it seems impor-
tant to focus on the efficient calculation of long-range int
actions, as well as on a more careful treatment of the e
trostatic boundary conditions.

Molecular dynamics simulations involving explicit so
vent molecules have usually been performed under on
the following boundary conditions on the Coulombic inte
actions:

~1! Periodic boundary conditions using a finite cutoff, sim
lar to the approach of Verlet18 for Lennard-Jones sys
tems.

~2! Periodic boundary conditions using Ewald summation19

~3! Periodic boundary conditions together with a react
field.20

~4! Nonperiodic boundary conditions together with som
treatment of the system-environment interface.21,22

Objections can be raised to each of these choices.
Ewald sum certainly seems appropriate for crystal simu
J. Chem. Phys. 103 (19), 15 November 1995 0021-9606/95/103(1
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tions, and may be the best current choice for macromolecul
solution simulations as well. In the past, it has not been use
for large systems, due to the prohibitive cost of the usua
implementation, which is an orderN2 algorithm.~The stan-
dard Ewald sum can, however, be implemented in orderN3/2

steps!.23

In a previous article,24 we proposed an orderN log(N)
algorithm for calculating the Ewald sum in large systems
This algorithm, called the particle mesh Ewald~PME!
method, was inspired by Hockney and Eastwood’s25

particle–particle particle–mesh method of splitting the tota
electrostatic energy into local interactions which are com
puted explicitly and long-range interactions which are ap
proximated by a discrete convolution on an interpolating
grid, using the 3D fast Fourier transform~3DFFT! to effi-
ciently perform the convolution. However, rather than using
their switching function approach to split the total energy
our method used the split of the total electrostatic energy int
direct and reciprocal Ewald sums~discussed below!.

The reciprocal Ewald sum is the solution to Poisson’s
equation in periodic boundary conditions, with Gaussian
charge densities as sources. York and Yang26 developed a
method to solve Poisson’s equation directly using the
3DFFT. They were able to achieve very high accuracy usin
this approach, but it is currently more costly in CPU time.
While the original particle–mesh approach of Hockney and
Eastwood25 is quite efficient, high accuracy is not easily
achieved. Lutyet al.,27 as well as Shimadaet al.,28 have
implemented it for macromolecular simulations. A thorough
review of various techniques for performing Ewald sums is
given by Toukmaji and Board.29

A different approach to efficient macromolecular electro-
statics is based on the fast multipole algorithm of Greengar
and Rokhlin.30 In this method, the simulation cell is divided
into a tree of progressively finer subcells. Electrostatic inter
actions involving particles in the same or neighboring small
est subcell are computed exactly, while those involving sub
cells of more distant particles are approximated by a
multipole expansion. Several groups have implemented th
approach for large systems.28,31–34
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 Th
The layout of the article is as follows. In the next sectio
we give the basic expressions for energies, forces, and st
tensor. We then recast our approximation to the recipro
Ewald sum in terms of an approximation to the electrosta
structure factors. We will see that if the atomic charge dist
bution is approximated by a gridded charge distribution, t
resulting approximate structure factors are obtained by
3DFFT applied to the grid. This idea of gridding charges h
been used by protein crystallographers for over twen
years.35 Next we provide some introductory discussion o
interpolation with CardinalB-splines, and then apply the Eu
ler exponential spline to arrive at smooth approximations
the structure factors and hence the energy, forces, and st
tensors. Advantages of ourB-spline interpolation-based ap-
proach to the Ewald sum are:

~1! The potential and forces are smooth functions of the p
ticle positions at any level of accuracy.

~2! The approximation, which depends on atomic positio
only through their fractional coordinates, extends nat
rally to general unit cells.

~3! Since the lattice sums for related pair potentials, such
London dispersion interactions, involve analogous stru
ture factors in their reciprocal sums, the method eas
generalizes to them.

The computer implementation of the approximation
which has been implemented as an option in the San
module of Amber36 version 4.1 by the Kollman lab at UCSF
is then described. Fortran code for the PME subroutines
available by e-mail request to darden@niehs.nih.gov
C-language version of this algorithm has been implemen
by the Board lab at Duke.37 In the next section, we discuss
the generalization of theB-spline PME approximation to lat-
tice dispersion sums. In the final section, we discuss resu
for timing and accuracy, energy conservation, and the eff
of the various methods on results of molecular dynami
simulations of pure water. Some of the more technical ma
rial referred to in the text appears in the appendices.

II. COULOMBIC LATTICE SUMS

Suppose there areN point chargesq1 ,q2 ,...,qN at posi-
tions r1,r2,...,rN within the unit cell U satisfying
q11q21•••1qN50. The vectorsaa , a51,2,3, which need
not be orthogonal, form the edges of the unit cell. The co
jugate reciprocal vectorsaa* are defined by the relationsaa*
• ab 5 dab ~the Kronecker delta!, for a,b51,2,3. The point
charge qi at position r i has fractional coordinates
sa i ,a51,2,3defined bysa i 5 aa* • r i . The charges interact
according to Coulomb’s law with periodic boundary cond
tions. Thus a point chargeqi at position r i interacts with
other chargesqj , jÞ i at positionsr j as well as with all of
their periodic images at positionsr j1n1a11n2a21n3a3 for
all integersn1 , n2 , n3 . It also interacts with its own periodic
images atr i1n1a11n2a21n3a3 for all such integersna with
n1 , n2 , n3 not all zero. The electrostatic energy of the un
cell U can then be written

E~r1 ,...,rN!5
1

2 (
n

8(
i

(
j

qiqj
ur i2r j1nu

, ~2.1!
J. Chem. Phys., Vol. 103, N
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where the outer sum is over the vectorsn5n1a11n2a2
1n3a3, the prime indicating that terms withi5 j andn50
are omitted.

The outer infinite series in Eq.~2.1! is conditionally con-
vergent, meaning that the result depends on the manner
which the numbersn1 , n2 , n3 tend to infinity~if the unit cell
were not neutral it would converge to plus or minus infinity!.
Using a theta transformation due to Riemann, Ewald38 re-
placed the sum in Eq.~2.1! by the sum of two absolutely
convergent series, a direct sum in Cartesian space, and
reciprocal sum in Fourier space. A number of alternative
derivations of the Ewald summation method exist,19,23,39–42

both for the Coulombic potential and for potentials such a
the dispersion or van der Waals, which decay faster. In Ap
pendix A we provide a derivation following the approach of
Smith,41 which we extend to general potentials of the form
1/r p, p>1.

In molecular systems, where point charges are typicall
fractional charges positioned at the atomic nuclei, the Ewal
sum must be modified. In most simulations the potentia
functions have been parametrized in such a way that th
‘‘nonbond’’ interactions between certain pairs within the
same molecule are omitted, being handled instead by oth
terms in the potential. For example, the Coulomb and
Lennard-Jones interactions up to the second nearest neighb
are usually omitted. The atom pairs (i , j ), for which nonim-
aged nonbond interactions are not calculated, are said to b
long to the masked pairlistM . Since their interactions have
been included in Eq. ~2.1!, we must subtract
( ( i , j )PMqiqj /ur j 2 r j u from the energy computed using the
direct and reciprocal potentials. Computationally, however, i
is more convenient to skip masked pairs in the direct sum
that are computed at the same time as the other nonbo
interactions.

Define the reciprocal lattice vectorsm by m 5 m1a1*
1 m2a2* 1 m3a3* with m1 ,m2 ,m3 integers not all zero, and
the structure factorS~m! by

S~m!5(
j51

N

qj exp~2p im•r j !

5(
j51

N

qj exp@2p i ~m1s1 j1m2s2 j1m3s3 j !#, ~2.2!

wheresa j , a51,2,3 are the fractional coordinates of atomj ,
defined above. The electrostatic energy in Eq.~2.1! can then
be written asE5Edir1Erec1Ecorr, where

Edir5
1

2(n
*

(
i , j51

N
qjqj erfc~bur j2r i1nu!

ur j2r i1nu
, ~2.3!

Erec5
1

2pV (
mÞ0

exp~2p2m2/b2!

m2 S~m!S~2m!, ~2.4!

Ecorr52
1

2 (
~ i , j !PM

qiqj erf~bur i2r j u!
ur i2r j u

2
b

Ap
(
i51

N

qi
2 . ~2.5!

The asterisk in Eq.~2.3! denotes that terms withn50 and
i5 j or (i , j )PM are omitted. In Eq.~2.4! V5a1•a23a3 is
o. 19, 15 November 1995
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

 18 Mar 2014 12:17:07



e
g
a

la
-

v

a

t

n
s

e

e
l
f

s

er-
e
u-

r
-

c-
ar-

-

at

l

ur-

8579Essmann et al.: A smooth particle mesh Ewald method

 Th
the volume of the unit cell, and in Eq.~2.5!, erf(x)51
2erfc(x) is the error function. The second term inEcorr is
usually referred to as the self energyEself. A further energy
contribution due to the unit cell dipole moment is sometim
included ~see Appendix A!. The consequences of includin
this term have recently been discussed by Roberts
Schnitker.14,43Since this term involves a simple orderN cal-
culation and the focus in this article is the efficient calcu
tion of the traditional Ewald sum, we do not explicitly con
sider it further.

The Coulombic force on atomi can be obtained by dif-
ferentiating the sumE~r1,...,rN)5Edir1Erec1Ecorr with re-
spect tor i . We will refer to the individual terms2]Edir/]r i ,
2]Erec/]r i , and2]Ecorr/]r i as the ‘‘direct force,’’ ‘‘recipro-
cal force,’’ and ‘‘correction force,’’ respectively.~In contrast
to the case of rigid molecules, the correction energy gi
rise to nonzero forces in flexible molecules!. We also must
develop the stress tensor II, in order to perform const
pressure simulations using Ewald summations. The~simpler!
case of isotropic volume scaling is treated in Smith,44 follow-
ing the volume scaling technique of Andersen.45 This scaling
method was generalized to the full 333 virial tensor in arbi-
trary unit cells by Parrinello and Rahman46 and extended to
the long-ranged Coulombic interactions in Nose´ and Klein.47

A recent article by Smith48 treats the necessary corrections
the virial due to the unit cell dipole contribution. We follow
Noséand Klein with modifications due to the correction e
ergy in Eq.~2.5!. We first treat the case of flexible molecule
~i.e., the ‘‘atomic virial’’!. Let a be the 333 matrix having
the lattice vectorsaa , a51,2,3 as columns. Note that th
volumeV of the unit cell is given by the determinant ofa
and thata21 is the 333 matrix having the reciprocal lattic
vectorsaa* as rows. Letsa i , a51,2,3, denote the fractiona
coordinates of atomi ,i51,...,N. We can write the energy o
the unit cell asE5E(s11,...,s3N;a!. Referring to Eq.~A7! of
Nosé and Klein,47 the 333 stress tensor II satisfie
2 ]E(s11 ,...,s3N ;a)

/]aab 5 V(g51
3 Pagabg

21, for a51,2,3, and

thus, examining the three components ofE in turn, and using
the identities]V/]aab5Vaba

21 and ]amn
21/]aab5ama

21abn
21 , we

have thatP5Pdir1Prec1Pcorr, where

VPdir ab5
1

2 ( *
n (

i , j51

N

qiqj S erfc~bur i2r j1nu!
ur i2r j1nu3

1
2bp21/2 exp~2~bur i2r j1nu!2!

ur i2r j1nu2 D
3~r i2r j1n!a~r i2r j1n!b , ~2.6!

VP recab5
1

2pV (
mÞ0

exp~2p2m2/b2!

m2 S~m!S~2m!

3S dab22
11p2m2/b2

m2 mambD , ~2.7!
J. Chem. Phys., Vol. 103, N
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VPcorr ab5
1

2 (
~ i , j !PM

qiqj S 2
erf~bur i2r j u!

ur i2r j u3

1
2bp21/2 exp@2~bur i2r j u!2#

ur i2r j u2
D

3~r i2r j !a~r i2r j !b . ~2.8!

In the flexible molecule case, the trace ofVP equals the
negative of the electrostatic energyE ~see Smith!.44 Note
that other nonbond interactions such as van der Waals int
actions also contribute to the virial tensor. In the flexibl
molecule case the virial tensor includes additional contrib
tions due to the bond, angle, and dihedral interactions.49 To
treat rigid molecules, which do not involve intramolecula
interactions, we letr0i denote the center of mass of the mol
ecule containing atomi , and letpi5r i2r0i . The vectorpi
does not scale with changinga, althoughr0i does. Then the
stress tensor VP is given by the above sum
VPdir1VP rec1VPcorr minus the tensor( i51

N ~f i!a~pi!b ,
where f i denotes the total nonbond force on atomi , ~again
see Smith44 for the discussion of the isotropic case!.

III. PIECEWISE LAGRANGIAN INTERPOLATION AND
STRUCTURE FACTORS

In order to approximate the electrostatic structure fa
tors, we need to interpolate the complex exponentials appe
ing in Eq. ~2.2!. Given positive integersK1 , K2 , K3 and a
point r in the unit cell, we denote its scaled fractional coor
dinates byu1 , u2 , u3 , i.e.,ua 5 Kaaa* • r , for a51,2,3. Due
to the periodic boundary conditions, we may assume th
0<ua,Ka . Then

exp~2p im•r !5expS 2p i
m1u1
K1

D •expS 2p i
m2u2
K2

D
•expS 2p i

m3u3
K3

D . ~3.1!

For real numbersu, let [u] denote the integer part ofu, that
is, the unique integer satisfying [u]<u<[u]11. Then, us-
ing linear interpolation, we can approximate the individua
exponentials on the right hand side of Eq.~3.1! by

expS 2p i
ma

Ka
uaD'~12~ua2@ua#!!

•expS 2p i
ma

Ka
@ua# D1~ua2@ua#!

•expS 2p i
ma

Ka
~@ua#11! D . ~3.2!

We then approximate the product in Eq.~3.1! by the
product of the right-hand side of Eq.~3.2! for a51,2,3,
which expands~trilinear interpolation! to a sum over eight
terms. This can be expressed more conveniently for our c
rent purposes. LetW2(u) denote the linear hat function
given byW2(u)512uuu for 21<u<1, W2(u)50 for uuu
.1. Then we can rewrite Eq.~3.2! as

ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to
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 This
expS 2p i
ma

Ka
uaD' (

k52`

`

W2~ua2k!•expS 2p i
ma

Ka
kD .

~3.3!

Note that the sum in Eq.~3.3! is actually finite, sinceW2 has
bounded support.@The support of a functionf (u) is the set
of u values for whichf (u)Þ0.#

Higher order piecewise Lagrangian interpolation of th
complex exponentials can be expressed in a similar fash
Consider piecewise 2p-th order Lagrange interpolation o
exp(2p imu/K) using the points [u]2p11, [u]2p
12,...,[u]1p. Let W2p(u)50 for uuu.p; and for
2p<u<p define it by

W2p~u!5
P j52p, jÞk

p21 ~u1 j2k!

P j52p, jÞk
p21 ~ j2k!

,

for k<u<k11,k52p,2p11,...,p21. ~3.4!

Note that whenp51 this agrees withW2 defined above.
Using this function we can write the usual piecewis
Lagrange interpolation formula for the complex exponent
as

expS 2p i
ma

Ka
uaD' (

k52`

`

W2p~ua2k!•expS 2p i
ma

Ka
kD .

~3.5!

From standard estimates for Lagrangian interpolatio
the error in this approximation is bounded b
(2p)!/(p!) 2[pumau/(2Ka)]

2p.
Approximating the product in Eq.~3.1! by the product of

the right-hand sides of Eq.~3.5!, for a51,2,3 we have for the
approximate structure factor

S~m!'S̃~m!

5(
i51

N

qi (
k152`

`

(
k252`

`

(
k352`

`

W2p~u1i2k1!

•W2p~u2i2k2!•W2p~u3i2k3!

•expS 2p i
m1

K1
k1D •expS 2p i

m2

K2
k2D

•expS 2p i
m3

K3
k3D

5 (
k150

K121

(
k250

K221

(
k350

K321

Q~k1 ,k2 ,k3!expF2p i •Sm1k1
K1

1
m2k2
K2

1
m3k3
K3

D G
5F~Q!~m1 ,m2 ,m3!, ~3.6!

whereF(Q) is the discrete Fourier transform~see Appendix
B! of the arrayQ defined by

Q~k1 ,k2 ,k3!5(
i51

N

(
n1 ,n2 ,n3

qiW2p~u1i2k12n1K1!

3W2p~u2i2k22n2K2!
J. Chem. Phys., Vol. 103, N
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In Eq. ~3.7! the inner sums are over all integersn1 , n2 , n3 .
The approximate unit cell energy obtained using this ap

proach with structure factors and piecewise Lagrangian in
terpolation is equivalent to our previous result.24 To show
this, we define as previously a reciprocal pair potentialcrec,
whose values at integers (l 1 ,l 2 ,l 3) is given by

c rec~ l 1 ,l 2 ,l 3!5
1

pV (
mÞ0

exp~2p2m2/b2!

m2

3expS 2p i Fm1l 1
K1

1
m2l 2
K2

1
m3l 3
K3

G D
5F~C!~ l 1 ,l 2 ,l 3!, ~3.8!

whereC is the array given by

C~m1 ,m2 ,m3!5
1

pV

exp~2p2m2/b2!

m2

for mÞ0,C~0,0,0!50 ~3.9!

with m defined bym 5 m18a1* 1 m28a2* 1 m38a3* , wheremi8
5 mi for 0<mi<K/2 andmi8 5 mi 2 Ki otherwise. Note
that C5F21~crec!. Using the approximationS~m!'S̃~m!
5F(Q)(m1 ,m2 ,m3) for the structure factors and the identi-
ties ~B3! and ~B4! in Appendix B, the reciprocal sum in the
unit cell energy is approximated by

Erec'Ẽrec5
1

2pV (
mÞ0

exp~2p2m2/b2!

m2

3F~Q!~m1 ,m2 ,m3!F~Q!~2m1 ,2m2 ,2m3!

5
1

2 (
m150

K121

(
m250

K221

(
m350

K321

F21~c rec!~m1 ,m2 ,m3!

3F~Q!~m1 ,m2 ,m3!•K1K2K3•F
21~Q!~m1 ,m2 ,m3!

5
1

2 (
m150

K121

(
m250

K221

(
m350

K321

Q~m1 ,m2 ,m3!

•~c rec!Q!~m1 ,m2 ,m3!, ~3.10!

which is identical to the PME expression derived
previously.24

IV. CARDINAL B-SPLINE INTERPOLATION

From the definition in Eq.~3.4! it is evident that the
Lagrangian weight functionsW2p(u) are continuous and
therefore give rise to approximate unit cell energies whic
are continuous as functions of particle positions. It is, how
ever, also clear thatW2p(u) are only piecewise differen-
tiable, so the approximate reciprocal energy cannot be diffe
entiated to arrive at Coulombic forces. Instead, in th
original PME method, we interpolated the forces as well. I
contrast, the CardinalB-splinesM2p(u), which we now de-
scribe, lead analogously via spline interpolation of the com
plex exponential exp~2p im•r ! to approximate structure fac-
tors and hence approximate reciprocal energiesErec which
can be analytically differentiated to give the reciprocal force
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and stress tensors. Later, we will show that the approxim
tion is also superior to that for Lagrangian interpolation
the same order.

For any real numberu, let M2(u) denote the linear hat
function given by M2(u)512uu21u for 0<u<2 and
M2(u)50 for u,0 or u.2. For n greater than 2, define
Mn(u) by the recursion

Mn~u!5
u

n21
Mn21~u!1

n2u

n21
Mn21~u21!. ~4.1!

One of the many convenient properties of CardinalB-splines
is that they can be easily differentiated analytically. Forn.2

d

du
Mn~u!5Mn21~u!2Mn21~u21!. ~4.2!

From Eq. ~4.1! one can see thatMn(u) has finite support,
being zero outside the interval 0<u<n. From Eq.~4.2! it is
clear thatMn(u) is n22 times continuously differentiable
Note thatM2(u) is a simple translate ofW2(u) defined
above. More details about CardinalB-splines are given in
Appendix C.

Interpolation using splines is generally more compl
than Lagrangian interpolation, since the interpolation coe
cients are obtained from the solution of a system of line
equations, which might not be full rank. Fortunately, inte
polation of complex exponentials admits a particularly e
egant and simple solution, called the Euler exponen
spline. In Appendix C we show that whenn is even we can
write

expS 2p i
mi

Ki
ui D'bi~mi ! (

k52`

`

Mn~ui2k!

•expS 2p i
mi

Ki
kD , ~4.3!

wherebi(mi) is given by

bi~mi !5exp~2p i ~n21!mi /Ki !

3F (
k50

n22

Mn~k11!exp~2p imik/Ki !G21

. ~4.4!

The error in this approximation is bounded from above
(2umi u/Ki)

n ~see Ref. 50!, which is superior to the error
bound for Lagrange interpolation~above!. When n is odd
and 2umi u5Ki this interpolation result fails but, since it oc
curs in the tail of the reciprocal sum, we can setb(mi) arbi-
trarily to zero in this case. Proceeding as above, we can t
approximate the structure factor by

S̃~m!5b1~m1!b2~m2!b3~m3!F~Q!~m1 ,m2 ,m3!, ~4.5!

where the arrayQ is given by

Q~k1 ,k2 ,k3!5(
i51

N

(
n1 ,n2 ,n3

qiMn~u1i2k12n1K1!

3Mn~u2i2k22n2K2!

•Mn~u3i2k32n3K3!. ~4.6!

The approximate reciprocal energy is now given by
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2pV (
mÞ0

exp~2p2m2/b2!

m2 B~m1 ,m2 ,m3!

•F~Q!~m1 ,m2 ,m3!F~Q!~2m1 ,2m2 ,2m3!

5
1

2 (
m150

K121

(
m250

K221

(
m350

K321

Q~m1 ,m2 ,m3!

•~u rec!Q!~m1 ,m2 ,m3!, ~4.7!

where

B~m1 ,m2 ,m3!5ub1~m1!u2•ub2~m2!u2•ub3~m3!u2, ~4.8!

and the pair potentialurec is given byurec5F(B•C). Note
thatQ is now n22 times continuously differentiable in the
particle positions. To obtain the reciprocal atomic force w
differentiate the second expression in Eq.~4.7! with respect
to r i . Noting thaturec does not depend on particle positions
we get fora51,2,3

]Ẽrec

]ra i
5 (

m150

K121

(
m250

K221

(
m350

K321

]Q/]ra i~m1 ,m2 ,m3!

•~u rec!Q!~m1 ,m2 ,m3!. ~4.9!

Finally, the approximate reciprocal stress tensorPrec is ob-
tained by substituting the approximate structure factors fro
Eq. ~4.5! into Eq. ~2.7!.

In our implementation of this algorithm for approximat-
ing Erec, ]Erec/]ra i , andPrec at each step of a molecular
dynamics simulation, we first fill the arrayQ, using the co-
efficients Mn(uki2 j ) for i51,...,N, k51,2,3 and
j50,...,n computed from the current scaled fractional coor
dinates of the particles. Next,Q is transformed in place using
the inverse 3DFFT. Using the transformedQ array as well as
B, approximate expressions forErec andPrec are computed
using Eqs.~4.7! and~2.7!. At the same time the transformed
Q array is overwritten by the product of itself with the arrays
C andB defined in Eqs.~3.9! and ~4.8!. This new array is
then transformed in place by the forward 3DFFT to arrive a
the convolutionurec!Q. Finally, this is multiplied by the
quantities]Q/]ra i for i51,...,N anda51,2,3, and summed
to give the approximation~4.9! to the reciprocal forces
]Erec/]ra i . The quantities]Q/]ra i are computed on the fly as
the sum is accumulated, using Eq.~4.2! to get analytic de-
rivatives of the coefficientsMn(uki2 j ).

The previous PME algorithm24 obeyed Newton’s 2nd
Law to machine precision, since the reciprocal sum force
were interpolated symmetrically, while not conserving en
ergy, since the energies and forces were approximated se
rately. In contrast, the current algorithm conserves energ
but not momentum. For example, the sum of the electrosta
forces on the atoms is not zero, but rather is a random qua
tity of the order of the rms error in the force. This leads to
kind of slow Brownian motion of the center of mass. This
artifact can be avoided by removing the average net forc
from each atom at each step of the simulation, which doe
not affect the accuracy or the rms energy fluctuations. Th
was done for all the tests run below. It remains to be seen
o. 19, 15 November 1995 18 Mar 2014 12:17:07
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 Thi
strict conservation of momentum or of energy is more im
portant. To date we have not devised an algorithm t
achieves both.

V. DISPERSION LATTICE SUMS

In this section, we briefly describe how theB-spline
PME approach derived above for Coulombic lattice sum
extends to dispersion interactions. For now, we assume g
metric mean combining rules, and then show how to mod
the approach for Lorentz–Bertholot combining rules. Thu
as above, givenN particles at positionsr1,r2,...,rN within the
unit cell U, assume for each particlei there is a positive
constantl i so that the dispersion energy for a pair of pa
ticles i , j is 2l il j /ur i2r ju

6. Then we can write the dispersio
energy ofU as

E6~r1 ,...,rN!52
1

2( 8
n (

i
(
j

l il j

ur i2r j1nu6
, ~5.1!

where the outer sum is over the vecto
n5n1a11n2a21n3a3, the prime indicating that terms with
i5 j andn50 are omitted. Unlike the Coulombic lattice sum
in Eq. ~2.1!, the outer sum in Eq.~5.1! converges absolutely
In Appendix A~see also Refs. 40, 23, and 42! we show that
it can be re-written as a sum of direct, reciprocal, and s
energies, analogous to the Ewald sum for Coulombic int
actions. ~The correction energy for molecular systems
handled analogously to that for Coulombic systems.! Here
we focus on the reciprocal dispersion energy, which can
written

E6,rec52
p3/2

3V (
m

S~m!S~2m!

•@~b3/22bp2m2!exp~2p2m2/b2!

1p7/2m3erfc~pm/b!#, ~5.2!

wherem5umu, and the structure factors are now given by

S~m!5(
j51

N

l j exp~2p im•r j !

5(
j51

N

l j exp@2p i ~m1s1 j1m2s2 j1m3s3 j !#. ~5.3!

From here the development is very similar to that for t
Coulombic reciprocal sum, with the arrayQ replaced by an
analogous arrayL, which is determined from the dispersio
coefficientsl j using the sameB-spline coefficient expansion
as in Eq.~4.6!. The exponential weighting terms from Eq
~4.7! are replaced by the more complex weighting term
from Eq. ~5.2!. Formulas for the stress tensor are adap
from those in Karasawa and Goddard,42 and atomic forces
are obtained from the derivatives]L/]ra i , which are com-
puted analytically, as are]Q/]ra i

When Lorentz–Bertholot combining rules hold, we ca
follow a suggestion of Perramet al.,23 and consider the ex-
pansion
J. Chem. Phys., Vol. 103, N
s article is copyrighted as indicated in the article. Reuse of AIP content is sub
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l i j5A« iA« j~r 0i1r 0 j !
65 (

k50

6
6!

k! ~62k!!
lk,il62k, j ,

~5.4!

wherelk,i 5 A« i r 0,i
k . Using this expansion, the reciproca

dispersion energy can be written as the sum of seven ter
each of which resembles Eq.~5.2!, and to which the above
PME methodology can be applied.

Note that it is not possible to apply this dispersion a
proximation to the Amber3a force field, due to the comple
way that 6–12 vs 10–12 interactions are implemented. Ho
ever, it has been implemented into the new Amber for
field, which has no explicit 10–12 interactions.

VI. RESULTS: ACCURACY AND EFFICIENCY OF THE
PME ALGORITHM

The total energyE is invariant to the constantb, which
controls the relative rate of convergence of the direct a
reciprocal sums,Edir andErec in Eqs.~2.3! and~2.4!, respec-
tively ~the computation ofEcorr is of orderN and so is not
discussed further!. Increasingb causesEdir to converge more
rapidly, at the expense of slower convergence inErec. In
order to bound the error due to cutoff in the direct sum, it
necessary that erfc(br )/r be less than a small toleranceedir
for r greater than the cutoff. Similarly, to bound the error du
to cutoff in the reciprocal sum, it is necessary th
exp~2p2umu2/b2!/umu2 be less than a small toleranceerec for
reciprocal vectorsm5 m1a1* 1 m2a2* 1 m3a3* outside thecut-
off.

Consider a series of cubic boxes with increasing b
lengthL. Traditionallyb is chosen so that in the direct sum
Edir all the interactions beyond the nonmasked minimum im
age pairs can be neglected. From the condition that erfc(bL/
2) be constant,b must vary inversely with the box length
Since the length of the reciprocal basis vectorsaa* also varies
inversely with box length, the number of reciprocal vecto
m satisfying the condition exp~2p2umu2/b2!/umu2,erec is in-
dependent of system size and the reciprocal sumErec is well-
approximated by the sum over several hundred recipro
vectorsm, independently of the system size, leading to a
orderN algorithm for the reciprocal sum. However, the d
rect sum is an orderN2 computation, which is prohibitive for
macromolecular systems.

Conversely, choosing a fixedb independent of the box
length should allow a fixed size cutoff~e.g., 9 Å! in the
direct sumEdir , thereby reducing its computation to orderN.
On the other hand, the requirement on the reciprocal sp
tolerance now forces the number of reciprocal vectors a
thus structure factors to grow asL3. The straightforward
implementation of Eq.~2.4! then leads to an orderN2 calcu-
lation of the reciprocal sum. In the PME method, howeve
the structure factors are interpolated on a grid, thus reduc
the calculation to orderN log(N) using the 3DFFT.

The original PME method, which relied on Lagrangia
interpolation, was quite efficient in attaining low-to
moderate accuracies. However, it proved difficult to achie
high accuracies without resorting to excessively high gr
densities. High order Lagrangian interpolation is known
be numerically unstable. In contrast,B-splines are well be-
o. 19, 15 November 1995
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TABLE I. Comparison of the relative error in the reciprocal potential energy and reciprocal rms force error
the PME method using Lagrangian interpolation vsB-spline interpolation. The relative error in the reciprocal
potential energy is defined as:uErecip,full2Erecip,PMEu/uEtotal,fullu, with uEtotal,fullu5uEdirect,full1Erecip,fullu. The recipro-

cal rms force error is defined as ~@( i51
3N (F recip,full,i2F recip,PME,i!

2#/( i51
3N F total,full,i

2 !1/2 with
F total,full,i5Fdirect,full,i1F recip,full,i . The subscript ‘‘recip’’ denotes terms in reciprocal space, subscript ‘‘direct’’
terms in direct space, and subscript ‘‘full’’ terms either in direct or reciprocal space calculated until the
individual contributions are less than the machine precision.

Grid
size

Interp.
order

Lagrange PME
rel. err. energy

B-spline PME
rel. err. energy

Lagrange PME
rel. err. force

B-spline PME
rel. err. force

40 4 2.331024 4.33 1025 2.031023 4.33 1024

40 6 7.431025 3.83 1026 4.031024 2.23 1025

40 8 2.931025 5.53 1027 1.131024 2.03 1026

40 10 1.331025 1.23 1027 4.131025 2.93 1027

54 4 7.831025 1.03 1025 5.031024 9.53 1025

54 6 1.431025 3.63 1027 5.831025 2.23 1026

54 8 3.531026 2.13 1028 1.031025 9.03 1028

54 10 1.031026 1.73 1029 2.531026 5.53 1029

80 4 1.931025 2.13 1026 1.231024 2.33 1025

80 6 1.631026 2.63 1028 6.331026 2.13 1027

80 8 2.131027 5.2310210 5.331027 3.13 1029

80 10 4.331028 1.4310211 6.631028 6.7310211
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haved numerically. In addition, as noted above, the er
bounds in approximating trigonometric functions are bet
for the Euler spline than for polynomial interpolation. To te
if the new method is more accurate in practice, we compa
the reciprocal sum relative errors in energy as well as for
due to the current versus the former PME method. A 40
box of 2038 TIP3P waters was prepared and equilibrat
The value of the Ewald coefficientb was set to approxi-
mately 0.35 Å21, corresponding to ‘‘medium’’ accuracy in
the direct space forces~rms force error of 431024, see be-
low!. The accuracy in the reciprocal sum as a function
grid size and interpolation order for the two methods is d
played in Table I. The new method is substantially mo
accurate. Other values ofb resulted in comparable improve
ments ~results not shown!. For comparison, the traditiona
Ewald sum, using the parameters recommended in Allen
Tildesley51 ~minimum image cutoff,b55/L, 100–200 recip-
rocal vectors!, leads to rms force errors of about 631024.
Note that even for 1 Å grids the PME method yields compa
rable or more accurate Ewald sums than the traditio
method.

In order to prove that the PME algorithm is of orde
N log(N) in practice we need to show that, given a fixedb,
which should allow a fixed cutoff in the direct sum, we ca
choose a grid density and an interpolation order which res
in system size independent bounds on the errors in the re
rocal sum, i.e., there are no hidden size dependencies in
required grid densities and/or interpolation orders. A series
TIP3P water boxes, from 20 to 80 Å in size, was prepar
and equilibrated. We calculated rms force errors~defined in
the caption to Fig. 1! using a direct sum with a 9 Å cutoff
and either theB-spline PME reciprocal sum approximation
or for comparison the conventional reciprocal sum with
finite cutoff in umu. The value of the Ewald coefficientb was
set to give low, medium, or high accuracy in the direct su
using the criterion that erfc(br )/r,edir , for r.9 Å, where
edir was set to 1024, 1026, and 1028 for low, medium, and
high accuracy. The resulting values ofb were approximately
J. Chem. Phys., Vol. 103, N
 as indicated in the article. Reuse of AIP content is su  IP:
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0.26, 0.35, and 0.42 Å21, respectively. The same value ofb
was then used when considering low, medium, or high accu
racy reciprocal sums, either conventional Ewald or PME
based.

To choose the reciprocal space cutoff for the conven
tional Ewald sum, we calculated the rms error in the recip
rocal force for the 40 Å box and adjusted the cutoff until the
error was slightly smaller than the corresponding error in th
direct sum. The resulting cutoffs were approximately 0.41
0.59, and 0.72 Å21 for the low, medium, and high accuracy
cases, respectively. These cutoff values were then applied
the remaining systems. For theB-spline PME, we used cubic
B-splines for the low accuracy case, 5th degreeB-splines for
the medium accuracy test, and 7th degreeB-splines for the
high-accuracy case. We then adjusted the grid size so that t
rms error in the PME reciprocal force for the 40 Å box was
slightly less than the corresponding error in the conventiona
reciprocal sum with the above cutoffs. The resulting grid
densities were 2 Å~20320320 grid!, 1 Å and 2

3 Å for the
low, medium, and high accuracy cases, respectively. The
same interpolation orders and grid densities were applied
the remaining systems.

The rms relative force errors for these systems are plo
ted in Fig. 1. Note that at all levels of accuracy the errors ar
almost constant~i.e., they do not increase as a function of
system size!. In particular, we see that the reciprocal sum
forces can be approximated to within a given level of accu
racy, independent of system size, by choosing appropria
values of the interpolation order and grid density.

Next, we investigated the variation in the PME force
errors along a molecular dynamics trajectory. The system
consisting of 2038 TIP3P water molecules in a 40 Å box
was propagated for 100 steps of microcanonical ensemb
molecular dynamics, with a 1fs time step, using the abov
prescriptions for PME approximation at low, medium, and
high accuracy. At each step the ‘‘exact’’ Ewald sum energy
forces, and electrostatic virial were computed and compare
with the PME approximations to the same quantities. We
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 Th
found that the rms force error is remarkably constant alon
the trajectory~results not shown!. For all three accuracy lev-
els, the maximum relative atomic force error was approx
mately one order of magnitude greater than the rms for
error, whereas the relative error in the electrostatic ener
was considerably smaller than the rms force error.

Although we have not found any usefula priori esti-
mates of the accuracy in the PME approximation, an ine
pensive estimator can be arrived at as follows. The exa
electrostatic energy and virial trace sum to zero.44 If the elec-
trostatic energy is better estimated than the viria
utr (Virial approx!1Eapproxu/uEapproxu provides an estimate of
the relative error in the virial trace. In turn, one may hope t
use this as a rough estimator of the rms force error, since
virial calculation involves the forces. Calculating these qua
tities for the above-mentioned trajectories showed that t
estimated virial error usually stayed within an order of mag
nitude of the rms force error. Occasionally, however, the e
ror in the virial trace dropped well below the rms force erro
suggesting that the time average-estimated error is more r
resentative.

In Fig. 2 we have plotted the CPU time~on an SGI
R4400! required to perform the conventional and PME re
ciprocal sums used in Fig. 1 as a function of system size. T
conventional reciprocal sum was computed using the alg
rithm of Smith and Fincham in the program MDMPOL from
CCP5. Note that the CPU time needed for this grows as t
square of the system size, as predicted. Moreover, the cos
prohibitive for large systems, even for the low-accuracy ca
~e.g., over 1100 s per time step for 50,000 atoms!. On the
other hand, the time needed for the PME method grows li
early with system size over this range of systems. This is d

FIG. 1. rms force errors as a function of system size. The three groups
curves correspond to three different choices ofb as described in the text.
The direct rms force error is defined as the error due to the truncati
of the interactions in direct space:~@( i51

3N (Fdirect,cutoff,i2Fdirect,full,i!
2#/

( i51
3N F total,full,i

2 !1/2, with F total,full,i5Fdirect,full,i1F recip,full,i . Similarly, the rms
force error due to a cutoff in the conventional reciprocal sum is defined a
~@( i51

3N (F recip,cutoff,i2F recip,full,i!
2#/( i51

3N F total,full,i
2 !1/2. The subscripts ‘‘direct’’,

‘‘recip’’, and ‘‘full’’ are explained in Table 1. The subscript ‘‘cutoff’’ refers
to terms in direct space using a 9 Åcutoff or terms in reciprocal space using
a cutoff. Finally, the error due to the PME approximation of the reciproca
sum is~@( i51

3N (F recip,PME,i2F recip,full,i!
2#/( i51

3N F total,full,i
2 !1/2.
J. Chem. Phys., Vol. 103, N
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to the fact that the charge grid-interpolation routines, which
scale linearly, are more expensive than the fast Fourier tran
form ~FFT! routines, which scale asN log(N), over this
range of system sizes. For comparison, we have also plotte
the CPU time needed for the direct sum with a 9 Å cutoff,
including the van der Waals interactions. The erfc function
was tabled using a cubic spline. The PME method was fast
than the conventional Ewald sum for all systems and accu
racies tested here. For sufficiently small systems, the conve
tional Ewald sum is more efficient. On the SGI R4400, the
break-even point was around 600 atoms. On the Cray YMP
for comparison, the break-even point is close to 900 atom
For a 20,000 atom system on the SGI R4400, the PME
method took approximately 3, 10, and 28 s for low, medium
and high accuracy, whereas the corresponding times for co
ventional Ewald reciprocal sums were approximately 180
1760, and 5300 s, respectively.

Next we tried, for a fixed accuracy, to find the optimum
combination of direct-sum cutoff, interpolation order, and
grid size in the PME method. The above 40 Å water box wa
used and the rms relative error in the total force~direct plus
PME reciprocal! was fixed to 531024, comparable to the
error in the traditional Ewald sum approach. The value o
edir , used to determineb, was set to 1025. The direct sum
cutoff was varied between 6 and 10 Å, and the interpolatio
order between 4 and 6. For each cutoff and interpolatio
order, the minimum grid size, which was a multiple of pow-
ers of 2, 3 and 5, and for which the rms force error fell below
531024, was determined~the FFT requires the former con-

of

n

s:

l
FIG. 2. Comparison of the CPU-times needed for the conventional vs PM
calculation of the reciprocal sum.~a! CPU-time for the conventional calcu-
lation of the reciprocal sum as a function of system size at the three levels
accuracies described in the text;~b! CPU-time required for the same level of
accuracies in the PME approach. For comparison the CPU-time for th
calculation of the direct sum using a 9 Åcutoff is also shown.
o. 19, 15 November 1995
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TABLE II. Timing results for the 18.77 Å water box for different choices of grid density and interpolation orde
compared with timing results for standard Amber3a with the same cutoff. The numbers for the PME calc
tions give the total CPU-time for the direct space calculations~including the truncated dispersion interactions!
plus the reciprocal space calculations. The total rms force error for the PME calculations was fixed at 531024.
The numbers in parenthesis indicate the number of grid points in each of the three dimensions.

Cutoff
~Å!

Amber3a
time

Direct sum
time

4th-order
total time

5th-order
total time

6th-order
total time

6.0 1.38 1.66 5.75~60! 4.75 ~48! 4.81~40!
6.5 1.78 2.11 5.42~54! 4.95 ~45! 5.00~36!
7.0 2.28 2.64 5.09~48! 5.06 ~40! 5.42~32!
7.5 2.91 3.27 5.49~45! 5.37 ~36! 5.95~30!
8.0 3.59 4.06 5.84~40! 5.94 ~32! 6.61~27!
8.5 4.31 4.82 6.72~40! 6.67 ~30! 7.47~25!
9.0 5.14 5.84 7.36~36! 7.61 ~27! 8.20~24!
9.5 6.10 6.96 8.29~32! 8.62 ~25! 9.12~20!
10.0 7.24 8.16 9.32~27! 9.68 ~24! 10.42~20!

Essmann et al.: A smooth particle mesh Ewald method
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dition for speed!. Timing results for direct sum as well as fo
direct plus reciprocal sums are compared in Table II w
timings for Amber3a residue-based cutoff calculations. T
optimal PME CPU time is achieved at the smallest cutoff a
5th order interpolation. Thus, it would seem that very sh
cutoffs are recommended. This result brings to mind the
sue of neglect of long-range dispersion interactions.

Truncating the van der Waals interactions at 9 Å leads to
an rms force error of only 531025 in this system, which is
less than the above rms force error in the Coulombic in
actions. However, the computed~isotropic! system pressure
as well as the potential energy are much more sensitive to
cutoff in the van der Waals interactions, since the individ
terms f i j •r i j in the trace of the virial, which are due to dis
persion forces are always negative, as are the neglected
ergy terms. For example, we find that including the full la
tice sum for dispersion interactions drops the pressure
almost 300 atm compared to truncation at 9 Å. This res
seems to be fairly independent of the system. The disc
ancy increases to nearly 600 atm when a 7 Å cutoff on the
dispersion interactions is used~in this case the rms force
error due to truncation of the dispersions is about 231024!.
For comparison, the error in the pressure due to truncatio
the r212 repulsion terms is between 1 and 3 atm for th
range of cutoff values.

In applying the PME method for dispersions to TIP3
waters we can use Eq.~5.3! to approximate the structur
factors, which assumes geometric mean combination ru
since only the oxygens participate in van der Waals inter
tions. In Table III we give the total CPU time for the PM
approximation applied to both dispersion and Coulombic
teractions. At each value of the cutoff, we used the optim
grid size and interpolation order for Coulombic interactio
from Table II, and investigated the effect of these two para
eters on the PME approximation to dispersion interactio
The criterion we used for accuracy in the dispersion inter
tions was that the error in the computed isotropic press
should be less than 10 atm, which was approximately
error due to the Coulombic PME method with the rms for
error set to 531024. For each cutoff and interpolation orde
the minimum grid size which satisfies this accuracy criter
~and which was a multiple of powers of 2, 3, and 5! was
J. Chem. Phys., Vol. 103, N
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determined. Note that the time for the direct sum has in-
creased compared to that in Table II, since the expression for
the dispersion direct sum is more complex than a simpler26

dependency. The minimum time is now achieved with a 7 Å
cutoff in the direct sum, 5th order interpolation with a 40
340340 grid for Coulombic interactions, and 4th order in-
terpolation with a 30330330 grid for the dispersion inter-
actions. Note that the total time is less than that for the
Amber3a residue-based cutoff calculation using a 10 Å cut-
off.

Finally, we checked the generality of these accuracy re-
sults by examining the rms force error due to similar levels
of PME approximation to electrostatics in three other sys-
tems; equilibrated structures from crystal simulations of
BPTI2 with 5304 atoms, andp21 H-ras~unpublished results!
with 24,801 atoms, and from a solution simulation of a DNA
dodecamer10 with 9956 atoms, kindly provided by Tom
Cheatham. For example, in Table II we see that a 9 Å cutoff
in the direct sum with a toleranceedir of 10

25 together with
cubic interpolation on a 36336336 grid gives an rms force
error of less than 531024 in the 40 Å water box system. The
p21 system is of particular interest since it has a nonor-
thogonal unit cell, with parametersa5b540.3 Å,
c5162.2 Å,a5b590°, andg5120°. Use of a 9 Å cutoff, a
tolerance of 1025, cubic interpolation, and a grid of 36336
3144 ~the nearest combinations of powers of 2, 3, and 5 to
the same grid density as above! lead to an rms force error of
4.9931024. Proceeding similarly with the remaining table
entries and the other two test systems leads to similar results.

TABLE III. Timing results for the same system under the same conditions
as in Table II except that the dispersion interactions were calculated using
the PME approximation.

Cutoff
~Å!

Direct sum
time

4th-order
total time

5th-order
total time

6th-order
total time

6.0 1.94 8.39~48! 7.82 ~40! 8.12 ~36!
6.5 2.46 7.13~36! 7.37 ~32! 8.06 ~30!
7.0 3.10 6.87~30! 7.48 ~30! 8.01 ~27!
7.5 3.82 7.01~24! 7.37 ~20! 8.17 ~20!
8.0 4.75 7.49~18! 7.89 ~16! 8.82 ~15!
o. 19, 15 November 1995
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 Th
TABLE IV. Energy fluctuations for a 40 Å water box as a function of time step, neighbor list update, grid
density, and different treatments of long-range dispersion interactions. The quantity^nE2&1/2/^nKE2&1/2 refers
to the fluctuations of the total energy divided by the fluctuations of the kinetic energy. The quantity
^nE2&1/2/^E& refers to the fluctuations of the total energy divided by the total energy.

Time
step~fs!

List
update~fs! edir Nfft

Dispersion
interactions NfftD

^nE2&1/2/
^nKE2&1/2

^nE2&1/2/
^E&

2 2 531027 24 PME 16 1.031022 6.631025

1 1 531027 24 PME 16 2.431023 1.631025

0.5 0.5 531027 24 PME 16 6.531024 4.331026

2 2 531026 24 PME 16 1.031022 6.631025

1 1 531026 24 PME 16 4.331023 2.931025

0.5 0.5 531026 24 PME 16 3.131023 2.031025

2 2 531027 24 truncate ••• 1.031022 6.631025

1 1 531027 24 truncate ••• 4.731023 3.131025

0.5 0.5 531027 24 truncate ••• 3.931023 2.631025

0.5 0.5 531027 16 PME 16 8.031024 5.331026

1 5 531027 24 PME 16 2.531023 1.731025

0.5 2.5 531027 24 PME 16 6.531024 4.331026

1 1 531026 16 truncate ••• 4.231023 2.831025

1 5 531026 16 truncate ••• 7.931023 5.231025

0.5 0.5 531028 24 PME 16 6.131024 4.031026
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The worst case was an rms force error of 731024; it oc-
curred in thep21 system with a 6 Åcutoff, cubic interpola-
tion, and a grid of 603603240. Most cases lead to rms forc
errors below 531024.

VII. ENERGY CONSERVATION

The rms fluctuation in total system energy in microc
nonical ensemble simulations using the Verlet integrati
scheme should be proportional todt2, wheredt is the el-
ementary time step.51 Truncation of electrostatic interaction
is known to lead to instabilities in the total system energ
This problem can be alleviated through the use of switch
functions,52 which, however, introduce artifacts,13,15,17 or
more realistically, by accounting smoothly for the long-ran
interactions.53 In this section, we investigate the energy co
servation of the PME algorithm. All simulations were ru
using a version of Amber3a, modified to perform the PM
algorithm on electrostatics and dispersion interactions.

The first system we tested was a box of 216 TIP3P w
ters. After equilibrating the system to 300 K and 1 bar~box
size 18.77 Å!, we ran a series of 5 ps microcanonical e
semble simulations. In all cases the direct sum was cutof
8 Å and cubic interpolation was used on the reciprocal s
for Coulombic and~where applicable! dispersion interac-
tions. Bond lengths were constrained using the mat
method,54 using a tolerance of 10210. We varied the time
step, the list update, the tolerance on the direct space cu
and the grid density for the Coulombic PME method. Final
we investigated the effect of the truncation of dispersion
teractions. The fluctuations in total energy relative to t
fluctuations in the kinetic energy and to the average to
energy are shown in Table IV. Note that the average to
energy dropped from about21660 kcals without long-range
dispersion interactions to about21680 kcals with the inter-
actions.

Note that when a toleranceedir of 531027 is used and
long-range dispersion interactions are not truncated, the
J. Chem. Phys., Vol. 103, N
s article is copyrighted as indicated in the article. Reuse of AIP content is sub

132.64.96.167 On: Tue,
-
n

y.
g

e
-

a-

-
at
m

ix

off,
,
-
e
al
al

ms

energy fluctuations do appear to decrease quadratically w
the time step. In contrast, use of larger values ofedir and
truncation of the dispersion interactions both lead to large
rms energy fluctuations that improve only slightly as the tim
step decreases. Decreasing the grid density from 24324324
to 16316316 increases the rms relative force error from
331024 to 231023. However, it has only a weak effect on
energy fluctuations.~Compare line ten of Table IV with line
three.! Next, when long-range dispersion interactions are in
cluded andedir5531027, updating the Verlet list every five
steps has a minimal effect on rms energy fluctuations~com-
pare lines 11 and 12 of Table IV with lines two and three!,
whereas the effect is greater when these interactions are tru
cated~compare line 14 with line 13!. Finally, tightening the
toleranceedir from 531026 to 531027 has a pronounced
effect on energy conservation for small time steps, but d
creasing it further to 531028 has only a weak effect~com-
pare lines three, six and fifteen!.

To assess the generality of these results, we next pe
formed similar simulations on the DNA dodecamer in solu
tion with sodium counterions.10 This system was prepared
using the new Amber force field, without explicit 10–12
terms, which allowed us to test the effect of including the
long-range dispersion interactions. The unit cell was o
thogonal, with dimensions 57.2342.3341.6 Å, and con-
tained 9956 atoms. The grid for the Coulombic PME wa
54340340, while that for the dispersion PME was 36324
324. Bonds involving hydrogen were constrained in lengt
using the matrix method as above, while those involvin
only heavy atoms were allowed to vibrate. The rest of th
protocol was identical to the water simulations above. Th
fluctuations in total energy relative to the fluctuations in th
kinetic energy and to the average total energy are shown
Table V. As in the water simulations, the average total en
ergy dropped by about 1% when the long-range dispersio
interactions are included. The results are very similar t
those of the water box simulations.
o. 19, 15 November 1995
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TABLE V. Energy fluctuations for the DNA system as a function of time step, neighbor list update, and
different treatments of long-range dispersion interactions.

Time
step~fs!

List
update~fs! edir

Dispersion
interactions

^nE2&1/2/
^nKE2&1/2

^nE2&1/2/
^E&

2 2 531027 PME 1.731022 2.431025

1 1 531027 PME 4.431023 6.631026

0.5 0.5 531027 PME 1.131023 1.631026

1 1 531027 truncate 8.631023 1.331025

0.5 0.5 531027 truncate 8.831023 1.331025

0.5 2.5 531027 PME 1.231023 1.831026

1 5 531027 truncate 1.931022 2.931025
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VIII. RESULTS OF WATER MD SIMULATIONS

Although the results above demonstrate that the PM
method provides a reliably accurate approximation to t
Ewald sum and leads to excellent energy conservation, i
possible that long simulations using this method could le
to artifactual behavior. To test for this we next performed
series of molecular dynamic~MD! simulations of pure water
using the new method, recording the average internal ene
and density as well as the self diffusion coefficient. Th
simulations were performed with a version of the Amber3
code modified to carry out the conventional Ewald sum usi
the algorithm of Smith and Fincham as mentioned above,
well as theB-spline PME algorithm for Coulombic and/or
dispersion interactions. Two water models were use
TIP3P55 and SPC/E.56 The simulations were run at 300 K
and 1 bar using the Berendsen coupling technique.57 Bonds
were constrained as above. A 1 fs time step was used and
simulations were all run for at least 100 ps after equilibr
tion. The diffusion coefficient was obtained as follows. Fo
each moleculei let di(t) denote the distance traveled by it
center of mass from the beginning of the simulation to tim
t. Let D(t)5( i51

N di
2(t)/(6Nt). ThenD(t) should approach

the diffusion constant ast tends to infinity. We took the av-
erage ofD(t) over the last 10 ps of the simulation. Result
are shown in Table VI. For the TIP3P model Jorgens
et al.55 reported a density of 0.982 g/cm3 and an average
potential energy of29.86 kcal/mol from a Monte Carlo
study of 125 water molecules using a 7.5 Å residue-bas
J. Chem. Phys., Vol. 103, N
d
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cutoff. We obtained 0.99 g/cm3 and29.7 kcal/mol using a
residue-based cutoff of 8.5 Å. They did not report a diffusion
constant for TIP3P. Berendsenet al.56 report for the SPC/E
model a density of 0.993 g/cm3, an average potential energy
of 211.14 kcal/mol~without the polarization correction! and
a self-diffusion constant of 2.531025 cm2/s. Using an 8.5 Å
residue-based cutoff, we obtain the same diffusion constan
a density of 1 g/cm3 and an energy of211.3 kcal/mol, i.e.,
an error of about 0.15 kcal/mol. Note that use of Ewald sum
for Coulombic terms with cutoff of dispersions results in
about 0.2 kcal/mol higher potential energy and a lowering o
the density of about 2% for both models. Including the long
range dispersions brought both measures closer to th
residue-based cutoff values. Given that we estimate the e
rors in the calculated diffusion constants to be about 5%
10%, the different methods give consistent results for the tw
models. Comparing the results for conventional Ewald sum
mation to those using the PME algorithm, we find a close
agreement between these two methods.

The calculation of the dielectric constant has proven to
be sensitive to the treatment of long-range forces.58,59There-
fore, as an additional test of the validity of the PME ap-
proach, we calculated the dielectric constant with the PME
method as well as the conventional Ewald summation. A
system of 216 SPC/E water molecules was simulated in a
NVE ensemble with a time step of 1 fs at a density of 0.977
g/cm3 and a temperature of 296 K. The length of the run wa
2 ns in the case of the simulation with the PME method an
s. Downloaded to  IP:
TABLE VI. Physical characteristics of different water simulations.

Water
model

Num
waters

Cutoff
~Å!

Coulomb
interactions

Dispersion
interactions

Epot

~kcal/mol!
Density
~g/cm3!

Diff. const.
~1025cm2/s!

TIP3P 216 8.5 truncate truncate 29.7 0.99 5.3
TIP3P 216 8.0 Ewald truncate 29.5 0.97 5.1
TIP3P 216 9.0 PME truncate 29.5 0.97 5.1
TIP3P 216 8.0 PME truncate 29.5 0.97 5.1
TIP3P 2038 8.0 PME PME 29.6 0.98 5.8
SPC/E 216 8.5 truncate truncate 211.3 1.00 2.5
SPC/E 216 8.0 Ewald truncate 211.1 0.98 2.4
SPC/E 216 8.0 PME truncate 211.1 0.98 2.3
SPC/E 216 9.0 PME truncate 211.1 0.99 2.7
SPC/E 216 8.0 PME PME 211.2 1.00 2.3
SPC/E 216 9.0 PME PME 211.2 1.00 2.5
SPC/E 2038 9.0 PME truncate 211.1 0.99 2.6
SPC/E 2038 8.0 PME PME 211.2 1.00 2.6
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 Th
1 ns in the case of the conventional Ewald summation.
In tinfoil boundary conditions, the dielectric constante

can be calculated from the fluctuations of the total dipo
momentM according to Ref. 60

e5113y
^M2&
Nm2 ~8.1!

with

y5
4prNm2

9kT
, ~8.2!

whererN denotes the number density,m the dipole moment
of an individual molecule, andN the number of molecules.

From the 2 ns simulation using the PME approach w
obtained a value ofe564.1. To estimate the standard erro
we broke the run into four pieces and calculated the diel
tric constant for each of the pieces. The results were 56
63.4, 73.8, and 63.0, yielding a standard error of63.6. This
error estimate should be treated with caution, since it
sumes the four values are independent, which may not
true.59

Using the traditional Ewald summation approach, w
found after simulating the system for 1 ns a dielectric co
stant ofe568.3. Due to the shorter length of this simulatio
we could not estimate a standard error. Note, however,
the calculated value is within the range of the four valu
obtained by the PME method.

In the long-time limit the average dipole moment of th
simulation cell should be zero. To assess the quality o
simulation de Leeuwet al.proposed the quantitŷM &2/^M2&.
In our simulations we found values for this ration of 0.01
using PME, and 0.005, using conventional Ewald summat
~the latter value was anomalously small at the end of
simulation and typically closer to that for the PME!.

In two previous simulations, the dielectric constants
SPC/E water has been determined using the reaction fi
method to treat long-range forces.59,61 Reddy and
Berkowitz61 found forr51 g/cm3 andT5298 K a value of
e570.7, while Smith and van Gunsteren59 found atr50.976
g/cm3 andT5300 K a value of 64.0. Comparing these da
with the one obtained with the PME approach or conve
tional Ewald method, we conclude that, even though th
are differences in the calculated dielectric constants, th
differences are within the range of the estimated errors.

IX. SUMMARY AND CONCLUSIONS

In this article, we have introduced a modification of th
previously developed PME method. The new method use
fixed cutoff in the direct sum and usesB-spline interpolation
of the reciprocal space structure factors onto a regular g
permitting the use of fast Fourier transforms to efficient
calculate the reciprocal sum. We demonstrated that
method has several advantages. The new method is sub
tially more accurate than the original PME. Moreover, th
accuracy can be improved at will by adjusting a few para
eters. In common with the previous PME method, the n
algorithm generalizes naturally to arbitrary unit cells, sin
the approximation is formulated in terms of fractional coo
J. Chem. Phys., Vol. 103, N
is article is copyrighted as indicated in the article. Reuse of AIP content is sub
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dinates. The formulation in terms of structure factors pro
vides for straightforward generalization to other pair poten
tials depending on inverse powers ofur u, such as dispersion
interactions. Furthermore, this formulation leads to approxi
mations of the reciprocal virial tensor that involve negligible
overhead. Finally, the use ofB-splines allows us to obtain
forces by analytic differentiation of the energies, and thes
forces are in turn smoothly varying with respect to particle
position. As far as we are aware, this algorithm is the only
fast algorithm for long-range forces that has this smoothnes
property. Moreover, since the forces are not interpolated as
the previous method, we substantially reduce the memor
requirements. Finally, we demonstrated that the metho
scales asN log(N) with respect to system size, which makes
it feasible to treat biomolecular systems of 20 000 or mor
atoms via Ewald summation. In Fig. 2 we show that for low
or medium accuracy, the CPU cost for the reciprocal sum i
less than that of the direct sum for a 9 Å cutoff. In Table III
we show that, at least for water boxes, the PME metho
makes it possible to compute the Ewald sum for dispersio
as well as Coulombic interactions at a level of accuracy com
parable to traditional Ewald summation in less time than
standard truncation methods with a 10 Å cutoff. The metho
vectorizes efficiently, achieving 146 megaflops on a Cra
Y-MP. Parallelization is natural on shared memory multipro-
cessors such as the SGI Challenge systems. An efficient pa
allel version has been developed for the Cray T3D using
distributed 3DFFT.62

Note added in proof.After this manuscript was submit-
ted, H. G. Petersen65 published a detailed comparison of the
PME method with the optimized conventional Ewald
method. He derives accurate expressions for the RMS forc
errors. Based on these expressions he compares the t
methods at the same level of accuracy. He concludes that t
PME method is more efficient for system sizes exceedin
10 000 atoms. This estimate is substantially more conserv
tive than ours. The discrepancy is probably due mostly to th
fact that we use an orderN2 algorithm for the Ewald sum
while the optimized Ewald method scales likeN3/2. Sec-
ondly, our FFT implementation, based on the 1D FFT o
Swarztrauber~available from netlib!, is substantially more
efficient than the FFT used in Petersen’s work. Furthermore
our implementation has the advantage that the grid dimen
sions can be a product of powers of 2, 3, and 5 which allow
more flexibility in the grid density. Finally, the approxima-
tion byB-splines described above allows a coarser grid to b
used at the same level of accuracy than the Lagrangian i
terpolation.
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 Thi
APPENDIX A: LATTICE SUMS FOR INVERSE
POWERS OF DISTANCE

In this appendix we derive the lattice summation form
las given in the text for the case of dispersion interactions
well as for Coulombic interactions, following the approac
in Smith.41 These lattice sums do not in general conver
absolutely, so we need to specify the asymptotic order
summation, corresponding to the asymptotic shape of
finite crystal made up of the union of lattice translations
the unit cellU. Let L denote the set of all lattice vector
n5n1a11n2a21n3a3. In order to describe the order of sum
mation inR3, we introduce a closed, bounded regionP, cen-
tered on the origin~e.g., the unit ball or the unit cube!, and
for positive integersK let PK(L) denote the set of lattice
vectorsn such thatn/KPP. GivenN points r1,...,rN in the
unit cell U, and real constantsC( i , j ), 1< i , j<N, we con-
sider sums of the form

Ep~r1 ,...,rN!5 lim
K→`

1

2 (
nPPK~L!

8 (
i

(
j

C~ i , j !

ur i2r j1nup
,

~A1!

where, as in Eq.~2.1!, the prime on the outer sum denote
that terms withi5 j andn50 are omitted.

We begin by deriving some identities for the invers
powers 1/ur up, p.0, wherer is any nonzero vector inR3.
The derivation depends on the following well-known resu

G~z!5E
0

`

tz21 exp~2t !dt5lzE
0

`

tz21 exp~2lt !dt,

~A2!

whereG(z) is the Euler gamma function, and

exp~2a2w2!5
Ap

a E
0

`

exp~2p2u2/a2!

3exp~22p iuw!du, ~A3!

which is the Fourier integral expansion of the Gaussian.
Eq. ~A2!, given a three dimensional vectorr , we substitute
l5ur u25r 2, wherer5ur u and z5p/2. For arbitrary positive
numberb we then have

G~p/2!

r p
5E

0

b2

tp/221 exp~2r 2t !dt1E
b2

`

tp/221

3exp~2r 2t !dt5I p1II p. ~A4!

To evaluateII p , we substitutet by s, with r 2t5s2. To
evaluateI p , we write r

25x21y21z2 and apply Eq.~A3! in
all three dimensions, substitutingw with x,y,z, respectively,
anda2 with t. At this point, we need to consider the recip
rocal unit cellU* made up of the pointsu in R3 such that
21/2<ai•u<1/2. Note thatR3 can be decomposed as th
union of the point setsU*1m, over all reciprocal vectorsm.
Changing the order of integration to integrate overt first, and
substitutingt with s, wherep2u2/t5s2, we arrive at
J. Chem. Phys., Vol. 103, N
s article is copyrighted as indicated in the article. Reuse of AIP content is su
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r p
5p3/2bp23E

R3
f p~puuu/b!exp~22p iu•r !d3u1

gp~br !

r p

5p3/2bp23(
m

E
U*
f p~puv1mu/b!

3exp@22p i ~v1m!•r #d3v1
gp~br !

r p
, ~A5!

where for positive numbersx, f p(x) andgp(x) are defined
by

f p~x!5
2xp23

G~p/2!
E
x

`

s22p exp~2s2!ds ~A6!

and

gp~x!5
2

G~p/2!
E
x

`

sp21 exp~2s2!ds. ~A7!

In particular, for the casesp51 or 6, we have
f 1(x)5 exp( 2 x2)/(Apx2) and g1(x)5erfc(x),
f 6(x)5 1/3@(1 2 2x2)exp( 2 x2) 1 2x3Ap erfc(x)# and
g6(x)5exp(2x2)(11x21x4/2). Note thatf p(x) andgp(x)
are smooth positive functions ofx for x.0, gp(x) is
bounded asx→0 for p>1, while f p(x) is bounded asx→0
for p.3, but f p(x)→` as x→0 for 1<p<3. The above
integral representation does, however, converge absolute
for p>1.

For vPU* we writev 5 w1a1* 1 w2a2* 1 w3a3* where
wk5v•ak , k51,2,3. For rPU and any lattice vector
n5n1a11n2a21n3a3, such thatr1nÞ0, we apply Eq.~A5!,
changing variables in the integrals overU* , to write

1

ur1nup
5

p3/2bp23

V (
m

exp~22p im•r !

3E
21/2

1/2 E
21/2

1/2 E
21/2

1/2

hp,m,r~w1 ,w2 ,w3!

•exp@22p i ~w1n11w2n21w3n3!#

3dw1dw2dw31
gp~bur1nu!

ur1nup
, ~A8!

wherehp,m,r(w1 ,w2 ,w3)5 f p(puv1mu/b)exp(22piv • r ).
For eachm, the above integral overw1 , w2 , w3 can be
identified as then1 , n2 , n3-th coefficient in the three-
dimensional Fourier series expansion ofhp,m,r . Note that for
mÞ0 andp>1, hp,m,r is a smooth, bounded function over
w1 , w2 , w3 in the unit cube. The same is true ifm50 and
p.3. Form50 and 1<p<3, there is an integrable singu-
larity at the origin.

Forp>1 andrÞ0, we consider the limit asK→` of the
sumSK,p~r ! given by

SK,p~r !5 (
nPPK~L!

1

ur1nup
. ~A9!

Applying Eq. ~A8!, exchanging the order of summation be-
tweenm andn, and using the fact that the sum of the Fourier
coefficients of the smooth, bounded functionhp,m,r , mÞ0
converges tohp,m,r(0,0,0)5 f p(pumu/b), we can write
o. 19, 15 November 1995
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lim
K→`

SK,p~r !5
p3/2bp23

V
lim
K→`

(
nPPK~L!

E
21/2

1/2 E
21/2

1/2 E
21/2

1/2

3hp,0,r~w1 ,w2 ,w3!•exp~22p i ~w1n1

1w2n21w3n3!!dw1dw2dw3

1
p3/2bp23

V (
mÞ0

f p~pumu/b!

3exp~22p im•r !1(
n

gp~bur1nu!
ur1nup

.

~A10!

From Eq.~A4! we see that

lim
r→0

S 1r p2 gp~br !

r p D5
2bp

pG~p/2!

~the ‘‘self-energy’’ term!, which can be used to modify Eq
~A10! when r50.

For p.3 the first term on the right-hand side of Eq
~A10! converges to (p3/2bp23/V) f p(0) by the above Fou-
rier expansion argument. Note that this limit is independe
of the order of summation specified byP, i.e., the sum con-
i

t
m
,
r

l
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.

nt

verges absolutely. These results can be applied directly to th
sum in Eq.~A1! to arrive at

Ep~r1 ,...,rN!5
1

2 (
n

8 (
i

(
j

C~ i , j !gp~bur i2r j1nu!
ur i2r j1nup

1
p3/2bp23

2V (
m

f p~pumu/b!

3(
i

(
j
C~ i , j !•exp@22p im•~r i2r j !#

2
bp

pG~p/2! (
i
C~ i ,i !. ~A11!

If the coefficientsC( i , j ) are ‘‘factorizable,’’ i.e., C( i , j )
5 AC( i ,i )AC( j , j ) ~possibly with a minus sign!, then the
reciprocal sum in the above equation can be written in term
of ‘‘structure factors’’ similar to those discussed in the text,
and the PME methodology can be applied.

For p<3 the left-hand side of Eq.~A10! diverges, as
does limx→0f p(x). We examine the casep51, with
C( i , j )5qiqj , where the chargesqi sum to zero~neutral unit
cell U!. We then can write
E1,P~r1 ,...,rN!5
1

2(n
8 (

i
(
j

qiqj erfc~bur i2r j1nu!
ur i2r j1nu

1
1

2pV (
mÞ0

exp~2p2m2/b2!

m2 S~m!S~2m!2
b

Ap
(
i
qi
2

1
1

2p
lim
K→`

(
nPPK~L!

E
U*

(
i , j

qiqj exp~2p2v2/b2!

v2
•exp@22p iv•~r i2r j !#exp~22p iv•n!d3v . ~A12!
ro-

-
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Examining the last term in Eq.~A12!, we apply a
second-order Taylor series expansion to the funct
exp(2p2v2/b2)exp[22p iv•~r i2r j !#, expanding about
v50. The zeroth and first-order terms, which account for
singularity in the integral, are cancelled by the double su
mation overi and j ~neutral unit cell!. The remainder term
which is of order three, can be handled by the above Fou
series argument, and converges to zero asK→`. After some
rearrangement, the second-order terms reduce
4p2~v•D!2/v2, whereD5( iqir i is the unit cell dipole mo-
ment, plus terms that are cancelled by the unit cell neutra
The last term in Eq.~A12! can thus be written as

J~D!52p lim
K→`

(
nPPK~L!

E
U*

~v•D!2

v2
exp~22p iv•n!d3v.

~A13!

Note that the above Fourier series argument cannot be
plied to the right-hand side of Eq.~A13!, since the function
f ~v!5~v•D!2/v2 does not have a limit asv tends to zero.
Note, however, thatJ~D!50 if D50, and in this case the sum
in Eq. ~A12! converges absolutely. Smith41 and Deemet al.63

derive more tractable expressions forJ~D!. In particular, ifP
is the unit ball,J~D!5(2p/3V)D2.

s article is copyrighted as indicated in the article. Reuse of AIP content is su
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The ‘‘surface term’’J~D! vanishes ifD is zero. Smith41

shows how charge rearrangement at the surface of a mac
scopic crystal should also cancel its effect~‘‘tinfoil boundary
conditions’’!. Traditionally it has been neglected or set to
zero in simulations involving Ewald sums, but recently Rob-
erts and Schnitker14,43 have conducted simulations to exam-
ine the consequences of including it, demonstrating its rela
tion to the usual reaction field correction to cutoff energies
and forces.

APPENDIX B: DISCRETE FOURIER TRANSFORMS

Let K1 , K2 , K3 be positive integers. Given a complex-
valued arrayA(k1 ,k2 ,k3), 0<ki,Ki the discrete Fourier
transform is given by

F~A!~m1 ,m2 ,m3!5 (
k150

K121

(
k250

K221

(
k350

K321

A~k1 ,k2 ,k3!

•expF2p i Sm1k1
K1

1
m2k2
K2

1
m3k3
K3

D G ,
~B1!

while the inverse discrete Fourier transform is given by
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F21~A!~m1 ,m2 ,m3!

5
1

K1K2K3
(
l150

K121

(
l250

K221

(
l350

K321

A~ l 1 ,l 2 ,l 3!

•expF22p i Sm1l 1
K1

1
m2l 2
K2

1
m3l 3
K3

D G . ~B2!

Note thatF21[F(A)]5FF21(A)5A. Next, given com-
plex valued arraysA andB, the following two identities can
be derived by straightforward algebra:

(
l150

K121

(
l250

K221

(
l350

K321

F~A!~ l 1 ,l 2 ,l 3!•B~ l 1 ,l 2 ,l 3!

5 (
l150

K121

(
l250

K221

(
l350

K321

A~ l 1 ,l 2 ,l 3!•F~B!~ l 1 ,l 2 ,l 3! ~B3!

A!B5F@F21~A!B!#5K1K2K3•F@F21~A!•F21~B!#,
~B4!

whereA!B denotes the convolution ofA andB, given by

A!B~ j 1 , j 2 , j 3!5 (
k150

K121

(
k250

K221

(
k350

K321

A~ j 12k1 , j 22k2 , j 32k3!

•B~k1 ,k2 ,k3!. ~B5!

Note that the convolution, as expressed in Eq.~B5!, is an
order K2 computation, whereK5K1K2K3 , whereas using
Eq. ~B4! and the 3DFFT, it is reduced to orderK log(K).

APPENDIX C: MORE ABOUT B-SPLINES AND EULER
SPLINES

In this Appendix we give background material on Card
nal splines, and then derive Eq.~4.3! in the text. Polynomial
splines are smooth functions that are piecewise polynomi
The support of a polynomial spline is divided into sub
intervals by the knots of the spline. Within each of the
sub-intervals the spline agrees with a polynomial, and
spline is continuously differentiable several times at t
knots. Cardinal splines are polynomial splines having simp
equally spaced knots, and CardinalB-splines provide a basis
for the vector space of Cardinal splines of a given order. O
discussion follows that in Schoenberg50 as well as Chap. 4 of
Chui.64 For positive integersk, let pk denote the space o
polynomials of degree at mostk. Next, letSn , n>2, denote
the space ofnth order polynomial splines with simple knot
at the integers, that is, those real functionsf which aren22
times continuously differentiable and such that for all int
gers j , the restriction off to the half open intervalj<u
, j11 is inpn21. Thus, for example, the cubic splines wit
knots at the integers are denotedS4 . The n-1st derivative
f (n21) of a functionfPSn will be a step function with jumps
at the integers.

The collectionSn is a vector space. A basis for that spa
is provided by the CardinalB-splines, which are generate
by integer translations of a functionMn(u) which we now
describe. For any functionf defined on the reals, define th
backwards difference byD f (u)5 f (u)2 f (u21), and for
n>2 let Dnf (u)5D(Dn21) f (u). Note that Dnf (u)
J. Chem. Phys., Vol. 103, N
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e,
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e

50 for fPpn . By induction, we see thatDnf (u)
5(k50

n (21)kn!/(k!(n2k)!) f (u2k). For any real number
u, define u1 and then Mn(u) by u15max(u,0),
u1
n215(u1)

n21, and

Mn~u!5
1

~n21!!
Dnu1

n21

5
1

~n21!! (
k50

n

~21!k
n!

k! ~n2k!!
~u2k!1

n21. ~C1!

The following result is proven in Schoenberg50 as well
as Chui.64

Theorem 1. The integer translates of the nth-order
B-spline Mn(u) form a linear basis for the polynomial splines
of order n having knots at the integers. That is, Mn(u)PSn
and for any other function fPSn, we can write
f(u)5(j52`

` cjMn(u2j), where the coefficients cj are uniquely
determined.

The functionsMn(u) have a number of other useful
properties,64 some of which we summarize as

Theorem 2. The nth-order B-spline Mn(u) satisfies the
following properties:

1. Mn(u).0 for 0,u,n; Mn(u)50 for u<0 and
u>n.

2. Mn(u)5Mn(n2u).
3. ( j52`

` Mn(u2 j )51.

4. Mn~u!5
u

n21
Mn21~u!1

n2u

n21
Mn21~u21!.

5.
d

du
Mn~u!5Mn21~u!2Mn21~u21!.

Chui shows thatMn(u) is the probability density of the
sum ofn independent random variables, each distributed un
formly on the unit interval. Properties~1! and~2! of theorem
2 are simple consequences of this result. Property~3! of
theorem 2 says that theB-splines form a smooth partition of
unity. Properties~4! and~5! are given as Eqs.~4.1! and~4.2!
in the text.

Consider the complex-valued functiong(u;z)5zu,
whereu is a real number, andz is complex. For example,
choosingz5exp(2p im/K) gives the complex exponentials
appearing in the structure factors in Eq.~2.2!. Note thatg
satisfies the functional equationg(u11;z)5z•g(u;z). Euler
posed the problem of interpolatingg at integer values ofu
by smooth, piecewise polynomials~now called splines!, that
satisfy the same functional equation. The solutions to th
problem are known as Euler exponential splines. They a
discussed in Schoenberg,50 who also provides some of the
history.

In our notation we want to interpolateg by annth order
spline gnPSn , which satisfiesgn(u11;z)5z•gn(u;z), for
all u. Using the basis property from theorem 1, we write

gn~u11;z!5 (
j52`

`

cjMn@u2~ j21!#

5 (
j52`

`

cj11Mn~u2 j !5z• (
j52`

`

cjMn~u2 j !
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and thus, by the uniqueness of the coefficients we have
cj115z•cj for all j . By repeated application of this equatio
we can then write, for some complex constantc

gn~u;z!5c (
j52`

`

zjMn~u2 j !5c•Fn~u;z!. ~C2!

SupposeFn(0;z) is not zero. Letc51/Fn(0;z). Then
gn , given by Eq.~C2!, satisfiesgn(0;z)51, and using the
above functional equation,gn( j ;z)5zj5g( j ;z); that is,gn
interpolates g at the integers. On the other hand,
Fn(0;z)50, thengn( j ;z) must be zero for allj , and the
interpolation problem has no solution inSn . Thus, it is im-
portant to determine the values ofz for which Fn(0;z)50.
We can rewriteFn(0;z) as

Fn~0;z!5 (
j52`

`

Mn~2 j !•zj

5 (
j52`

`

Mn~n1 j !•zj

5
1

zn21 (
k50

n22

Mn~k11!•zk

5
1

~n21!! •zn21 Pn21~z!, ~C3!

where we have used properties~1! and~2! of theorem 2. The
third expression in Eq.~C3! is used in Eq.~4.4! of the text.
The functionPn21(z) defined in Eq.~C3! is known as the
Euler–Frobenius polynomial of degreen22. If z51, then
by property~3! in Theorem 2 above,Fn(0;z)51. Schoen-
berg treats the casezÞ1 and, following Frobenius, shows
that the roots of the polynomialPn21(z) are real, negative,
and occur in reciprocal pairs, that is, ifPn21(z)50 then
Pn21(1/z)50 also.

For our purposes, we are interested in the ca
z5exp(2p im/K), for arbitrary integersm andK. Since the
roots are real and negative, the only possible root is az
521, that is, form5K/2. If the interpolation ordern is odd,
then applying property~2! of theorem 2 toMn(u) in Eq.
~C3!, we see that21 is indeed a root, i.e.,Fn(0;21)50
and interpolation fails. Ifn is even~e.g., cubic interpolation!,
then so isn22, and then22 roots ofPn21(z) occur in
reciprocal pairs, so that21 cannot be a root. Thus ifn is
even,Fn(0;z) cannot be zero, and it can be inverted to gi
b(m) in Eq. ~4.4! in the text, thereby solving the interpola
tion problem.
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