
Intelligent Products For A Smarter World

OS-9® Technical
Manual

Version 2.2

2 OS-9 Technical Manual

Copyright and Publication Information
Copyright © 2000 Microware Systems Corporation. All Rights Reserved. Reproduction of
this document, in part or whole, by any means, electrical, mechanical, magnetic, optical,
chemical, manual, or otherwise is prohibited, without written permission from Microware
Systems Corporation.

This manual reflects version 2.2 of OS-9.

Revision: I
Publication date: August 2000

Disclaimer
The information contained herein is believed to be accurate as of the date of publication.
However, Microware will not be liable for any damages including indirect or consequential,
from use of the OS-9 operating system, Microware-provided software, or reliance on the
accuracy of this documentation. The information contained herein is subject to change
without notice.

Reproduction Notice
The software described in this document is intended to be used on a single computer
system. Microware expressly prohibits any reproduction of the software on tape, disk, or
any other medium except for backup purposes. Distribution of this software, in part or
whole, to any other party or on any other system may constitute copyright infringements
and misappropriation of trade secrets and confidential processes which are the property of
Microware and/or other parties. Unauthorized distribution of software may cause damages
far in excess of the value of the copies involved.

For additional copies of this software/documentation, or if you have questions concerning
the above notice, please contact your OS-9 supplier.

Trademarks
OS-9, OS-9000, DAVID, FasTrak, and UpLink are registered trademarks of Microware
Systems Corporation. SoftStax and Hawk are trademarks of Microware Systems
Corporation. Windows, Windows 95 and Windows NT are registered trademarks of
Microsoft Corporation. All other product names referenced herein are either trademarks or
registered trademarks of their respective owners.

Address
Microware Systems Corporation
1500 N.W. 118th Street
Des Moines, Iowa 50325
515-223-8000

Table of Contents

Chapter 1: System Overview 9

10 System Modularity
10 Level 1 — The Kernel, the Clock, and the Init Modules
11 Level 2 — IOMAN
11 Level 3 — File Managers
11 Level 4 — Device Drivers
11 Level 5 — Device Descriptors
13 I/O Overview
15 Memory Modules
16 Basic Module Structure
17 The CRC Value
17 ROMed Memory Modules
19 Module Header Definitions

Chapter 2: The Kernel 27

28 Kernel Functions
29 System Call Overview
29 User State and System State
30 Installing System-State Routines
32 Kernel System Call Processing
32 Non-I/O Calls
33 I/O Calls
34 Memory Management
36 OS-9 Memory Map
36 System Memory Allocation
37 Operating System Object Code
37 System Global Memory
OS-9 Technical Manual 3

37 System Dynamic Memory
38 User Memory
39 Memory Fragmentation
40 Colored Memory
40 Colored Memory Definition List
44 Colored Memory in Homogenous Memory Systems
44 System Performance
45 Reconfiguring Memory Areas
46 System Initialization
46 Init: The Configuration Module
47 Extension Modules
48 Process Creation
49 Process Memory Areas
50 Process States
52 Process Scheduling
53 Preemptive Task Switching

Chapter 3: The OS-9 Input/Output System 55

56 The OS-9 Unified Input/Output System
56 The I/O Manager
57 The File Manager
57 The Device Driver
58 IOMAN
60 Device Descriptor Modules
66 Path Descriptors
72 File Managers
73 File Manager Organization
79 Device Driver Modules
79 Basic Functional Driver Requirements
80 Interrupts and DMA
4 OS-9 Technical Manual

Chapter 4: Interprocess Communications 83

84 Signals
85 Signal Codes
88 Signal Implementation
88 Non-recursive Calling
89 Recursive Calling
92 Alarms
92 User-state Alarms
92 Cyclic Alarms
93 Time of Day Alarms
94 Relative Time Alarms
94 System-State Alarms
97 Events
100 Wait and Signal Operations
100 Wait
100 Signal
101 The F_EVENT System Call
104 Semaphores
105 Semaphore States
106 Acquiring Exclusive Access
106 Releasing Exclusive Access
107 Pipes
108 Named and Unnamed Pipes
109 Operations on Pipes
109 Creating Pipes
110 Opening Pipes
111 Read/Readln
111 Write/Writeln
112 Close
112 Getstat/Setstat
112 GetStat Status Codes Supported by PIPEMAN
114 SetStat Status Codes Supported by PIPEMAN
115 Pipe Directories
OS-9 Technical Manual 5

117 Data Modules
117 Creating Data Modules
118 The Link Count
118 Saving to Disk

Chapter 5: Subroutine Libraries and Trap Handlers 119

120 Subroutine Libraries
120 Installing and Executing Subroutine Libraries
122 Terminating Subroutine Libraries
123 Trap Handlers
124 Installing and Executing Trap Handlers

Chapter 6: OS-9 File System 127

128 Disk File Organization
128 Basic Disk Organization
129 Identification Block
130 Allocation Map
130 Root Directory
130 Basic File Structure
136 Small Files
136 Logical Block Numbers
136 Segment Allocation
137 Directory File Format
139 Raw Physical I/O on RBF Devices
140 Record Locking
140 Record Locking and Unlocking
141 Non-Sharable Files
142 End of File Lock
142 Deadlock Detection
144 Record Locking Details for I/O Functions
144 Open/Create
144 Read/ReadLine
6 OS-9 Technical Manual

145 Write/WriteLine
145 Seek
145 SetStatus
146 File Security
147 PC File Manager (PCF)
147 Getting Top Performance from PCF
148 Differences from RBF

Chapter 7: Resource Locking 149

150 Overview
151 Lock Structure Definition
152 Create and Delete Resource Locks
153 Preallocate Locks as Part of the Resource
154 Signals and Locks
154 Signal Sensitive Locks
155 Ignoring Signals
157 FIFO Buffers
158 Process Queuing

Chapter 8: OS-9 System Calls 161

162 Using OS-9 System Calls
163 _oscall Function
164 Using the System Calls
165 System Call Descriptions
166 Interrupt Context
168 System Calls Reference

Appendix A: Example Code 573

574 Sysgo
577 Signals: Example Program
579 Alarms: Example Program
581 Events: Example Program
OS-9 Technical Manual 7

583 Semaphores: Example Program
585 Subroutine Library
585 slib.a
587 slibc.c
589 slibcalls.a
590 Trap Handlers
590 trapc.a
592 thandler.c
594 tcall.c
595 ttest.c

Appendix B: OS-9 Error Codes 597

598 Error Categories
600 Errors

Index 635

Product Discrepancy Report 691
8 OS-9 Technical Manual

Chapter 1: System Overview

This chapter provides a general overview of OS-9 system modularity,
I/O processing, memory modules, and program modules. It includes the
following topics:

• System Modularity

• I/O Overview

• Memory Modules
9

1 System Overview
System Modularity

OS-9 has five levels of modularity. These are illustrated in Figure 1-1.

Figure 1-1 OS-9 Module Organization

Level 1 — The Kernel, the Clock, and the Init Modules

The kernel provides basic system services, including process control
and resource management. The clock module is a software handler for
the specific real-time clock hardware. The kernel uses the Init module
as an initialization table during system startup.

OS-9 Kernel

Subroutine Libraries

CSL Library

Trap Handlers

IOMan

File Managers

Device Drivers

Device
Descriptors

Init

Clock

User
Applications
and Utilities
10 OS-9 Technical Manual

1System Overview
Level 2 — IOMAN

IOMAN coordinates the input/output (I/O) system by passing I/O
requests to the appropriate file managers.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For specific information about IOMAN, file managers, device drivers,
and device descriptors, refer to I/O Overview , Chapter 3: The OS-9
Input/Output System, and the OS-9 Porting Guide.

Level 3 — File Managers

File managers process I/O requests for similar classes of I/O devices.
Refer to the I/O Overview in this chapter for a list of the file managers
Microware currently supports for OS-9.

Level 4 — Device Drivers

Device drivers handle the basic physical I/O functions for specific I/O
controllers. Standard OS-9 systems are typically supplied with a disk
driver, serial port drivers for terminals and serial printers, and a driver
for parallel printers. You can add customized drivers of your own design
or purchase drivers from a hardware vendor.

Level 5 — Device Descriptors

Device descriptors are small tables that associate specific I/O ports with
their logical name, device driver, and file manager. These modules also
contain the physical address of the port and initialization data.
OS-9 Technical Manual 11

1 System Overview
One important component not shown is the shell, which is the
command interpreter. The shell is an application program, not part of
the operating system, and is described in the Using OS-9 manual.

For a list of the specific modules comprising OS-9 for your system, use
the ident utility on the sysboot file.

Although all modules can be resident in ROM, the system bootstrap
module is usually the only ROMed module in disk-based systems. All
other modules are loaded into RAM during system startup.
12 OS-9 Technical Manual

1System Overview
I/O Overview

The OS-9 kernel does not directly process I/O requests. Instead, the
kernel passes I/O requests to the I/O manager (IOMAN), and IOMAN
passes requests to the appropriate file managers. Microware includes
the following file managers in the OS-9 for Embedded Systems and
Board Level Solution package:

Table 1-1 File Managers

File Manager Description

RBF The Random Block File manager handles I/O for
random-access, block-structured devices such as
diskettes and hard disk drives.

SCF The Sequential Character File manager handles I/O
for sequential-access, character-structured devices
such as terminals, printers, and modems.

SBF The Sequential Block File manager handles I/O for
sequential-access, block-structured devices such as
tape drives.

PIPEMAN The Pipe file Manager handles I/O for interprocess
communications through memory buffers called
pipes.

PCF The PC file manager handles reading and writing to
PC-DOS disks.
OS-9 Technical Manual 13

1 System Overview
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the following for more information:

• For more information about these file managers, refer to Chapter 3:
The OS-9 Input/Output System, or the OS-9 Porting Guide.

• Microware also supports additional communication file managers.
Refer to the SoftStax and Lan Communications Pak manual sets for
details.

Figure 1-2 illustrates how an OS-9 I/O request is processed:

Figure 1-2 Processing an OS-9 I/O Request

OS-9 Kernel

IOMan

File Manager

Device Driver

User Process

1. The user makes a request for data/status.

2. The kernel determines the request is an I/O
request and passes it to IOMAN.

3. IOMAN identifies and validates the I/O
request and determines the appropriate file
manager, device driver, and other necessary
resources. Then, IOMAN passes the request
to the appropriate file manager.

4. The file manager further validates the
request and performs device-independent
processing. The file manager calls the device
driver for hardware interaction, as needed.

5. The device driver performs
device-specific processing and
usually transfers the data/
status back to the file
manager.

6. The file manager monitors
and processes the data/status.

7. The kernel and IOMAN work
with the file manager to return
the data/status to the user.

8. The user receives the data/
status.
14 OS-9 Technical Manual

1System Overview
Memory Modules

OS-9 is unique because it manages both the physical assignment of
memory to programs and the logical contents of memory by using
memory modules. A memory module is a logical, self-contained
program, program segment, or collection of data.

OS-9 supports nine predefined module types and enables you to define
your own module types. Each type of module has a different function.
The predefined module types are defined in the m_tylan field of the
module header definition.

Modules do not have to be complete programs or written in machine
language. Modules simply have to be re-entrant, position independent,
and conform to the basic module structure described in the next
section.

OS-9 is based on a programming style called re-entrant code. That is,
code that does not modify itself. This allows two or more different
processes to share one copy of a module simultaneously. The
processes do not effect each other, provided each process has an
independent area for its variables.

Almost all OS-9 family software is re-entrant and uses memory
efficiently. For example, a screen editor may require 26K of memory to
load. If a request to run the editor is made while another user (process)
is running it, OS-9 allows both processes to share the same copy,
saving 26K of memory.

NoteNote
Data modules are an exception to the no-modification restriction.
However, careful coordination is required for several processes to
update a shared data module simultaneously.

A position-independent module is in no way dependent on, or aware of
where it is loaded in memory. This enables OS-9 to load the program
wherever memory space is available. In many operating systems, the
OS-9 Technical Manual 15

1 System Overview
user must specify a load address to place the program in memory. OS-9
determines an appropriate load address only when the program is
started.

OS-9 compilers and interpreters automatically generate
position-independent code. In assembly language programming,
however, you must insure position independence by avoiding absolute
address modes. Alternatives to absolute addressing are described in
the Assembler and Linker chapters of the Using Ultra C/C++ manuals.

Basic Module Structure

Each module has three parts: a module header, a module body, and
a CRC value as shown in Figure 1-3.

Figure 1-3 Basic Memory Module Format

The module header contains information describing the module and its
use. It is defined in assembly language by a psect directive. The linker
creates the header at link time. The information contained in the module
header includes the module name, size, type, language, memory
requirements, and entry point. For specific information about the
structure and individual fields of the module header, refer to the Module
Header Definitions section in this chapter.

The module body contains initialization data, program instructions, and
constant tables. The last three bytes of the module hold a CRC (cyclic
redundancy check) value used to verify the module integrity when the
module is loaded into memory. The linker creates the CRC at link time.

Module Header

Module Body

Initialization data
Program/Constants

CRC Value
16 OS-9 Technical Manual

1System Overview
The CRC Value

A CRC (cyclic redundancy check) value is at the end of all modules,
except data modules. The CRC, which is used to validate the entire
module, is an error checking method used frequently in data
communications and storage systems. The CRC is also a vital part of
the ROM memory module search technique. It provides a high degree
of confidence that programs in memory are intact before execution and
is an effective backup for the error detection systems of disk drives and
memory systems.

In OS-9, a 24-bit CRC value is computed over the entire module starting
at the first byte of the module header and ending at the byte just before
the CRC. OS-9 compilers and linkers automatically generate the
module header and CRC values. If required, a user program can use
the F_CRC system call to compute a CRC value over any specified data
bytes. For a full description of how F_CRC computes a CRC value, refer
to the description of the F_CRC call in Chapter 8: OS-9 System Calls.

In the case of data modules, the CRC value is not calculated when
created. The CRC must be calculated and set on a data module before
that module is loaded into memory.

OS-9 cannot recognize a module with an incorrect CRC value. For this
reason, you must update the CRC value of a module modified in any
way, or the module cannot be loaded from disk or located in ROM. Use
the OS-9 fixmod utility to update the CRC of a modified module.

ROMed Memory Modules

When OS-9 starts after a system reset, the kernel searches for modules
in ROM. The kernel detects the modules by looking for the module
header sync code (for example, 0xf00d for PowerPC processors).
When this byte pattern is detected, the header parity is checked to
verify a correct header. If this test succeeds, the module size is obtained
from the header and a 24-bit CRC is computed over the entire module.
If the CRC is valid, the module is entered into the module directory.
OS-9 Technical Manual 17

1 System Overview
OS-9 links to all of its component modules found during the search. All
ROMed modules present in the system at startup are automatically
included in the system module directory. This enables you to create
partially or completely ROM-based systems. Any non-system module
found in ROM is also included. This enables user-supplied software to
be located during the start-up process and entered into the module
directory.
18 OS-9 Technical Manual

1System Overview
Module Header Definitions

The structure definition for a module header is listed here, followed by a
description of each field.

mh_com

The module header structure is contained in the header file module.h.

Declaration
typedef struct mh_com {
 u_int16 m_sync, /* sync bytes */
 m_sysrev; /* system revision check value */
 u_int32 m_size; /* module size */
 owner_id m_owner; /* group/user ID */
 u_int32 m_name; /* offset to module name */
 u_int16 m_access, /* access permissions */
 m_tylan, /* module type and language */
 m_attrev, /* module attributes and revision /*
 m_edit; /* module edition number */
 u_int32 m_needs, /* module hardware requirements flags */
 /* (reserved) */
 m_share, /* offset of shared data in statics */
 m_symbol, /* offset to symbol table */
 m_exec, /* offset to execution entry point */
 m_excpt, /* offset to exception entry point*/
 m_data, /* data storage requirement */
 m_stack, /* stack size */
 m_idata, /* offset to initialized data */
 m_idref, /* offset to data reference lists */
 m_init, /* offset to initialization routine*/
 m_term, /* offset to termination routine */
 m_dbias, /* data area pointer bias*/
 m_cbias; /* code area pointer bias */
 u_int16 m_ident; /* linkage locale identifier */
 char m_spare[8]; /* reserved */
 u_int16 m_parity; /* header parity */
} mh_com, *Mh_com;
OS-9 Technical Manual 19

1 System Overview
Fields

m_sync Constant bytes (for example, 0xf00d for
the PowerPC) used to locate modules
during the startup memory search. The
value of m_sync is processor
dependent.

m_sysrev Identifies the format of a module.

m_size Overall size of the module in bytes,
including header and CRC.

m_owner Group/user ID of the module’s owner.

m_name Contains the offset of the module name
string relative to the start (first sync byte)
of the module. The name string can be
located anywhere in the module and
consists of a string of ASCII characters
terminated by a null (0) byte.

m_access Defines the permissible module access
by its owner or by other users. The write
permissions on memory modules only
make sense for data modules. Module
access permission values are located in
the header file module.h and are
defined as follows:

Table 1-2 Module Access Permission Values

Name Description

MP_OWNER_READ $0001 = Read permission by owner

MP_OWNER_WRITE $0002 = Write permission by owner

MP_OWNER_EXEC $0004 = Execute permission by
owner
20 OS-9 Technical Manual

1System Overview
All bits not defined in the preceding table
are reserved.

m_tylan Contains the module type (first byte) and
language (second byte). The language
codes indicate if the module is
executable and which language the
run-time system requires for execution, if
any. Module type values and language
codes are located in the header file
module.h and are defined as follows:

MP_GROUP_READ $0010 = Read permission by group

MP_GROUP_WRITE $0020 = Write permission by group

MP_GROUP_EXEC $0040 = Execute permission by
group

MP_WORLD_READ $0100 = Read permission by world

MP_WORLD_WRITE $0200 = Write permission by world

MP_WORLD_EXEC $0400 = Execute permission by
world

Table 1-3 Module Type Values

Module Type Description

MT_ANY 0 = Not used (wildcard value in
system calls)

MT_PROGRAM 1 = Program module

Table 1-2 Module Access Permission Values (continued)

Name Description
OS-9 Technical Manual 21

1 System Overview
MT_SUBROUT 2 = Subroutine module

MT_MULTI 3 = Multi-module (reserved for
future use)

MT_DATA 4 = Data module

MT_CDBDATA 5 = Configuration Data Block data
module

6-10 = Reserved for future use

MT_TRAPLIB 11 = User trap library

MT_SYSTEM 12 = System module

MT_FILEMAN 13 = File manager module

MT_DEVDRVR 14 = Physical device driver

MT_DEVDESC 15 = Device descriptor module

16-up = User definable

Table 1-4 Language Codes

Language Code Description

ML_ANY 0 = Unspecified language

(wildcard in system calls)

ML_OBJECT 1 = Machine language

Table 1-3 Module Type Values (continued)

Module Type Description
22 OS-9 Technical Manual

1System Overview
NoteNote
Not all combinations of module type codes and languages are
compatible.

ML_ICODE 2 = Basic I-code (reserved for
future use)

ML_PCODE 3 = Pascal P-code (reserved for
future use)

ML_CCODE 4 = C I-code (reserved for
future use)

ML_CBLCODE 5 = Cobol I-code (reserved for
future use)

ML_FRTNCODE 6 = Fortran

7-15 = Reserved for future use

16-255 = User definable

Table 1-4 Language Codes (continued)

Language Code Description
OS-9 Technical Manual 23

1 System Overview
m_attrev Contains the module attributes (first
byte) and revision (second byte). The
attribute byte is defined in the header file
module.h and as follows:

If two modules with the same name and
type are found in the memory search or
are loaded into the current module
directory, only the module with the
highest revision level is kept. This
enables easy substitution of modules for
update or correction, especially ROMed
modules.

m_edit Indicates the software release level for
maintenance. OS-9 does not use this
field. Whenever a program is revised
(even for a small change), increase this
number. Internal documentation within
the source program can be keyed to this
system.

m_needs Module hardware requirements flags
(reserved for future use).

Table 1-5 Module Attributes

Bit Description

7 The module is re-entrant (sharable by multiple tasks).

6 The module is sticky. A sticky module is not removed from
memory until its link count becomes -1 or memory is
required for another use.

5 The module is a system-state module.
24 OS-9 Technical Manual

1System Overview
m_share Offset to any shared data the module
contains within its global data area. For
example, this field is used by IOMAN to
locate the main statics storage structure
of file managers and device drivers.

m_symbol Reserved.

m_exec Offset to the program starting address,
relative to the module starting address.

m_excpt Relative address of a routine to execute
if an uninitialized user trap is called.

m_data Required size of the program data area
(storage for program variables).

m_stack Minimum required size of the program’s
stack area.

m_idata Offset to an eight-byte value which
precedes the initialized data area. The
first four bytes contain an offset from the
beginning of the program’s memory to
the beginning of the initialized data area,
which contains values to copy to the
program data area. The linker places all
constant values declared in vsects
here. The second four bytes contain the
number of initialized data bytes to follow.

m_idref Offset to a table of values to locate
pointers in the data area. Initialized
variables in the program’s data area may
contain pointers to absolute addresses.
Code pointers are adjusted by adding
the absolute starting address of the
object code area. Data pointers are
adjusted by adding the absolute starting
address of the data area.

F_FORK automatically calculates the
effective address at execution time using
the tables created in the module. The
OS-9 Technical Manual 25

1 System Overview
first word of each table is the most
significant (MS) word of the offset to the
pointer. The second word is a count of
the number of least significant (LS) word
offsets to adjust. The adjustment is
made by combining the MS word with
each LS word entry. This offset locates
the pointer in the data area. The pointer
is adjusted by adding the absolute
starting address of the object code or the
data area (for code pointers or data
pointers respectively). It is possible, after
exhausting this first count, another MS
word and LS word are given. This
continues until an MS word of zero and
an LS word of zero are found.

m_init Offset to the trap handler initialization
routine.

m_term Reserved.

m_dbias This field contains the bias value applied
by the linker to the global data accesses
in the module. Biasing global data
accesses allows the compiler to
generate efficient data accesses to a
larger data space.

m_cbias This field contains the bias value applied
by the linker to the code symbols within
the module. Biasing code references
allows the compiler to generate efficient
code references to a larger area of code.

m_ident Linkage site identifier. This field is not
currently implemented.

m_spare Reserved.

m_parity One’s complement of the exclusive-OR
of the previous header words. OS-9
uses this field to check module integrity.
26 OS-9 Technical Manual

Chapter 2: The Kernel

This chapter outlines the primary functions of the kernel. It includes the
following topics:

• Kernel Functions

• System Call Overview

• Kernel System Call Processing

• Memory Management

• OS-9 Memory Map

• Memory Fragmentation

• Colored Memory

• System Initialization

• Extension Modules

• Process Creation

• Process Scheduling
27

2 The Kernel
Kernel Functions

The nucleus of OS-9 is the kernel, which manages resources and
controls processing. The kernel is a ROMable, compact, OS-9 module
written in C language.

The primary responsibility of the kernel is to process and coordinate
system calls or service requests.

OS-9 has two general types of system calls:

• I/O calls, such as reads and writes

• System function calls

System functions include:

• Memory management

• System initialization

• Process creation and scheduling

• Exception/interrupt processing

When a system call is made, the processor is changed to privileged
state. The way this is done depends on which processor is being used.
The kernel determines what type of system call you want to perform.
The kernel directly executes the calls that perform system functions, but
does not execute the I/O calls. Instead, the I/O calls are passed to
IOMAN.
28 OS-9 Technical Manual

2The Kernel
System Call Overview

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For information about specific system calls, refer to Chapter 8: OS-9
System Calls.

User State and System State

There are two distinct OS-9 environments in which you can execute
object code:

user state User state is the normal program
environment in which processes are
executed. Generally, user-state
processes do not deal directly with the
specific hardware configuration of the
system.

system state System state is the environment in which
OS-9 system calls and interrupt service
routines are executed.

Functions executing in system state have several advantages over
those running in user state:

• A system-state routine has access to the entire capabilities of the
processor. For example, on memory protected systems, a
system-state routine may access any memory in the system. It may
mask interrupts, alter internal data structures, or take direct control
of hardware interrupt vectors.
OS-9 Technical Manual 29

2 The Kernel
• System-state routines are never time sliced. Once a process has
entered system state, no other process executes until the
system-state process finishes or goes to sleep (F_SLEEP waiting for
I/O). The only processing that may preempt a system-state routine is
interrupt servicing.

• Some OS-9 system calls are only accessible from system state.

The characteristics of system state make it the only way to provide
certain types of programming functions. For example, it is almost
impossible to provide direct I/O to a physical device from user state.
However, do not run all programs in system state for the following
reasons:

• In a multi-user environment, it is important to ensure each user
receives a fair share of the CPU time. This is the basic function of
time slicing.

• Memory protection prevents user-state routines from accidentally
damaging data structures they do not own.

• A user-state process may be aborted. If a system-state routine loses
control, the entire system usually crashes.

• It is far more difficult and dangerous to debug system-state routines
than user-state routines. You can use the user-state debugger to
find most user-state problems. Generally, system-state problems are
much more difficult to locate.

• User programs almost never have to be concerned with physical
hardware; they are essentially isolated from it. This makes
user-state programs easier to write and port.

Installing System-State Routines

With direct access to all system hardware, any system-state routine has
the ability to take over the entire machine. It is often a challenge to keep
system-state routines from crashing or hanging up the system. increase
system stability, the methods of creating routines that operate in system
state are limited.
30 OS-9 Technical Manual

2The Kernel
In OS-9, there are four ways to provide system-state routines:

1. Install an OS9P2 module in the system bootstrap file or in ROM.

During cold start, the OS-9 kernel links to this module, and if found,
calls its execution entry point. Typically, the OS9P2 module is used to
install new system service requests.

2. Use the I/O system as an entry into system state.

File managers and device drivers are always executed in system
state. In fact, the most obvious reason to write system-state routines
is to provide support for new hardware devices. It is possible to write
a dummy device driver and use the I_GETSTAT or I_SETSTAT
routines to provide a gateway to the driver.

3. Write a trap handler module.

For routines of limited use that are to be dynamically loaded and
unlinked, this is perhaps the most convenient method. It is often
practical to debug trap handler routines as user-state subroutines
and then convert the finished routines to a trap handler module.
OS-9 trap handlers always execute in system state.

4. Set the supervisor state bit in the attribute/revision word for the
module.

A program executes in system state if the supervisor state bit in the
module attribute/revision word is set and if the module is owned by
the super user.
OS-9 Technical Manual 31

2 The Kernel
Kernel System Call Processing

The kernel processes all OS-9 system calls (service requests). System
call parameters are passed and returned in parameter blocks.

There are two general types of system calls:

• Non-I/O calls (calls performing system functions)

• I/O calls

System calls are identified by a function code passed in the service
request parameter block. Every standard OS-9 system call has an
associated symbolic name for the function code provided in the
funcs.h C header file. The non-I/O call symbols begin with F_ and the
I/O calls begin with I_. For example, the system call to link a module is
called F_LINK.

Non-I/O Calls

There are two types of non-I/O system calls:

• User State System Calls — Perform memory management,
multitasking, and other functions for user programs. These are
mainly processed by the kernel.

• System State System Calls — Can only be used by system
software in system state and usually operate on internal OS-9 data
structures. To preserve the modularity of OS-9, these requests are
system calls rather than subroutines. User-state programs cannot
access these calls, but system modules such as device drivers can
use these calls.

In general, system-state routines may use any of the ordinary
(user-state) system calls. However, avoid making system calls at
inappropriate times. For example, an interrupt service routine should
avoid I/O calls, memory requests, timed sleep requests, and other calls
that can be particularly time consuming (such as F_CRC).
32 OS-9 Technical Manual

2The Kernel
Memory requested in system state is not recorded in the process
descriptor memory list. The requesting process must ensure the
memory is returned to the system before the process terminates.

I/O Calls

When the kernel receives an I/O request, it immediately passes the
request to IOMAN. IOMAN passes the request to the appropriate file
manager and device driver for processing.

Any I/O system call may be used in a system-state routine, with one
slight difference than when executed in user state: all path numbers
used in system state are system path numbers. Each user-state
process has a path table used to convert its local path numbers to
system path numbers. The system itself has a global path number table
used to convert system path numbers into actual addresses of path
descriptors. System-state I/O system calls must be made using system
path numbers.

For example, a system-state OS-9 I_WRITE system call prints an error
message on the caller’s standard error path. To do this, a system-state
process may not perform output on path number two. Instead, it must
use the I_TRANPN system call to translate the user path number to its
associated system path number.

When a user-state process exits with open I/O paths, the F_EXIT
routine automatically closes the paths. This is possible because OS-9
keeps track of the open paths in the process path table. In system state,
the I_OPEN and I_CREATE system calls return a system path number
that is not recorded in the process path table or anywhere else by OS-9;
the system-state routine that opens an I/O path must ensure the path is
eventually closed. This is true even if the underlying process is
abnormally terminated.
OS-9 Technical Manual 33

2 The Kernel
Memory Management

If any object (such as a program and constant table) is to be loaded in
memory, it must use the standard OS-9 memory module format
described in Chapter 1: System Overview. This enables OS-9 to
maintain a module directory to keep track of modules in memory. The
module directory contains the name, address, and other related
information about each module in memory.

After OS-9 has been booted, a single module directory exists containing
all of the boot modules. You may create additional module directories
and subdirectories at your discretion. Each module directory has
independent access permissions. By using multiple module directories,
modules with the same name can be loaded in memory and executed
without conflict. This can be extremely useful in the continuing
development of existing software.

When a module is loaded in memory, it is added to the process current
module directory. When a process creates a new process, the OS-9
kernel does the following:

1. Searches the current module directory for the target module.

2. If this search fails, the kernel searches the process’ alternate
module directory, initially specified in your login file.

3. If this search fails, the kernel attempts to load the module into the
current module directory.

Each module directory entry contains a link count. The link count is the
number of processes using the module.

When a process links to a module in memory, the link count of the
module is incremented by one. When a process unlinks from a module,
the link count is decremented by one. When a module’s link count
becomes zero, its memory is deallocated and the module is removed
from the module directory, unless the module is sticky.

A sticky module is not removed from memory until its link count
becomes -1 or memory is required for another use. A module is sticky if
the sixth bit of the module header’s attribute byte (first byte of the
m_attrev field) is set.
34 OS-9 Technical Manual

2The Kernel
If several modules are merged together and loaded, you must unlink all
of those modules before any are removed from the module directory.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 5 of Using OS-9 for more information on module
directories.
OS-9 Technical Manual 35

2 The Kernel
OS-9 Memory Map

OS-9 uses a software memory management system in which all
memory is contained within a single memory map. Therefore, all user
tasks share a common address space.

A map of an example OS-9 memory space is shown in Figure 2-1. The
sections shown are not required to be at specific addresses. Microware
recommends you keep each section in contiguous reserved blocks
arranged in an order that facilitates future expansion. It is always
advantageous for RAM to be physically contiguous whenever possible.

Figure 2-1 Example OS-9 Memory Map

System Memory Allocation

During the OS-9 start-up sequence, an automatic search function in the
kernel and the boot ROM locates blocks of RAM and ROM. OS-9
reserves some RAM for its own data structures. ROM blocks are
searched for valid OS-9 ROM modules.

The amount of memory OS-9 requires is variable. Actual requirements
depend on the system configuration and the number of active tasks and
open files. The following sections describe various parts of the OS-9
system memory.

Unused: Available for
Future RAM or ROM

Expansion

RAM
256K minimum

1M recommended

Exception Vector Area

Highest Memory
Address

Lowest Memory
Address
36 OS-9 Technical Manual

2The Kernel
Operating System Object Code

On disk-based systems, operating system component modules (such
as the kernel, I/O managers, and device drivers) are normally
bootstrap-loaded into RAM. OS-9 does not dynamically load overlays or
swap system code. Therefore, no additional RAM is required for system
code. Alternately, you can place OS-9 in ROM for non-disk systems.

System Global Memory

The OS-9 kernel allocates a section of RAM memory for internal use. It
contains the following:

• An exception jump table

• The debugger/boot variables

• A system global area

Variables in the system global area are symbolically defined in the
sysglob.h library and the variable names begin with d_.

WARNING!
User programs should never directly access system global variables.
System calls are provided to allow user programs to read the
information in this area.

System Dynamic Memory

OS-9 maintains dynamic-sized data structures (such as I/O buffers,
path descriptors, and process descriptors) that are allocated from the
general RAM area when needed. The system modules allocate and
maintain these structures. For example, IOMAN allocates memory for
path descriptors and maintains them. The system global memory area
contains the pointers to these system data structures.
OS-9 Technical Manual 37

2 The Kernel
User Memory

All unused RAM memory is assigned to a free memory pool. Memory
space is removed and returned to the pool as it is allocated or
deallocated for various purposes. OS-9 automatically assigns memory
from the free memory pool whenever any of the following occur:

• Modules are loaded in RAM.

• New processes are created.

• Processes request additional RAM.

• OS-9 requires more I/O buffers.

• OS-9 internal data structures must be expanded.

Storage for user program object code modules and data space is
dynamically allocated from and deallocated to the free memory pool.
User object code modules are also automatically shared if two or more
tasks execute the same object program. User object code application
programs can also be stored in ROM memory.

The total memory required for user memory depends largely on the
application software to be run.
38 OS-9 Technical Manual

2The Kernel
Memory Fragmentation

Once a program is loaded, it remains at the address where it was
originally loaded. Although position-independent programs can be
initially placed at any address where free memory is available, program
modules cannot be dynamically relocated afterwards. This
characteristic can lead to a troublesome phenomenon called memory
fragmentation.

When programs are loaded, they are assigned the first sufficiently large
block of memory at the highest address possible in the address space.
(If a colored memory request is made, this may not be true. Refer to the
following section for more information on colored memory.)

If a number of program modules are loaded, and subsequently one or
more non-contiguous modules are unlinked, several fragments of free
memory space will exist. The total free memory space may be quite
large. But because it is scattered, not enough space exists in a single
block to load a particular program module.

You can avoid memory fragmentation by loading modules at system
startup. This places the modules in contiguous memory space. You can
also initialize each standard device when the system is booted. This
enables the devices to allocate memory from higher RAM than would
be available if the devices were initialized later.

If serious memory fragmentation does occur, the system administrator
can kill processes and unlink modules in ascending order of importance
until there is sufficient contiguous memory. The mfree utility can
determine the number and size of free memory blocks.
OS-9 Technical Manual 39

2 The Kernel
Colored Memory

OS-9 colored memory allows a system to recognize different memory
types and reserve areas for special purposes. For example, part of a
RAM can store video images and another part can be battery-backed.
The kernel allows areas of RAM like these to be isolated and accessed
specifically. You can request specific memory types or colors when you
allocate memory buffers, create modules in memory, or load modules
into memory. If a specific type of memory is not available, the kernel
returns error #237, EOS_NORAM.

Colored memory lists are not essential on systems whose RAM
consists of one homogeneous type, although they can improve system
performance on some systems and allow greater flexibility in
configuring memory search areas.

Colored Memory Definition List

The kernel must have a description of the CPU address space in order
to use the colored memory routines. This is accomplished by including
a colored memory definition list in the systype.h file, which becomes
part of the Init module. The list describes the characteristics of each
memory region. The kernel searches each region in the list for RAM
during system startup.

The following information describes a memory area to the kernel:

• Memory color (type)

• Memory priority

• Memory access permissions

• Local bus address

• Block size to be used by the kernel cold start routine to search the
area for RAM or ROM

• External bus translation address (for DMA and dual-ported RAM)

• Optional name
40 OS-9 Technical Manual

2The Kernel
The memory list (memlist) may contain as many regions as needed. If
no list is specified, the kernel automatically creates one region
describing the memory found by the bootstrap ROM.

Each line in the memory list must contain all the parameters in the
following order: type, priority, attributes, blksiz, addr begin, addr end,
name, and DMA-offset.

The colored memory list must end on an even address. Descriptions of
the memlist fields are included below:

Table 2-1 Colored Memory List (memlist) Field Descriptions

Parameter Size Definition

Memory Type word Type of memory. Two memory types are
currently defined in memory.h:

MEM_SYS 0x01 System RAM
memory

MEM_SHARED 0x8000 Shared
memory
(0x8000 -
0xffff)

Priority word High priority RAM is allocated first (255 -
0). If the block priority is 0, the block can
only be allocated by a request for the
specific color (type) of the block.
OS-9 Technical Manual 41

2 The Kernel
Access
Permissions

word Memory type access bit definitions:

bit 0 B_USERRAM
Indicates memory allocatable
by user processes.

NOTE: This bit is ignored if the
B_ROM bit is also set.

bit 1 B_PARITY
Indicates parity memory; the
kernel initializes it during
start-up.

bit 2 B_ROM
Indicates ROM; the kernel
searches this for modules
during start-up.

bit 3 B_NVRAM
Non-volatile RAM; the kernel
searches this for modules
during start-up.

bit 4 B_SHARED
Shared memory; reserved for
future use.

NOTE: Only B_USERRAM memory may
be initialized.

Search Block
Size

word The kernel checks every search block
size to see if RAM/ROM exists.

Low Memory
Limit

long Beginning address of the block as
referenced by the CPU.

Table 2-1 Colored Memory List (memlist) Field Descriptions

Parameter Size Definition
42 OS-9 Technical Manual

2The Kernel
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to your OS-9 Device Descriptor and Configuration Module
Reference for more information on creating a memory list in the init
modules.

The complete memory list structure definitions are located in the
alloc.h file and are listed here:
/* initialization table (in memdefs module data area) */
typedef struct mem_table {
 u_int16
 type, /* memory type code */
 prior, /* memory allocation priority */
 access, /* access permissions */
 blksiz; /* search block size */
 u_char
 lolim, / beginning absolute address for this type */
 hilim; / ending absolute address +1 for this type */
 u_int32
 descr; /* optional description string offset */
 u_int32
 dma_addr, /* address translation address for dma’s, etc.*/
 rsvd2[2]; /* reserved, must be zero */
} *Mem_tbl, mem_tbl;

High Memory
Limit

long End address of the block as referenced
by the CPU.

Description
String Offset

long This 32-bit offset of a user-defined string
describes the type of memory block.

Address
Translation
Adjustment

long External bus address of the beginning of
the block. If zero, this field does not
apply. Refer to _os_trans() for more
information.

Table 2-1 Colored Memory List (memlist) Field Descriptions

Parameter Size Definition
OS-9 Technical Manual 43

2 The Kernel
/* access bit definitions */
#define B_USERRAM (0x01) /* memory allocatable by user procs */
#define B_PARITY (0x02) /* parity memory; must be initialized */
#define B_ROM (0x04) /* read-only memory; searched for modules */
#define B_NVRAM (0x08) /* non-volatile RAM; searched for modules */
#define B_SHARED (0x10) /* shared memory (Reserved for future use.)*/

Colored Memory in Homogenous Memory Systems

As previously mentioned, colored memory definitions are not essential
for systems whose memory is homogenous. However, these types of
systems can benefit from this feature of the kernel in terms of system
performance and ease of memory list reconfiguration.

System Performance

In a homogeneous memory system, the kernel allocates memory from
the top of available RAM when requests are made by F_SRQMEM
(loading modules). If the system has RAM on-board the CPU and
off-board in external memory boards with higher addresses, the
modules tend to be loaded in the off-board RAM. On-board RAM is not
used for a F_SRQMEM call until the off-board memory cannot
accommodate the request.

Due to bus access arbitration, programs running in off-board memory
execute more slowly than if they were executing in on-board memory.
Also, external bus activity is increased. This may impact the
performance of other bus masters in the system.

The colored memory lists can reverse this tendency in the kernel, so a
CPU can not use off-board memory until all of its on-board memory is
used. This results in faster program execution and less saturation of the
system’s external bus. To do this, make the priority of the on-board
memory higher than the off-board memory.
44 OS-9 Technical Manual

2The Kernel
Reconfiguring Memory Areas

In a homogeneous memory system, the memory search areas are
defined in the ROM memory list. Changes to these areas previously
required new ROMs be made from source code (usually impossible for
end users) or from a patched version of the original ROMs (usually
difficult for end users).

The colored memory lists somewhat alleviate this situation by
configuring the search areas as follows:

• The ROM memory list describes only the on-board memory.

• The colored memory lists in systype.des define any external bus
memory search areas in the Init module only.

Using colored memory in this situation enables the end user to easily
reconfigure the external bus search areas by adjusting the lists in
systype.des and making a new Init module. The ROM does not
require patching.
OS-9 Technical Manual 45

2 The Kernel
System Initialization

After a hardware reset, the kernel (located in ROM or loaded from disk,
depending on your system configuration) is executed by the bootstrap
ROM. The kernel initializes the system; this includes locating ROM
modules and running the system start-up task.

Init: The Configuration Module

The init module:

• Is non-executable module of type MT_SYSTEM

• Contains a table of system start-up parameters

• Specifies the initial table sizes and system device names during
startup

• Is always available to determine system limits

• Is required to be in memory when the system is booting and usually
resides in the sysboot file or in ROM

• Begins with a standard module header

The m_exec offset in the module header is a pointer to the system
constant table. The fields of this table are defined in the init.h header
file.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OS-9 Device Descriptor and Configuration Module
Reference for a listing of the init module fields.
46 OS-9 Technical Manual

2The Kernel
Extension Modules

To enhance OS-9 capabilities, you can execute additional modules at
boot time. These extension modules provide a convenient way to
install a new system call code or collection of system call codes, such
as a system security module. The kernel calls the modules at boot time
if their names are specified in the Extension list of the init module and
the kernel can locate them.

To include an extension module in the system, you can either program
the module into system memory or use the p2init utility to add it to a
running system.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See the Utilities Reference for information about p2init. See the
OS-9 Device Descriptor and Configuration Module Reference for
procedures to change the init modules and your Getting Started
with OS-9 for <target> or OS-9 for the <target> Board Guide for
instructions on how to build a new boot file containing the desired
extension modules.

NoteNote
When an extension module is called for initialization during coldstart,
the module’s entry point is executed with its global static storage (if any)
pre-initialized and set. The extension module is passed a pointer to the
kernel’s global static storage as defined in the header file sysglob.h.
OS-9 Technical Manual 47

2 The Kernel
Process Creation

All OS-9 programs are run as processes or tasks. New processes are
created by the F_FORK system call. The most important parameter
passed in the fork system call is the name of the primary module that
the new process is to execute initially. The following list outlines the
creation process:

1. Locate or Load the Program

OS-9 searches for the module in memory by means of the module
directory. If OS-9 cannot locate the module, it loads a mass-storage
file into memory using the requested module name as a file name.

2. Allocate and Initialize a Process Descriptor and an I/O
Descriptor

After the primary module has been located, a data structure called a
process descriptor is assigned to the new process. The process
descriptor is a table containing information about the process such
as its state, memory allocation, and priority. The I/O descriptor
contains information about the process I/O such as the I/O paths
and counts of bytes read and written. The process descriptor and
I/O descriptor are automatically initialized and maintained.
Processes do not need to be aware of the existence or contents of
process descriptors or I/O descriptors.

3. Allocate the Stack and Data Areas

The primary module’s header contains a data and stack size. OS-9
allocates a contiguous memory area of the required size from the
free memory space. Process memory areas are discussed in the
following section.

4. Initialize the Process

The new process’ registers are set to the proper addresses in the
data area and object code module. If the program uses initialized
variables and/or pointers, they are copied from the object code area
to the proper addresses in the data area.
48 OS-9 Technical Manual

2The Kernel
If any of these steps cannot be performed, creation of the new process
is aborted and the process that originated the fork is notified of the
error. If all the steps are completed, the new process is added to the
active process queue for execution scheduling.

The new process is assigned a unique number, called a process ID,
that is used as its identifier. Other processes can communicate with it by
referring to its ID in various system calls. The process also has an
associated group ID and user ID which identify all processes and files
belonging to a particular user and group of users. The IDs are inherited
from the parent process.

Processes terminate when they execute an F_EXIT system service
request or when they receive fatal signals or errors. Terminating the
process performs the following functions:

• Closes any open paths

• Deallocates the process’ memory

• Unlinks its primary module

• Unlinks any subroutine libraries or trap handlers the process may
have used

Process Memory Areas

All processes are divided into two logically separate memory areas:

• code

• data

This division provides the modular software capabilities for OS-9.

Each process has a unique data area, but not necessarily a unique
program memory module. This allows two or more processes to share
the same copy of a program. This automatic OS-9 functionality results
in more efficient use of available memory.

A program must be in the form of an executable memory module to be
run. The program is position independent and ROMable, and the
memory it occupies is considered to be read-only. It may link to and
execute code in other modules.
OS-9 Technical Manual 49

2 The Kernel
The process data area is a separate memory space where all of the
program variables are kept. The top part of this area is used for the
program’s stack. The actual memory addresses assigned to the data
area are unknown at the time the program is written. A base address is
kept in a register to access the data area. You can read and write to this
area.

If a program uses variables requiring initialization, the initial values are
copied by OS-9 from the read-only program area to the data area where
the variables actually reside. The OS-9 linker builds appropriate
initialization tables that OS-9 uses to initialize the variables.

Process States

A process can be in one of five states:

Table 2-2 Process States

State Description

Active The process is active and ready for execution.
Active processes are given time for execution
according to their relative priority with respect to all
other active processes. The scheduler uses a
method that compares the ages of all active
processes in the queue. All active processes
receive some CPU time, even if they have a very low
relative priority.

Event The process is inactive until the associated event
occurs. The event state is entered when a process
executes an F_EVENT service request when the
specified event condition is not satisfied. The
process remains inactive until another process or
interrupt service routine performs an F_EVENT
system call that satisfies the waiting process’s
condition.
50 OS-9 Technical Manual

2The Kernel
A separate queue (linked list of process descriptors) exists for each
process state, except the suspended state. State changes are
accomplished by moving a process descriptor from its current queue to
another queue.

Sleeping The process is inactive for a specific period of time
or until a signal is received. The sleep state is
entered when a process executes an F_SLEEP
service request. F_SLEEP specifies a time interval
for which the process is to remain inactive.
Processes often sleep to avoid wasting CPU time
while waiting for some external event, such as
completing I/O. Zero ticks specifies an infinite period
of time.

A process waiting on an event waits in a queue
associated with the specific event, but behaves as
though it was in the sleep queue.

Suspended The process is inactive, unknown to the system, and
not a member of any queue. The suspended state is
entered when a process or system module does an
F_SSPD call on a given process. The process can
be reactivated with an F_APROC call.

Waiting The process is inactive until a child process
terminates or until a signal is received. When a
process executes an F_WAIT system service
request, it enters the wait state. The process
remains inactive until one of its descendant
processes terminates or until it receives a signal.

Table 2-2 Process States (continued)

State Description
OS-9 Technical Manual 51

2 The Kernel
Process Scheduling

OS-9 is a multitasking operating system. This means two or more
independent programs, called processes or tasks, can execute
simultaneously. Each second of CPU time is shared by several
processes. Although the processes appear to run continuously, the
CPU only executes one instruction at a time. The OS-9 kernel
determines which process to run and for how long, based on the
priorities of the active processes.

NoteNote
The action of switching from the execution of one process to another is
called task switching. Task switching does not effect program execution.

The CPU is interrupted by a real-time clock every tick. By default, a tick
is .01 second (10 milliseconds). At any occurrence of a tick, OS-9 can
stop executing one program and begin executing another. The tick
length is hardware dependent. Thus, to change the tick length, you
must rewrite the clock driver and re-initialize the hardware.

The longest amount of time a process controls the CPU before the
kernel re-evaluates the active process queue is called a slice or time
slice. By default, a slice is two ticks. To change the number of ticks per
slice at run-time, adjust the system global variable d_tslice. You can
also change the number of ticks per slice prior to booting the system by
modifying m_slice in the init modules.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See the OS-9 Device Descriptor and Configuration Module
Reference for information to modify this field.
52 OS-9 Technical Manual

2The Kernel
To ensure efficiency, only processes on the active process queue are
considered for execution. The active process queue is organized by
process age, a count of how many task switches have occurred since
the process entered the active queue plus the process’ initial priority.
The oldest process is at the head of the queue. The OS-9 scheduling
algorithm allocates some execution time to each active process.

When a process is placed in the active queue, its age is set to the
process assigned priority and the ages of all other processes are
incremented. Ages are never incremented beyond 0xffff.

After the time slice of the currently executing process, the kernel
executes the process with the highest age.

Preemptive Task Switching

During critical real-time applications, fast interrupt response time is
sometimes necessary. OS-9 provides this by preempting the currently
executing process when a process with a higher priority becomes
active. The lower priority process loses the remainder of its time slice
and is re-inserted in the active queue.

Two system global variables affect task switching:

• d_minpty (minimum priority).

• d_maxage (maximum age).

Both variables are initially set in the Init module and are accessible by
users with a group ID of zero (super users) through the F_SETSYS
system call.

If the priority or age of a process is less than d_minpty, the process is
not considered for execution and is not aged. Usually, this variable is not
used and is set to zero.
OS-9 Technical Manual 53

2 The Kernel
WARNING!
If the minimum system priority is set above the priority of all running
tasks, the system completely shuts down. It can only be recovered by a
reset. This makes it crucial to restore d_minpty to a normal level when
the critical task(s) finishes.

d_maxage is the maximum age to which processes can be
incremented. When d_maxage is activated, tasks are divided into high
priority tasks and low priority tasks.

Low priority tasks do not age past d_maxage; high priority tasks receive
all of the available CPU time and are not aged. Low priority tasks are
run only when the high priority tasks are inactive. Usually, this variable
is not used and is set to zero.
54 OS-9 Technical Manual

Chapter 3: The OS-9 Input/Output

System

This chapter explains the software components of the OS-9 I/O system
and the relationships between those components. It includes the
following topics:

• The OS-9 Unified Input/Output System

• IOMAN

• Device Descriptor Modules

• Path Descriptors

• File Managers

• Device Driver Modules
55

3 The OS-9 Input/Output System
The OS-9 Unified Input/Output System

OS-9 features a versatile, unified, hardware-independent I/O system.
The I/O system is modular and can easily be expanded or customized.

The I/O subsystem consists of three modules processing I/O service
requests at different levels:

• The I/O Manager

• The File Manager

• The Device Driver

A fourth module, the device descriptor, contains the information used
to assemble the different components of an I/O subsystem. The file
manager, device driver, and device descriptor modules are standard
memory modules you can install and remove dynamically while the
system is running.

The I/O Manager

IOMAN manages the following four tasks:

• Supervises the OS-9 I/O system

• Establishes the connections between itself, the file manager, and the
device driver

• Manages various data structures

• Ensures the appropriate file manager and device driver modules
process a particular I/O request
56 OS-9 Technical Manual

3The OS-9 Input/Output System
The File Manager

A file manager performs the processing for a particular class of devices
such as disks or terminals. For example, the Random Block File
Manager (RBF) maintains directory structures on disks and the
Sequential Character File manager (SCF) edits the data stream it
receives from terminals.

The Device Driver

A device driver has the following three primary tasks:

• Enables OS-9 to be device independent

• Operates on the actual hardware device, sending data to and from
the device on behalf of the file manager

• Isolates the file manager from actual hardware dependencies such
as control register organization and data transfer modes
OS-9 Technical Manual 57

3 The OS-9 Input/Output System
IOMAN

When the kernel receives an I/O request, it immediately passes the
request to IOMAN. IOMAN provides the first level of service for I/O
system calls by routing data between processes and the appropriate file
managers and device drivers. IOMAN also allocates and initializes
global static storage on behalf of file managers and device drivers.

Many controllers, such as SCSI interfaces and DUARTs (Dual
Asynchronous Receiver-Transmitters), actually operate multiple
devices. IOMAN allocates and initializes an additional static storage for
each device, called logical unit static storage, to assist file managers
and drivers with managing these interfaces.

IOMAN maintains two important internal data structures:

• The device list

• The path table

These tables reflect two other structures respectively:

• The device descriptor

• The path descriptor

When an I_ATTACH system call is first performed on a new device
descriptor, IOMAN creates a new entry in the device list. Each entry in
the device list contains information about each element required to
perform I/O on a device.

A device list entry also contains pointers to the various static storages
and other data elements in use on the device. The structure definition of
a device list entry is defined in the header file io.h.

When a path is opened, IOMAN links to the device descriptor
associated with the device name specified (or implied) in the pathlist.
The device descriptor contains the names of the device driver and file
manager for the device. IOMAN saves the information in the device
entry list of the device descriptor, so subsequent system calls can be
routed to these modules.
58 OS-9 Technical Manual

3The OS-9 Input/Output System
Paths are used to maintain the status of I/O operations to devices and
files. IOMAN maintains these paths using the path table. Each time a
path is opened, a path descriptor is created and an entry is added to the
path table. When a path is closed, the path descriptor is deallocated
and its entry is deleted from the path table.
OS-9 Technical Manual 59

3 The OS-9 Input/Output System
Device Descriptor Modules

A device descriptor module is a small, non-executable module providing
information that associates a specific I/O device with the following:

• Its logical name

• Hardware controller address(es)

• Device driver name

• File manager name

• Initialization parameters

Device drivers and file managers operate on general classes of devices,
not specific I/O ports. A device descriptor tailors its functions to a
specific I/O port.

The name of the device descriptor is used as the logical device name by
the system and user (it is the device name given in pathlists). Its format
consists of a standard module header with a type code of device
descriptor (MT_DEVDESC).

One device descriptor must exist for each I/O device in the system.
However, one device can also have several device descriptors with
different initialization constants.

The device descriptor contains a constant table and logical unit static
storage initialization information. IOMAN initializes logical unit static
storage with the F_INITDATA system call, similar to how other
processing elements in the system initialize their static storage areas.
IOMAN does not restrict the definition or use of logical unit static
storage.

A constant table containing information provided by a device descriptor
is located at the entry point offset of the device descriptor. IOMAN
requires the first part to be common to all device descriptors. File
managers and device drivers may add information they require after the
common part. The format of the common part is shown here and
defined in the header file io.h. Data defined by specific file managers
is provided in the OS-9 Device Descriptor and Configuration Module
Reference.
60 OS-9 Technical Manual

3The OS-9 Input/Output System
dd_com

Declaration
/* Device descriptor data definitions */
typedef struct {
 void *dd_port; /* device port address */
 u_int16 dd_lu_num, /* logical unit number */
 dd_pd_size, /* path descriptor size */
 dd_type, /* device type */
 dd_mode; /* device mode capabilities */
 u_int32 dd_fmgr, /* file manager name offset */
 dd_drvr; /* device driver name offset */
 u_int16 dd_class, /* sequential or random */
 dd_dscres; /* (reserved) */
} *Dd_com, dd_com;

Fields

dd_port Absolute physical address of the
hardware controller.

dd_lu_num Distinguishes the different devices
driven from a unique controller. Each
unique number represents a different
logical unit static storage area.

dd_pd_size Size of the path descriptor. Path
descriptors vary in size. IOMAN uses
this value when it allocates a path
descriptor.

dd_type Identifies the I/O type of the device. The
following values are defined in the
header file io.h:

Table 3-1 I/O Type Values

Defined Name Value Description

DT_SCF 0 Sequential Character File Type

DT_RBF 1 Random Block File Type
OS-9 Technical Manual 61

3 The OS-9 Input/Output System
DT_PIPE 2 Pipe File Type

DT_SBF 3 Sequential Block File Type

DT_NFM 4 Network File Type

DT_CDFM 5 Compact Disc File Type

DT_UCM 6 User Communication Manager

DT_SOCK 7 Socket Communication Manager

DT_PTTY 8 Pseudo-Keyboard Manager

DT_GFM 9 Graphics File Manager

DT_PCF 10 PC-DOS File Manager

DT_NRF 11 Non-volatile RAM File Manager

DT_ISDN 12 ISDN File Manager

DT_MPFM 13 MPFM File Manager

DT_RTNFM 14 Real-Time Network File Manager

DT_SPF 15 Stacked Protocol File Manager

DT_INET 16 Inet File Manager

DT_MFM 17 Multi-media File Manager

DT_DVM 18 Generic Device File Manager

Table 3-1 I/O Type Values (continued)

Defined Name Value Description
62 OS-9 Technical Manual

3The OS-9 Input/Output System
NoteNote
DT-codes up to 127 reserved for Microware use only.

dd_mode During I_CREATE or I_OPEN system
calls, the value in this bit is used to check
the validity of a caller’s access mode
byte. If a bit is set, the device can
perform the corresponding function. The
S_ISIZE bit is usually set, because it is
handled by the file manager or ignored.
If the S_ISHARE bit is set, the device is
non-sharable. A printer is an example of
a non-sharable device. The following
values are defined in the header file
modes.h:

DT_NULL 19 Null File Manager

DT_DVDFM 20 DVD File Manager

DT_MODFM 21 Module Directory File Manager

Table 3-1 I/O Type Values (continued)

Defined Name Value Description

Table 3-2 dd_mode Values

Defined Name Value Description

S_IPRM 0xffff Mask for permission bits

S_IREAD 0x0001 Owner read
OS-9 Technical Manual 63

3 The OS-9 Input/Output System
S_IWRITE 0x0002 Owner write

S_IEXEC 0x0004 Owner execute

S_ISEARCH 0x0004 Search permission

S_IGREAD 0x0010 Group read

S_IGWRITE 0x0020 Group write

S_IGEXEC 0x0040 Group execute

S_IGSEARCH 0x0040 Group search

S_IOREAD 0x0100 Public read

S_IOWRITE 0x0200 Public write

S_IOEXEC 0x0400 Public execute

S_IOSEARCH 0x0400 Public search

S_ITRUNC 0x0100 Truncate on open

S_ICONTIG 0x0200 Ensure contiguous file

S_IEXCL 0x0400 Error if file exists on create

S_ICREAT 0x0800 Create file

S_IAPPEND 0x1000 Append to file

S_ISHARE 0x4000 Non-sharable

Table 3-2 dd_mode Values (continued)

Defined Name Value Description
64 OS-9 Technical Manual

3The OS-9 Input/Output System
dd_fmgr Offset to the name string of the file
manager module to use.

dd_drvr Offset to the name string of the device
driver module to use.

dd_class Used to identify the class of the device,
as random or sequential access. The
following values are defined in the
header file io.h:

dd_dscres This field is reserved for future use.

NoteNote
The above offsets are offsets from the beginning address of the device
descriptor module.

Table 3-3 Class Values

Defined Name Value Description

DC_SEQ 0x0001 Sequential access device

DC_RND 0x0002 Random access device
OS-9 Technical Manual 65

3 The OS-9 Input/Output System
Path Descriptors

Every open path is represented by a data structure called a path
descriptor. It contains information required to perform I/O functions by
IOMAN, file managers, and device drivers. Path descriptors are
dynamically allocated and deallocated as paths are opened and closed.

Path descriptors are variable in size. The full RBF, SBF, SCF, and PCF
path descriptor structures are provided in rbf.h, sbf.h, scf.h, and
pcf.h respectively. Generally, they consist of three main sections:

• A structure common to all path descriptors: pd_com

• A section of elements used by IOMAN, file managers, and device
drivers

• The path descriptor option section

IOMAN requires the first part to be common to all path descriptors. It
uses this common section to manage accesses to the path and to
dispatch to the associated file manager. File managers and device
drivers can add the information they need after the common part. The
options section is used to contain the dynamically alterable operating
parameters for the file or device. The appropriate file manager copies
the path descriptor options from the device descriptor module when a
path is opened or created. You can use the SS_PATHOPT and getstat
and setstat I/O system calls to update the option section of each path
descriptor. You can not update any other fields of the path descriptor.
The format of the common part is defined in the header file io.h and
shown here. Any data defined by specific file managers is provided in
the OS-9 Device Descriptor and Configuration Module Reference.

In user-state, the default setting for the maximum number of paths each
process can have open at any time is 32. You can change this setting by
using the _os_ioconfig system call. In system-state, the maximum
number of open paths depends on available system resources. See
I_CONFIG on page 443 for more information.
66 OS-9 Technical Manual

3The OS-9 Input/Output System
pd_com

Declaration
typedef struct pathcom {
 path_id pd_id; /* path number */
 Dev_list pd_dev; /* device list element pointer */
 owner_id pd_own; /* path creator */
 struct pathcom *pd_paths, /* list of open paths on device */
 pd_dpd; / ptr to default directory path desc*/
 u_int16 pd_mode, /* mode (READ_, WRITE_, or EXEC_) */
 pd_count, /* actual number of open images */
 pd_type, /* device type */
 pd_class; /* device class */
 process_id pd_cproc; /* current active process ID */
 u_char *pd_plbuf, /* pointer to partial pathlist */
 pd_plist; / pointer to complete pathlist */
 u_int32 pd_plbsz; /* size of pathlist buffer */
 lk_desc pd_lock; /* reserved for internal use */
 void *pd_async; /* asynchronous I/O resource pointer */
 u_int32 pd_state; /* process status bits */
 u_int32 pd_rsrv[7]; /* reserved */
} pd_com, *Pd_com;

Fields

pd_id Contains the system path number of the
path descriptor.

pd_dev Pointer to the device list element of the
device on which this path is opened.

pd_own Group/user number of the process that
created the path descriptor.

pd_paths Pointer to the next path descriptor in the
list of paths opened on the device.

pd_dpd Pointer to the default directory path
descriptor. When IOMAN creates a path
descriptor, and a device name was not
specified in the pathlist, it stores a
pointer to the path descriptor for the
default data or execution (as specified by
the mode) directory in this field.

pd_mode Requested access mode specified when
the path descriptor is created.
OS-9 Technical Manual 67

3 The OS-9 Input/Output System
pd_count Number of users using the path. When
the path descriptor is created this field is
set to 1. pd_count is incremented when
the path is duplicated using the I_DUP
system call. The I_CLOSE request
decrements this field.

pd_type Indicates the device type. The following
values are defined in the header file
io.h:

Table 3-4 Device Types

Defined Name Value Description

DT_SCF 0 Sequential Character File Type

DT_RBF 1 Random Block File Type

DT_PIPE 2 Pipe File Type

DT_SBF 3 Sequential Block File Type

DT_NFM 4 Network File Type

DT_CDFM 5 Compact Disc File Type

DT_UCM 6 User Communication Manager

DT_SOCK 7 Socket Communication Manager

DT_PTTY 8 Pseudo-Keyboard Manager

DT_GFM 9 Graphics File Manager

DT_PCF 10 PC-DOS File Manager

DT_NRF 11 Non-volatile RAM File Manager
68 OS-9 Technical Manual

3The OS-9 Input/Output System
NoteNote
DT-Codes up to 127 reserved for Microware use only.

DT_ISDN 12 ISDN File Manager

DT_MPFM 13 MPFM File Manager

DT_RTNFM 14 Real-Time Network File Manager

DT_SPF 15 Stacked Protocol File Manager

DT_INET 16 Inet File Manager

DT_MFM 17 Real-Time Network File Manager

DT_DVM 18 Generic Device File Manager

DT_NULL 19 Null File Manager

DT_DVDFM 20 DVD File Manager

DT_MODFM 21 Module Directory File Manager

Table 3-4 Device Types (continued)

Defined Name Value Description
OS-9 Technical Manual 69

3 The OS-9 Input/Output System
pd_class Indicates the device class. It is used to
load modules. The following values are
defined in the header file io.h:

NoteNote
Software checking this field should test these bits only, as the rest may
be defined in the future.

pd_cproc Process ID of the process currently
using the path.

pd_plbuf Pointer to the partial pathlist buffer. This
points to the portion of the pathlist
relevant to the file manager.

pd_plist Pointer to the complete pathlist.

pd_plbsz Size of the pathlist buffer.

pd_lock Reserved for internal use.

pd_async Pointer to resources used for performing
asynchronous I/O operations.

Table 3-5 Class Values

Defined Name Value Description

DC_SEQ 0x0001 Serial Devices (bit 0 set)

DC_RND 0x0002 Random Access Devices (bit 1 set)
70 OS-9 Technical Manual

3The OS-9 Input/Output System
pd_state Process status bits used by file
managers and drivers to determine the
state of a process.

pd_rsrv Reserved.

Table 3-6 Process States

Defined Name Value Description

PD_SYSTATE 0x00000001 I/O request made from system
state
OS-9 Technical Manual 71

3 The OS-9 Input/Output System
File Managers

File managers perform the following functions:

• Process the raw data stream to or from device drivers for a class of
similar devices.

• Service all of the I/O system service requests for a class of devices;
those not handled by the file manager are passed to the device
driver by the file manager.

• Responsible for mass storage allocation and directory processing, if
applicable to the class of devices they service.

• Buffer the data stream and issue requests to the kernel for dynamic
allocation of buffer memory.

• Monitor and process the data stream.

File managers are re-entrant. One file manager may be used for an
entire class of devices having similar operational characteristics. OS-9
systems can have any number of file manager modules.

The following file managers are included in typical systems:

Table 3-7 File Managers

File Manager Description

RBF (Random Block File
Manager)

Operates random-access,
block-structured devices such as disk
systems.

SCF (Sequential Character
File Manager)

Used with single-character-oriented
devices such as CRT or hardcopy
terminals, printers, and modems.

PIPEMAN (Pipe File
Manager)

Supports interprocess communication
through memory buffers called pipes.
72 OS-9 Technical Manual

3The OS-9 Input/Output System
File Manager Organization

A file manager is a collection of major subroutines accessed through a
dispatch table in the static storage of the file manager. IOMAN locates
this table by adding an offset specified by the m_share field of the file
manager module header. The table contains the starting address of
each file manager subroutine. The first entry of the table contains the
number of subroutines pointed to by the table.

SBF (Sequential Block File
Manager)

Used with sequential block-structured
devices such as tape systems.

PCF (PC File Manager) Transfers files between OS-9 and
DOS systems.

SPF (Stacked Protocol File
Manager)

Manages communications.

Refer to the SoftStax manual set for
more information about SPF.

Table 3-7 File Managers (continued)

File Manager Description
OS-9 Technical Manual 73

3 The OS-9 Input/Output System
Dispatch Table Sample Listing

Declaration
#include <types.h>
#define FUNC_COUNT 16

struct {
 u_int32 func_count; /* number of functions */
 error_code (*funcs[FUNC_COUNT])(); /* function table */
} dispatch_table = { FUNC_COUNT,
 { Attach, Chgdir, Close, Create, Delete, Detach, Dupe, Getstat,
Makdir, Open, Read, Readln, Seek, Setstat, Write, Writeln }
};

Description

When IOMAN calls a file manager subroutine, it always passes two
parameters. For the Attach and Detach functions, the first parameter
is a pointer to the parameter block of the caller and the second is a
pointer to the device list entry. For all other functions, the first parameter
is the pointer to the caller’s parameter block and the second is a pointer
to the path descriptor for the specified path.

Functions

Attach When an I_ATTACH call is made to a
device, a file manager determines
whether the device has been previously
attached. If it has, the file manager
increments the use count for the device
and returns. If the device has not been
previously attached, the file manager
may perform some additional logical unit
initialization and calls the init routine of
the device driver to initialize the
hardware.

If the device driver’s init routine returns
an error, the file manager returns the
error.
74 OS-9 Technical Manual

3The OS-9 Input/Output System
Chgdir On multi-file devices, I_CHDIR searches
for a directory file. IOMAN allocates a
path descriptor. This allows I_CHGDIR
to save information about the directory
file for later searches. IOMAN saves the
path identifier in the I/O process
descriptor.

I_OPEN and I_CREATE begin searching
in this directory when the caller’s pathlist
does not begin with a slash (/)
character. File managers that do not
support directories return an appropriate
error code.

Close I_CLOSE ensures any output to a device
is completed (writing out the last buffer if
necessary), and releases any buffer
space allocated when the path was
opened.

I_CLOSE may perform specific
end-of-file processing if necessary, such
as writing end-of-file records on tapes.

Create I_CREATE performs the same function
as I_OPEN. If the file manager controls
multi-file devices (RBF and PIPEMAN),
a new file is created.

Delete Multi-file device managers usually do a
directory search similar to I_OPEN.
Once the specified file is found, these
managers remove the file name from the
directory. Any media in use by the file is
returned to unused status.

Detach When an I_DETACH call is made to a
device, a file manager decrements the
use count for the device. If the count is
still non-zero, the file manager returns. If
the use count becomes zero, the file
manager calls the driver’s terminate
OS-9 Technical Manual 75

3 The OS-9 Input/Output System
routine. If the terminate routine returns
an error, the file manager returns the
error.

Dupe IOMAN implements all of the functions of
the I_DUP system call on a device.
Normally, file managers are called but do
nothing.

Getstat The I_GETSTAT (get status) system
calls are wildcard calls that retrieve the
status of various features of a device (or
file manager) that are not generally
device independent.

The file manager can perform a specific
function such as obtaining the size of a
file. Status calls that are unknown by the
file manager are passed to the driver to
provide a further means of device
independence.

Makdir I_MAKDIR creates a directory file on
multi-file devices. I_MAKDIR is neither
preceded by a Create nor followed by a
Close. File managers that cannot
support directories or do not support
multi-file devices should return the
EOS_UNKSVC (unknown service request)
error.

Open I_OPEN opens a file on a particular
device. This typically involves allocating
any required buffers, initializing path
descriptor variables, and parsing the
path name. If the file manager controls
multi-file devices (RBF and PIPEMAN),
directory searching is performed to find
the specified file.

Read I_READ returns the requested number
of bytes to the user’s data buffer. If no
data is available, an EOF error is
76 OS-9 Technical Manual

3The OS-9 Input/Output System
returned. I_READ must be capable of
copying pure binary data, and generally
does not perform editing on the data.

Readln I_READLN differs from I_READ in two
respects. First, I_READLN is expected to
terminate when the first end-of-line
character (carriage return) is
encountered. Second, I_READLN
performs any input editing appropriate
for the device.

Specifically, the SCF file manager
performs editing that involves functions
such as handling backspace, line
deletion, and echo.

Seek File managers supporting random
access devices use I_SEEK to position
file pointers of the already open path to
the byte specified. Typically, this is a
logical movement and does not affect
the physical device. No error is produced
at the time of the seek if the position is
beyond the current end-of-file.

File managers that do not support
random access usually do nothing, but
do not return an EOS_UNKSVC error.

Setstat The I_SETSTAT (set status) system call
is the same as the I_GETSTAT function
except it is generally used to set the
status of various features of a device or
file manager.

The I_SETSTAT and I_GETSTAT
system calls are wildcard calls designed
to access features of a device (or file
manager) that are not generally device
independent. Status calls that are
unknown to the file manager are passed
to the device driver.
OS-9 Technical Manual 77

3 The OS-9 Input/Output System
Write I_WRITE, like I_READ, must be capable
of recording pure binary data without
alteration. Usually, the routines for read
and write are nearly identical. The most
notable difference is I_WRITE uses the
device driver’s output routine instead of
the input routine. Writing past the end of
file on a device expands the file with new
data.

RBF and similar random access devices
using fixed-length records (sectors) must
often preread a sector before writing it
unless the entire sector is being written.

Writeln I_WRITELN is the counterpart of
I_READLN. It calls the device driver to
transfer data up to and including the first
(if any) carriage return encountered.
Appropriate output editing is also
performed. After a carriage return, for
example, SCF usually outputs a line feed
character and nulls (if appropriate).
78 OS-9 Technical Manual

3The OS-9 Input/Output System
Device Driver Modules

Device driver modules perform basic low-level physical I/O functions.
For example a basic function of the disk driver is to read or write a
physical sector. The driver is not concerned about files and directories,
which are handled at a higher level by the OS-9 file manager. Because
device drivers are re-entrant, one copy of the module can
simultaneously support multiple devices using identical I/O controller
hardware.

This section describes the general characteristics of OS-9 device
drivers. If you are developing or modifying a device driver, read the
OS-9 Porting Guide.

Basic Functional Driver Requirements

If written properly, a single physical driver module can handle multiple,
identical hardware interfaces. The specific information for each physical
interface (such as port address and initialization constants) is provided
in a small device descriptor module.

The name by which the device is known to the system is the name of
the device descriptor module. OS-9 copies some of the information
contained in the device descriptor module to the logical unit and path
descriptor data structure for easy access by the drivers.

A device driver is actually a package of subroutines called by a file
manager in system state. Device driver functions include:

• Initializing device controller hardware and related driver variables as
required

• Reading standard physical units (a character or sector depending on
the device type)

• Writing standard physical units (a character or sector depending on
the device type)

• Returning specified device status

• Setting specified device status
OS-9 Technical Manual 79

3 The OS-9 Input/Output System
• De-initializing devices, assuming the device will not be used again
unless re-initialized

• Processing error exceptions generated during driver execution

All drivers must conform to the standard OS-9 memory module format.
The module type code is MT_DEVDRVR. Drivers should have the system
state bit set in the attribute byte of the module header. Currently, OS-9
does not make use of this, but future revisions will require all device
drivers to be system-state modules.

Interrupts and DMA

Because OS-9 is a multi-tasking operating system, optimum system
performance is obtained when all I/O devices are configured for
interrupt-driven operation.

• For character-oriented devices, set up the controller to generate an
interrupt on receipt of an incoming character and at the completion
of transmission of an out-going character. Both the input data and
the output data should be buffered in the driver.

• For block-type devices (RBF and SBF), set up the controller to
generate an interrupt upon the completion of a block read or write
operation. The driver does not need to buffer data because the
driver is passed the address of a complete buffer. A Direct Memory
Access (DMA) device, if available, significantly improves the data
transfer speed.

Usually, the initialization subroutine of the device driver adds the
relevant device interrupt service routine to the OS-9 interrupt polling
system using the F_IRQ system call. The controller interrupts are
enabled and disabled by the data transfer routines (for example,
I_READ and I_WRITE) as required. The termination subroutine
disables the interrupt hardware and removes the device from the
interrupt polling system.
80 OS-9 Technical Manual

3The OS-9 Input/Output System
NoteNote
The assignment of device interrupt priority levels can have a significant
impact on system operation.

Generally, the smarter the device, the lower you can set its interrupt
level. For example, a disk controller that buffers sectors can wait longer
for service than a single-character buffered serial port. Assign the clock
tick device the highest possible level to keep system time-keeping
interference at a minimum.

The following is an example of how you can assign interrupt levels:

High: clock ticker
 "dumb" (non-buffering) disk controller
 terminal port
 printer port
Low: "smart" (sector-buffering) disk controller
OS-9 Technical Manual 81

3 The OS-9 Input/Output System
82 OS-9 Technical Manual

Chapter 4: Interprocess

Communications

This chapter describes the five forms of interprocess communication
supported by OS-9. It includes the following topics:

• Signals synchronize concurrent processes.

• Alarms send signals or execute subroutines at specified times.

• Events synchronize access of shared resources for concurrent
processes.

• Semaphores, like events, support exclusive access to shared
resources but also are strictly binary and therefore more efficient.

• Pipes transfer data among concurrent processes. Operations on
Pipes are also discussed.

• Data Modules transfer or share data among concurrent processes.
83

4 Interprocess Communications
Signals

In interprocess communications, a signal is an intentional disturbance
in a system. OS-9 signals are designed to synchronize concurrent
processes, but you can also use them to transfer small amounts of data.
Because they are usually processed immediately, signals provide
real-time communication between processes.

Signals are also referred to as software interrupts because a process
receives a signal similarly to how a CPU receives an interrupt. Signals
enable a process to send a numbered interrupt to another process. If an
active process receives a signal, the intercept routine is executed
immediately (if installed) and the process resumes execution where it
left off. If a sleeping or waiting process receives a signal, the process is
moved to the active queue, the signal routine is executed, and the
process resumes execution right after the call that removed it from the
active queue.

NoteNote
If a process does not have an intercept routine for a signal it received,
the process is killed. This applies to all signals greater than 1 (wake-up
signal).

Each signal has two parts:

• process ID of the destination

• signal code
84 OS-9 Technical Manual

4Interprocess Communications
Signal Codes

OS-9 supports the following signal codes.

Table 4-1 OS-9 Signal Codes

Signal Description

1 Wake-up signal. Sleeping/waiting processes
receiving this signal are awakened, but the
signal is not intercepted by the intercept handler.
Active processes ignore this signal. A program
can receive a wake-up signal safely without an
intercept handler. The wake-up signal is not
queued.

2 Keyboard abort signal. When <control>E is
typed, this signal is sent to the last process to
perform I/O on the terminal. Usually, the
intercept routine performs exit(2) when it
receives a keyboard abort signal.

3 Keyboard interrupt signal. When <control>C is
typed, this signal is sent to the last process to
perform I/O on the terminal. Usually, the
intercept routine performs exit(3) when it
receives a keyboard interrupt signal.

4 Unconditional system abort signal. The super
user can send the kill signal to any process, but
non-super users can send this signal only to
processes with their group and user IDs. This
signal terminates the receiving process,
regardless of the state of its signal mask, and is
not intercepted by the intercept handler.
OS-9 Technical Manual 85

4 Interprocess Communications
You could design a signal routine to interpret the signal code word as
data. For example, various signal codes could be sent to indicate
different stages in a process’ execution. This is extremely effective
because signals are processed immediately when received.

The following system calls enable processes to communicate through
signal.

5 Hang-up signal. SCF sends this signal when
the modem connection is lost.

6-19 Reserved

20-25 Reserved

26-31 User-definable signals that are deadly to I/O
operations.

32-127 Reserved

128-191 Reserved

192-255 Reserved

256- 4294967295 User-definable non-deadly to I/O signals.

Table 4-2 Signal Functions

Name Description

F_ICPT Installs a signal intercept routine.

F_SEND Sends a signal to a process.

Table 4-1 OS-9 Signal Codes (continued)

Signal Description
86 OS-9 Technical Manual

4Interprocess Communications
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the following for more information:

• For specific information about these system calls, refer to Chapter 8:
OS-9 System Calls. The Microware Ultra C/C++ compiler also
supports a corresponding C call for each of these calls.

• See Appendix A: Example Code for a sample program
demonstrating how you can use signals.

F_SIGLNGJ Sets signal mask value and returns on specified
stack image.

F_SIGMASK Enables/disables signals from reaching the
calling process.

F_SIGRESET Resets process intercept routine recursion
depth.

F_SLEEP Deactivates the calling process until the
specified number of ticks has passed or a signal
is received.

Table 4-2 Signal Functions (continued)

Name Description
OS-9 Technical Manual 87

4 Interprocess Communications
Signal Implementation

For some advanced applications, it is helpful to understand how the
operating system invokes a signal intercept routine when delivering a
signal to a process. It may be necessary to understand the contents of
the user stack when executing a process’ signal intercept routine. An
application can call a signal intercept routine either non-recursively or
recursively.

Non-recursive Calling

When trying to synchronize signals, most applications call signal
intercept routines for a process non-recursively. In the case of
non-recursive invocation of the intercept routine, the operating system
performs the following tasks to maintain the user stack for the process:

1. Save the process’ main executing context on the process’ system
state stack.

2. Loads the process’ global statics pointer associated with the
intercept routine (as specified when performing the F_ICPT call).

3. Loads the process’ code constant pointer.

4. Loads the process’ user stack pointer with its value at the time of the
signal interruption.

5. Calls the process’ intercept routine.

In some cases, depending on the target system, the C-code application
binary interface (ABI) can require the operating system allocate some
additional stack space in order to call a C-code intercept routine.
88 OS-9 Technical Manual

4Interprocess Communications
Figure 4-1 shows the user stack contents as it appears in the case of a
non-recursive invocation of a signal intercept routine.

Figure 4-1 Non-recursive Invocation of Signal Intercept Routine

Recursive Calling

Normally, the operating system prevents recursive invocation of an
intercept routine by incrementing a variable associated with the
process, known as the signal mask, when calling the intercept routine.
The operating system then decrements the signal mask value upon
returning from the intercept routine through the F_RTE system call.
When the operating system sees that the signal mask of a process is
non-zero, it does not attempt to invoke the intercept routine when it
detects a pending signal.

The only way an intercept routine can be called recursively when a
signal is pending is if the process explicitly clears its signal mask,
through the F_SIGMASK or F_SIGLNGJ system calls, or implicitly via
the user-state F_SLEEP and F_WAIT services, from within the context
of its intercept routine. When calling an intercept routine recursively, the
stack contents of the user stack are quite different from the
non-recursive case. In order to keep from over consuming the system
stack when saving its context, the operating system copies the saved
context along with its floating-point context to the user-state stack.

stack information associated
with the interrupted thread of
execution

<Optional>
C-code stack space as
defined by the ABI

Alternative User Stack Pointer

User Stack Pointer

High Memory
OS-9 Technical Manual 89

4 Interprocess Communications
Figure 4-2 shows the user-state stack contents as it appears in the
case of a recursive invocation of a signal intercept routine.

Figure 4-2 Recursive Invocation of Signal Intercept Routine

The exact contents of the floating-point context shown in Figure 4-2 can
vary within a given processor family, depending on whether or not the
processor has hardware support for floating point calculations. If the
processor has a hardware floating-point unit (FPU), the contents of the
FPU context directly reflect the hardware context. If the processor does
not have a hardware FPU, the FPU context area shown in Figure 4-2
contains whatever the FPU software emulation module must preserve
on behalf of the process. The actual size of this area can be determined
at execution time by consulting the variable d_fpusize in the
operating system globals area (see F_GETSYS).

stack information associated
with the interrupted thread of
execution

long stack frame context as
defined by reg<CPU Family>.h

Alternative User Stack Pointer

High Memory

floating-point context as
defined by reg<CPU Family>.h

previous user-stack pointer
value

<Optional>
C-code stack space as defined
by the ABI

User Stack Pointer + sizeof(regs)

User Stack Pointer + sizeof(regs)
or sizeof(fpu_contents)

User Stack Pointer + 4

User Stack Pointer
90 OS-9 Technical Manual

4Interprocess Communications
NoteNote
The PowerPC 6xx series processors containing a full hardware
floating-point implementation are the only processors that vary from this
described stack format. For this family of processors the FPU context is
actually a part of the long stack frame as described in the regppc.h
header file. The stack format resembles the format described previously
with the exception that the FPU context is not separate from the long
stack format.
OS-9 Technical Manual 91

4 Interprocess Communications
Alarms

User-state Alarms

The user-state alarm requests enable a program to arrange for a signal
to be sent to itself. The signal may be sent at a specific time of day or
after a specified interval has passed. The program may also request the
signal be sent periodically, each time the specified interval has passed.

Cyclic Alarms

A cyclic alarm provides a time base within a program. This simplifies the
synchronization of certain time-dependent tasks. For example, a
real-time game or simulation might allow 15 seconds for each move.
You could use a cyclic alarm signal to determine when to update the
game board.

Table 4-3 User-State Alarm Functions

Alarm Description

F_ALARM, A_ATIME Sends a signal at a specific time.

F_ALARM, A_CYCLE Sends a signal at the specified time
intervals.

F_ALARM, A_DELET Removes a pending alarm request.

F_ALARM, A_RESET Resets an existing alarm request.

F_ALARM, A_SET Sends a signal after the specified time
interval.
92 OS-9 Technical Manual

4Interprocess Communications
The advantages of using cyclic alarms are more apparent when
multiple time bases are required. For example, suppose you are using
an OS-9 process to update the real-time display of a car’s digital
dashboard.

The process might perform the following functions:

• Update a digital clock display every second.

• Update the car’s speed display five times per second.

• Update the oil temperature and pressure display twice per second.

• Update the inside/outside temperature every two seconds.

• Calculate miles to empty every five seconds.

Each function the process must monitor can have a cyclic alarm, whose
period is the desired refresh rate, and whose signal code identifies the
particular display function. The signal handling routine might read an
appropriate sensor and directly update the dashboard display. The
operating system handles all of the timing details.

Time of Day Alarms

You can set an alarm to provide a signal at a specific time and date.
This provides a convenient mechanism for implementing a cron type of
utility—executing programs at specific days and times. Another use is to
generate a traditional alarm clock buzzer for personal reminders.

This type of alarm is sensitive to changes made to the system time. For
example, assume the current time is 4:00 and a program sends itself a
signal at 5:00. The program can either set an alarm to occur at 5:00 or
set the alarm to go off in one hour. Assume the system clock is 30
minutes slow, and the system administrator corrects it. In the first case,
the program wakes up at 5:00; in the second case, the program wakes
up at 5:30.
OS-9 Technical Manual 93

4 Interprocess Communications
Relative Time Alarms

You can use this type of alarm to set a time limit for a specific action.
Relative time alarms are frequently used to cause an I_READ request
to abort if it is not satisfied within a maximum time. This can be
accomplished by sending a keyboard abort signal at the maximum
allowable time and then issuing the I_READ request. If the alarm arrives
before the input is received, the I_READ request returns with an error.
Otherwise, the alarm should be cancelled. The example program
deton.c (in Appendix A: Example Code) demonstrates this technique.

System-State Alarms

A system-state counterpart exists for user-state alarm function.
However, the system-state version is considerably more powerful than
its user state equivalent. When a user-state alarm expires, the kernel
sends a signal to the requesting process. When a system-state alarm
expires, the kernel executes the system-state subroutine specified by
the requesting process at a very high priority.

OS-9 supports the following system-state alarm functions:

Table 4-4 System-State Alarm Functions

Alarm Description

F_ALARM, A_ATIME Executes a subroutine at a specified time

F_ALARM, A_CYCLE Executes a subroutine at specified time
intervals

F_ALARM, A_DELET Removes a pending alarm request

F_ALARM, A_RESET Resets an existing alarm request

F_ALARM, A_SET Executes a subroutine after a specified
time interval
94 OS-9 Technical Manual

4Interprocess Communications
The alarm is executed by the kernel process, not by the original
requester process. During execution, the user number of the system
process is temporarily changed to the original requester. The stack
pointer passed to the alarm subroutine is within the system process
descriptor and contains about 4KB of free space.

The kernel automatically deletes the pending alarm requests belonging
to a process when that process terminates. This may be undesirable in
some cases. For example, assume an alarm is scheduled to shut off a
disk drive motor if the disk has not been accessed for 30 seconds. The
alarm request is made in the disk device driver on behalf of the I/O
process. This alarm does not work if it is removed when the process
exits.

The alarm has persistence if the TH_SPOWN bit in the alarm call’s
flags parameter is set. This causes the alarm to be owned by the
system process rather than the current process.

WARNING!
If you use this technique, you must ensure the module containing the
alarm subroutine remains in memory until after the alarm expires.

An alarm subroutine must not perform any function resulting in any kind
of sleeping or queuing. This includes F_SLEEP; F_WAIT; F_LOAD;
F_EVENT, EV_WAIT, F_ACQLK, F_WAITLK, and F_FORK (if it might
require F_LOAD). Other than these functions, the alarm subroutine may
perform any task.

One possible use of the system-state alarm function might be to poll a
positioning device, such as a mouse or light pen, every few system
ticks. Be conservative when scheduling alarms and make the cycle as
large as reasonably possible. Otherwise, you could waste a great deal
of the available CPU time.
OS-9 Technical Manual 95

4 Interprocess Communications
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a program demonstrating how alarms can be used, see the
Alarms: Example Program section in Appendix A: Example Code.
96 OS-9 Technical Manual

4Interprocess Communications
Events

OS-9 events are multiple value semaphores. They synchronize
concurrent processes that are accessing shared resources such as
files, data modules, and CPU time. For example, if two processes need
to communicate with each other through a common data module, you
may need to synchronize the processes so only one process at a time
updates the data module.

Events do not transmit any information, although processes using the
event system can obtain information about the event, and use it as
something other than a signaling mechanism.

An OS-9 event is a global data structure maintained by the system. The
event structure is listed here and is defined in the header file
events.h. The following section contains descriptions of each field.
OS-9 Technical Manual 97

4 Interprocess Communications
ev_str/ev_infostr Event Structure

Declaration
typedef struct {
 event_id ev_id; /* event id number */
 u_int16 ev_namsz; /* size of memory to allocate for name */
 u_char *ev_name; /* pointer to event name */
 u_int16 ev_link, /* event use count */
 ev_perm; /* event permissions */
 owner_id ev_owner; /* event owner (creator) */
 int16 ev_winc, /* wait increment value */
 ev_sinc; /* signal increment value */
 int32 ev_value; /* current event value */
 Pr_desc ev_quen, /* next event in queue */
 ev_quep; /* previous event in queue */
 u_char ev_resv[14]; /* reserved */
} ev_str, *Ev_str;

The structure used by the F_EVENT, EV_INFO request contains a
subset of the standard event fields. This structure is listed here and
defined in the header file events.h.
typedef struct {
 event_id ev_id; /* event id number */
 u_int16 ev_link, /* event use count */
 ev_perm; /* event permissions */
 owner_id ev_owner; /* event owner (creator) */
 int16 ev_winc, /* wait increment value */
 ev_sinc; /* signal increment value */
 int32 ev_value; /* current event value */
} ev_infostr, *Ev_infostr;

Description

The OS-9 event system provides the following facilities:

• To create and delete events

• To permit processes to link/unlink events and obtain event
information

• To suspend operation until an event occurs

• For various means of signaling
98 OS-9 Technical Manual

4Interprocess Communications
Fields

ev_id A unique ID is created from this number
and the event’s array position.

ev_namsz Size of the event name in bytes.

ev_name The event name must be unique.

ev_link The event use count.

ev_perm The event’s access permissions which
are used to verify that a process has
access to an event when an F_EVENT,
EV_LINK operation is performed.

ev_owner The ID of the event owner (creator).

ev_winc The event wait increment. ev_winc is
added to the event value when a
process waits for the event. It is set when
the event is created and does not
change.

ev_sinc The event’s signal increment. ev_sinc
is added to the event value when the
event is signaled. It is set when the event
is created and does not change.

ev_value This four byte integer represents the
current event value.

ev_quen A pointer to the next process in the event
queue. An event queue is circular and
includes all processes waiting for the
event. Each time the event is signaled,
this queue is searched.

ev_quep A pointer to the previous process in the
event queue.

ev_resv Reserved for future use.
OS-9 Technical Manual 99

4 Interprocess Communications
Wait and Signal Operations

The two most common operations performed on events are wait and
signal.

Wait

The wait operation performs the following three functions:

1. Suspends the process until the event is within a specified range

2. Adds the wait increment to the current event value

3. Returns control to the process just after the wait operation was
called

Signal

The signal operation performs the following three functions:

1. Adds the signal increment to the current event value

2. Checks for other processes to awaken

3. Returns control to the process

These operations enable a process to suspend itself while waiting for an
event and to reactivate when another process signals the event has
occurred.

To coordinate sharing a non-sharable resource, user programs must:

Step 1. Wait for the resource to become available.

Step 2. Mark the resource as busy.

Step 3. Use the resource.

Step 4. Signal the resource is no longer busy.
100 OS-9 Technical Manual

4Interprocess Communications
Due to time slicing, the first two steps in this process must be indivisible.
Otherwise, two processes might check an event and find it free. Then,
both processes try to mark it busy. This would correspond to two
processes using a printer at the same time. The F_EVENT service
request prevents this from happening by performing both steps in the
wait operation.

For example, you can use events to synchronize the use of a printer.
You set the initial event value to 0, the wait increment to -1, and the
signal increment to 1. When a process wants exclusive use of the
printer, it performs an event wait call with a value range of zero and
checks to see if a printer is available. If the event value is zero, it applies
the wait increment (-1), causing the event value to go to -1 and marking
the printer as busy; the process is allowed to use the printer. A negative
event value indicates the printer is busy; the process is suspended until
the event value comes into range (becomes zero in this case). When a
process is finished with the printer, it performs an event signal call, the
signal increment is applied causing the event value to be incremented
by one, and then the process in range is activated.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a program demonstrating how events can be used see the Events:
Example Program in Appendix A: Example Code.

The F_EVENT System Call

The F_EVENT system call creates named events for this type of
application. The name event was chosen instead of semaphore
because F_EVENT synchronizes processes in a variety of ways not
usually found in semaphore primitives. OS-9 event routines are very
efficient and are suitable for use in real-time control applications.
OS-9 Technical Manual 101

4 Interprocess Communications
Event variables require several maintenance functions as well as the
signal and wait operations. To keep the number of system calls required
to a minimum, you can access all event operations through the
F_EVENT system call.

Functions exist to enable you to create, delete, link, unlink, and examine
events. Several variations of the signal and wait operations are also
provided. Specific parameters and functions of each event operation
are discussed in the F_EVENT description in Chapter 8: OS-9 System
Calls. Table 4-5 identifies the event functions that are supported:

Table 4-5 Supported OS-9 Event Functions

Event Description

F_EVENT, EV_ALLCLR Wait for all bits defined by mask to
become clear.

F_EVENT, EV_ALLSET Wait for all bits defined by mask to
become set.

F_EVENT, EV_ANYCLR Wait for any bits defined by mask to
become clear.

F_EVENT, EV_ANYSET Wait for any bits defined by mask to
become set.

F_EVENT, EV_CHANGE Wait for any of the bits defined by
mask to change.

F_EVENT, EV_CREAT Create new event.

F_EVENT, EV_DELET Delete existing event.

F_EVENT, EV_INFO Return event information.

F_EVENT, EV_LINK Link to existing event by name.
102 OS-9 Technical Manual

4Interprocess Communications
F_EVENT, EV_PULSE Signal an event occurrence.

F_EVENT, EV_READ Read event value without waiting.

F_EVENT, EV_SET Set event variable and signal an event
occurrence.

F_EVENT, EV_SETAND Set event value by ANDing the event
value with a mask.

F_EVENT, EV_SETOR Set event value by ORing the event
value with a mask.

F_EVENT, EV_SETR Set relative event variable and signal
an event occurrence.

F_EVENT, EV_SETXOR Set event value by XORing the event
value with a mask.

F_EVENT, EV_SIGNL Signal an event occurrence.

F_EVENT, EV_TSTSET Wait for all bits defined by mask to
clear; set these bits.

F_EVENT, EV_UNLNK Unlink event.

F_EVENT, EV_WAIT Wait for event to occur.

F_EVENT, EV_WAITR Wait for relative to occur.

Table 4-5 Supported OS-9 Event Functions (continued)

Event Description
OS-9 Technical Manual 103

4 Interprocess Communications
Semaphores

Semaphores support exclusive access to shared resources.
Semaphores are similar to events in the way they provide applications
with mutually exclusive access to data structures. Semaphores differ
from events in that they are strictly binary in nature, which increases
their efficiency.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Since using C bindings is the preferred method of accessing OS-9
semaphores, F_SEMA is not documented in Chapter 8. See the Ultra
C/C++ Library Reference for information on the os_sema calls.

OS-9 supports the semaphore routines shown in Table 4-6:

Table 4-6 Supported OS-9 Semaphore Routines

Name Description

_os_sema_init() Initialize the semaphore data structure for
use.

_os_sema_p() Reserve a semaphore.

_os_sema_term() Terminate the use of a semaphore data
structure.

_os_sema_v() Release a semaphore.
104 OS-9 Technical Manual

4Interprocess Communications
A single semaphore system call, F_SEMA, provides all of the
semaphore functionality. F_SEMA requires the following two parameters:

• One indicating which operation is being performed on the
semaphore

• A pointer to the semaphore structure

Unlike events, there is no system call provided to create a semaphore.
You must provide the storage for the semaphore. Because semaphores
are typically used to protect specific resources, you should declare the
semaphore structure as part of the resource structure.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a program demonstrating how you may use semaphores, see
Semaphores: Example Program in Appendix A: Example Code.

A typical application using semaphores might create a data module
containing the memory for the intended resource and its associated
semaphore. By using a data module for implementing semaphores,
applications can use OS-9 module protection mechanisms to protect
the semaphore.

Once you have created and initialized the semaphore data module,
additional processes within the application may use the semaphore by
linking to the semaphore data module. You must create the semaphore
data module with appropriate permissions to allow the other processes
within the application to link to and use the semaphore and its resource.

Semaphore States

A semaphore has two states:

Reserved When a semaphore is reserved, any
process attempting to reserve the
semaphore waits. This includes the
process that has the semaphore
reserved.
OS-9 Technical Manual 105

4 Interprocess Communications
Free When a semaphore is free, any process
may claim the semaphore.

Acquiring Exclusive Access

To acquire exclusive access to a resource, a process may use the
_os_sema_p() C binding to reserve the semaphore. If the semaphore
is already busy, the process is suspended and placed at the end of the
wait queue of the semaphore.

Releasing Exclusive Access

To release exclusive access to a resource, a process may use the
_os_sema_v() C binding to release the semaphore. When the owner
process releases the semaphore, the first process in the semaphore
queue is activated and retries the reserve operation on the semaphore.

The definition for the semaphore structure can be found in the
semaphore.h header file. Semaphores use the following data
structure:
/* Semaphore structure definition */
typedef struct semaphore {
 sema_val
 s_value; /* semaphore value (free/busy status) */
 u_int32 s_lock; /* semaphore structure lock (use count) */
 Pr_desc s_qnext, /* wait queue for process descriptors */
 s_qprev; /* wait queue for process descriptors */
 u_int32 s_length, /* current length of wait queue */
 s_owner, /* current owner of semaphore (process ID) */
 s_user, /* reserved for users */
 s_flags, /* general purpose bit-field flags */
 s_sync, /* integrity sync code */
 s_reserved[3]; /* reserved for system use */
} semaphore, *Semaphore;
106 OS-9 Technical Manual

4Interprocess Communications
Pipes

An OS-9 pipe is a first-in first-out (FIFO) buffer that enables
concurrently executing processes to communicate data; the output of
one process (the writer) is read as input by a second process (the
reader). Communication through pipes eliminates the need for an
intermediate file to hold data.

PIPEMAN is the OS-9 file manager supporting interprocess
communication through pipes. PIPEMAN is a re-entrant subroutine
package called for I/O service requests to a device named /pipe.

A pipe contains 128 bytes, unless a different buffer size is specified
when the pipe is created. Typically, a pipe is used as a one-way data
path between two processes:

• Writing

• Reading

The reader waits for the data to become available and the writer waits
for the buffer to empty. However, any number of processes can access
the same pipe simultaneously: PIPEMAN coordinates these processes.
A process can even arrange for a single pipe to send data to itself. You
can use this to simplify type conversions by printing data into the pipe
and reading it back using a different format.

Data transfer through pipes is extremely efficient and flexible. Data does
not have to be read out of the pipe in the same size sections in which it
was written.

You can use pipes much like signals to coordinate processes, but with
these advantages:

• Longer messages (more than 32 bits)

• Queued messages

• Determination of pending messages

• Easy process-independent coordination (using named pipes)
OS-9 Technical Manual 107

4 Interprocess Communications
Named and Unnamed Pipes

OS-9 supports both named and unnamed (anonymous) pipes. The shell
uses unnamed pipes extensively to construct program pipelines, but
user programs can also use them. Unnamed pipes can be opened only
once. Independent processes may communicate through them only if
the pipeline was constructed by a common parent to the processes.
This is accomplished by making each process inherit the pipe path as
one of its standard I/O paths.

The use of named pipes is similar to that of unnamed pipes. The main
difference is a named pipe can be opened by several independent
processes, which simplifies pipeline construction. Other specific
differences are noted in the following sections.
108 OS-9 Technical Manual

4Interprocess Communications
Operations on Pipes

Creating Pipes

The I_CREATE system call is used with the pipe file manager to create
new named or unnamed pipe files.

You can create pipes using the pathlist /pipe (for unnamed pipes,
pipe is the name of the pipe device descriptor) or /pipe/<name>
(<name> is the logical file name being created). If a pipe file with the
same name already exists, an error (EOS_CEF) is returned. Unnamed
pipes cannot return this error.

All processes connected to a particular pipe share the same physical
path descriptor. Consequently, the path is automatically set to update
mode regardless of the mode specified at creation. You can specify
access permissions. They are handled similarly to permissions on files
in random block file systems.

The size of the default FIFO buffer associated with a pipe is specified in
the pipe device descriptor. To override this default when creating a pipe,
set the initial file size bit of the mode parameter and pass the desired
file size in the parameter block.

If no default or overriding size is specified, a 128-byte FIFO buffer is
created.

NoteNote
You can rename a named pipe to an unnamed pipe and an unnamed
pipe to a named pipe.
OS-9 Technical Manual 109

4 Interprocess Communications
Opening Pipes

When accessing unnamed pipes, I_OPEN, like I_CREATE, opens a
new anonymous pipe file. When accessing named pipes, I_OPEN
searches for the specified name through a linked list of named pipes
associated with a particular pipe device.

Opening an unnamed pipe is simple, but sharing the pipe with another
process is more complex. If a new path to /pipe is opened for the
second process, the new path is independent of the old one.

The only way for more than one process to share the same unnamed
pipe is through the inheritance of the standard I/O paths through the
F_FORK call. As an example, the following C language pseudocode
outline describes a method the shell can use to construct a pipeline for
the command dir -u ! qsort. It is assumed paths 0 and 1 are
already open.
StdInp = _os_dup(0) save the shell’s standard input
StdOut = _os_dup(1) save shell’s standard output
 _os_close(1) close standard output
 _os_open("/pipe") open the pipe (as path 1)
 _os_fork("dir","-u") fork "dir" with pipe as standard output
 _os_close(0) free path 0
 _os_dup(1) copy the pipe to path 0
 _os_close(1) make path available
 _os_dup(StdOut) restore original standard out
 _os_fork("qsort") fork qsort with pipe as standard input
 _os_close(0) get rid of the pipe
 _os_dup(StdInp) restore standard input
 _os_close (StdInp) close temporary path
 _os_close (StdOut) close temporary path

The main advantage of using named pipes is several processes can
communicate through the same named pipe without having to inherit it
from a common parent process. For example, the above steps can be
approximated by the following command:

$ dir -u >/pipe/temp & qsort </pipe/temp

NoteNote
The OS-9 shell always constructs its pipelines using the unnamed
/pipe descriptor.
110 OS-9 Technical Manual

4Interprocess Communications
Read/Readln

The I_READ and I_READLN system calls return the next bytes in the
pipe buffer. If not enough data is ready to satisfy the request, the
process reading the pipe is put to sleep until more data becomes
available.

The end-of-file is recognized when the pipe is empty and the number of
processes waiting to read the pipe is equal to the number of users on
the pipe. If any data was read before the end-of-file was reached, an
end-of-file error is not returned. However, the returned byte count is the
number of bytes actually transferred, which is less than the number
requested.

NoteNote
The read and write system calls are faster than the readln and
writeln system calls because PIPEMAN does not have to check for
carriage returns and the loops moving data are tighter.

Write/Writeln

The I_WRITE and I_WRITELN system calls work in almost the same
way as I_READ and I_READLN. A pipe error (EOS_WRITE) is returned
when all the processes with a full unnamed pipe open attempt to write
to the pipe. Since there is no reader process, each process attempting
to write to the pipe receives the error and the pipe remains full.

When named pipes are being used, PIPEMAN never returns the
EOS_WRITE error. If a named pipe becomes full before a process
receiving data from the pipe has opened it, the process writing to the
pipe is put to sleep until a process reads the pipe.
OS-9 Technical Manual 111

4 Interprocess Communications
Close

When a pipe path is closed, its path count is decremented. If no paths
are left open on an unnamed pipe, its memory is returned to the
system. With named pipes, its memory is returned only if the pipe is
empty. A non-empty pipe (with no open paths) is artificially kept open,
waiting for another process to open and read from the pipe. This
permits pipes to be used as a type of temporary, self-destructing RAM
disk file.

Getstat/Setstat

PIPEMAN supports a wide range of status codes enabling the insertion
of pipes as a communications channel between processes where an
random block file (RBF) or serial character file (SCF) device would
normally be used. For this reason, most RBF and SCF status codes are
implemented to perform without returning an error. The actual function
may differ slightly from the other file managers, but it is usually
compatible.

GetStat Status Codes Supported by PIPEMAN

Table 4-7 shows only the supported GetStat status codes. All other
codes return an EOS_UNKSVC error (unknown service request).

Table 4-7 GetStat Status Codes Supported by Pipeman

Name Description

I_GETSTAT, SS_DEVOPT Read the default path options for
the device.

I_GETSTAT, SS_EOF Test for end-of-file condition.
112 OS-9 Technical Manual

4Interprocess Communications
I_GETSTAT, SS_FD Read the pseudo file descriptor
image for the pipe associated with
the specified path.

I_GETSTAT, SS_FDINFO Read the pseudo file descriptor
sector for the pipe specified by a
sector number.

I_GETSTAT, SS_LUOPT Read the logical unit options
section.

I_GETSTAT, SS_PATHOPT Read the path options section of
the path descriptor.

I_GETSTAT, SS_READY Test whether data is available in
the pipe. It returns the number of
bytes in the buffer.

I_GETSTAT, SS_SIZE Return the size of the associated
pipe buffer.

Table 4-7 GetStat Status Codes Supported by Pipeman (continued)

Name Description
OS-9 Technical Manual 113

4 Interprocess Communications
SetStat Status Codes Supported by PIPEMAN

Table 4-8 shows the SetStat status codes supported By PIPEMAN.

Table 4-8 SetStat Status Codes Supported by PIPEMAN

Name Description

I_SETSTAT, SS_ATTR Changes the file attributes of the
associated pipe.

I_SETSTAT, SS_DEVOPT Does nothing, but returns without
error.

I_GETSTAT, SS_FD Writes the pseudo file descriptor
image for the pipe.

I_SETSTAT, SS_LUOPT Does nothing, but returns without
error.

I_SETSTAT, SS_PATHOPT Does nothing, but returns without
error.

I_SETSTAT, SS_RELEASE Releases the device from the
SS_SENDSIG processing before
data becomes available.

I_SETSTAT, SS_RENAME Changes the name of a named
pipe, changes a named pipe to an
unnamed pipe, and changes an
unnamed pipe to a named pipe.
114 OS-9 Technical Manual

4Interprocess Communications
The I_MAKDIR and I_CHDIR service requests are illegal service
routines on pipes. They return EOS_UNKSVC.

Pipe Directories

Opening an unnamed pipe in the Dir mode enables it to be opened for
reading. In this case, PIPEMAN allocates a pipe buffer and
pre-initializes it to contain the names of all open named pipes on the
specified device. Each name is null-padded to make a 32-byte record.
This enables utilities that normally read an RBF directory file
sequentially to work with pipes.

NoteNote
PIPEMAN is not a true directory device, so commands like chd and
makdir do not work with /pipe.

The head of a linked list of named pipes is maintained in the logical unit
static storage of the pipe device. If several pipe descriptors with different
default pipe buffer sizes are on a system, the I/O system notices the

I_SETSTAT, SS_SIZE Resets the pipe buffer if the
specified size is zero. Otherwise, it
has no effect, but returns without
error.

I_SETSTAT, SS_SENDSIG Sends the process the specified
signal when data becomes
available.

Table 4-8 SetStat Status Codes Supported by PIPEMAN (continued)

Name Description
OS-9 Technical Manual 115

4 Interprocess Communications
same file manager, port address (usually zero), and logical unit number
are being used. It does not allocate new logical unit static storage for
each pipe device and all named pipes will be on the same list.

For example, if two pipe descriptors exist, a directory of either device
reveals all the named pipes for both devices. If each pipe descriptor has
a unique port address (0, 1, 2, etc.) or unique logical unit number, the
I/O system allocates different logical unit static storage for each pipe
device. This produces expected results.
116 OS-9 Technical Manual

4Interprocess Communications
Data Modules

OS-9 data modules enable multiple processes to share a data area and
to transfer data among themselves. A data module must have a module
header and a valid CRC to be loaded into memory. Data modules can
be non-reentrant (modifiable). One or more processes can share and
modify the contents of a data module.

OS-9 does not have restrictions as to the content, organization, or use
of the data area in a data module. These considerations are determined
by the processes using the data module.

OS-9 does not synchronize processes using a data module.
Consequently, thoughtful programming, usually involving events or
signals, is required to enable several processes to update a shared data
module simultaneously.

Creating Data Modules

The F_DATMOD system call creates a data module with a specified set
of attributes, data area size, and module name. The data area is
cleared automatically. The data module is created and entered into the
calling process’ current module directory. A CRC value is not computed
for the data module when it is created.

NoteNote
It is essential the data module header and name string not be modified
to prevent the module from becoming unknown to the system.

The Microware C compiler provides several C calls to create and use
data modules directly. These include the _mkdata_module() and
_os_datmod() calls which are specific to data modules, and the
modlink(), modload(), munlink(), munload(), _os_link(),
_os_unlink(), _os_unload(), _os_setcrc(), and _setcrc()
calls that apply to all OS-9 modules.
OS-9 Technical Manual 117

4 Interprocess Communications
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on these calls, refer to the Using Ultra C/C++
manual.

The Link Count

Like all OS-9 modules, data modules have an associated link count.
The link count is a counter of how many processes are currently linked
to the module. Generally, the module is taken out of memory when this
count reaches 0. If you want the module to remain in memory when the
link count is zero, make the module sticky by setting the sticky bit in the
module header attribute byte.

Saving to Disk

If a data module is saved to disk, you can use the dump utility to
examine the module format and contents. You can save a data module
to disk with the save utility or by writing the module image into a file. If
the data module was modified since its CRC value was created, the
saved module CRC will be bad and it becomes impossible to reload the
module into memory.

To allow the module to be reloaded, use the F_SETCRC system call or
the _setcrc() C library call before writing the module to disk. Or, use
the fixmod utility after the module has been written to disk.
118 OS-9 Technical Manual

Chapter 5: Subroutine Libraries and

Trap Handlers

This chapter explains how to install, execute, and terminate subroutine
libraries. It also explains how to install and execute trap handlers. It
includes the following topics:

• Subroutine Libraries

• Trap Handlers
119

5 Subroutine Libraries and Trap Handlers
Subroutine Libraries

An OS-9 subroutine library is a module containing a set of related or
frequently used subroutines. Subroutine libraries enable distinct
processes to share common code. Any user program may dynamically
link to the user subroutine library and call it at execution time.

Although subroutine libraries reduce the size of the execution program,
they do not accomplish anything that could not be done by linking the
program with the appropriate library routines at compilation time. In fact,
programs calling subroutine libraries execute slightly slower than linked
programs performing the same function. A program can link to a
maximum of sixteen subroutine libraries, numbered from zero to fifteen.

Microware provides a standard subroutine library of I/O conversions for
C language programs. Subroutine library identifier zero is reserved for
the Microware csl subroutine library.

Like standard OS-9 program modules, subroutine libraries have one
entry point and may have their own global static storage. The module
type of subroutine library modules is MT_SUBROUT and the module
language is ML_OBJECT.

Subroutine functions are usually executed as though they were called
directly by the main program. System calls or other operations that
could be performed by the calling module can also be performed in a
subroutine library.

Installing and Executing Subroutine Libraries

To install a subroutine library, a user program must use the F_SLINK
system call. F_SLINK attempts to link to the subroutine library. If the
link is successful, it allocates and initializes the global static storage and
returns pointers to the library’s entry point and to the library’s global
static storage area.
120 OS-9 Technical Manual

5Subroutine Libraries and Trap Handlers
Typically, a main program’s first call to a subroutine library calls an
initialization routine. The initialization routine usually has very little to do,
but could be used to open files, link to additional subroutine libraries or
data modules, or perform other startup activities.

The main program must save the entry pointer and static storage
pointer returned by F_SLINK to enable subsequent calls to the
subroutine library.

The OS-9 C library provides functions to install and call subroutine
libraries. The _sliblink() function installs a specified subroutine
module saving the subroutine library’s entry and global static storage
pointers in the global arrays _sublibs[] and _submems[],
respectively.

You can use the _subcall function to call an existing subroutine
library. For example, suppose the main program reference in C is the
following statement:

my_function(p1, p2, p3, p4)

The _subcall reference in 80386 assembler would be as follows:

my_function: call _subcall
dc.l SUB_LIB_NUM
dc.l SUB_MY_FUNCTION

_subcall does the following:

• Retrieves the subroutine library and function identifiers

• Adjusts the program stack

• Dispatches to the subroutine library entry point with the correct
global static storage configuration

NoteNote
The return from the subroutine in the subroutine library takes the flow of
execution directly back to the initial function reference in the main
program.
OS-9 Technical Manual 121

5 Subroutine Libraries and Trap Handlers
To create a subroutine library, you must create a table of _subcall
calls, and subroutine library and function identifiers as previously
described. In addition, some dispatch code must be written in the
subroutine library. For more information, refer to the subroutine library
example provided in the Subroutine Library section of Appendix A:
Example Code.

Terminating Subroutine Libraries

Programs using subroutine libraries do not need to explicitly terminate
the use of the libraries. When a process terminates, the OS-9 kernel
unlinks any subroutine libraries and releases their resources on behalf
of the process. But, a program may terminate the use of a subroutine
library explicitly by performing a _sliblink() call. In this case, you
must specify a null string for the subroutine library name and the
associated subroutine library identifier. This unlinks the subroutine
library and returns its resources to the system.

These are the resources associated with the calling process’ invocation
of the subroutine library and do not affect the resources of other
processes using the same subroutine library.
122 OS-9 Technical Manual

5Subroutine Libraries and Trap Handlers
Trap Handlers

Trap handlers are similar to subroutine libraries with the following
exceptions:

• When a trap handler is linked, the kernel calls the trap initialization
entry point. The kernel does not call an initialization entry point when
the subroutine library is linked. Instead, the main program must call
the initialization routine, if one exists.

• A trap handler may have more than one entry point; there is exactly
one entry point in a subroutine library.

• Trap handlers only execute in system state; subroutine libraries
execute in the same state as the main program.

• There may be a termination routine for a trap handler; there is no
explicit termination entry point for a subroutine library.

• Dispatching to subroutine libraries does not involve the kernel in any
way.

Trap handlers have three execution entry points:

• A trap execution entry point

• A trap initialization entry point

• A trap termination entry point

Trap handler modules are of module type MT_TRAPLIB and module
language ML_OBJECT.

The trap module routines are usually executed as though they were
called with the standard function call instruction, except for minor stack
differences. Any system calls or other operations that could be
performed by the calling module are usable in the trap module.

An example C trap handler is included in the Trap Handlers section in
Appendix A: Example Code.
OS-9 Technical Manual 123

5 Subroutine Libraries and Trap Handlers
Installing and Executing Trap Handlers

A user program installs a trap handler by executing the F_TLINK
system request. When this is done, the OS-9 kernel performs the
following functions:

• Links to the trap module

• Allocates and initializes its static storage, if any

• Executes the trap module’s initialization routine

Typically, the initialization routine has very little to do. It can open files,
link to additional trap or data modules, or perform other startup
activities. It is called only once per trap handler in any given program.

A trap module used by a program is usually installed as part of the
program initialization code. At initialization, a particular trap number (0 -
15) is specified that refers to the trap vector.

The OS-9 relocatable macro assembler has a special mnemonic
(tcall) for making trap library function calls. The syntax for the tcall
mnemonic is as follows:

tcall <trap library number>, <function code>

Usually, a table of tcalls with associated labels is created for calling
the trap library functions from C programs. For example:

_asm (“
 func1: tcall T_TrapLib1, T_func1
 func2: tcall T_TrapLib1, T_func2
 .
 .
 .
 funcN: tcall T_TrapLib1, T_funcN
“);

Then, the main program can call the functions in the trap library as
follows:

func1(param1, param2, ..., paramN);
124 OS-9 Technical Manual

5Subroutine Libraries and Trap Handlers
The tcall mnemonic causes the program to dispatch the OS-9 kernel
similarly to a system service request. The OS-9 kernel then uses the
trap library identifier to dispatch to the associated trap handler module.

To create a trap handler library, you should create a table of tcall calls
with trap handler and function identifiers as previously described. In
addition, some dispatch and function return codes must be written in
the trap handler module.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information, refer to the trap handler example provided in the
Trap Handlers section in Appendix A: Example Code.

From user programs, you can delay installing a trap module until the first
time it is actually needed. If a trap module has not been installed for a
particular trap when the first tcall is made, OS-9 checks the
program’s exception entry offset. The program is aborted if this offset is
zero. Otherwise, OS-9 passes control to the exception routine. At this
point, the trap handler can be installed, and the first tcall reissued.
OS-9 Technical Manual 125

5 Subroutine Libraries and Trap Handlers
126 OS-9 Technical Manual

Chapter 6: OS-9 File System

This chapter describes the OS-9 disk system file structure, record
locking, and file security. It includes the following topics:

• Disk File Organization

• Raw Physical I/O on RBF Devices

• Record Locking

• Record Locking Details for I/O Functions

• File Security
127

6 OS-9 File System
Disk File Organization

RBF supports a tree-structured file system. The physical disk
organization is designed to do the following:

• Use disk space efficiently

• Resist accidental damage

• Access files quickly

This system also has the advantage of relative simplicity.

Basic Disk Organization

OS-9 supports block sizes ranging from 256 bytes to 32768 bytes in
powers of two. If a disk system is used that cannot directly support the
specified block size, the driver module must divide or combine blocks to
simulate the allowed size.

Disks are often physically addressed by track number, surface number,
and block number. To eliminate hardware dependencies, OS-9 uses a
logical block number (LBN) to identify each block without regard to
track and surface numbering.

It is the responsibility of the disk driver module or the disk controller to
map logical block numbers to track/surface/block addresses. The OS-9
file system uses LBNs from 0 to (n - 1), where n is the total number of
blocks on the drive.

NoteNote
All block addresses discussed in this section refer to LBNs.

The format utility initializes the file system on blank or recycled media
by creating the track/surface/block structure. format also tests the
media for bad blocks and automatically excludes them from the file
system.
128 OS-9 Technical Manual

6OS-9 File System
Every OS-9 disk has the same basic structure. An identification block
is located in logical block zero (LBN 0). It describes the physical and
logical format of the storage volume (disk media). Each volume also
includes a disk allocation map—indicating the free and allocated disk
blocks, and a root directory. The identification block contains block
offsets to the file descriptors of the disk allocation map and root
directory.

Identification Block

LBN zero always contains the following identification block. In addition
to a description of the physical and logical format of the disk, the
identification block contains the volume name, date and time of
creation, and additional information. If the disk is a bootable system
disk, it also includes the starting LBN and size of the sysboot file.
typedef struct idblock {
 u_int32 rid_sync, /* ID block sync pattern */
 rid_diskid, /* disk ID number (pseudo random) */
 rid_totblocks; /* total blocks on media */
 u_int16 rid_cylinders, /* number of cylinders */
 rid_cyl0size /* cylinder 0 size in blocks */
 rid_cylsize, /* cylinder size in blocks */
 rid_heads, /* number of surfaces on disk */
 rid_blocksize, /* the size of a block in bytes */
 rid_format, /* disk format
 Bit 0: 0 = single side
 1 = double side
 Bit 1: 0 = single density
 1 = double density
 Bit 2: 0 = single track (48 TPI)
 1 = double track (96 TPI) */
 rid_flags, /* various flags */
 rid_unused1; /* 32 bit padding */
 u_int32 rid_bitmap, /* block offset to bitmap FD */
 rid_firstboot, /* block offset to debugger FD */
 rid_bootfile, /* block offset to bootfile FD */
 rid_rootdir; /* block offset to root directory FD */
 u_int16 rid_group, /* group owner of media */
 rid_owner; /* owner of media */
 time_t rid_ctime, /* creation time of media */
 rid_mtime; /* time of last write to ID block */
 char rid_name[32], /* volume name */
 rid_endflag, /* big/little endian flag */
 rid_unused2[3]; /* long word padding */
 u_int32 rid_parity; /* ID block parity */
} idblock, *Idblock;
OS-9 Technical Manual 129

6 OS-9 File System
Allocation Map

The allocation map indicates which blocks have been allocated to files
and which are free. Each bit in the allocation map represents a block on
the disk. This means the allocation map varies in size according to the
number of bits required to represent the system. If a bit is set, the block
is either in use, defective, or nonexistent. rid_bitmap specifies the
location of the allocation map file descriptor.

Root Directory

The root directory is the parent directory of all other files and directories
on the disk. This directory is accessed using the physical device name
(such as /d1). The location of the root directory file descriptor is
specified in rid_rootdir.

Basic File Structure

OS-9 uses a multiple-contiguous-segment type of file structure.
Segments are physically contiguous blocks used to store the file’s data.
If all the data cannot be stored in a single segment, additional segments
are allocated to the file. This can occur if a file is expanded after
creation, or if a sufficient number of contiguous free blocks is not
available.

NoteNote
All files have a file descriptor block or FD. An FD contains a list of the
data segments with their starting LBNs and sizes. This is also where
information such as file attributes, owner, and time of last modification
is stored.
130 OS-9 Technical Manual

6OS-9 File System
The OS-9 segmentation method keeps file data blocks in as close
physical proximity as possible to minimize disk head movement.
Frequently, files (especially small files) have only one segment. This
results in the fastest possible access time. Therefore, it is good practice
to initialize the size of a file to the maximum expected size during or
immediately after its creation. This enables OS-9 to optimize its storage
allocation.

The file descriptor structure is made up of one or more physical blocks
on the disk. Only extremely large or fragmented files use more than one
file descriptor block. The last element in a file descriptor is a pair of
links, one to the previous file descriptor block and one to the next file
descriptor block. The end of the file descriptor list is indicated by a next
pointer pointing to the first or root file descriptor block. The information
section of the file descriptor block is only valid in the root file descriptor
block. Only the system uses the file descriptor structure; you cannot
directly access the file descriptor.
OS-9 Technical Manual 131

6 OS-9 File System
fd_stats

The following structure, defined in the header file rbf.h, describes the
contents of a file descriptor block.

Declaration
typedef struct fd_stats {
 u_int32 fd_sync, /* file descriptor sync field */
 fd_parity, /* validation parity */
 fd_flag; /* flag word */
 u_int16 fd_host, /* file host owner */
 fd_group, /* file group number */
 fd_owner, /* file owner number */
 fd_links; /* number of links to FD */
 u_int32 fd_size; /* size of file in bytes */
 time_t fd_ctime, /* creation timestamp */
 fd_atime, /* last access timestamp */
 fd_mtime, /* last modified timestamp */
 fd_utime, /* last changed timestamp */
 fd_btime; /* last backup timestamp */
 u_int16 fd_rev, /* RBF revision that created the FD */
 fd_unused; /* spare */
} fd_stats;

Fields

fd_sync Identifies this block as a file descriptor
block. It is set to 0xfdb0b0fd.

fd_parity Contains a 32-bit vertical parity value for
the file descriptor block. It is always
updated to validate the file descriptor
block contents, whether in memory or on
disk, to ensure the accuracy of the file
structure.
132 OS-9 Technical Manual

6OS-9 File System
fd_flags Contains the attributes and permissions
of the file.

Table 6-1 Flags

Flag Description

FD_SMALLFILE File is small enough to fit in the file
descriptor

FD_DIRECTORY File is a directory

FD_EXCLUSIVE Only one active open allowed

PERM_OWNER_READ Read permission by owner

PERM_OWNER_WRITE Write permission by owner

PERM_OWNER_SRCH Search permission by owner

PERM_OWNER_EXEC Execute permission by owner

PERM_GROUP_READ Read permission by group

PERM_GROUP_WRITE Write permission by group

PERM_GROUP_SRCH Search permission by group

PERM_GROUP_EXEC Execute permission by group

PERM_WORLD_READ Read permission by world

PERM_WORLD_WRITE Write permission by world

PERM_WORLD_SRCH Search permission by world

PERM_WORLD_EXEC Execute permission by world
OS-9 Technical Manual 133

6 OS-9 File System
All bits not defined above are reserved

fd_host Contains the host owner number of the
user to which the file belongs

fd_group Contains the group number of the user
to which the file belongs. This is initially
set to the group number of the process
creating the file. Only the owner of the
file or a super user can change the
group number

fd_owner Contains the owner number of the user
to which the file belongs. This is initially
set to the owner number of the process
creating the file. Only the owner of the
file or a super user can change the
owner number

fd_links Contains the number of hard links to this
file. A hard link is a directory entry
pointing to this file

fd_size Contains the size of the file in bytes

fd_ctime Contains a time stamp representing the
time when the file descriptor was initially
created. This time stamp is never
changed

fd_atime Contains a time stamp representing the
time when the file was last accessed.
This time stamp is updated whenever
the file is opened, read, or written. If the
file is a directory file, this field is not
updated when it is searched by RBF

fd_mtime Contains a time stamp representing the
time when the file was last modified. The
time stamp is updated whenever a file is
opened for write or a write is performed
on the file
134 OS-9 Technical Manual

6OS-9 File System
fd_utime Contains a time stamp representing the
time when the file was last changed. The
time stamp is updated whenever a write
is performed on the file or the file
descriptor data changes

fd_btime Contains a time stamp representing the
last time a back up of the file was made.
The backup program (fsave) updates
the time stamp whenever a back up of
the file is made

fd_rev Contains the edition number of the RBF
file manager that created the file
descriptor

fd_unused Reserved

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The remainder of the file descriptor block up to the last eight bytes is
filled with segment descriptors, unless the file is a small file. Refer to
the Small Files section for details about small files.

The number of segment descriptors in the file descriptor block depends
on the logical block size. The structure of a segment descriptor is shown
here and defined in the header file rbf.h. The seg_offset field
contains the LBN of the first block in this segment and the seg_count
field contains the number of logical blocks in the segment.

typedef struct fd_segment {
 u_int32 seg_offset, /* segment block offset */
 seg_count; /* segment block count */
} fd_segment;
OS-9 Technical Manual 135

6 OS-9 File System
The last part of the file descriptor block contains links to other file
descriptors for a file. If there is only one file descriptor for the file, these
fields point to the one file descriptor block. The links structure is shown
here and defined in the header file rbf.h.

typedef struct fd_links {
 u_int32 link_prev, /* previous fd block */
 link_next; /* next fd block */
} fd_links;

Small Files

OS-9 RBF implements a class of files called small files. A file is
considered small when its contents fit in the area of the file descriptor
reserved for segments. A small file has the FD_SMALLFILE bit set in
the fd_flag field. From a user’s perspective, small files behave exactly
like other files. RBF automatically changes a small file to a non-small
file if the file grows too big to fit in the file descriptor block.

Logical Block Numbers

RBF maintains the file pointer and logical end-of-file used by application
software and converts them to the logical disk block number using the
data in the segment list.

You do not have to be concerned with physical blocks. OS-9 provides
fast random access to data stored anywhere in the file. All the
information required to map the logical file pointer to a physical block
number is packaged in the file descriptor block. This makes the OS-9
record-locking functions very efficient.

Segment Allocation

Each device descriptor module has a value called a segment
allocation size, that specifies the minimum number of blocks to
allocate to a new segment. Set this value so file expansions do not
136 OS-9 Technical Manual

6OS-9 File System
produce a large number of tiny segments. If the system uses a small
number of large files, set this field to a relatively high value, and vice
versa.

When a file is created, it has no data segments allocated. Write
operations past the current end-of-file allocate additional blocks to the
file. The first write is always past the end-of-file. Generally, subsequent
file expansions are also made in minimum allocation increments.

An attempt is made to expand the last segment before adding a new
segment.

If all of the allocated blocks are not used when the file is closed, the
segment is truncated and any unused blocks are deallocated in the
bitmap. For random-access databases that expand frequently by only a
few records, the segment list rapidly fills with small segments. A
provision has been added to prevent this from being a problem.

If a file (opened in write or update mode) is closed when it is not at
end-of-file, the last segment of the file is not truncated. All programs
dealing with a file in write or update mode must not close the file while
at end-of-file, or the file loses its excess space. The easiest way to
ensure this is to perform a seek(0) before closing the file. This method
was chosen because random access files are frequently somewhere
other than end-of-file, and sequential files are almost always at
end-of-file when closed.

Directory File Format

Directory files have the same structure as other files, except the logical
contents of a directory file conform to the following conventions:

• A directory file consists of an integral number of 64-byte entries.

• The end of the directory is indicated by the normal end-of-file.

• Each entry consists of a field for the file name and a field for the
address of the first file descriptor block of the file.
OS-9 Technical Manual 137

6 OS-9 File System
The structure of a directory entry is shown here and defined in the
header file rbf.h. The file name field (dir_name) contains the null
terminated file name. The first byte is set to zero (a null string) to
indicate a deleted or unused entry. The address field (dir_fd_addr)
contains the LBN of the first file descriptor block.
#define MAXNAME 43 /* size of name */
#define DIRENTSIZE 64 /* size of directory entry */
typedef struct dirent {
 char dir_name[MAXNAME+1], /* name of file */
 dir_unused[DIRENTSIZE-MAXNAME-sizeof(u_int32)-1];
 u_int32 dir_fd_addr; /* where file’s FD is */
} dirent;

When a directory file is created, two entries are automatically created:
the dot (.) and double dot (..) directory entries. These specify the
directory and its parent directory, respectively.
138 OS-9 Technical Manual

6OS-9 File System
Raw Physical I/O on RBF Devices

You can open an entire disk as one logical file. This enables you to
access any byte(s) or block(s) by physical address without regard to the
normal file system. This feature is provided for diagnostic and utility
programs that must be able to read and write to ordinarily
non-accessible disk blocks.

A device is opened for physical I/O by appending the “at” character (@)
to the device name. For example, you can open the device /d2 for raw
physical I/O under the pathlist: /d2@.

Standard open, close, read, write, and seek system calls are used for
physical I/O. A seek system call positions the file pointer to the actual
disk physical address of any byte. To read a specific block, perform a
seek to the address computed by multiplying the LBN by the logical
block size. For example, to read physical disk block 3 on media with a
logical block size of 256, a seek is performed to address 768 (256*3),
followed by a read system call requesting 256 bytes.

If the number of blocks per track of the disk is known or read from the
identification block, any track/block address can be readily converted to
a byte address for physical I/O.

WARNING!
Use the special @ file in update mode with extreme care. To keep
system overhead low, record locking routines only check for conflicts on
paths opened for the same file. The @ file is considered different from
any other file and only conforms to record lockouts with other users of
the @ file.

Improper physical I/O operations can corrupt the file system. Take great
care when writing to a raw device. Physical I/O calls also bypass the file
security system. For this reason, only super users can open the raw
device for write permit. Non-super users are only permitted to read the
identification block (LBN 0). Attempts to read past this return an
end-of-file error.
OS-9 Technical Manual 139

6 OS-9 File System
Record Locking

Record locking is a general term referring to preserving the integrity of
files that more than one user or process can access. This involves
recognizing when a process is trying to read a record another process
may be modifying and deferring the read request until the record is safe.
This process is referred to as conflict detection and prevention. RBF
record locking also handles non-sharable files and deadlock detection.

OS-9 record locking is transparent to application programs. Most
programs may be written without special concern for multi-user activity.

Record Locking and Unlocking

Conflict detection must determine when a record is being updated. RBF
provides true record locking on a byte basis. A typical record update
sequence is as follows:
_os_read(path, count, buffer) program reads record;
 RECORD IS LOCKED
 .
 . program updates record
 .
_os_seek(position) reposition to record
_os_write(path, count, buffer) record is rewritten;
 RECORD IS RELEASED

When a file is opened in update mode, any read operation locks out the
record because RBF is not aware if the record may be updated. The
record remains locked until the next read, write, or close operation
occurs. Reading files opened in read or execute modes does not lock
the record because records cannot be updated in these modes.

A subtle problem exists for programs using a database and occasionally
updating its data. When you look up a particular record, the record may
be locked out indefinitely if the program neglects to release it. This
problem is characteristic of record locking systems and can be avoided
by careful programming.
140 OS-9 Technical Manual

6OS-9 File System
NoteNote
Only one portion of a file may be locked out at one time. If an
application requires more than one record to be locked out, multiple
paths to the same file may be opened with each path having its own
record locked out. RBF notices the same process owns both paths and
keeps them from locking each other out. Alternately, the entire file may
be locked out, the records updated, and the file released.

Non-Sharable Files

You can lock files when an entire file is considered unsafe for use by
more than one user. On rare occasions, it is necessary to create a
non-sharable file. A non-sharable file can never be accessed by more
than one process at a time.

To create a non-sharable file, set the exclusive access (x) bit in the file
attribute byte. The bit can be set when the file is created, or later using
the attr utility.

If the exclusive access bit has been set, only one process may open the
file at a time. If another process attempts to open the file, an error
(EOS_SHARE) is returned.

More commonly, a file needs to be non-sharable only while a specific
program is executing. To do this, open the file with the exclusive-access
bit set in the access mode parameter.

One example might be when a file is being sorted. If the file is opened
as a non-sharable file, it is treated as though it had an exclusive access
attribute. If the file has already been opened by another process, an
error (EOS_SHARE) is returned.

A necessary quirk of non-sharable files is they may be duplicated using
the I_DUP system call, or inherited. Therefore, a non-sharable file may
actually become accessible to more than one process at a time.
OS-9 Technical Manual 141

6 OS-9 File System
Non-sharable only means the file may be opened once. It is usually a
bad idea to have two processes actively using any disk file through the
same (inherited) path.

End of File Lock

An EOF lock occurs when you read or write data at the end-of-file. The
end-of-file is kept locked until a read or write is performed that is not at
end-of-file. EOF lock is the only case when a write call automatically
locks out any of the file. This avoids problems that may otherwise occur
when two users want to extend a file simultaneously.

An interesting and useful side effect occurs when a program creates a
file for sequential output. As soon as the file is created, EOF lock is
gained, and no other processes can pass the writer in processing the
file.

For example, if an assembly listing is redirected to a disk file, a spooler
utility may open and begin listing the file before the assembler writes the
first line of output. Record locking always keeps the spooler one step
behind the assembler, making the listing come out as desired.

Deadlock Detection

A deadlock can occur when two processes simultaneously attempt to
gain control of the same two disk areas. If each process gets one area
(locking out the other process), both processes can become stuck
permanently, waiting for a segment that can never become free. This
situation is a general problem not restricted to any particular record
locking method or operating system.

If this occurs, a deadlock error (EOS_DEADLK) is returned to the
process that detects the deadlock. The easiest way to avoid deadlock
errors is to access records of shared files in the same sequences in all
processes that may be run simultaneously. For example, always read
the index file before the data file, never the data file before the index file.
142 OS-9 Technical Manual

6OS-9 File System
When a deadlock error occurs, a program cannot simply retry the
operation in error. If all processes used this strategy, none would ever
succeed. At least one process must release control over a requested
segment for any to proceed.
OS-9 Technical Manual 143

6 OS-9 File System
Record Locking Details for I/O Functions

Record locking details are described, by function, in the following
subsections.

Open/Create

When opening files, the most important guideline to follow is not to open
a file for update if it is only necessary to read. Files open for read only
do not lock out records and generally help the system run faster. If
shared files are routinely opened for update on a multi-user system, you
may become hopelessly record locked for extended periods of time.

WARNING!
Use the special @ file in update mode with extreme care. To keep
system overhead low, record locking routines only check for conflicts on
paths opened for the same file. The @ file is considered different from
any other file and only conforms to record lockouts with other users of
the @ file.

Read/ReadLine

Read and ReadLine lock out records only if the file is open in update
mode. The locked out area includes all bytes starting with the current
file pointer and extending for the requested number of bytes.

For example, if a ReadLine call is made for 256 bytes, exactly 256
bytes are locked out, regardless of how many bytes are actually read
before a carriage return is encountered. EOF lock occurs if the bytes
requested also include the current end-of-file.
144 OS-9 Technical Manual

6OS-9 File System
A record remains locked until any of the following occur:

• Another read is performed

• A write is performed

• The file is closed

• An I_SETSTAT, SS_LOCK set status call is issued

Releasing a record does not normally release EOF lock. A read or write
of zero bytes releases any record lock, EOF lock, or file lock.

Write/WriteLine

Write calls always release any record that has been locked out. In
addition, a write of zero bytes releases EOF lock and file lock. Writing
usually does not lock out any portion of the file unless it occurs at
end-of-file, when it gains EOF lock.

Seek

Seek does not effect record locking.

SetStatus

Two SetStats have been included for the convenience of record locking:

I_SETSTAT, SS_LOCK Locks or releases part of a file.

I_SETSTAT, SS_TICKS Sets the length of time a program waits
for a locked record.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See the I_SETSTAT entry in Chapter 8: OS-9 System Calls for a
description of the codes.
OS-9 Technical Manual 145

6 OS-9 File System
File Security

Each file has a group/user ID identifying the owner of the file. These are
copied from the current process descriptor when the file is created.
Usually a file’s owner ID is not changed.

An attribute word is also specified when a file is created. The file’s
attribute word tells RBF in which modes the file may be accessed.
Together with the file’s owner ID, the attribute word provides (some) file
security.

The attribute word has three sets of bits indicating whether a file may be
opened for read, write, or execute by the owner, group, or public.

• An owner is a user with the same owner ID.

• The group includes all users with the same group ID.

• The public includes all users.

When a file is opened, access permissions are checked on all
directories specified in the pathlist, as well as the file itself. If you do not
have permission to search a directory, you cannot read any files in that
directory.

A super user (a user with group ID of zero) may access any file in the
system. Files owned by the super user cannot be accessed by users of
any other group unless specific access permissions are set. Files
containing modules owned by the super user must also be owned by
the super user. If not, the modules contained within the file can not be
loaded.

The RBF file descriptor stores the group/user ID in two 16-bit fields
(fd_group and fd_owner).

WARNING!
The system manager must exercise caution when assigning group/user
IDs.
146 OS-9 Technical Manual

6OS-9 File System
PC File Manager (PCF)

While most of this chapter covers RBF issues, there are some PCF
issues the user needs to know.

PCF is a reentrant subroutine package that handles I/O service
requests for random-access PC-DOS/MS-DOS disk devices. PCF can
handle any number of such devices simultaneously, and is responsible
for maintaining the defined logical file structure on the
PC-DOS/MS-DOS disk drive.

PCF supports FAT12, FAT16, and FAT32 file formats. Long file names
(called VFAT), introduced with the advent of Windows 95, are fully
supported. PCF will automatically choose the correct FAT algorithms for
the device that is accessed. When creating a FAT file system, FAT12
should be used for devices under 32MB in size and FAT16 should be
used for devices under 2GB in size. The requirements of FAT32
increase overhead and will slow down disk access.

Getting Top Performance from PCF

While PCF has been designed to achieve as much performance as
possible, there are a few steps that applications can take to insure that
PCF achieves maximum throughput:

• Initialize all PCF devices
For performance reasons, PCF reads the entire disk’s FAT into
memory at open time. If the device is not initialized, the reading of
the FAT can occur as many times as a file is opened on the device.
To insure the FAT is read once per device, initialize the device before
using it. This will decrease file open times, especially on slower
devices such as floppy drives or large devices such as hard drives
larger than 512MB.

• Pre-extend files when writing
One way of increasing write performance is to pre-extend the file’s
size by using the _os_ss_size() function. Note that the
FAM_SIZE bit in _os_create() is not recognized by PCF.
OS-9 Technical Manual 147

6 OS-9 File System
Differences from RBF

While PCF maintains very good compatibility with existing OS-9 disk
utilities, there are some subtle differences that should be noted.

• Absence of Record Locking
Unlike RBF, PCF does not employ record locking on a file. However,
to prevent conflicts between processes, device locking is used at
each entry point of the PCF file manager.

• FAM_SIZE
Under RBF, a typical way to pre-extend the size of a file at create
time is to pass FAM_SIZE as a parameter to the _os_create()
function; however, the PCF file manager does not recognize this
parameter. If file pre-sizing is desired, use the _os_ss_size()
function.

• The PCF directory structure has a different format than that of RBF.
If the application reads the directory raw and parses the entries, it
must be written to accommodate the PCF directory format. It is
highly recommended that an application which needs to read
directory structure information use the portable functions: opendir(),
readdir(), and closedir(). These functions are compatible with all
OS-9 file storage managers.
148 OS-9 Technical Manual

Chapter 7: Resource Locking

This chapter describes the lock structure definition, lock creation, signal
lock relationships, and FIFO buffer usage. It includes the following
topics:

• Overview

• Preallocate Locks as Part of the Resource

• Signals and Locks

• FIFO Buffers
149

7 Resource Locking
Overview

The OS-9 I/O system uses resource locking calls to provide exclusive
access to critical regions and help ensure proper resource
management. If you write file managers or drivers, review this chapter
for an explanation of resource locking and implementation details.

Resource locking helps prevent data corruption by limiting process
access to critical sections of code; it protects data structures from
simultaneous modification by multiple processes. To manage processes
waiting to enter critical areas, resource locking provides an associated
queue. The queue orders lock requests according to the relative priority
of the calling process.

NoteNote
Resource locking is only available in system state.

The following are the OS-9 resource locking calls. Refer to Chapter 8:
OS-9 System Calls for a detailed description of each call.

Table 7-1 OS-9 Resource Locking Calls

Call Description

F_ACQLK Acquire ownership of a resource lock.

F_CAQLK Conditionally acquire ownership of a resource lock.

F_CRLK Create a new resource lock descriptor.

F_DELLK Delete an existing lock descriptor.
150 OS-9 Technical Manual

7Resource Locking
Lock Structure Definition

The lock structure definition for the kernel is as follows:

typedef struct lock_desc *lock_id;
typedef struct lock_desc {
 lock_id l_id; /* lock identifier */
 Pr_desc l_owner, /* current owner */
 l_lockqn, /* next process in lock list */
 l_lockqp; /* previous process in lock list */
} lk_desc, *Lk_desc;

Conceptually, this structure could be shown as:

Figure 7-1 Lock Structure

The next and previous boxes represent the queuing capabilities of
resource locking calls. When one or more processes are waiting to
acquire a lock, they work with corresponding process descriptor fields to
determine which process should receive the lock next. Lock requests
are queued in the order in which they are received, according to their
relative priority. Higher priority processes are queued ahead of lower
priority processes.

F_RELLK Release ownership of a resource lock.

F_WAITLK Activate the next process waiting to acquire a lock,
and suspend the current process.

Table 7-1 OS-9 Resource Locking Calls (continued)

Call Description

PreviousNext
Owner

Process
Lock ID
OS-9 Technical Manual 151

7 Resource Locking
Create and Delete Resource Locks

OS-9 provides a call to dynamically create and initialize a resource lock.
The F_CRLK call allocates data space for the lock, initializes the
associated queue, and sets the lock ownership to a free state. A lock
identifier is returned for subsequent use by the lock calls.

NoteNote
The lock identifier is the address of the lock structure.

When a lock is no longer needed, you can use the F_DELLK call to
deallocate it. The data space for the lock is returned to the system. Prior
to deleting a lock you must ensure any processes waiting in its queue
are removed from the queue and re-activated. The F_DELLK call does
not check the queue for waiting processes; it is the responsibility of the
application to empty the waiting queue of the lock. The following C
language example demonstrates how to dynamically create and delete
a resource lock.

#include <types.h>
#include <lock.h>

Lk_desc lock; /* declare a pointer to a lock structure */

 /* dynamically allocate a new lock */
if ((error = _os_crlk(&lock)) != SUCCESS)
 return error;

/* an example use of the lock */
if ((error = _os_acqlk(lock, &signal)) != SUCCESS)
 return error;
/* delete the lock */
_os_dellk (lock);
152 OS-9 Technical Manual

7Resource Locking
Preallocate Locks as Part of the Resource

To reduce the overhead and memory fragmentation caused by
dynamically created locks, you can declare the lock structure for a given
resource as part of the resource structure. Prior to using the lock, you
must initialize the lock structure fields. For example:

#include <types.h>
#include <const.h>
#include <lock.h>
#include <process.h>

/* Resource declaration with the lock structure included */
struct xyz {
 lk_desc lock;
 int a;
 char *b;
 unsigned c;
} resource;

/* set the lock identifier */
resource.lock.l_id = &resource.lock;

/* declare the lock free */
resource.lock.l_owner = NULL;

/* initialize the lock structure’s queue pointers */
resource.lock.l_lockqp = resource.lock.l_lockqn =
 FAKEHD(Pr_desc, resource.lock.l_lockqn, p_lockqn);

NoteNote
The FAKEHD initialization macro is located in the const.h header file.

At this point, the lock within the resource structure is ready for use.
Subsequent lock calls are made by passing the address of the lock as
its identifier. The following acquire lock example demonstrates this:

/* use a lock declared within a resource structure */
if ((error = _os_acqlk(&resource.lock, &signal)) != SUCCESS)
 return error;
OS-9 Technical Manual 153

7 Resource Locking
Signals and Locks

Locks have an associated queue used for suspending processes
waiting to acquire a busy lock. If the lock is busy, the acquiring process
is placed in the queue according to the relative priorities of any other
waiting processes. When the owner process releases its ownership of
the lock, the next process in the queue is activated and granted sole
ownership of the lock. On the new owner’s next time slice, the process
returns from the acquire lock system call without error and continues to
execute from that point. Normally, this is the proper sequence of events;
the active process has ownership of the resource. But it is possible for a
process to be prematurely activated prior to acquiring ownership of the
lock.

If, for example, the process receives a signal while waiting in the lock
queue, the process is activated without acquiring the lock and the
acquire lock call returns an EOS_SIGNAL error. To avoid this error, it is
critical that applications check the return value of the acquire lock calls
to validate whether or not the active process has gained ownership of
the lock. If a process is activated by a signal, the application writer
determines how to respond to the error condition. The application may
abort its operation and return with an error, or ignore the signal and
attempt to re-acquire the lock. Depending on the application, either
action may be appropriate.

Signal Sensitive Locks

The following example uses a lock to protect a critical section of code
modifying a non-sharable resource. This example is completely
sensitive to any signals a process may receive while waiting to acquire
the lock. A process receiving a signal while waiting in this lock’s queue
is activated and the acquire lock call returns the error EOS_SIGNAL.
#include <lock.h>
#include <types.h>
#include <errno.h>

lk_desc lock;
signal_code signal;
154 OS-9 Technical Manual

7Resource Locking
/* acquire exclusive access to the resource */
if ((error = _os_acqlk(&lock, &signal)) != SUCCESS)
 return error;

<critical section>

/* release exclusive access to the resource and activate the next process */
_os_rellk(&lock);

Ignoring Signals

There may be situations when a process is prematurely activated by a
signal, and it is not appropriate for the application to simply return an
error. In this case, the application may ignore the activating signal and
error and attempt to re-acquire the lock.

The activating signal is not lost. The operating system queues it on
behalf of the process. Upon return from system state, the signal is
delivered to the process through its signal intercept routine.

This acquire lock example demonstrates how to use locks that ignore
signals.
#include <lock.h>
#include <types.h>
#include <errno.h>

lk_desc lock;
signal_code signal;
while ((error = _os_aqclk(&lock, &signal)) != SUCCESS) {
 if (error == EOS_SIGNAL)
 continue; /* signal received, ignore it */
 else
 return error; /* some other erroneous condition */

 <critical section>

 /* release exclusive access to the resource and activate the next process */
 _os_rellk(&lock);
}

OS-9 Technical Manual 155

7 Resource Locking
The following is an example of a lock that is partially sensitive to signals.
It ignores any non-deadly signals a process might receive, but returns
an error for any deadly signal. In this case, a deadly signal is any signal
with a value less than 32.
#include <lock.h>
#include <types.h>
#include <errno.h>

lk_desc lock;
signal_code signal;
while ((error = _os_aqclk(&lock, &signal)) != SUCCESS) {
 if (error == EOS_SIGNAL) {
 if (signal >= 32)
 continue; /* signal greater than 32 received, ignore it */
 else
 return error; /* signal less than 32 received */
 }
 else break; /* some other erroneous condition */
 <critical section>
 /* release exclusive access to the resource and activate the next process */
 _os_rellk(&lock);
}

156 OS-9 Technical Manual

7Resource Locking
FIFO Buffers

You can use locks to synchronize the reader and writer of a FIFO buffer
resource. The resource has an associated lock; any reader or writer
requiring access to the resource must first acquire the resource lock.
After acquiring the resource, the process may proceed to modify the
buffer. If during the course of modification the reader empties the buffer
or the writer fills the buffer, the F_WAITLK call suspends the process to
wait for more data to enter or leave the buffer.
#include <lock.h>
#include <types.h>
#include <errno.h>

lk_desc lock;
signal_code signal;

/* acquire exclusive access to the resource */
if ((error = _os_acqlk(&lock, &signal)) != SUCCESS) return error;

/* loop until total number of bytes is read/written */
while (bytes_read/bytes_written < bytes_to_read/bytes_to_write) {

 /* check for bytes available to read/write */
 if (bytes_available == 0) {

 /* no bytes available, so release the ownership of the lock, */
 /* activate the reader/writer if it is waiting, and unconditionally */
 /* suspend the current reader/writer */
 if ((error = _os_waitlk(&lock, &signal)) != SUCCESS)
 return error;
 }
 else {

 <transfer bytes>

 }
}
/* number of bytes to read/write has been satisfied, so release lock */
_os_rellk(&lock);
OS-9 Technical Manual 157

7 Resource Locking
Process Queuing

The diagram below is a conceptual illustration of the queuing process
and the effect of various calls on the lock structure.

Figure 7-2 Effect of Various Calls on the Lock Structure

Previous=0Next = 0
Owner

Process = 0Lock ID

F_ACQLK
Process: 1
Priority: 90

F_ACQLK
Process: 2
Priority: 100

F_ACQLK
Process: 3
Priority: 110

F_CALQLK
Process: 4
Priority: 115

F_RELLK
Process: 1
Priority: 90

Previous=2Next = 3
Owner

Process = 1
Lock ID

Previous=2Next = 3
Owner

Process = 1Lock ID

Previous=2Next = 2
Owner

Process = 3
Lock ID

Previous=2Next = 2
Owner

Process = 1Lock ID

Previous=0Next = 0
Owner

Process = 1
Lock ID

The owner process = 0, so the
lock is available to process 1.
Process 1 now owns the lock.

This call places process 2 in the
queue. Process 2 must wait
until process 1 releases the lock
before it can be the owner
process.

This call causes the queue to
be re-ordered because process
3 has a higher priority than
process 2. Process 3 will be the
next one to acquire the lock.

This conditional acquire call
has no effect on the lock
structure; it is only performed if
the lock is now owned by
another process. In this case, it
returns error EOS_NOLOCK .

This call releases process 1.
The lock is now available to
process 3. Process 2 moves up
in line; it can acquire the lock
after process 3 is released.
158 OS-9 Technical Manual

7Resource Locking
The following figure show the locking sequence with one process and
with multiple processes.

Figure 7-3 Locking Sequence

PreviousNext
Owner

Process
Lock ID

proc ID 1
priority 100

next
previous

Owner Process

proc ID 3
priority 110

next
previous

proc ID 2
priority 100

next
previous

PreviousNext
Owner

Process
Lock ID

Owner Process

proc ID 1
priority 100

next
previous

Process Waiting for Lock

Single Process

Multiple Processes
OS-9 Technical Manual 159

7 Resource Locking
160 OS-9 Technical Manual

Chapter 8: OS-9 System Cal ls

This chapter explains how to use OS-9 system calls and contains an
alphabetized list of all OS-9 system calls. It includes the following
topics:

• Using OS-9 System Calls

• System Calls Reference
161

8 OS-9 System Calls
Using OS-9 System Calls

System calls are used to communicate between the OS-9 operating
system and C or assembly language programs. There are four general
categories of system calls:

• User-state system calls

• I/O system calls

• System-state system calls

• System-state I/O system calls

All of the OS-9 system calls require a single parameter to be passed to
the operating system, called the parameter block. Parameter blocks are
the means by which applications and system software pass parameters
to the operating system for service requests. When a system call is
performed, a pointer to the associated service request parameter block
is passed to the operating system. The operating system acquires the
specific parameters it needs for the service request from the parameter
block and returns any result parameters through the parameter block.

Every system call parameter block contains the same substructure,
syscb. syscb contains:

• An identifier of the service request

• The edition number of the service request interface

• The size of the associated parameter block

• A result field for returning error status

For programming convenience, a C language system call library
containing a C interface for each of the OS-9 system calls is provided. A
complete description of the C language interface for each of the system
calls can be found in the Ultra C Library Reference.
162 OS-9 Technical Manual

8OS-9 System Calls
_oscall Function

There is a single routine located in the system call library providing the
gateway into the operating system. The _oscall function expects a
parameter block pointer and uses whatever trap or software interrupt
facility is available on a given hardware platform to enter into the
operating system.

The _oscall() request is a common interface to the kernel and the
mechanism by which all OS-9 system calls are made. _oscall() has
one parameter: the address of a parameter block or structure belonging
to the system call. Each OS-9 system call binding creates a parameter
block that is passed to the kernel by _oscall().

For example, the C binding for the F_FMOD system call fills the
parameter block and passes the address of the block directly to the
kernel through _oscall():
#include "defsfile"

/* _os_fmod - find module directory entry service request. */
_os_fmod(type_lang, moddir_entry, mod_name)
u_int16 *type_lang;
Mod_dir *moddir_entry;
u_char *mod_name;
{
 register error_code error;
 f_findmod_pb pb; /* declare parameter block of appropriate type */

 pb.cb.code = F_FMOD; /* fill parameter block field;
 fn code defined in funcs.h */
 pb.cb.param_size = sizeof f_findmod_pb; /* fill parameter block field */
 pb.cb.edition = _OS_EDITION; /* fill edition number */

 pb.type_lang = *type_lang; /* fill parameter block field */
 pb.mod_name = mod_name; /* fill parameter block field */
 if ((error = _oscall(&pb)) == SUCCESS) { /* make _oscall */
 type_lang = pb.type_lang; / return value */
 moddir_entry = pb.moddir_entry; / return value */
 }
 return error;
}

OS-9 Technical Manual 163

8 OS-9 System Calls
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about installing system calls, refer to the
description of the F_SSVC.

A complete list of structures for OS-9 system calls is included in
Chapter 1: System Overview.

Using the System Calls

The typical sequence for executing an OS-9 system call would be as
follows:

Step 1. Allocate a parameter block specific to the system call.

Step 2. Initialize the parameter block including the system sub-block.

Step 3. Call the operating system (through _oscall).

Step 4. Check for errors upon return.

Step 5. Process return parameters, if applicable.

All of the predefined parameter blocks for the OS-9 are located in the
srvcb.h header file. Each system call description within this chapter
includes a full description of the parameter block structure specific to
the system call, as well as a full summary of the functionality of the
system call.
164 OS-9 Technical Manual

8OS-9 System Calls
System Call Descriptions

The OS-9 Attributes field indicates the state of each call, whether the
call is an I/O call, and if the call can be used during an interrupt. The
characteristic for each field (for example user, system, I/O, or interrupt)
is listed where appropriate. In addition, the OS-9 Attributes table
indicates whether a function is thread-safe or -unsafe.

System-state system calls are privileged. They may be executed only
while OS-9 is in system state (for example, when it is processing
another service request or executing a file manager or device driver).
System-state functions are included in this manual primarily for the
benefit of those programmers who write device drivers and other
system-level applications.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a full description of system state and its uses, refer to Chapter 2:
The Kernel.

Some system calls generate errors themselves; these are listed as
Possible Errors. If the returned error code does not match any of the
given possible errors, it was probably returned by another system call
made by the main call. In the system call description section, strings
passed as parameters are terminated by a null byte.

NoteNote
If you use the system calls from assembly language, do not alter
registers.
OS-9 Technical Manual 165

8 OS-9 System Calls
Interrupt Context

WARNING!
If you use any system calls in an interrupt service routine that are not
listed in Table 8-1, you can corrupt the integrity of your system.

Table 8-1 System Calls That Can Be Made In an Interrupt Context

Call Call Call Call

F_ALARM,
A_RESET

F_EVENT,
EV_SET

F_GPRDBT F_SUSER

F_APROC F_EVENT,
EV_SETAND

F_ICPT F_SYSID

F_CAQLK F_EVENT,
EV_SETOR

F_ID F_TIME

F_CCTL
(System
State)

F_EVENT,
EV_SETR

F_INITDATA F_UACCT

F_CLRSIGS F_EVENT,
EV_SETXOR

F_MOVE I_CIOPROC

F_CPYMEM F_EVENT,
EV_SIGNL

F_SEND I_GETDL

F_EVENT,
EV_INFO

F_EVENT,
EV_UNLNK

F_SETSYS I_GETPD
166 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT,
EV_LINK

F_EVENT,
EV_WAIT

F_SPRIOR I_GETSTAT,
SS_COPYPD

F_EVENT,
EV_PULSE

F_EVENT,
EV_WAITR

F_SSPD I_GETSTAT,
SS_DEVNAME

F_EVENT,
EV_READ

F_FMOD F_SSVC I_GETSTAT,
SS_DEVTYPE

Table 8-1 System Calls That Can Be Made In an Interrupt Context
(continued)

Call Call Call Call
OS-9 Technical Manual 167

8 OS-9 System Calls
System Calls Reference

This section describes the system calls in detail.
168 OS-9 Technical Manual

8OS-9 System Calls
F_ABORT Emulate Exception Occurrence

Headers

#include <regs.h>

Parameter Block Structure

typedef struct f_abort_pb {
syscb cb;
u_int32 strap_code,

address,
except_id;

} f_abort_pb, *F_abort_pb;

OS-9 Attributes

Description

F_ABORT emulates the occurrence of an exception. This service
request executes the same recovery code in the OS used to recover
from exceptions occurring in the system. The OS responds to this
service just as it would if the specified exception had actually occurred.
This allows applications or system extension modules to force an
exception condition without actually triggering the exception. An
application may use this service to test its exception handlers that were
installed using the F_STRAP service.

This service is used by some of the floating-point emulation extension
modules on processors lacking hardware floating-point support to
trigger floating-point exception conditions detected during software

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 169

8 OS-9 System Calls
emulation of floating-point instructions. The service emulates the
floating-point exceptions that would have occurred if the floating-point
instructions had been executed by real hardware.

Parameters

cb is the control block header.

strap_code is the associated code used in the
F_STRAP service request to setup an
exception handler. It is the F_STRAP
code of the exception to emulate. The
F_STRAP codes are defined in the
reg<CPU>.h header file for the target
CPU platform.

address is the address of where the exception is
to have occurred.

except_id is the hardware vector identifier of the
exception to emulate. The exception
vector identifiers are defined in the
reg<CPU>.h header file for the target
CPU platform.

See Also

F_STRAP
170 OS-9 Technical Manual

8OS-9 System Calls
F_ACQLK Acquire Ownership of Resource Lock

Headers

#include <lock.h>
#include <types.h>

Parameter Block Structure

typedef struct f_acqlk_pb {
syscb cb;
lock_id lid;
signal_code signal;

} f_acqlk_pb, *F_acqlk_pb;

OS-9 Attributes

Description

F_ACQLK acquires ownership of a resource lock (it attempts to gain
exclusive access to a resource).

If the lock is not owned by another process, the calling process is
granted ownership and the call returns without error.

If the lock is already owned, the calling process is suspended and
inserted into a waiting queue for the resource based on relative
scheduling priority.

When ownership of the lock is released, the next process in the queue
is granted ownership and is activated. The activated process returns
from the system call without error. If, during the course of waiting on a
lock, a process receives a signal, the process is activated without

State Threads Compatibility

System Safe
OS-9 Technical Manual 171

8 OS-9 System Calls
gaining ownership of the lock. The process returns from the system call
with an EOS_SIGNAL error code and the signal code returned in the
signal pointer.

If a waiting process receives an S_WAKEUP signal, the signal code does
not register and will be zero.

Parameters

cb is the control block header.

lid is the lock identifier of the lock you are
attempting to acquire.

signal is the signal prematurely terminating the
acquisition of the lock.

Possible Errors

EOS_SIGNAL

See Also

F_CAQLK
F_CRLK
F_DELLK
F_RELLK
F_WAITLK

Refer to Chapter 7: Resource Locking for more information on locks.
172 OS-9 Technical Manual

8OS-9 System Calls
F_ALARM (System-State) System-State OS-9 Alarm Request

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_salarm_pb {
syscb cb;
alarm_id alrm_id;
u_int16 alrm_code;
u_int32 time,

flags;
u_int32 (*function)();
void *func_pb;

} f_salarm_pb, *F_salarm_pb;

OS-9 Attributes

Description

The system-state alarm requests execute a system-state subroutine at
a specified time. They are provided for functions such as turning off a
disk drive motor if the disk is not accessed for a period of time.

System-state alarms, as well as user-state alarms, always belong to
some process. This process, for system-state alarms, is either the
creating process (if the TH_SPOWN bit was 0 when the process had the
operating system create the alarm) or the system process (if the
TH_SPOWN bit was 1 when the process had the operating system create
the alarm). For user-state alarms, they always belong to the creating
process and never the system process. If a process gives ownership

State Threads Compatibility

System Safe
OS-9 Technical Manual 173

8 OS-9 System Calls
of an alarm to the system process, then the alarm remains in the
system until either it expires, or some system-state process deletes it. In
all other respects, system-state alarms behave as user-state alarms.

The time interval is the number of system clock ticks (or 1/256 second)
to wait before an alarm signal is sent. If the high order bit is set, the low
31 bits are interpreted as 1/256 second. All times are rounded up to the
nearest tick.

NoteNote
The alarm functions do not return any error code if the operating
system cannot wait for the requested time due to an overflow when
converting a time from 256ths-of-a-second into clock ticks. This only
occurs if you specify a time in 256ths-of-a-second and the system clock
ticks occur at a rate greater than 512 ticks-per-second. If an overflow
occurs, the operating system waits for the longest delay possible.

The following system-state alarm functions are supported:

Table 8-2 Supported System-State Alarm Functions

Alarm Description

F_ALARM, A_ATIME Executes a subroutine at a specified time.

F_ALARM, A_CYCLE Executes a subroutine at specified time
intervals.

F_ALARM, A_DELET Removes a pending alarm request.

F_ALARM, A_RESET Resets an existing alarm request.

F_ALARM, A_SET Executes a subroutine after a specified
time interval.
174 OS-9 Technical Manual

8OS-9 System Calls
NoteNote
During an A_RESET request, the TH_SPOWN bit has the following
meaning: if 0, allow the calling process to update only its own alarms; if
1, allow the calling process to update any alarm.

During an A_DELETE request, the TH_SPOWN bit has the following
meaning: if 0, allow the calling process to delete only its own alarms; if
1, allow the calling process to delete any alarm. If the alarm_id field is
0 and the TH_SPOWN bit is 1, the operating system deletes all alarms
belonging to the system process.

System-state alarms are run by the system process. They should not
perform any function resulting in any kind of queuing, such as
F_SLEEP; F_WAIT; F_LOAD; and F_EVENT, EV_WAIT. When such
functions are required, the caller must provide a separate process to
perform the function, rather than an alarm.

NoteNote
IRQ routines cannot create or delete alarms since such actions cause
memory allocations/deallocations, that are illegal from an IRQ routine.
The way to handle such things is to create the alarms before the IRQ
routine needs them, and then have the IRQ routine use only RESETs,
that are legal in IRQ routines.
OS-9 Technical Manual 175

8 OS-9 System Calls
NoteNote
For non-system, process-owned alarms, the user number in the system
process descriptor changes temporarily to the user number of the
original process.

WARNING!
If an alarm execution routine suffers any kind of bus trap, address trap,
or other hardware-related error, the system crashes.

Parameters

cb is the control block header.

alrm_id is the alarm identifier returned by the
system call. The alarm ID may
subsequently be used to delete the
alarm, if desired, by using the F_ALARM,
A_DELET alarm call.

alrm_code is the particular alarm function to
perform.

time is the specified time.

flags is one of the following two alarm flags
defined in <process.h>:
176 OS-9 Technical Manual

8OS-9 System Calls
function is the function to be executed.

func_pb points to the function’s parameters block.

Possible Errors

EOS_NOCLK
EOS_NORAM
EOS_PARAM
EOS_UNKSVC

See Also

F_ALARM (User-State)
F_EVENT, EV_WAIT
F_LOAD
F_SLEEP
F_WAIT

Table 8-3 Alarm Flags Defined In process.h

Flag Value Description

TH_DELPB 0x00000001 Indicates the associated function
parameter block’s memory should
be returned to the system after
executing the alarm function.

TH_SPOWN 0x00000002 Indicates the system-state alarm
should be owned by the system
process and not the current
process.
OS-9 Technical Manual 177

8 OS-9 System Calls
F_ALARM (User-State) User-State Set Alarm Clock

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_alarm_pb {
syscb cb;
alarm_id alrm_id;
u_int16 alrm_code;
u_int32 time;
signal_code signal;

} f_alarm_pb, *F_alarm_pb;

OS-9 Attributes

Description

The user-state alarm requests enable a user process to create an
asynchronous software alarm clock timer. The timer sends a signal to
the calling process when the specified time period has elapsed. A
process may have multiple alarm requests pending.

The time interval is the number of system clock ticks (or 1/256 second)
to wait before an alarm signal is sent. If the high order bit is set, the low
31 bits are interpreted as 1/256 second.

State Threads Compatibility

User Safe
178 OS-9 Technical Manual

8OS-9 System Calls
NoteNote
All times are rounded up to the nearest system clock tick.

NoteNote
The alarm functions do not return any error code if the operating
system cannot wait for the requested time due to an overflow when
converting a time from 256ths-of-a-second into clock ticks. This only
occurs if you specify a time in 256ths-of-a-second and the system clock
ticks occur at a rate greater than 512 ticks-per-second. If an overflow
occurs, the operating system waits for the longest delay possible.

The following user-state alarm functions are supported:

Table 8-4 Supported User-State Alarm Functions

Function Description

F_ALARM, A_ATIME Send signal at specified time.

F_ALARM, A_CYCLE Send signal at specified time intervals.

F_ALARM, A_DELET Remove pending alarm request.

F_ALARM, A_RESET Reset existing alarm request to occur at a
newly specified time.

F_ALARM, A_SET Send signal after specified time interval.
OS-9 Technical Manual 179

8 OS-9 System Calls
Parameters

cb is the control block header.

alrm_id is the alarm identifier returned by the
system call. The alarm ID may
subsequently be used to delete the
alarm, if desired, by using the F_ALARM,
A_DELET alarm call.

alrm_code is the particular alarm function to
perform.

time is the specified time.

signal is the signal value originally belonging to
the alarm.

Possible Errors

EOS_BPADDR
EOS_NORAM
EOS_PARAM
EOS_UNKSVC

See Also

F_ALARM (System-State)
180 OS-9 Technical Manual

8OS-9 System Calls
F_ALARM, A_ATIME Send Signal At Specified Time (User State)
Execute Subroutine At Specified Time

(System State)

Headers

#include <types.h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (System-State) for the
parameter block structure. Otherwise, see F_ALARM (User-State)
for the parameter block structure.

OS-9 Attributes

Description

A_ATIME sends one signal at the specified time in user state or
executes a subroutine at the specified time in system state.

Parameters

alrm_id is the alarm identifier returned by the
system call. The alarm ID may
subsequently be used to delete the
alarm, if desired, by using the F_ALARM,
A_DELET alarm call.

signal is the signal code of the signal to send.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 181

8 OS-9 System Calls
time is the specified time. The value is
considered to be an absolute value in
seconds since 1 January 1970
Greenwich Mean Time.

Possible Errors

EOS_NOCLK
EOS_NORAM
EOS_PARAM

See Also

F_ALARM, A_SET
F_ALARM (System-State)
F_ALARM (User-State)
182 OS-9 Technical Manual

8OS-9 System Calls
F_ALARM, A_CYCLE Send Signal at Specified Time Intervals

Headers

#include <types.h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (System-State) for the
parameter block structure. Otherwise, see F_ALARM (User-State)
for the parameter block structure.

OS-9 Attributes

Description

A_CYCLE sends a signal after the specified time interval has elapsed
and then resets the alarm. This provides a recurring periodic signal.

Parameters

alrm_id is the returned alarm ID.

alrm_code is the particular alarm function to
perform (in this case, A_CYCLE).

signal is the signal code of the signal to send.

time specifies the time interval between
signals. The time interval may be
specified in system clock ticks; or if the
high order bit is set, the low 31 bits are

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 183

8 OS-9 System Calls
considered a time in 1/256 second. The
minimum time interval allowed is two
system clock ticks.

Possible Errors

EOS_NOCLK
EOS_NORAM
EOS_PARAM

See Also

F_ALARM, A_SET
F_ALARM (System-State)
F_ALARM (User-State)
184 OS-9 Technical Manual

8OS-9 System Calls
F_ALARM, A_DELET Remove Pending Alarm Request

Headers

#include <types.h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (System-State) for the
parameter block structure. Otherwise, see F_ALARM (User-State)
for the parameter block structure.

OS-9 Attributes

Description

A_DELET removes a cyclic alarm, or any alarm that has not expired.

Parameters

alrm_id specifies the alarm identification number.
If alrm_id is zero, all pending alarm
requests are removed.

Possible Errors

EOS_BPADDR
EOS_IBA
EOS_NORAM
EOS_PARAM

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 185

8 OS-9 System Calls
See Also

F_ALARM, A_SET
F_ALARM (System-State)
F_ALARM (User-State)
186 OS-9 Technical Manual

8OS-9 System Calls
F_ALARM, A_RESET Reset Existing Alarm Request

Headers

#include <types.h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (System-State) for the
parameter block structure. Otherwise, see F_ALARM (User-State)
for the parameter block structure.

OS-9 Attributes

Description

A_RESET resets an existing alarm to occur at the newly specified time.
It does not reset any other characteristics of the original alarm.

Parameters

alrm_id is the ID of the alarm to reset.

signal is the signal code of the signal to send.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 187

8 OS-9 System Calls
time may be specified in system clock ticks;
or if the high order bit is set, the low 31
bits are considered a time in 1/256
second. The minimum time interval
allowed is two clock ticks.

Possible Errors

EOS_NOCLK
EOS_NORAM
EOS_PARAM

See Also

F_ALARM, A_SET
F_ALARM (System-State)
F_ALARM (User-State)
188 OS-9 Technical Manual

8OS-9 System Calls
F_ALARM, A_SET Send Signal After Specified Time Interval

Headers

#include <types.h>

Parameter Block Structure

If OS-9 is in system state, see F_ALARM (System-State) for the
parameter block structure. Otherwise, see F_ALARM (User-State)
for the parameter block structure.

OS-9 Attributes

Description

A_SET sends one signal after the specified time interval has elapsed.

Parameters

alrm_id is the alarm identifier returned by the
system call. The alarm ID can
subsequently be used to delete the
alarm, if desired, by using the A_DELET
alarm call.

signal is the signal code of the signal to send.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 189

8 OS-9 System Calls
time can be specified in system clock ticks; or
if the high order bit is set, the low 31 bits
are considered a time in 1/256 second.
The minimum time interval allowed is
two system clock ticks.

Possible Errors

EOS_BPADDR
EOS_NORAM
EOS_PARAM

See Also

F_ALARM, A_DELET
F_ALARM (System-State)
F_ALARM (User-State)
190 OS-9 Technical Manual

8OS-9 System Calls
F_ALLPRC Allocate Process Descriptor

Headers

#include <process.h>

Parameter Block Structure

typedef struct f_allprc_pb {
syscb cb;
process_id proc_id;
Pr_desc proc_desc;

} f_allprc_pb, *F_allprc_pb;

OS-9 Attributes

 Description

F_ALLPRC allocates and initializes a process descriptor. The address of
the descriptor is stored in the process descriptor table. Initialization
consists of clearing the descriptor and setting its process identifier.

Parameters

cb is the control block header.

proc_id is a returned value. It is the process ID of
the new process descriptor.

proc_desc is a returned value. It points to the new
process descriptor.

State Threads Compatibility

System Safe
OS-9 Technical Manual 191

8 OS-9 System Calls
Possible Errors

EOS_PRCFUL
192 OS-9 Technical Manual

8OS-9 System Calls
F_ALLTSK Allocate Task

Headers

#include <process.h>

Parameter Block Structure

typedef struct f_alltsk_pb{
syscb cb;
Pr_desc proc_desc;

} f_alltsk_pb, *F_alltsk_pb;

OS-9 Attributes

Description

F_ALLTSK is called just before a process becomes active to ensure the
protection hardware is ready for the process. F_ALLTSK sets the
protection hardware to the map for the process pointed to by
proc_desc.

F_ALLTSK is only supported on systems with a memory protection unit
(for example, all 80x86). The SSM module must be present in the
bootfile.

If the SSM module is not present in the system, an EOS_UNKSVC error
is returned. You should ignore this error.

Parameters

cb is the control block header.

proc_desc points to the process descriptor.

State Threads Compatibility

System Safe
OS-9 Technical Manual 193

8 OS-9 System Calls
Possible Errors

EOS_UNKSVC

See Also

F_DELTSK
194 OS-9 Technical Manual

8OS-9 System Calls
F_ALTMDIR Set Alternate Working Module Directory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_altmdir_pb {
syscb cb;
u_char *name;

} f_altmdir_pb, *F_altmdir_pb;

OS-9 Attributes

Description

F_ALTMDIR establishes an alternate working module directory for a
process.

When a process performs an F_LINK or F_FORK system call, the
search for the specified target module begins in the process’ current
module directory. If that search fails, the alternate module directory is
searched. This enables processes to link to or execute modules from
different locations within system memory.

Parameters

cb is the control block header.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 195

8 OS-9 System Calls
name points to the name of the alternate
working module directory.

Possible Errors

EOS_MNF
EOS_PERMIT

See Also

F_CHMDIR
F_FORK
F_LINK
196 OS-9 Technical Manual

8OS-9 System Calls
F_APROC Insert Process in Active Process Queue

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_aproc_pb {
syscb cb;
process_id proc_id;

} f_aproc_pb, *F_aproc_pb;

OS-9 Attributes

Description

F_APROC inserts a process into the active process queue so it may be
scheduled for execution.

All processes already in the active process queue are aged. The age of
the new process is set to its priority, and the process is inserted
according to its relative age. If the new process has a higher priority
than the currently active process, the active process gives up the
remainder of its time slice and the new process runs immediately.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 197

8 OS-9 System Calls
OS-9 does not preempt a process in system state (for example, the
middle of a system call). However, OS-9 does set a bit (TIMOUT in
p_state) in the process descriptor causing the process to surrender
its time slice when it re-enters user state.

Parameters

cb is the control block header.

proc_id specifies the ID of the process to place
in the active process queue.

Possible Errors

EOS_IPRCID
EOS_PERMIT

See Also

F_NPROC

Chapter 2: The Kernel, the Process Scheduling section
198 OS-9 Technical Manual

8OS-9 System Calls
F_CAQLK Conditionally Acquire Ownership of
Resource Lock

Headers

#include <lock.h>

Parameter Block Structure

typedef struct f_caqlk_pb {
syscb cb;
lock_id lid;

} f_caqlk_pb, *F_caqlk_pb;

OS-9 Attributes

Description

F_CAQLK conditionally acquires ownership of a resource lock.

If the lock is not owned by another process, the calling process is
granted ownership and the call returns without error.

If the lock is already owned, the calling process is not suspended.
Instead, it returns from the F_CAQLK call with an EOS_NOLOCK error
and is not granted ownership of the resource lock.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 7: Resource Locking, for more information on locks.

State Threads Compatibility

System Safe

Interrupt
OS-9 Technical Manual 199

8 OS-9 System Calls
Parameters

cb is the control block header.

lid is the identifier of the lock you are
attempting to acquire.

Possible Errors

EOS_NOLOCK

See Also

F_ACQLK
F_CRLK
F_DELLK
F_RELLK
F_WAITLK
200 OS-9 Technical Manual

8OS-9 System Calls
F_CCTL (User-State) User-State Cache Control

Headers

#include <types.h>
#include <cache.h>

Parameter Block Structure

typedef struct f_cache_pb {
syscb cb;
u_int32 control;
void *addr;
u_int32 size;

} f_cache_pb, *F_cache_pb;

OS-9 Attributes

Description

F_CCTL performs operations on the system instruction and/or data
caches, if there are any.

If the C_ADDR bit of the control parameter is set, then the addr and
size parameters are used to flush the specific target address from the
cache. This functionality is only supported on hardware platforms with
this capability.

Only system-state processes and super-group processes can perform
the other precise operations of F_CCTL.

Any program that builds or changes executable code in memory should
flush the instruction cache with F_CCTL before executing the new code.
This is necessary because the hardware instruction cache may not be

State Threads Compatibility

User Safe
OS-9 Technical Manual 201

8 OS-9 System Calls
updated by data (write) accesses on certain hardware set ups and may
therefore contain the unchanged instruction(s). For example, if a
subroutine builds a system call on its stack, it should first use the
F_CCTL system to flush the instruction cache before it executes the
temporary instructions.

Parameters

cb is the control block header.

control specifies the cache operation.If
control is zero, the system instruction
and data caches are flushed. Only
super-group processes can perform this
operation. Only three bits may be used:

addr specifies the target address for the flush
operation.

size indicates the size of the target memory
area to be flushed.

Possible Errors

EOS_PARAM

Table 8-5 Bits Used For F_CCTL Cache Flushing

Bit Name Description

Bit 2 C_FLDATA Flush data cache

Bit 6 C_FLINST Flush instruction cache

Bit 8 C_ADDR Indicates a specific target address for
flush operation
202 OS-9 Technical Manual

8OS-9 System Calls
F_CCTL (System State) System-State Cache Control

Headers

#include <types.h>
#include <cache.h>

Parameter Block Structure

typedef struct f_scache_pb {
syscb cb;
u_int32 control;
u_int32 (*cctl)();
void *cctl_data;
void *addr;
u_int32 size;

} f_scache_pb, *F_scache_pb;

OS-9 Attributes

Description

F_CCTL performs operations on the system instruction and/or data
caches, if there are any.

Any program that builds or changes executable code in memory should
flush the instruction cache by F_CCTL prior to executing the new code.
This is necessary because the hardware instruction cache is not
updated by data (write) accesses and may contain the unchanged

State Threads Compatibility

System Safe

Interrupt
OS-9 Technical Manual 203

8 OS-9 System Calls
instruction(s). For example, if a subroutine builds a system call on its
stack, the F_CCTL system call to flush the instruction cache must be
executed prior to executing the temporary instructions.

If the C_GETCCTL bit of control is set, F_CCTL returns a pointer to
the cache control routine in the cache extension module and a pointer
to that routine’s static global data. This enables drivers and file
managers to call the cache routine directly, rather than making a
possibly time-consuming F_CCTL request.

NoteNote
The OS-9 kernel calls the cache extension module directly.

Parameters

cb is the control block header.

control specifies the cache operation. If
control is zero, the system instruction
and data caches are flushed. The
following bits are defined in the
control parameter for precise
operation:

Table 8-6 control Parameter Bits Defined For F_CCTL in cache.h

Bit Name Description

Bit 0 C_ENDATA If set, enables data cache.

Bit 1 C_DISDATA If set, disables data cache.

Bit 2 C_FLDATA If set, flushes data cache.
204 OS-9 Technical Manual

8OS-9 System Calls
NoteNote
All other bits are reserved. If any reserved bit is set, an EOS_PARAM
error is returned. Precise operation of F_CCTL can only be performed
by system-state processes and super-group processes.

Bit 3 C_INVDATA If set, invalidates data cache.

Bit 4 C_ENINST If set, enables instruction cache.

Bit 5 C_DISINST If set, disables instruction cache.

Bit 6 C_FLINST If set, flushes instruction cache.

Bit 7 C_INVINST If set, invalidates instruction cache.

Bit 8 C_ADDR Flags a target address for flush
operation.

Bits 9-14 Reserved for future use by Microware.

Bit 15 C_GETCCTL If set, returns a pointer to the cache
control routine and cache static global
data.

Bit 16 C_STODATA If set, stores data cache (if supported
by hardware).

Bits 17-31 Reserved for future use by Microware.

Table 8-6 control Parameter Bits Defined For F_CCTL in cache.h
 (continued)

Bit Name Description
OS-9 Technical Manual 205

8 OS-9 System Calls
If the C_ADDR bit of the control
parameter is set, then the addr and
size parameters are used to flush the
specific target address from the cache.
This functionality is only supported on
hardware platforms with this capability.

cctl is the returned cache routine.

cctl_data is the returned cache routine’s static
data.

addr specifies the target address for the flush
operation.

size indicates the size of the target memory
area to be flushed.

Possible Errors

EOS_PARAM
206 OS-9 Technical Manual

8OS-9 System Calls
F_CHAIN Load and Execute New Primary Module

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_chain_pb {
syscb cb;
u_int16 priority,

path_cnt;
u_char *mod_name,

*params;
u_int32 mem_size,

param_size;
u_int16 type_lang;

} f_chain_pb, *F_chain_pb;

OS-9 Attributes

Description

F_CHAIN executes a new program without the overhead of creating a
new process. It is functionally similar to a F_FORK command followed by
an F_EXIT. F_CHAIN effectively resets the calling process’ program
and data memory areas and begins executing a new primary module.
Open paths are not closed or otherwise affected.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 207

8 OS-9 System Calls
F_CHAIN executes as follows:

Step 1. The process’ old primary module is unlinked.

Step 2. The system parses the name string of the new process’ primary module
(the program that is executed). Next, the current and alternate module
directories are searched to see if a module with the same name and
type/language is already in memory. If so, the module is linked. If not,
the name string is used as the pathlist of a file to be loaded into
memory. The first module in this file is linked.

Step 3. The data memory area is reconfigured to the size specified in the new
primary module’s header.

Step 4. Intercepts and pending signals are erased.

Step 5. The following structure definition is passed to the initial function of the
new module (this is identical to F_FORK).
typedef struct {
 process_id proc_id; /* process ID */
 owner_id owner; /* group/user ID */
 prior_level priority; /* priority */
 u_int16 path_count; /* of I/O paths inherited*/
 u_int32 param_size, /* size of parameters */
 mem_size; /*total initial memory allocated*/
 u_char *params, /* parameter pointer */
 mem_end; / top of memory pointer */
 Mh_com mod_head; /*primary (forked) module ptr*/
} fork_params, *Fork_params;

The minimum overall data area size is 256 bytes.

NoteNote
F_CHAIN never returns to the calling process. If an error occurs during
the Chain, it is returned as an exit status to the parent of the process
performing the Chain.
208 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

priority is the initial priority of the process.

path_cnt specifies the number of I/O paths to copy
(inherit).

mod_name points to the new program to execute.

params points to the parameter string to pass to
the new process.

mem_size specifies the additional memory size
above the default specified in the
primary module’s module header.

param_size specifies the size of the parameter
string.

type_lang specifies the desired module
type/language. type_lang must be
either program/object or zero (for any).

Possible Errors

EOS_NEMOD

See Also

F_CHAINM
F_FORK
F_FORKM
F_LOAD
OS-9 Technical Manual 209

8 OS-9 System Calls
F_CHAINM Execute New Primary Module Given Pointer
to Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_chainm_pb {
syscb cb;
u_int16 priority,

path_cnt;
Mh_com mod_head;
u_char *params;
u_int32 mem_size,

param_size;
} f_chainm_pb, *F_chainm_pb;

OS-9 Attributes

Description

F_CHAINM executes a new program without the overhead of creating a
new process. It is functionally similar to a F_FORK command followed by
an F_EXIT. F_CHAINM resets the calling process’ program and data
memory areas and begins executing a new primary module. Open
paths are not closed or otherwise affected.

F_CHAINM is similar to F_CHAIN. However, F_CHAINM is passed a
pointer to the module instead of the module name.

State Threads Compatibility

User Safe

System
210 OS-9 Technical Manual

8OS-9 System Calls
F_CHAINM executes as follows:

Step 1. The process’ old primary module is unlinked.

Step 2. The system tries to link to the module pointed to by the module header
pointer.

Step 3. The data memory area is reconfigured to the specified size in the new
primary module’s header.

Step 4. Intercepts and pending signals are erased.

Step 5. The following structure definition is passed to the initial function of the
new module (this is identical to F_FORK).

typedef struct {
 process_id proc_id; /* process ID */
 owner_id owner; /* group/user ID */
 prior_level priority; /* priority */
 u_int16 path_count; /* number of I/O paths
 inherited */
 u_int32 param_size, /* size of parameters */
 mem_size; /* total initial memory
 allocated */
 u_char *params, /* parameter pointer */
 mem_end; / top of memory pointer */
 Mh_com mod_head; /*primary (forked) module ptr*/
} fork_params, *Fork_params;

The minimum overall data area size is 256 bytes.

NoteNote
An error is returned only if there is not enough memory to hold the
parameters. If an error occurs during the Chainm, it is returned as an
exit status to the parent of the process performing the Chainm.
OS-9 Technical Manual 211

8 OS-9 System Calls
Parameters

cb is the control block header.

priority is the initial priority of the process.

path_cnt is the number of I/O paths to copy
(inherit).

mod_head points to the module header.

params points to the parameter string to pass to
the new process.

mem_size specifies the additional memory size
above the default specified in the
primary module’s module header.

param_size specifies the size of the parameter
string.

Possible Errors

EOS_CRC

See Also

F_CHAIN
F_FORK
F_FORKM
F_LOAD
212 OS-9 Technical Manual

8OS-9 System Calls
F_CHKMEM Check Memory Block’s Accessibility

Headers

#include <process.h>

Parameter Block Structure

typedef struct f_chkmem_pb {
syscb cb;
u_int32 size;
u_int16 mode;
u_char *mem_ptr;
Pr_desc proc_desc;

} f_chkmem_pb, *F_chkmem_pb;

OS-9 Attributes

Description:

F_CHKMEM is called by system routines before accessing data at the
specified address on behalf of a process to determine if the process has
access to the specified memory block.

F_CHKMEM must check the process’ protection image to determine if
access to the specified memory area is permitted. F_CHKMEM is called
by system-state routines that can access memory (such as I_READ
and I_WRITE) to determine if the user process has access to the
requested memory. This software check is necessary because the
protection hardware is expected to be disabled for system-state
routines.

State Threads Compatibility

System Safe
OS-9 Technical Manual 213

8 OS-9 System Calls
NoteNote
Note the following:

• The calling process cannot use this service to check for write-only
memory because it assumes read-only as the minimum. To check for
no-access to a segment of memory, the calling process can check
for read access and ensure the resulting status code is
EOS_BPADDR. To check for read-only access, there must be two
calls to F_CHKMEM.

• F_CHKMEM is only useful on systems with an MMU and having the
SSM module in their bootfile. When SSM is active, the operating
system validates all arguments. On systems without SSM, the call
always returns successful because every process has full access
rights to the entire memory space.

Parameters

cb is the control block header.

size specifies the size of the memory area.

mode specifies the permissions to check.

mem_ptr points to the beginning of the memory to
check.

proc_desc points to the process descriptor of the
target process.

Possible Errors

EOS_BPADDR
EOS_UNKSVC (from user state, with or without SSM)
214 OS-9 Technical Manual

8OS-9 System Calls
See Also

F_ALLTSK
F_DELTSK
F_PERMIT
F_PROTECT
I_READ
I_WRITE
OS-9 Technical Manual 215

8 OS-9 System Calls
F_CHMDIR Change Process’ Current Module Directory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_chmdir_pb {
syscb cb;
u_char *name;

} f_chmdir_pb, *F_chmdir_pb;

OS-9 Attributes

Description

F_CHMDIR changes a process’ current module directory.

The calling process must have access permission to the specified
module directory or an EOS_PERMIT error is returned.

Parameters

cb is the control block header.

name points to the new current module
directory. name can be a full pathlist or
relative to the current module directory.
To change to the system’s root module
directory, specify a slash (/) for name.

State Threads Compatibility

User Safe

System
216 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BNAM
EOS_MNF
EOS_PERMIT

See Also

F_MKMDIR
OS-9 Technical Manual 217

8 OS-9 System Calls
F_CLRSIGS Clear Process Signal Queue

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_clrsigs_pb {
syscb cb;
process_id proc_id;

} f_clrsigs_pb, *F_clrsigs_pb;

OS-9 Attributes

Description

F_CLRSIGS removes any pending signals sent to the target process.

Parameters

cb is the control block header.

proc_id identifies the target process.

Possible Errors

EOS_IPRCID

State Threads Compatibility

User Safe

System

Interrupt
218 OS-9 Technical Manual

8OS-9 System Calls
See Also

F_SIGMASK
OS-9 Technical Manual 219

8 OS-9 System Calls
F_CMDPERM Change Permissions of Module Directory

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_cmdperm_pb {
syscb cb;
u_char *name;
u_int16 perm;

} f_cmdperm_pb, *F_cmdperm_pb;

OS-9 Attributes

Description

F_CMDPERM changes the access permissions of an existing module
directory. This makes it possible to restrict access to a particular module
directory.

Parameters

cb is the control block header.

name points to the name of the existing
module directory.

perm specifies the new permissions.

State Threads Compatibility

User Safe

System
220 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BNAM
EOS_MNF
EOS_PERMIT

See Also

F_MKMDIR
OS-9 Technical Manual 221

8 OS-9 System Calls
F_CMPNAM Compare Two Names

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_cmpnam_pb {
syscb cb;
u_int32 length;
u_char *string,

*pattern;
int32 result;

} f_cmpnam_pb, *F_cmpnam_pb;

OS-9 Attributes

Description

F_CMPNAM compares a target name to a source pattern to determine if
they are equal. F_CMPNAM is not case-sensitive; it does not differentiate
between upper and lower case characters.

Parameters

cb is the control block header.

length specifies the length of the pattern string.

State Threads Compatibility

User Safe

System
222 OS-9 Technical Manual

8OS-9 System Calls
string points to the target name string. The
target name must be terminated by a null
byte.

pattern points to the pattern string. Two wildcard
characters are recognized in the pattern
string:

•A question mark (?) matches any single
character.

•An asterisk (*) matches any string.

result is a returned value. It is the lexicographic
result of the comparison.

•If result is zero, the target string is the
same as the pattern string.

•If result is negative, the target name
is greater than the pattern string.

•If result is positive, the target string is
less than the pattern string.

Possible Errors

EOS_DIFFER
EOS_STKOVF
OS-9 Technical Manual 223

8 OS-9 System Calls
F_CONFIG Configure an Element

Headers

#include <types.h>

 Parameter Block Structure

typedef struct f_config_pb {
syscb cb;
u_int32 code;
void *param;

} f_config_pb, *F_config_pb;

OS-9 Attributes

Description

F_CONFIG is a wildcard call that configures elements of the operating
system that may or may not be process specific. It dynamically
reconfigures operating system resources at runtime. The target
resources may be system-wide resources or they may be
process-specific, depending on the nature of the configuration call
being made.

State Threads Compatibility

User Safe

System
224 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

code identifies the target configuration code.
Currently, no sub-codes are defined for
this call.

*param points to any additional parameters
required by the specified configuration
function.

See Also

I_CONFIG
OS-9 Technical Manual 225

8 OS-9 System Calls
F_CPYMEM Copy External Memory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_cpymem_pb {
syscb cb;
process_id proc_id;
u_char *from,

*to;
u_int32 count;

} f_cpymem_pb, *F_cpymem_pb;

OS-9 Attributes

Description

F_CPYMEM uses F_MOVE to copy data from one location to another and
(at present) ignores the proc_id argument (refer to the Parameters
section below). The difference between F_MOVE and F_CPYMEM is the
OS allows only system-state processes to use the former, while the OS
allows either user- or system-state processes to use the later.

For system-state processes, the only difference between these two
services is F_CPYMEM is slightly slower, since it has more routines to
call before transferring control to F_MOVE.

State Threads Compatibility

User Safe

System

Interrupt
226 OS-9 Technical Manual

8OS-9 System Calls
For user-state processes, F_CPYMEM is the only choice for copying
restricted memory.

The OS (if the SSM is active) calls F_CHKMEM to ensure the caller has
read and write access to the output. The OS allows the input address to
be any existent location of memory (it allows user-state processes to
copy even restricted data if it exists in RAM).

Parameters

cb is the control block header.

proc_id specifies the process ID of the owner of
the external memory.

NoteNote
This service does not currently use the proc_id input, which was valid
when OS-9 was running on the MC6809 architecture. To allow memory
access beyond 64KB, OS-9 used F_CPYMEM to do bank switching in
order to allow a process to copy data from a different bank of memory.
The proc_id argument was nothing more than a bank selector. At this
point there is no need for the proc_id argument, but it is reserved for
future use.

from is the address of the external process’
memory to copy.

to points to the caller’s destination buffer.

count is the number of bytes to copy.

Possible Errors

EOS_BPADDR

See Also

F_MOVE
OS-9 Technical Manual 227

8 OS-9 System Calls
F_CRC Generate CRC

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_crc_pb {
syscb cb;
u_char *start;
u_int32 count,

accum;
} f_crc_pb, *F_crc_pb;

OS-9 Attributes

Description

F_CRC generates or checks the CRC (cyclic redundancy check) values
of sections of memory. Compilers, assemblers, and other module
generators use F_CRC to generate a valid module CRC.

If the CRC of a new module is to be generated, the CRC is accumulated
over the module (excluding the CRC). The accumulated CRC is
complemented and stored in the correct position in the module.

State Threads Compatibility

User Safe

System
228 OS-9 Technical Manual

8OS-9 System Calls
The CRC is calculated over a specified number of bytes starting at the
source address. It is not necessary to cover an entire module in one
call, because the CRC may be accumulated over several calls. The
CRC accumulator must be initialized to 0xffffffff before the first F_CRC
call for any particular module.

To generate the CRC of an existing module, the calculation should be
performed on the entire module, including the module CRC. The CRC
accumulator contains the CRC constant bytes if the module CRC is
correct. The CRC constant is defined in module.h as CRCCON. The
value is 0x00800fe3.

To generate the CRC for a module:

Step 1. Initialize the accumulator to -1.

Step 2. Perform the CRC over the module.

Step 3. Call F_CRC with a NULL value for start.

Step 4. Complement the CRC accumulator.

Step 5. Write the contents of the accumulator to the module.

The CRC value is three bytes long, in a four-byte field. To generate a
valid module CRC, you must include the byte preceding the CRC in the
check. You must initialize this byte to zero. For convenience, if a data
pointer of zero is passed, the CRC is updated with one zero data byte.
F_CRC always returns 0xff in the most significant byte of the accum
parameter, so accum may be directly stored (after complement) in the
last four bytes of a module as the correct CRC.

Parameters

cb is the control block header.

start points to the data.

count specifies the byte count for the data.

accum is a returned value. It points to the CRC
accumulator.
OS-9 Technical Manual 229

8 OS-9 System Calls
See Also

F_SETCRC

The CRC Value section in Chapter 1: System Overview
230 OS-9 Technical Manual

8OS-9 System Calls
F_CRLK Create New Resource Lock Descriptor

Headers

#include <lock.h>

Parameter Block Structure

typedef struct f_crlk_pb {
syscb cb;
lock_id lid;

} f_crlk_pb, *F_crlk_pb;

OS-9 Attributes

Description

F_CRLK creates a new resource lock descriptor. A resource lock
descriptor is allocated and initialized to a free state (not currently
owned).

Locks can be used to protect resources in a multi-tasking environment.
They provide a mechanism for exclusive access to a given resource.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 7: Resource Locking for more information on locks.

State Threads Compatibility

System Safe
OS-9 Technical Manual 231

8 OS-9 System Calls
Parameters

cb is the control block header.

lid is a returned value. It is the lock identifier
for the lock descriptor. lid is used as a
handle to perform further operations on
the lock.

Possible Errors

EOS_NORAM

See Also

F_ACQLK
F_CAQLK
F_DELLK
F_RELLK
F_WAITLK
232 OS-9 Technical Manual

8OS-9 System Calls
F_DATMOD Create Data Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_datmod_pb {
syscb cb;
u_char *mod_name;
u_int32 size;
u_int16 attr_rev,

type_lang,
perm;

void *mod_exec;
Mh_com mod_head;

} f_datmod_pb, *F_datmod_pb;

OS-9 Attributes

Description

F_DATMOD creates a data module with the specified attribute/revision
and clears the data portion of the module. The module is created and
entered into the current module directory. Several processes can
communicate with each other using a shared data module.

Be careful not to alter the data module’s header or name string to
prevent the module from becoming unknown to the system.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 233

8 OS-9 System Calls
NoteNote
The created module contains at least size usable data bytes, but may
be somewhat larger. The module itself is larger by at least the size of
the module header and CRC, and is rounded up to the nearest system
memory allocation boundary.

F_DATMOD does not create a CRC value for the data module. If you
load the data module into memory, you must first create the CRC value.

Parameters

mod_name points to the module name string.

size is the size of the data portion.

attr_rev is a returned value. It is the value of the
module’s attribute and revision.

type_lang is a returned value. It is the value of the
module’s type and language.

perm specifies the access permissions for the
module.

mod_exec is a returned value. It points to the
module data.

mod_head is a returned value. It points to the
module header.

Possible Errors

EOS_BNAM
EOS_KWNMOD

See Also

F_SETCRC
234 OS-9 Technical Manual

8OS-9 System Calls
F_DATTACH Attach Debugger to a Running Process

Headers

#include <regs.h>

Parameter Block Structure

typedef struct f_dattach_pb {
syscb cb;
process_id proc_id;
Regs reg_stack;
Fregs freg_stack;

} f_dattach_pb, *F_dattach_pb;

OS-9 Attributes

Description

F_DATTACH attaches the calling debugger to an active process,
enabling the debugger to assume debug control over the existing
process. It establishes a debug session in the same way F_DFORK
starts a new process for debug execution. Once a debugger performs
the debug attach operation, the target process is suspended from
execution and the debugger can then proceed to execute the target
process under its control using the F_DEXEC service request. One
important difference between F_DATTACH and F_DFORK is with the
F_DATTACH call, the target process continues normal execution when
the parent debugging process exits. The debug resources of the target
process are released but the process does not terminate. However,
when a process is started with the F_DFORK service request, the
process is terminated when the parent debugger performs the
F_DEXIT service request.

State Threads Compatibility

System Safe
OS-9 Technical Manual 235

8 OS-9 System Calls
Parameters

cb is the control block header.

proc_id is the process identifier of the target
process to attach to for debugging.

reg_stack points to a register image buffer in the
caller’s data area where the kernel
returns the current register image of the
target debug process.

freg_stack points to a floating-point register image
buffer in the caller’s data area where the
kernel returns the current floating-point
register image of the target debug
process. Note, this floating-point image
can contain an empty image since the
target process may not be using the
floating-point facilities of the system.

Possible Errors

EOS_IPRCID
EOS_PERMIT

See Also

F_DEXEC
F_DEXIT
F_DFORK
236 OS-9 Technical Manual

8OS-9 System Calls
F_DDLK Check for Deadlock Situation

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_ddlk_pb {
syscb cb;
process_id proc_id;

} f_ddlk_pb, *F_ddlk_pb;

OS-9 Attributes

Description

F_DDLK checks for a deadlock situation between processes. A search
for the current process (calling process) in the linked list of potential
conflicting processes is begun from the process specified by proc_id.

F_DDLK is useful for preventing a deadlock situation when protecting
multiple resources from simultaneous accesses. The deadlock list
usually represents the list of processes waiting to acquire access to an
associated resource.

State Threads Compatibility

System Safe
OS-9 Technical Manual 237

8 OS-9 System Calls
Parameters

cb is the control block header.

proc_id specifies the process with which to begin
the search.

If the calling process is already in the
linked list of processes, an EOS_DEADLK
error is returned to the caller.

If the process is not in the linked list, the
current process is added to the list
associated with proc_id.

Possible Errors

EOS_DEADLK
238 OS-9 Technical Manual

8OS-9 System Calls
F_DELLK Delete Existing Lock Descriptor

Headers

#include <lock.h>

Parameter Block Structure

typedef struct f_dellk_pb {
syscb cb;
lock_id lid;

} f_dellk_pb, *F_dellk_pb;

OS-9 Attributes

Description

F_DELLK deletes an existing lock descriptor.

F_DELLK does not check for suspended processes still waiting to
acquire the lock; an implementation using locks must release all
processes waiting on a resource lock prior to deleting it. You can corrupt
the system if you do not release suspended processes prior to deletion.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 7: Resource Locking for more information about locks.

State Threads Compatibility

System Safe
OS-9 Technical Manual 239

8 OS-9 System Calls
Parameters

cb is the control block header.

lid is the lock identifier for the lock to delete.

See Also

F_ACQLK
F_CAQLK
F_CRLK
F_RELLK
F_WAITLK
240 OS-9 Technical Manual

8OS-9 System Calls
F_DELMDIR Delete Existing Module Directory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_delmdir_pb {
syscb cb;
u_char *name;

} f_delmdir_pb, *F_delmdir_pb;

OS-9 Attributes

Description

F_DELMDIR deletes an existing module directory.

If the target module directory is not empty, an EOS_DNE directory not
empty error is returned.

Parameters

cb is the control block header.

name points to the module directory.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 241

8 OS-9 System Calls
Possible Errors

EOS_BNAM
EOS_DNE
EOS_MNF
EOS_PERMIT
242 OS-9 Technical Manual

8OS-9 System Calls
F_DELTSK Deallocate Process Descriptor

Headers

#include <process.h>

Parameter Block Structure

typedef struct f_deltsk_pb {
syscb cb;
Pr_desc proc_desc;

} f_deltsk_pb, *F_deltsk_pb;

OS-9 Attributes

Description

F_DELTSK is called when a process terminates to return the process’
protection resources. This call must release any protection structures
allocated to the process, whether this be memory or any hardware
resource.

F_DELTSK is only supported on systems with a memory protection unit
(for example, all 80386 and 80486 systems and PowerPC systems).
The SSM module must be present in the bootfile.

If the SSM module is not present in the system, an EOS_UNKSVC error
is returned. You should ignore this error.

Parameters

cb is the control block header.

proc_desc points to the process descriptor.

State Threads Compatibility

System Safe
OS-9 Technical Manual 243

8 OS-9 System Calls
Possible Errors

EOS_BNAM
EOS_UNKSVC

See Also

F_ALLTSK
F_CHKMEM
F_PERMIT
F_PROTECT
244 OS-9 Technical Manual

8OS-9 System Calls
F_DEXEC Execute Debugged Program

Headers

#include <types.h>
#include <dexec.h>

Parameter Block Structure

typedef struct f_dexec_pb {
syscb cb;
process_id proc_id;
dexec_mode mode;
u_char *params;
u_int32 num_instr,

tot_instr,
except,
addr;

u_int16 num_bpts,
**brk_pts;

dexec_status status;
error_code exit_status;

} f_dexec_pb, *F_dexec_pb;
OS-9 Technical Manual 245

8 OS-9 System Calls
OS-9 Attributes

Description

F_DEXEC controls the execution of a suspended child process created
by F_DFORK. The process performing the F_DEXEC is suspended, and
its debugged child process is executed instead. This process terminates
and control returns to the parent after the specified number of
instructions have been executed, a breakpoint is reached, or an
unexpected exception occurs. Therefore, the parent and the child
processes are never active at the same time.

When F_DEXEC is executed in DBG_M_SOFT or DBG_M_COUNT mode, it
traces every instruction of the child process and checks for the
termination conditions. Breakpoints are lists of addresses to check and
work with ROMed object programs. Consequently, the child process
being debugged runs at a slow speed.

When F_DEXEC is executed in DBG_M_HARD mode, it replaces the
instruction at each breakpoint address with an illegal opcode. Next, it
executes the child process at full speed (with the trace bit clear) until a
breakpoint is reached or the program terminates. This can save an
enormous amount of time. However, F_DEXEC cannot count the
number of executed instructions.

When status is DBG_S_EXCEPT, the except parameter is the specific
exception identifier (error) causing the child to return to the debugger.

OS-9 system calls made by the suspended program are executed at full
speed and are considered one logical instruction. This is also true of
system-state trap handlers. You cannot debug system-state processes.

State Threads Compatibility

User Safe

System
246 OS-9 Technical Manual

8OS-9 System Calls
The system uses the register buffer and floating point register buffer
passed in the F_DFORK call to save and restore the child’s registers.
Changing the contents of the register buffer alters the child process’
registers.

An F_DEXIT call must be made to return the debugged process’
resources (memory).

NoteNote
Tracing is allowed through subroutine libraries and intercept routines.
This is not a problem, but you will see code executed that is not
explicitly in your sources.

Parameters

cb is the control block header.

proc_id is the process ID of the child to execute.

mode specifies the debug mode. These modes
are defined in the header file dexec.h:

Table 8-7 F_DEXEC Debug Modes Defined In dexec.h

Debug Modes Description

DBG_M_INACTV Inactive mode (used by the kernel).

DBG_M_HARD Hard breakpoints/full speed execution.

DBG_M_SOFT Soft breakpoints/continuous execution.
OS-9 Technical Manual 247

8 OS-9 System Calls
params is the parameter list pointer. This will be
implemented in a future release.

num_instr is the number of instructions to execute.
If num_instr is zero, commands are
executed continuously. Upon completion
of the F_DEXEC call, num_instr is
updated with a value representing the
original number of instructions less the
number of instructions executed.

tot_instr is a returned value. It points to the
number of instructions executed so far
when the child is executed in trace
mode.

except is a returned value. It is the exception the
child received, when the child process
returned due to an exception.

addr is a returned value. It is the violation
address associated with an exception
condition.

num_bpts specifies the number of breakpoints in
the list.

brk_pts points to the breakpoint list. The
breakpoint list is a list of addresses
indicating which instructions are
considered breakpoints.

DBG_M_COUNT Execute count instructions.

DBG_M_CONTROL Execute until change of control (future
release).

Table 8-7 F_DEXEC Debug Modes Defined In dexec.h (continued)

Debug Modes Description
248 OS-9 Technical Manual

8OS-9 System Calls
status is the process return status. status
indicates the reason the child process
returned to the debugger. The following
status modes are defined in the
header file dexec.h:

Table 8-8 F_DEXEC status Modes In dexec.h

Status Modes Description

DBG_S_FINISH The command finished successfully.

DBG_S_BRKPNT The process hit a breakpoint.

DBG_S_EXCEPT An exception occurred during execution.

DBG_S_CHILDSIG The process received a signal (no
intercept).

DBG_S_PARENTSIG The debugger received a signal.

DBG_S_CHAIN The process made an F_CHAIN system
call.

DBG_S_EXIT The process made an F_EXIT system
call.

DBG_S_CONTROL The process executed a jmp or bra
(future release).

DBG_S_WATCH The process hit a watch point (future
release).

DBG_S_FORK The process made an F_FORK system
call.
OS-9 Technical Manual 249

8 OS-9 System Calls
exit_status is a returned value. It is the child’s exit
status, when the child performs an
F_EXIT call.

Possible Errors

EOS_IPRCID
EOS_PRCABT

See Also

F_CHAIN
F_DEXIT
F_DFORK
F_EXIT
250 OS-9 Technical Manual

8OS-9 System Calls
F_DEXIT Exit Debugged Program

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_dexit_pb {
syscb cb;
process_id proc_id;

} f_dexit_pb, *F_dexit_pb;

OS-9 Attributes

Description

F_DEXIT terminates a suspended child process created by F_DFORK.
The F_EXIT done by the child process does not release the child’s
resources in the case of a debugged process. This enables examination
of the child after its termination. Therefore, the debugger must do an
F_DEXIT to release the child’s resources after this call.

Parameters

cb is the control block header.

proc_id is the process ID of the child to
terminate.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 251

8 OS-9 System Calls
Possible Errors

EOS_IPRCID

See Also

F_DEXEC
F_DFORK
F_EXIT
252 OS-9 Technical Manual

8OS-9 System Calls
F_DFORK Fork Process Under Control of Debugger

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_dfork_pb {
syscb cb;
u_int16 priority,

path_cnt;
process_id proc_id;
Regs reg_stack;
Fregs freg_stack;
u_char *mod_name,

*params;
u_int32 mem_size,

param_size;
u_int16 type_lang;

} f_dfork_pb, *F_dfork_pb;

OS-9 Attributes

Description:

F_DFORK creates a new process that becomes a child of the caller. It
sets up the process’ memory, MPU registers, and standard I/O paths. In
addition, F_DFORK enables a debugger utility to create a process
whose execution can be closely controlled. The created process is not

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 253

8 OS-9 System Calls
placed in the active queue, but is left in a suspended state. This enables
the debugger to control its execution through the F_DEXEC and
F_DEXIT system calls.

The child process is created in the DBG_M_SOFT (trace) mode and is
executed with F_DEXEC.

The register buffer is an area in the caller’s data area permanently
associated with each child process. It is set to an image of the child’s
initial registers for use with F_DEXEC.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For information about process creation, refer to the F_FORK
description.

NoteNote
Processes whose primary module is owned by a super-user can only
be debugged by a super user. You cannot debug system-state
processes.

Parameters

cb is the control block header.

priority is the priority of the new process.

path_cnt is the number of I/O paths for the child to
inherit.

proc_id is a returned value. It is the new child
process ID.

reg_stack points to the register buffer.

freg_stack points to the floating point register buffer.
254 OS-9 Technical Manual

8OS-9 System Calls
mod_name points to the module name.

params points to the parameter string to pass to
the new process.

mem_size specifies any additional stack space to
allocate above the default specified in
the primary module’s module header.

param_size specifies the size of the parameter
string.

type_lang specifies the desired type and language
of the primary module to be executed.

Possible Errors

EOS_MNF
EOS_NEMOD
EOS_NORAM
EOS_PERMIT
EOS_PNNF

See Also

F_DEXEC
F_DEXIT
F_DFORKM
F_FORK
OS-9 Technical Manual 255

8 OS-9 System Calls
F_DFORKM Fork Process Under Control of Debugger

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_dforkm_pb {
syscb cb;
u_int16 priority,

path_cnt;
process_id proc_id;
Regs reg_stack;
Fregs freg_stack;
Mh_com mod_head;
u_char *params;
u_int32 mem_size,

param_size;
} f_dforkm_pb, *F_dforkm_pb;

OS-9 Attributes

Description

F_DFORKM creates a new process that becomes a child of the caller. It
sets up the process’ memory, MPU registers, and standard I/O paths. In
addition, F_DFORKM enables a debugger utility to create a process
whose execution can be closely controlled. The created process is not
placed in the active queue, but is left in a suspended state. This enables

State Threads Compatibility

User Safe

System
256 OS-9 Technical Manual

8OS-9 System Calls
the debugger to control its execution through the F_DEXEC and
F_DEXIT system calls. F_DFORKM is similar to F_DFORK. However,
F_DFORKM is passed a pointer to the module to fork rather than the
module name.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information, refer to the description of F_DFORK.

Parameters

cb is the control block header.

priority is the priority of the new process.

path_cnt is the number of I/O paths for the child to
inherit.

proc_id is a returned value. It is a the new child
process ID.

reg_stack points to the register buffer.

freg_stack points to the floating point register buffer.

mod_head points to the module header.

params points to the parameter string to pass to
the new process.

mem_size specifies any additional stack space to
allocate above the default specified in
the primary module’s module header.

param_size specifies the size of the parameter
string.
OS-9 Technical Manual 257

8 OS-9 System Calls
Possible Errors

EOS_MNF
EOS_NEMOD
EOS_NORAM
EOS_PERMIT
EOS_PNNF

See Also

F_DEXEC
F_DEXIT
F_DFORK
F_FORK
258 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT Process Synchronization and
Communication

Headers

Refer to the specific event for the header to include.

Parameter Block Structure

Refer to the specific event for the appropriate parameter block structure.

OS-9 Attributes

Description

OS-9 events are multiple-value semaphores that synchronize
concurrent processes sharing resources such as files, data modules,
and CPU time. The events’ functions enable processes to create/delete
events, link/unlink events, get event information, and suspend operation
until an event occurs. Events are also used for various means of
signalling.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 259

8 OS-9 System Calls
The following events functions are currently supported:

Table 8-9 Supported Events Functions For F_EVENT

Event Description

F_EVENT, EV_ALLCLR Wait for all bits defined by mask to
become clear.

F_EVENT, EV_ALLSET Wait for all bits defined by mask to
become set.

F_EVENT, EV_ANYCLR Wait for any bits defined by mask to
become clear.

F_EVENT, EV_ANYSET Wait for any bits defined by mask to
become set.

F_EVENT, EV_CHANGE Wait for any bits defined by mask to
change.

F_EVENT, EV_CREAT Create new event.

F_EVENT, EV_DELET Delete existing event.

F_EVENT, EV_INFO Return event information.

F_EVENT, EV_LINK Link to existing event by name.

F_EVENT, EV_PULSE Signal event occurrence.

F_EVENT, EV_READ Read event value without waiting.

F_EVENT, EV_SET Set event variable and signal event
occurrence.

F_EVENT, EV_SETAND Set event value by ANDing the event
value with a mask.
260 OS-9 Technical Manual

8OS-9 System Calls
Specific parameters and functions of each event operation are
discussed in the following pages. The EV_XXX function names are
defined in the system definition file funcs.h.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on events, refer to Chapter 4: Interprocess
Communications.

F_EVENT, EV_SETOR Set event value by ORing the event value
with a mask.

F_EVENT, EV_SETR Set relative event variable and signal
event occurrence.

F_EVENT, EV_SETXOR Set event value by XORing the event
value with a mask.

F_EVENT, EV_SIGNL Signal event occurrence.

F_EVENT, EV_TSTSET Wait for all bits defined by mask to clear,
then set these bits.

F_EVENT, EV_UNLNK Unlink event.

F_EVENT, EV_WAIT Wait for event to occur.

F_EVENT, EV_WAITR Wait for relative event to occur.

Table 8-9 Supported Events Functions For F_EVENT (continued)

Event Description
OS-9 Technical Manual 261

8 OS-9 System Calls
The event value is added to min_val and max_val, and the actual
values are returned to the caller. If an underflow or overflow occurs on
the addition, the values 0x80000000 (minimum integer) and 0x7fffffff
(maximum integer) are used, respectively.

Possible Errors

EOS_EVNTID

See Also

F_EVENT, EV_SIGNL
262 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_ALLCLR Wait for All Bits Defined by Mask to Become
Clear

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evallclr_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
int32 value;
signal_code signal;
u_int32 mask;

} f_evallclr_pb, *F_evallclr_pb;

OS-9 Attributes

Description

EV_ALLCLR waits until one of the event set calls occurs that clears all of
the bits corresponding to the set bits in the mask. The event variable is
ANDed with the value in mask. If the resulting value is not zero, the
calling process is suspended in a FIFO event queue.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 263

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_ALLCLR event function code.

ev_id identifies the event.

value is a returned value. It is the actual event
value after the set operation that
activated the suspended process.

If the process receives a signal while in
the event queue, it is activated and an
EOS_SIGNAL error is returned, even
though the event has not actually
occurred. Also, the current event value is
returned and the caller’s intercept
routine is executed.

signal contains the returned signal code.

mask specifies the activation mask. It indicates
which bits are significant to the caller.

Possible Errors

EOS_EVNTID
EOS_SIGNAL
264 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_ALLSET Wait for Event to Occur

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evallset_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
int32 value;
signal_code signal;
u_int32 mask;

} f_evallset_pb, *F_evallset_pb;

OS-9 Attributes

Description

EV_ALLSET waits until one of the event set calls occurs that sets all of
the bits corresponding to the set bits in the mask. The event variable is
ANDed with the value in mask and then EXCLUSIVE-ORed with it. If
the resulting value is not zero, the calling process is suspended in a
FIFO event queue.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 265

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_ALLSET event function code.

ev_id identifies the event.

value is a returned value. It is the actual event
value after the set operation that
activated the suspended process.

If the process receives a signal while in
the event queue, it is activated and an
EOS_SIGNAL error is returned, even
though the event has not actually
occurred. Also, the current event value is
returned and the caller’s intercept
routine is executed.

signal contains the returned signal code.

mask specifies the activation mask. It indicates
which bits are significant to the caller.

Possible Errors

EOS_EVNTID
EOS_SIGNAL
266 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_ANYCLR Wait for Event to Occur

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evanyclr_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
int32 value;
signal_code signal;
u_int32 mask;

} f_evanyclr_pb, *F_evanyclr_pb;

OS-9 Attributes

Description

EV_ANYCLR waits for an event to occur. The event variable is ANDed
with the value in mask and then EXCLUSIVE-ORed with it. If the
resulting value is zero, the calling process is suspended in a FIFO event
queue. It waits until one of the event set calls occurs that clears any of
the bits corresponding to the set bits in the mask.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 267

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_ANYCLR event function code.

ev_id identifies the event.

value is a returned value. It is the actual event
value after the set operation that
activated the suspended process.

If the process receives a signal while in
the event queue, it is activated and an
EOS_SIGNAL error is returned, even
though the event has not actually
occurred. Also, the current event value is
returned and the caller’s intercept
routine is executed.

signal contains the returned signal code.

mask specifies the activation mask. It indicates
which bits are significant to the caller.

Possible Errors

EOS_EVNTID
EOS_SIGNAL
268 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_ANYSET Wait for Event to Occur

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evanyset_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
int32 value;
signal_code signal;
u_int32 mask;

} f_evanyset_pb, *F_evanyset_pb;

OS-9 Attributes

Description

EV_ANYSET waits until one of the event set calls occurs that sets any of
the bits corresponding to the set bits in the mask. The event variable is
ANDed with the value in mask. If the resulting value is zero, the calling
process is suspended in a FIFO event queue.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 269

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_ANYSET event function code.

ev_id identifies the event.

value is a returned value. It is the actual event
value after the set operation that
activated the suspended process.

If the process receives a signal while in
the event queue, it is activated and an
EOS_SIGNAL error is returned, even
though the event has not actually
occurred. Also, the current event value is
returned and the caller’s intercept
routine is executed. The signal code is
returned in signal.

signal contains the returned signal code.

mask specifies the activation mask. It indicates
which bits are significant to the caller.

Possible Errors

EOS_EVNTID
EOS_SIGNAL
270 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_CHANGE Wait for Event to Occur

Headers:

#include <types.h>

Parameter Block Structure

typedef struct f_evchange_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
int32 value;
signal_code signal;
u_int32 mask;
u_int32 pattern;

} f_evchange_pb, *F_evchange_pb;

OS-9 Attributes

Description

EV_CHANGE waits until one of the event set calls occurs that changes
any of the bits corresponding to the set bits in mask. The event variable
is ANDed with the value in mask. If the resulting value is not equal to
the wait pattern, the calling process is suspended in a FIFO event
queue.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 271

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_CHANGE event function code.

ev_id identifies the event.

value is a returned value. It is the actual event
value after the set operation that
activated the suspended process.

If the process receives a signal while in
the event queue, it is activated and an
EOS_SIGNAL error is returned, even
though the event has not actually
occurred. Also, the current event value is
returned and the caller’s intercept
routine is executed. The signal code is
returned in signal.

signal contains the returned signal code.

mask specifies the activation mask. It indicates
which bits are significant to the caller.

pattern specifies the wait pattern.

Possible Errors

EOS_EVNTID
EOS_SIGNAL
272 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_CREAT Create New Event

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evcreat_pb {
syscb cb;
u_int16 ev_code,

wait_inc,
sig_inc,
perm,
color;

event_id ev_id;
u_char *ev_name;
u_int32 value;

} f_evcreat_pb, *F_evcreat_pb;

OS-9 Attributes

Description

EV_CREAT creates events dynamically as needed. When an event is
created, an initial value is specified, as well as increments to be applied
each time the event is waited for or occurs. Subsequent event calls use
the returned ID number to refer to the created event.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 273

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_CREAT event function code.

wait_inc specifies the auto-increment value for
EV_WAIT.

sig_inc specifies the auto-increment value for
EV_SIGNL.

perm specifies the access permissions.

color specifies the memory type for the event
structure.

ev_id is a returned value. It is the event
identifier used for subsequent event
calls.

ev_name points to the event name string.

value specifies the initial event variable value.

Possible Errors

EOS_BNAM
EOS_EVBUSY
EOS_EVFULL
EOS_NORAM

See Also

F_EVENT, EV_DELET
F_EVENT, EV_SIGNL
F_EVENT, EV_WAIT
274 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_DELET Remove Event

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evdelet_pb {
syscb cb;
u_int16 ev_code;
u_char *ev_name;

} f_evdelet_pb, *F_evdelet_pb;

OS-9 Attributes

Description

EV_DELET removes an event from the system event table, freeing the
entry for use by another event. Events have an implicit use count
(initially set to 1), which is incremented with each EV_LINK call and
decremented with each EV_UNLINK call. An event may not be deleted
unless its use count is zero.

NoteNote
OS-9 does not automatically unlink events when EOS_EXIT occurs.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 275

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_DELET event function code.

name points to the event’s name string.

Possible Errors

EOS_BNAM
EOS_EVBUSY
EOS_EVNF

See Also

F_EVENT, EV_CREAT
F_EVENT, EV_LINK
F_EVENT, EV_UNLNK
276 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_INFO Return Event Information

Headers

#include <events.h>

Parameter Block Structure

typedef struct f_evinfo_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
u_int32 size;
u_char *buffer;

} f_evinfo_pb, *F_evinfo_pb;

OS-9 Attributes

Description

EV_INFO returns event information in your buffer. This call is used by
utilities needing to know the status of all active events. The information
returned is defined by the ev_infostr event information structure
defined in the events.h header file.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 277

8 OS-9 System Calls
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Events in Chapter 4: Interprocess Communications for more
information about the events.h file.

The name of the event is appended to the end of the information
structure. The information buffer and size parameters must be large
enough to accommodate the name of the target event.

EV_INFO returns the event information block for the first active event
whose index is greater than or equal to this index. If no such event
exists, an error is returned.

Parameters

cb is the control block header.

ev_code is the EV_INFO event function code.

ev_id specifies the event index to use to begin
the search. Unlike other event functions,
only an event index is passed in the
ev_id parameter. The index is the
system event number, ranging from zero
to one less than the maximum number of
system events.

size specifies the buffer size.

buffer points to the buffer containing the event
information.

Possible Errors

EOS_EVNTID

See Also

ev_str/ev_infostr in Chapter 4: Interprocess Communications
278 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_LINK Link to Existing Event by Name

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evlink_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
u_char *ev_name;

} f_evlink_pb, *F_evlink_pb;

OS-9 Attributes

Description

EV_LINK determines the ID number of an existing event. Once an
event has been linked, all subsequent references are made using the
returned event ID. This permits the system to access events quickly,
while preventing programs from using invalid or deleted events. The
event use count is incremented when an EV_LINK is performed. To
keep the use count synchronized properly, use EV_UNLINK when the
event is no longer used.

The event access permissions are checked only at link time.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 279

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_LINK event function code.

ev_name points to the event name string.

ev_id is the event identifier used for
subsequent event calls.

Possible Errors

EOS_BNAM
EOS_EVNF
EOS_PERMIT

See Also

F_EVENT, EV_UNLNK
280 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_PULSE Signal Event Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evpulse_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
int32 value;
u_int32 actv_flag;

} f_evpulse_pb, *F_evpulse_pb;

OS-9 Attributes

Description

EV_PULSE signals an event occurrence. The event value is set to what
is passed in value, and the signal auto-increment is not applied. Then,
the event queue is searched for the first process waiting for that event
value, after which the original event value is restored.

EV_PULSE with the actv_flag set executes as follows for each
process in the queue until the queue is exhausted:

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 281

8 OS-9 System Calls
Step 1. The signal auto-increment is added to the event variable.

Step 2. The first process in range is awakened.

Step 3. The event value is updated with the wait auto-increment.

Step 4. The search is continued with the updated value.

Parameters

cb is the control block header.

ev_code is the EV_PULSE event function code.

ev_id identifies the event.

value is the event value prior to the pulse
operation.

actv_flag specifies which process(es) to activate.

•If actv_flag is one, all processes in
range are activated.

•If actv_flag is not set, only the first
process in the event queue waiting
for that range is activated.

Possible Errors

EOS_EVNTID
282 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_READ Read Event Value Without Waiting

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evread_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
int32 value;

} f_evread_pb, *F_evread_pb;

OS-9 Attributes

Description

EV_READ reads the value of an event without waiting or affecting the
event variable. This can determine the availability of the event (or
associated resource) without waiting.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 283

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_READ event function code.

ev_id identifies the event.

value is the current event value.

Possible Errors

EOS_EVNTID
284 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_SET Set Event Variable and Signal Event
Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evset_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
int32 value;
u_int32 actv_flag;

} f_evset_pb, *F_evset_pb;

OS-9 Attributes

Description

EV_SET signals an event has occurred. The current event variable is set
to the value passed at value, rather than updated with the signal
auto-increment. Next, the event queue is searched for the first process
waiting for the event value.

EV_SET with the actv_flag set executes as follows for each process
in the queue until the queue is exhausted:

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 285

8 OS-9 System Calls
Step 1. The first process in range is awakened.

Step 2. The event value is updated with the wait auto-increment.

Step 3. The search is continued with the updated value.

Parameters

cb is the control block header.

ev_code is the EV_SET event function code.

ev_id identifies the event.

value is the event value prior to the set
operation.

actv_flag specifies which process(es) to activate.

•If actv_flag is one, all processes in
range are activated.

•If actv_flag is not set, only the first
process in the event queue waiting
for that range is activated.

Possible Errors

EOS_EVNTID
286 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_SETAND Set Event Variable and Signal Event
Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evsetand_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
u_int32 mask,

actv_flag;
} f_evsetand_pb, *F_evsetand_pb;

OS-9 Attributes

Description

EV_SETAND signals an event has occurred. The current event variable
is ANDed with the value passed in mask rather than updated with the
signal auto-increment. Next, the event queue is searched for the first
process waiting for that event value.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 287

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_SETAND event function code.

ev_id identifies the event.

value is the event value prior to the logical
operation.

mask is the event mask. It indicates which bits
are significant to the caller.

actv_flag specifies which process(es) to activate.

•If actv_flag is one, all processes in
range are activated.

•If actv_flag is not set, only the first
process in the event queue waiting
for that range is activated.

Possible Errors

EOS_EVNTID
288 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_SETOR Set Event Variable and Signal Event
Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evsetor_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
u_int32 mask,

actv_flag;
} f_evsetor_pb, *F_evsetor_pb;

OS-9 Attributes

Description

EV_SETOR signals an event has occurred. The current event variable is
ORed with the value passed in mask. Next, the event queue is searched
for the first process waiting for that event value.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 289

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_SETOR event function code.

ev_id identifies the event.

value is the event value prior to the logical
operation.

mask is the event mask. It indicates which bits
are significant to the caller.

actv_flag specifies which processes to activate.

•If actv_flag is one, all processes in
range are activated.

•If actv_flag is not set, only the first
process in the event queue waiting
for that range is activated.

Possible Errors

EOS_EVNTID
290 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_SETR Set Relative Event Variable and Signal Event
Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evsetr_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
int32 value;
u_int32 actv_flag;

} f_evsetr_pb, *F_evsetr_pb;

OS-9 Attributes

Description

EV_SETR signals an event has occurred. The current event value is
incremented by value, rather than by the signal auto-increment. Next,
the event queue is searched for the first process waiting for that event
value. Arithmetic underflows or overflows are set to 0x80000000
(minimum integer) or 0x7fffffff (maximum integer), respectively.

EV_SETR with the actv_flag set executes as follows for each process
in the queue until the queue is exhausted:

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 291

8 OS-9 System Calls
Step 1. The first process in range is awakened.

Step 2. The event value is updated with the wait auto-increment.

Step 3. The search is continued with the updated value.

Parameters

cb is the control block header.

ev_code is the EV_SETR event function code.

ev_id identifies the event.

value is the event value after the relative
operation.

actv_flag specifies which process(es) to activate.

•If actv_flag is one, all processes in
range are activated.

•If actv_flag is not set, only the first
process in the event queue waiting
for that range is activated.

Possible Errors

EOS_EVNTID

See Also

F_EVENT, EV_SET
F_EVENT, EV_SIGNL
292 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_SETXOR Set Event Variable and Signal Event
Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evsetxor_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
u_int32 mask,

actv_flag;
} f_evsetxor_pb, *F_evsetxor_pb;

OS-9 Attributes

Description

EV_SETXOR signals an event has occurred. The current event value is
EXCLUSIVE-ORed with mask rather than updated with the signal
auto-increment. Next, the event queue is searched for the first process
waiting for that event value.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 293

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_SETXOR event function code.

ev_id identifies the event.

value is the event value prior to the logical
operation.

mask specifies the event mask. It indicates
which bits are significant to the caller.

actv_flag specifies which process(es) to activate.

•If actv_flag is one, all processes in
range are activated.

•If actv_flag is not set, only the first
process in the event queue waiting
for that range is activated.

Possible Errors

EOS_EVNTID
294 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_SIGNL Signal Event Occurrence

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evsignl_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
u_int32 actv_flag;

} f_evsignl_pb, *F_evsignl_pb;

OS-9 Attributes

Description

EV_SIGNL signals an event has occurred. The current event variable is
updated with the signal auto-increment specified when the event was
created. Next, the event queue is searched for the first process waiting
for that event value.

EV_SIGNL with the actv_flag set, executes as follows for each
process in the queue until the queue is exhausted:

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 295

8 OS-9 System Calls
Step 1. The signal auto-increment is added to the event variable.

Step 2. The first process in range is awakened.

Step 3. The event value is updated with the wait auto-increment.

Step 4. The search is continued with the updated value.

Parameters

cb is the control block header.

ev_code is the EV_SIGNL event function code.

ev_id identifies the event that has occurred.

value is the event value prior to the signal
operation.

actv_flag specifies which process(es) to activate.

•If actv_flag is one, all processes in
the event queue with a value in range
are activated.

•If actv_flag is not set, only the first
process in the event queue waiting
for that range is activated.

Possible Errors

EOS_EVNTID
296 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_TSTSET Wait for Event to Occur

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evtstset_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
int32 value;
signal_code signal;
u_int32 mask;

} f_evtstset_pb, *F_evtstset_pb;

OS-9 Attributes

Description

EV_TSTSET waits for an event to occur. The event variable is ANDed
with the value in mask. If the result is not zero, the calling process is
suspended in a FIFO event queue until an EV_SIGNL occurs clearing
all of the bits corresponding to the set bits in the mask. Next, the bits
corresponding to the set bits in the mask are set.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 297

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_TSTSET event function code.

ev_id identifies the event.

value is a returned value. It is the actual event
value prior to the set operation that
activates the suspended process.

If a process in the event queue receives
a signal, it is activated and an
EOS_SIGNAL error is returned, even
though the event has not actually
occurred. Also, the current event value is
returned, and the caller’s intercept
routine is executed.

signal contains the returned signal code.

mask specifies the activation mask. It indicates
which bits are significant to the caller.

Possible Errors

EOS_EVNTID
298 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_UNLNK Unlink Event

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evunlnk_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;

} f_evunlnk_pb, *F_evunlnk_pb;

OS-9 Attributes

Description

EV_UNLNK informs the system a process is no longer using the event.
This decrements the event use count and allows the event to be deleted
with the EV_DELET event function when the count reaches zero.

Parameters

cb is the control block header.

ev_code is the EV_UNLINK event function code.

ev_id specifies the event.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 299

8 OS-9 System Calls
Possible Errors

EOS_EVNTID

See Also

F_EVENT, EV_DELET
F_EVENT, EV_LINK
300 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_WAIT Wait for Event to Occur

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evwait_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
int32 value;
signal_code signal;
u_int32 min_val,

max_val;
} f_evwait_pb, *F_evwait_pb;

OS-9 Attributes

Description

EV_WAIT waits until an event call places the value in the range between
the minimum and maximum activation values. Next, the wait
auto-increment (specified at creation) is added to the event variable.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 301

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_WAIT event function code.

ev_id identifies the event.

value is a returned value. It is the actual event
value prior to the set operation that
activates the suspended process.

signal is a returned value. It is the signal code,
if it is activated by a signal. If a process
in the event queue receives a signal, it is
activated even though the event has not
actually occurred. The auto-increment is
not added to the event variable, and an
EOS_SIGNAL error is returned. Also, the
event value is returned, even though it is
not in range, and the caller’s intercept
routine is executed.

min_val is the minimum activation value.

max_val is the maximum activation value. The
event value is added to min_val and
max_val, and the actual absolute
values are returned to the caller. If an
underflow or overflow occurs on the
addition, the values 0x80000000
(minimum integer) and 0x7fffffff
(maximum integer) are used,
respectively.

Possible Errors

EOS_EVNTID

See Also

F_EVENT, EV_SIGNL
F_EVENT, EV_WAIT
302 OS-9 Technical Manual

8OS-9 System Calls
F_EVENT, EV_WAITR Wait for Relative Event to Occur

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_evwaitr_pb {
syscb cb;
u_int16 ev_code;
event_id ev_id;
int32 value;
signal_code signal;
u_int32 min_val,

max_val;
} f_evwaitr_pb, *F_evwaitr_pb;

OS-9 Attributes

Description

EV_WAITR waits until an event call places the value in the range
between the minimum and maximum activation values, where min_val
and max_val are relative to the current event value. Next, the wait
auto-increment (specified at creation) is added to the event variable.

The event value is added to min_val and max_val, and the actual
absolute values are returned to the caller. If an underflow or overflow
occurs on the addition, the values 0x80000000 (minimum integer) and
0x7fffffff (maximum integer) are used, respectively.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 303

8 OS-9 System Calls
Parameters

cb is the control block header.

ev_code is the EV_WAITR event function code.

ev_id identifies the event.

value is a returned value. It is the actual event
value prior to the set operation that
activates the suspended process.

signal is a returned value. It is the signal code,
if it is activated by a signal.

If a process in the event queue receives
a signal, it is activated even though the
event has not actually occurred. The
auto-increment is not added to the event
variable, and an EOS_SIGNAL error is
returned. Also, the event value is
returned, even though it is not in range,
and the caller’s intercept routine is
executed.

min_val is the minimum relative activation value.
Upon return, it contains the absolute
minimum activation value.

max_val is the maximum relative activation value.
Upon return, it contains the absolute
maximum activation value.

Possible Errors

EOS_EVNTID

See Also

F_EVENT, EV_SIGNL
F_EVENT, EV_WAIT
304 OS-9 Technical Manual

8OS-9 System Calls
F_EXIT Terminate Calling Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_exit_pb {
syscb cb;
status_code status;

} f_exit_pb, *F_exit_pb

OS-9 Attributes

Description

F_EXIT allows a process to terminate itself. Its data memory area is
deallocated and its primary module is unlinked. All open paths are
automatically closed.

The parent can detect the death of a child process by executing
F_WAIT. This returns (to the parent) the exit status passed by the child
in its exit call. The shell assumes the exit status is an OS-9 error code.
The exit status can also be a user-defined status value.

Processes to be called directly by the shell should only return an OS-9
error code or zero (if no error occurred).

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 305

8 OS-9 System Calls
NoteNote
The parent must perform an F_WAIT or an F_EXIT before the child
process descriptor is returned to free memory.

F_EXIT executes as follows:

Step 1. Close all paths.

Step 2. Return the memory to the system.

Step 3. Unlink the primary module, subroutine libraries, and trap handlers.

Step 4. Free the process descriptor of any dead child processes.

Step 5. Free the process descriptor if the parent is dead.

Step 6. Leave the process in limbo until the parent notices the death if the
parent has not executed F_WAIT.

Step 7. If the parent is waiting, move it to the active queue and informs it of
death/status.

Step 8. Remove the child from the sibling list and free its process descriptor
memory.

NoteNote
Only the primary module, subroutine libraries, and trap handlers are
unlinked. Any other modules loaded or linked by the process should be
unlinked before calling F_EXIT.
306 OS-9 Technical Manual

8OS-9 System Calls
Although F_EXIT closes any open paths, it ignores errors returned by
I_CLOSE. Due to I/O buffering, write errors can go unnoticed when
paths are left open. However, by convention, the standard I/O paths (0,
1, and 2) are usually left open.

Parameters

cb is the control block header.

status is the status code returned to the parent
process.

See Also

F_APROC
F_FORK
F_SRTMEM
F_UNLINK
F_WAIT
I_CLOSE
OS-9 Technical Manual 307

8 OS-9 System Calls
F_FINDPD Find Process Descriptor

Headers

#include <process.h>

Parameter Block Structure

typedef struct f_findpd_pb {
syscb cb;
process_id proc_id;
Pr_desc proc_desc;

} f_findpd_pb, *F_findpd_pb;

OS-9 Attributes

Description

F_FINDPD converts a process number to the absolute address of its
process descriptor data structure.

Parameters

cb is the control block header.

proc_id specifies the process ID.

proc_desc is a returned value. It is the pointer to the
process descriptor.

Possible Errors

EOS_IPRCID

State Threads Compatibility

System Safe
308 OS-9 Technical Manual

8OS-9 System Calls
See Also

F_ALLPRC
F_RETPD
OS-9 Technical Manual 309

8 OS-9 System Calls
F_FMOD Find Module Directory Entry

Headers

#include <moddir.h>

Parameter Block Structure

typedef struct f_findmod_pb {
syscb cb;
u_int16 type_lang;
Mod_dir moddir_entry;
u_char *mod_name;

} f_findmod_pb, *F_findmod_pb;

OS-9 Attributes

Description

F_FMOD searches the module directory for a module whose name, type,
and language match the parameters. If found, a pointer to the module
directory entry is returned in moddir_entry.

Parameters

cb is the control block header.

type_lang specifies the type and language of the
module.

State Threads Compatibility

System Safe

Interrupt
310 OS-9 Technical Manual

8OS-9 System Calls
moddir_entry is a returned value. It is the pointer to the
module directory entry.

mod_name points to the module name.

Possible Errors

EOS_BNAM
EOS_MNF

See Also

F_LINK
F_LOAD
OS-9 Technical Manual 311

8 OS-9 System Calls
F_FORK Create New Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_fork_pb {
syscb cb;
u_int16 priority,

path_cnt;
process_id proc_id;
u_char *mod_name,

*params;
u_int32 mem_size,

param_size;
u_int16 type_lang;
u_int16 orphan;

} f_fork_pb, *F_fork_pb;

OS-9 Attributes

Description

F_FORK creates a new process that becomes a child of the caller. It
sets up the new process’ memory, MPU registers, and standard I/O
paths.

State Threads Compatibility

User Safe

System
312 OS-9 Technical Manual

8OS-9 System Calls
The system parses the name string of the new process’ primary module
(the program that is initially executed). If the program is found in the
current or alternate module directory, the module is linked and
executed. If the program is not found, the name string is used as the
pathlist of the file to be loaded into memory. The first module in this file
is linked and executed. The module must be program object code with
the appropriate read and/or execute permissions to be loaded
successfully.

The primary module’s header determines the process’ initial data area
size. OS-9 attempts to allocate RAM equal to the required data storage
size, the size of any parameters passed, and the size specified by
mem_size. The RAM area must be contiguous.

The execution offset in the module header is used to set the PC to the
module’s entry point.

When the shell processes a command line, it passes a copy of the
command line parameters (if any) as a parameter string. The shell
appends an end-of-line character to the parameter string to simplify
string-oriented processing.

If one or more of these operations is unsuccessful, the fork is aborted
and the caller receives an error.

F_FORK passes the following structure (defined in <fork.h>) as a
parameter to the newly-created process:
typedef struct {
 process_id proc_id; /* process ID */
 owner_id owner; /* group/user ID */
 priority_level priority; /* priority */
 u_int16 path_count; /* number of I/O paths inherited */
 u_int32 param_size, /* size of parameters */
 mem_size; /* total initial memory allocated */
 u_char *params, /* parameter pointer */
 mem_end; / top of memory pointer */
 Mh_exec mod_head; /* primary (forked) module ptr*/
} fork_params, *Fork_params;
OS-9 Technical Manual 313

8 OS-9 System Calls
NoteNote
The child and parent processes execute concurrently. If the parent
executes F_WAIT immediately after the fork, it waits until the child dies
before it resumes execution. A child process descriptor is returned to
free memory only when the parent performs an F_WAIT or an F_EXIT
service request.

Modules owned by a super user can execute in system state if the
system-state bit in the module’s attributes is set. This should only be
done when necessary because this process is not time sliced and
system protection is not enabled for this process.

Parameters

cb is the control block header.

priority specifies the priority of the new process.
If priority is zero, the new process
inherits the same priority as the calling
process.

path_cnt specifies the number of I/O paths for the
child to inherit.

proc_id is a returned value. It is the child process
ID.

mod_name points to the module name.

params points to the parameter string to pass to
the new process.

mem_size specifies any additional stack space to
allocate above the default specified in
the primary module’s module header.

param_size specifies the size of the parameter
string.
314 OS-9 Technical Manual

8OS-9 System Calls
type_lang specifies the desired type and language.
If type_lang is zero, any module,
regardless of type and language, may be
loaded.

orphan If the orphan flag is non-zero, the new
process executes without a parent. If
orphan is zero, the new process is the
child of the calling process.

Possible Errors

EOS_NORAM
EOS_PERMIT
EOS_PNNF

See Also

F_CHAIN
F_EXIT
F_WAIT
OS-9 Technical Manual 315

8 OS-9 System Calls
F_FORKM Create New Process by Module Pointer

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_forkm_pb {
syscb cb;
u_int16 priority,

path_cnt;
process_id proc_id;
Mh_com mod_head;
u_char *params;
u_int32 mem_size,

param_size;
u_int16 orphan;

} f_forkm_pb, *F_forkm_pb;

OS-9 Attributes

Description

F_FORKM creates a new process that becomes a child of the caller. It
sets up the new process’ memory, MPU registers, and standard I/O
paths. The new process is forked by a module pointer. F_FORKM
assumes the module pointer is the primary module pointer for the new
process.

State Threads Compatibility

User Safe

System
316 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

priority specifies the priority of the new process.
If priority is zero, the new process
inherits the same priority as the calling
process.

path_cnt specifies the number of I/O paths for the
child to inherit.

proc_id is a returned value. It is the child process
ID.

mod_head points to the module header of the
module to fork.

params points to the parameter string to pass to
the new process.

mem_size specifies any additional stack space to
allocate above the default specified in
the primary module’s module header.

param_size specifies the size of the parameter
string.

orphan If the orphan flag is non-zero, the new
process executes without a parent. If
orphan is zero, the new process is the
child of the calling process.

Possible Errors

EOS_MNF
EOS_NORAM
EOS_PERMIT

See Also

F_FORK
OS-9 Technical Manual 317

8 OS-9 System Calls
F_GBLKMP Get Free Memory Block Map

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_gblkmp_pb {
syscb cb;
Mem_list start;
u_char *buffer;
u_int32 size,

min_alloc,
num_segs,
tot_mem,
free_mem;

} f_gblkmp_pb, *F_gblkmp_pb;

OS-9 Attributes

Description

F_GBLKMP copies the address and size of the system’s free RAM
blocks into your buffer for inspection. It also returns information
concerning the free RAM as noted by the parameters.

State Threads Compatibility

User Safe

System
318 OS-9 Technical Manual

8OS-9 System Calls
A series of structures showing the address and size of free RAM blocks
is returned in your buffer in the following format:

typedef struct {
 u_char *address; /* pointer to block */
 u_int32 size; /* size of block */
};

Although F_GBLKMP returns the address and size of the system’s free
memory blocks, you cannot directly access these blocks. Use
F_SRQMEM to request free memory blocks.

The address and size of free RAM changes with system use. mfree
and similar utilities use F_GBLKMP to determine the status of free
system memory.

The OS suffixes the array of info structures, to which buffer points,
with a sentinel as follows:

info.address NULL

info.size 0

The OS adds this sentinel only if at least one unused info structure
occupies the buffer after processing.

Parameters

cb is the control block header.

start is the address to begin reporting the
segments.

buffer points to the buffer to use.

size specifies the buffer size in bytes. It is
also an output containing the number of
unused info structures in the buffer.

When size is 0, the service does not
validate or use buffer. It also updates
the following parameters on every call.

min_alloc is a returned value. It is the minimum
memory allocation size for the system.
OS-9 Technical Manual 319

8 OS-9 System Calls
num_segs is a returned value. It is the number of
memory fragments in the system.

tot_mem is a returned value. It is the total RAM
found by the system at startup.

free_mem is a returned value. It is the current total
free RAM available.

See Also

F_SRQMEM
320 OS-9 Technical Manual

8OS-9 System Calls
F_GETMDP Get Current and Alternate Module Directory
Pathlists

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_get_mdp_pb {
syscb cb;
u_char *current,

*alternate;
} f_get_mdp_pb, *F_get_mdp_pb;

OS-9 Attributes

Description

F_GETMDP returns pathlists to the current module directory and the
alternate module directory.

Parameters

cb is the control block header.

current points to the buffer for returning the
pathlist of the current module directory.

alternate points to the buffer for returning the
pathlist of the alternate module directory.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 321

8 OS-9 System Calls
See Also

F_ALTMDIR
F_CHMDIR
322 OS-9 Technical Manual

8OS-9 System Calls
F_GETSYS Examine System Global Variable

Headers

#include <types.h>
#include <sysglob.h>

Parameter Block Structure

typedef struct f_getsys_pb {
syscb cb;
u_int32 offset,

size;
union {

u_char byt;
u_int16 wrd;
u_int32 lng;

} sysvar;
} f_getsys_pb, *F_getsys_pb;

OS-9 Attributes

Description

F_GETSYS enables a process to examine a system global variable.
Consult the sysglob.h header file for a description of the system
global variables.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 323

8 OS-9 System Calls
WARNING!
The format and contents of the system global variables may change in
future releases of OS-9.

Parameters

cb is the control block header.

offset is the variable’s offset in the system
globals.

size specifies the size of the variable.

sysvar is a union of the three sizes of variables
accessible by F_GETSYS.

byt is a byte size variable.

wrd is a word size variable.

lng is a long size variable.

See Also

F_SETSYS

The DEFS files section of the OS-9 Porting Guide
324 OS-9 Technical Manual

8OS-9 System Calls
F_GMODDR Get Copy of Module Directory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_get_moddir_pb {
syscb cb;
u_char *buffer;
u_iont32 count;

} f_get_moddir_pb, *F_get_moddir_pb;

OS-9 Attributes

Description

F_GMODDR copies the process’ current module directory into your buffer
for inspection.

F_GMODDR is provided primarily for use by mdir and similar utilities.
The format and contents of the module directory may change on
different releases of OS-9. Therefore, you should use the output of
mdir to determine the names of modules in memory.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 325

8 OS-9 System Calls
Parameters

cb is the control block header.

buffer points to the buffer.

count is the maximum number of bytes to copy,
and upon return from F_GMODDR it is the
number of bytes actually copied.

NoteNote
Although the module directory contains pointers to each module in the
system, never access the modules directly. Instead, use F_CPYMEM to
copy portions of the system’s address space for inspection.

See Also

F_CPYMEM
326 OS-9 Technical Manual

8OS-9 System Calls
F_GPRDBT Get Copy of Process Descriptor Block Table

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_get_prtbl_pb {
syscb cb;
u_char *buffer;
u_int32 count;

} f_get_prtbl_pb, *F_get_prtbl_pb;

OS-9 Attributes

Description

F_GPRDBT copies the process descriptor block table into your buffer for
inspection. The procs utility uses F_GPRDBT to determine which
processes are active in the system.

Parameters

cb is the control block header.

buffer points to the buffer.

count is the maximum number of bytes to copy
and upon return from F_GPRDBT it is the
number of bytes actually copied.

State Threads Compatibility

User Safe

Interrupt
OS-9 Technical Manual 327

8 OS-9 System Calls
NoteNote
Although F_GPRDBT returns pointers to all process descriptors, never
access the process descriptors directly. Instead, use F_GPRDSC to
inspect specific process descriptors.

See Also

F_GPRDSC
328 OS-9 Technical Manual

8OS-9 System Calls
F_GPRDSC Get Process Descriptor Copy

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_grpdsc_pb {
syscb cb;
process_id proc_id;
u_char *buffer;
u_int32 count;

} f_grpdsc_pb, *F_grpdsc_pb;

OS-9 Attributes

Description

F_GPRDSC copies the contents of a process descriptor into the
specified buffer for inspection. The procs utility uses F_GPRDSC to
obtain information about an existing process.

WARNING!
The format and contents of a process descriptor can change in future
releases of OS-9.

State Threads Compatibility

User Safe
OS-9 Technical Manual 329

8 OS-9 System Calls
Parameters

cb is the control block header.

procid is the requested process ID.

buffer points to the buffer.

count is the maximum number of bytes to copy,
and upon return from F_GPRDSC, it is the
number of bytes actually copied.

Possible Errors

EOS_IPRCID
330 OS-9 Technical Manual

8OS-9 System Calls
F_ICPT Set Up Signal Intercept Trap

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_intercept_pb {
syscb cb;
u_int32 (*function)();
void *data_ptr;

} f_intercept_pb, *F_intercept_pb;

OS-9 Attributes

Description

F_ICPT tells OS-9 to install a signal intercept routine.

When a process executing an F_ICPT call receives a signal, the
process’ intercept routine is executed, and the signal code is passed as
a parameter. A signal aborts a process that has not used F_ICPT.
Many interactive programs set up an intercept routine to handle
keyboard abort and keyboard interrupt signals.

The intercept routine is entered asynchronously because a signal can
be sent at any time, similar to an interrupt. The signal code is passed as
a parameter. The intercept routine should be short and fast, such as
setting a flag in the process’ data area. You should avoid complicated

State Threads Compatibility

User Safe

Interrupt
OS-9 Technical Manual 331

8 OS-9 System Calls
system calls (such as I/O). After the intercept routine has been
completed, it may return to normal process execution by executing
F_RTE.

NoteNote
Each time the intercept routine is called, the state of the processor
(such as its registers) is pushed on to the user’s system stack.

Parameters

cb is the control block header.

function points to the intercept routine.

data_ptr points to the intercept routine’s global
storage. It usually contains the address
of the program’s data area. The syntax
for the signal handler is as follows:

void usr_sighand(sig_code, sig_count)
signal_code sig_code; /* signal received */
u_int32 sig_count; /* number of signals pending */

See Also

F_RTE
F_SEND
332 OS-9 Technical Manual

8OS-9 System Calls
F_ID Get Process ID and User ID

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_id_pb {
syscb cb;
process_id proc_id;
u_int16 priority,

age;
int32 schedule;
owner_id user_id;

} f_id_pb, *F_id_pb;

OS-9 Attributes

Description

F_ID returns the caller’s process ID number, current process priority
and age, scheduling constant, and owner ID. OS-9 assigns the process
ID, and each process has a unique process ID. The owner ID is defined
in the system password file and is used for system and file security.
Several processes can have the same owner ID.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 333

8 OS-9 System Calls
Parameters

cb is the control block header.

proc_id is a returned value. It is the current
process ID number.

priority is a returned value. It is the priority of the
current process.

age is a returned value. It is the age of the
current process.

schedule is a returned value. It is the scheduling
constant of the current process.

group is a returned value. It is the group
number of the current process.

user is a returned value. It is the user number
of the current process.

Possible Errors

EOS_BPADDR
334 OS-9 Technical Manual

8OS-9 System Calls
F_INITDATA Initialize Static Storage from Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_init_data_pb {
syscb cb;
Mh_com mod_head;
u_char *data;

} f_init_data_pb, *F_init_data_pb;

OS-9 Attributes

Description

F_INITDATA clears the uninitialized data area, copies the module
header’s initialized data to the specified data area, and clears the
remote data area (if it exists). Next, it adjusts the code and data offsets.

Parameters

cb is the control block header.

mod_head points to the module header.

data points to the data area.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 335

8 OS-9 System Calls
Possible Errors

EOS_BMHP
EOS_BMID
336 OS-9 Technical Manual

8OS-9 System Calls
F_IRQ Add or Remove Device from IRQ Table

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_irq_pb {
syscb cb;
u_int16 vector,

priority;
void *irq_entry;
u_char *statics;

} f_irq_pb, *F_irq_pb;

OS-9 Attributes

Description

F_IRQ installs an IRQ service routine into the system polling table.

OS-9 does not poll the I/O port prior to calling the interrupt service
routine. Device drivers are required to determine if their device caused
an interrupt.

Parameters

cb is the control block header.

vector specifies the vector number of the
associated interrupt.

State Threads Compatibility

System Safe
OS-9 Technical Manual 337

8 OS-9 System Calls
priority specifies the priority. (65535 is
reserved.) IRQ service routines for the
same vector are placed into a polling
table for the vector according to their
relative priorities:

•If priority is 0, only this device can
use the vector.

•If priority is 1, it is polled first and no
other device can have a priority of
one on the vector.

•If priority is 65534, it is polled last on
the vector.

irq_entry points to the IRQ service routine entry
point. If irq_entry is zero, the call
deletes the IRQ service routine.

statics points to the global static storage.
statics must be unique to the device.

Possible Errors

EOS_POLL is returned if the polling table is full.

EOS_PARAM is returned if an attempt is made to
delete an IRQ routine that is not installed
for that interrupt.
338 OS-9 Technical Manual

8OS-9 System Calls
F_LINK Link to Memory Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_link_pb {
syscb cb;
u_char *mod_name;
Mh_com mod_head;
void *mod_exec;
u_int16 type_lang,

attr_rev;
} f_link_pb, *F_link_pb;

OS-9 Attributes

Description

F_LINK searches the current and alternate module directories for a
module whose name, type, and language match the parameters.

The module’s link count keeps track of how many processes are using
the module. If the requested module is not re-entrant, only one process
may link to it at a time.

If the module’s access word does not give the process read permission,
the link call fails. F_LINK cannot find a module whose header has been
destroyed (altered or corrupted).

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 339

8 OS-9 System Calls
Parameters

cb is the control block header.

mod_name points to the module name. If mod_name
is an explicit module directory pathlist
(for example, /usr/tony/prog), the
mod_name pointer is updated to point to
the module that was successfully linked
(for example, prog).

mod_head is a returned value. It is the address of
the module’s header.

mod_exec is a returned value. It is the pointer to the
absolute address of the module’s
execution entry point. The module
header includes this information.

type_lang is the type and language of the module.
If type_lang is zero, any module can
be linked to, regardless of the type and
language. Upon completion,
type_lang is updated with the
type/language value from the module’s
module header.

attr_rev is a returned value. It points to the
attribute and revision level of the module.

Possible Errors

EOS_BNAM
EOS_MNF
EOS_MODBSY

See Also

F_LINKM
F_LOAD
F_UNLINK
F_UNLOAD
340 OS-9 Technical Manual

8OS-9 System Calls
F_LINKM Link to Memory Module by Module Pointer

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_linkm_pb {
syscb cb;
Mh_com mod_head;
void *mod_exec;
u_int16 type_lang,

attr_rev;
} f_linkm_pb, *F_linkm_pb;

OS-9 Attributes

Description

F_LINKM causes OS-9 to link to the module specified by mod_head.

The module’s link count keeps track of how many processes are using
the module. If the requested module is not re-entrant, only one process
can link to it at a time.

If the module’s access word does not give the process read permission,
the link call fails. Link cannot find a module whose header has been
destroyed (altered or corrupted).

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 341

8 OS-9 System Calls
Parameters

cb is the control block header.

mod_head points to the module.

mod_exec is a returned value. It points to the
pointer to the absolute address of the
module’s execution entry point.

type_lang is the type and language of the module.
If type_lang is zero, any module can
be linked to regardless of the type and
language. Upon completion,
type_lang is updated with the
type/language value from the module’s
module header.

attr_rev is a returned value. It is the attribute and
revision level of the module.

Possible Errors

EOS_BNAM
EOS_MNF
EOS_MODBSY

See Also

F_LINK
F_LOAD
F_UNLINK
F_UNLOAD
342 OS-9 Technical Manual

8OS-9 System Calls
F_LOAD Load Module(s) from File

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_load_pb {
syscb cb;
u_char *mod_name;
Mh_com mod_head;
void *mod_exec;
u_int32 mode;
u_int16 type_lang,

attr_rev,
color;

} f_load_pb, *F_load_pb;

OS-9 Attributes

Description

F_LOAD loads an OS-9 memory module from a disk file or a serial
device (SCF) into the current module directory. When loading from a
disk file as specified by mod_name pathlist, the target file is opened and
one or more memory modules are read from the file into memory until
an error or end of file is reached. When loading from a serial device
(SCF), the Kernel attempts to load only one memory module by first

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 343

8 OS-9 System Calls
reading the header of the module and then the body of the module. In
either case, the path to the disk file or serial device is closed after the
loading operation.

An error can indicate an actual I/O error, a module with a bad parity or
CRC, or insufficient memory of the desired type.

When a module is loaded, its name is added to the calling process’
current module directory, and the first module read is linked. The
parameters returned are the same as those returned by a link call and
apply only to the first module loaded.

To be loaded, the file must contain a module (or modules) with a proper
module header and CRC. If the file’s access mode is S_IEXEC, the file
is loaded from the current execution directory. If the file’s access mode
is S_IREAD, the file is loaded from the current data directory.

If any of the modules loaded belong to the super user, the file must also
belong to the super user. This prevents normal users from executing
privileged service requests.

Parameters

cb is the control block header.

mod_name points to the module name (pathlist or
serial device name).

mod_head is a returned value. It is the pointer to the
module.

mod_exec is a returned value. It is the pointer to the
module execution entry point.

mode specifies the access mode. The access
modes are defined in the module.h
header file.

type_lang is a returned value. It is the type and
language of the first module loaded.

attr_rev is a returned value. It is the attribute and
revision level of the module.
344 OS-9 Technical Manual

8OS-9 System Calls
color specifies the type of memory in which to
load the modules. Modules are loaded
into the highest physical memory
available of the specified type.

Possible Errors

EOS_MEMFUL
EOS_BMID
OS-9 Technical Manual 345

8 OS-9 System Calls
F_MKMDIR Create New Module Directory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_makmdir_pb {
syscb cb;
u_char *name;
u_int16 perm;

} f_makmdir_pb, *F_makmdir_pb;

OS-9 Attributes

Description

F_MKMDIR creates a new module directory. The name of the new
module directory is relative to the current module directory.

Parameters

cb is the control block header.

name points to the name of the new module
directory.

perm specifies the access permissions for the
new module directory.

State Threads Compatibility

User Safe

System
346 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_KWNMOD
EOS_NORAM
OS-9 Technical Manual 347

8 OS-9 System Calls
F_MEM Resize Data Memory Area

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_mem_pb {
syscb cb;
u_char *mem_ptr;
u_int32 size;

} f_mem_pb, *F_mem_pb;

OS-9 Attributes

Description

F_MEM contracts or expands the process’ data memory area. The size
requested is rounded up to an even memory allocation block. Additional
memory is allocated contiguously upward (towards higher addresses),
or deallocated downward from the old highest address.

This request cannot return all of a process’ memory or deallocate the
memory at its current stack pointer.

If there is adequate free memory for an expansion request, but the
memory is not contiguous, F_MEM returns an error. Memory requests by
other processes may have fragmented memory resulting in small,
scattered blocks that are not adjacent to the caller’s present data area.

State Threads Compatibility

User Safe

System
348 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

mem_ptr is a returned value. It is the new end of
data segment plus 1.

size is the desired memory size in bytes. The
actual size of the memory is returned in
size. If size is zero, F_MEM treats the
call as a request for information and
returns the current upper bound in
mem_ptr and the amount of free
memory in size.

Possible Errors

EOS_DELSP
EOS_MEMFUL
EOS_NORAM
OS-9 Technical Manual 349

8 OS-9 System Calls
F_MODADDR Find Module Given Pointer

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_modaddr_pb {
syscb cb;
u_char *mem_ptr;
Mh_com mod_head;

} f_modaddr_pb, *F_modaddr_pb;

OS-9 Attributes

Description

F_MODADDR locates a module given a pointer to any position with the
module and returns a pointer to the module’s header.

Parameters

cb is the control block header.

mem_ptr points to any position within the module.

mod_head is a returned value. It is the pointer to the
associated module header.

Possible Errors

EOS_MNF

State Threads Compatibility

User Safe

System
350 OS-9 Technical Manual

8OS-9 System Calls
F_MOVE Move Data (Low Bound First)

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_move_pb {
syscb cb;
u_char *from,

*to;
u_int32 count;

} f_move_pb, *F_move_pb;

OS-9 Attributes

Description

F_MOVE is a fast block-move subroutine that copies data bytes from one
address space to another, usually from system to user or vice versa.
The data movement subroutine is optimized to make use of long moves
whenever possible. If the source and destination buffers overlap, an
appropriate move (left to right or right to left) is used to avoid data loss
due to incorrect propagation.

State Threads Compatibility

System Safe

Interrupt
OS-9 Technical Manual 351

8 OS-9 System Calls
Parameters

cb is the control block header.

from points to the source data.

to points to the destination data.

count is the byte count to copy.
352 OS-9 Technical Manual

8OS-9 System Calls
F_NPROC Start Next Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_nproc_pb {
syscb cb;

} f_nproc_pb, *F_nproc_pb;

OS-9 Attributes

Description

F_NPROC removes the next process from the active process queue and
initiates its execution. If there is no process in the queue, OS-9 waits for
an interrupt and checks the active process queue again.

F_NPROC does not return to the caller.

NoteNote
The process calling F_NPROC should already be in one of the system’s
process queues. If not, the process becomes unknown to the system.
This occurs even though the process descriptor still exists and is
printed out by a procs command.

State Threads Compatibility

System Safe
OS-9 Technical Manual 353

8 OS-9 System Calls
Parameters

cb is the control block header.

See Also

F_APROC
354 OS-9 Technical Manual

8OS-9 System Calls
F_PERMIT Allow Access to Memory Block

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_permit_pb {
syscb cb;
process_id pid;
u_int32 size;
u_char *mem_ptr;
u_int16 perm;

} f_permit_pb, *F_permit_pb;

OS-9 Attributes

Description

F_PERMIT is called when a process allocates memory or links to a
module to allow the process to access a block of memory.

F_PERMIT must update SSM (System Security Module) data structures
to show a process may access the specified memory in the requested
mode. F_PERMIT must also increment the number of links to this
memory area in a corresponding block count map to keep track of the
number of times the same block(s) has been granted access.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 355

8 OS-9 System Calls
A long word (p_spuimg) is reserved in each process descriptor for use
by the SSM code. The SSM may allocate data structures for each
process and keep a pointer to these structures in p_spuimg.

NoteNote
Note the following:

• The calling process cannot use this service to permit write-only
memory or to permit nothing (set no permissions). This service must
be used to permit at least read-only access.

• The only user-state processes that may permit memory are the ones
in group zero (super user). All other processes must be system-state
processes.

• On systems without SSM, the result of any F_PERMIT call is
success, regardless of the process state since all processes have
full access rights to the entire memory space. When SSM is not
active, the operating system does not validate any of the arguments
for this call.

Parameters

cb is the control block header.

pid is the target process’ process identifier.

size is the size of the memory area.

mem_ptr points to the beginning of the memory
area to grant access permissions.

perm specifies the permissions to add.
356 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BPADDR
EOS_DAMAGE
EOS_IPRCID
EOS_NORAM
EOS_PARAM
EOS_PERMIT
OS-9 Technical Manual 357

8 OS-9 System Calls
F_PROTECT Prevent Access to Memory Block

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_protect_pb {
syscb cb;
process_id pid;
u_int32 size;
u_char *mem_ptr;
u_int16 perm;

} f_protect_pb, *F_protect_pb;

OS-9 Attributes

Description

F_PROTECT is called when a process deallocates memory or unlinks a
module to remove a process’ permission to access a block of memory.

The counts in the block count map corresponding to the memory blocks
being protected must be decremented and if any block count becomes
zero, the protection image must be updated to prevent access to the
corresponding memory by the process.

State Threads Compatibility

User Safe

System
358 OS-9 Technical Manual

8OS-9 System Calls
NoteNote
Note the following:

• If F_PROTECT is called for a process being debugged, the protection
maps of the parent process must also be updated to remove access
to the allocated memory.

• The only user-state processes that may protect memory are the
ones in group zero (super user). All other processes must be
system-state processes.

• On systems without SSM, the result of any F_PROTECT call is
success, regardless of the process state since all processes have
full access rights to the entire memory space. When SSM is not
active, the operating system does not validate any of the arguments
for this call.

Parameters

cb is the control block header.

pid specifies the process identifier for the
target process.

size is the size of the memory area.

mem_ptr points to the beginning of the memory
area to protect access permissions.
size specifies the size of memory.

perm specifies the permissions to remove.
OS-9 Technical Manual 359

8 OS-9 System Calls
Possible Errors

EOS_BPADDR
EOS_IPRCID
EOS_NORAM
EOS_PERMIT

See Also

F_ALLTSK
F_PERMIT
360 OS-9 Technical Manual

8OS-9 System Calls
F_PRSNAM Parse Path Name

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_prsnam_pb {
syscb cb;
u_char *name;
u_int32 length;
u_char delimiter,

*updated;
} f_prsnam_pb, *F_prsnam_pb;

OS-9 Attributes

Description

F_PRSNAM parses a string for a valid pathlist element and returns its
size. This call parses one element in a pathname, not the entire
pathname. A valid pathlist element may contain the following
characters:

A - Z Upper case letters . Periods

a - z Lower case letters _ Underscores

0 - 9 Numbers $ Dollar signs

Other characters terminate the name and are returned as the pathlist
delimiter.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 361

8 OS-9 System Calls
NoteNote
Several F_PRSNAM calls are needed to process a pathlist with more
than one name. F_PRSNAM terminates a name when it detects a
delimiter character. Usually, pathlists must be terminated with a null
byte.

Parameters

cb is the control block header.

name points to the name string.

length is a returned value. It is the length of the
pathlist element.

delimiter is a returned value. It is the pathlist
delimiter.

updated is a returned value. It is a the pointer to
the first character of name.

Possible Errors

EOS_BNAM

See Also

F_CMPNAM
362 OS-9 Technical Manual

8OS-9 System Calls
F_RELLK Release Ownership of Resource Lock

Headers

#include <lock.h>

Parameter Block Structure

typedef struct f_rellk_pb {
syscb cb;
lock_id lid;

} f_rellk_pb, *F_rellk_pb;

OS-9 Attributes

Description

F_RELLK releases ownership of a resource lock and activates the next
process waiting to acquire the lock. The next process in the lock’s
queue is activated and granted exclusive ownership of the resource
lock. If no other process is waiting on the lock, the lock is simply marked
free for acquisition.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 7: Resource Locking for more information about
resource locks.

State Threads Compatibility

System Safe
OS-9 Technical Manual 363

8 OS-9 System Calls
Parameters

cb is the control block header.

lid is the lock identifier of the lock to
release.

Possible Errors

EOS_LOCKID

See Also

F_ACQLK
F_CAQLK
F_CRLK
F_DELLK
F_WAITLK
364 OS-9 Technical Manual

8OS-9 System Calls
F_RETPD Deallocate Process Descriptor

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_rtnprc_pb {
syscb cb;
process_id proc_id;

} f_rtnprc_pb, *F_rtnprc_pb;

OS-9 Attributes

Description

F_RETPD deallocates a process descriptor previously allocated by
F_ALLPRC. You must ensure the process’ system resources are
returned prior to calling F_RETPD.

Parameters

cb is the control block header.

proc_id identifies the process descriptor.

Possible Errors

EOS_IPRCID

See Also

F_ALLPRC

State Threads Compatibility

System Safe
OS-9 Technical Manual 365

8 OS-9 System Calls
F_RTE Return from Interrupt Exception

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_rte_pb {
syscb cb;
u_int32 mode;

} f_rte_pb, *F_rte_pb;

OS-9 Attributes

Description

F_RTE terminates a process’ signal intercept routine and continues
executing the main program. However, if unprocessed signals are
pending, the intercept routine is re-executed until the queue of signals is
exhausted before returning to the main program.

Parameters

cb is the control block header.

mode is currently unused, but its value must be
0 for future compatibility.

See Also

F_ICPT

State Threads Compatibility

User Safe

System
366 OS-9 Technical Manual

8OS-9 System Calls
F_SEND Send Signal to Another Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_send_pb {
syscb cb;
process_id proc_id;
signal_code signal;

} f_send_pb, *F_send_pb;

OS-9 Attributes

Description

F_SEND sends a signal to a specific process. A process may send the
same signal to multiple processes of the same group/user ID by
passing 0 as the receiving process’ ID number. For example, the OS-9
shell command, kill 0, unconditionally aborts all processes with the
same group.user ID, except the shell itself. This is an effective but
dangerous tool to get rid of unwanted background tasks.

If an attempt is made to send a signal to a process with a signal
pending, the signal is placed in the process’ FIFO signal queue. If the
process is in the signal intercept routine when it receives a signal, the
new signal is processed when F_RTE is executed by the target process.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 367

8 OS-9 System Calls
If the destination process for the signal is sleeping or waiting, it is
activated to process the signal. The signal processing intercept routine
is executed, if it exists (see F_ICPT). Otherwise, the signal aborts the
destination process and the signal code becomes the exit status (see
F_WAIT).

The wake-up signal is an exception. It activates a sleeping process but
does not invoke the signal intercept routine. The wake-up signal does
not abort a process that has not made an F_ICPT call. Wake-up signals
never queue and have no effect on active processes in user state. User
programs should avoid using the wake-up signal since it is used by the
system to activate sleeping processes. Signal codes are defined as
follows:

Table 8-10 F_SEND Signal Codes

Code Value Description

S_WAKE 1 Wake up process

S_QUIT 2 Keyboard abort

S_INT 3 Keyboard interrupt

S_KILL 4 System abort (unconditional)

S_HANGUP 5 Hang-up

6-19 Reserved for future use by
Microware (globally definable)

20-25 Reserved for Microware for specific
platforms (locally definable)

26-31 User definable for specific
platforms

32-127 Reserved for Microware (Ultra C)
368 OS-9 Technical Manual

8OS-9 System Calls
The S_KILL signal may only be sent to processes with the same group
ID as the sender. Super users may kill any process.

Parameters

cb is the control block header.

proc_id is the process ID number for the
intended receiver. A proc_id of zero
specifies all processes with the same
group/user ID.

signal specifies the signal code to send.

Possible Errors

EOS_IPRCID
EOS_SIGNAL
EOS_USIGP

See Also

F_ICPT
F_RTE
F_SIGMASK
F_SLEEP
F_WAIT

128-191 Reserved for Microware for specific
platforms (locally definable)

192-255 Reserved for Microware (globally
definable)

256- 4294967295 User definable

Table 8-10 F_SEND Signal Codes (continued)

Code Value Description
OS-9 Technical Manual 369

8 OS-9 System Calls
F_SETCRC Generate Valid CRC in Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_setcrc_pb {
syscb cb;
Mh_com mod_head;

} f_setcrc_pb, *F_setcrc_pb;

OS-9 Attributes

Description

F_SETCRC updates the header parity and CRC of a module in memory.
The module may be an existing module known to the system, or simply
an image of a module that is subsequently written to a file. The module
must have the correct size and sync bytes; other parts of the module
are not checked.

NoteNote
The module image must start on a longword address or an exception
may occur.

State Threads Compatibility

User Safe

System
370 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

mod_head points to the module.

Possible Errors

EOS_BMID

See Also

F_CRC
OS-9 Technical Manual 371

8 OS-9 System Calls
F_SETSYS Set or Examine OS-9 System Global
Variables

Headers

#include <sysglob.h>

Parameter Block Structure

typedef struct f_setsys_pb {
syscb cb;
u_int32 offset,

size;
union {
u_char byt;
u_int16 wrd;
u_int32 lng;
} sysvar;

} f_setsys_pb, *F_setsys_pb;

OS-9 Attributes

Description

F_SETSYS changes or examines a system global variable. These
variables have a d_ prefix in the system header file library sysglob.h.
Consult the DEFS files for a description of the system global variables.

State Threads Compatibility

User Safe

System

Interrupt
372 OS-9 Technical Manual

8OS-9 System Calls
NoteNote
Only super users may change system variables. You can examine and
change any system variable, but typically, only d_minpty and
d_maxage are changed. Consult Chapter 2: The Kernel, (the Process
Scheduling section) for an explanation of these variables.

Super users must be extremely careful when changing system global
variables.

The system global variables are OS-9’s data area. They are highly likely
to change from one release to another. You may need to relink
programs using this system call to be able to run on future versions of
OS-9.

Parameters

cb is the control block header.

offset is the offset to the system globals.

size specifies the size of the target variable
and which union variable is to be used to
set the target global variable.

sysvar is a union of the three sizes of variables
accessible by F_SETSYS.

byt is the byte size variable.

wrd is the word size variable.

lng is the long size variable.

EXAMPLE
#include <sysglob.h>
u_int16 min_priority;

_os_setsys(OFFSET(Sysglobs, d_minpty), sizeof(u_int16),&min_priority);
OS-9 Technical Manual 373

8 OS-9 System Calls
Possible Errors

EOS_PARAM
EOS_PERMIT

See Also

F_GETSYS
374 OS-9 Technical Manual

8OS-9 System Calls
F_SIGLNGJ Set Signal Mask Value and Return on
Specified Stack Image

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_siglngj_pb {
syscb cb;
void *usp;
u_int16 siglvl;

} f_siglngj_pb, *F_siglngj_pb;

OS-9 Attributes

Description

F_SIGLNGJ allows processes to perform longjump() operations from
their signal intercept routines and unmask signals in one operation.

This call is usually used by nested intercept routines to resume
execution in the process at a different location from where the process
was interrupted by the original signal. When this call is made, the
operating system performs the following functions:

• Validates and copies the target process stack image from the
memory buffer pointed to by the usp variable to the process’ system
state stack

• Sets the process’ signal mask to the value specified in the siglvl
variable

State Threads Compatibility

User Safe
OS-9 Technical Manual 375

8 OS-9 System Calls
• Returns to the process restoring the context copied from the user
state process stack image

The operating system takes appropriate precautions to verify the
memory location pointed to by the usp variable is accessible to the
process and to ensure the process does not attempt to make a state
change.

The stack image pointed to by the usp variable must have the format
shown in Figure 8-1.

Figure 8-1 F_SIGNLNGJ Required Stack Image

The specific format of the processor context is defined by the longstk
structure definition found in the reg<CPU Family>.h file for the
associated processor. The format of the floating-point context varies
depending on whether the target system has a hardware floating-point
unit versus floating-point emulation software.

For floating-point hardware, the stack image is the same as that defined
by the fregs structure definition found in the associated reg<CPU
Family>.h header file.

For floating-point emulation, the floating-point context differs from the
hardware implementation context as it may contain additional context
information specific to the FPU module performing the emulation. The
definition for the floating-point context as used by the FPU module is the
fpu_context structure defined in the associated reg<CPU
Family>.h header file for the target processor.

processor context

FPU context

High Memory

Low Memory
User Stack
Pointer (usp
variable)
376 OS-9 Technical Manual

8OS-9 System Calls
If a particular application needs to access the contents of the process
context, it may use the size of these structures for indexing.
Alternatively, the application can determine the size of the FPU context
at runtime by accessing the kernel globals field, d_fpusize, containing
the size of the FPU context.

Parameters

cb is the control block header.

usp points to the new process stack image.

siglvl is the new signal level value.

Possible Errors

EOS_PARAM

See Also

F_SEND
F_SIGMASK
F_SLEEP
F_WAIT

Chapter 4: Interprocess Communications
OS-9 Technical Manual 377

8 OS-9 System Calls
F_SIGMASK Mask or Unmask Signals During Critical
Code

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_sigmask_pb {
syscb cb;
u_int32 mode;

} f_sigmask_pb, *F_sigmask_pb;

OS-9 Attributes

Description

F_SIGMASK enables signals to reach the calling process or disables
signals from reaching the calling process. If a signal is sent to a process
whose mask is non-zero, the signal is queued until the process mask
becomes zero. The process’ signal intercept routine is executed with
signals inherently masked. New processes begin with a signal mask
value of zero (not masked).

Two exceptions to this rule are the S_KILL and S_WAKE signals.
S_KILL terminates the receiving process, regardless of the state of its
mask. S_WAKE ensures the process is active, but does not queue.
When a process makes an F_SLEEP or F_WAIT system call, its signal
mask is automatically cleared. If a signal is already queued, these calls
return immediately to the intercept routine.

State Threads Compatibility

User Safe

System
378 OS-9 Technical Manual

8OS-9 System Calls
By doing additions and subtractions (instead of merely just setting a
flag), this service allows the OS and the process in question to nest the
masking and unmasking of multiple signals. Also, since a process may
want to receive signals without nesting back out through a bunch of
F_SIGMASK calls, the OS provides three ways for clearing the mask
(i.e., nesting level): F_SIGMASK with a "mode" argument of zero,
F_SLEEP, and F_WAIT.

This service returns the EOS_PARAM error code whenever the calling
process specifies a "mode" argument other than negative one, zero, or
one (i.e., -1, 0, or 1).

NoteNote
Signals are analogous to hardware interrupts and should be masked
sparingly. Keep intercept routines as short and fast as possible.

Parameters

cb is the control block header.

mode is the process signal level.

Possible Errors

EOS_PARAM

Table 8-11 F_SIGMASK Modes

Mode Description

0 The signal mask is cleared.

1 The signal mask is incremented.

-1 The signal mask is decremented.
OS-9 Technical Manual 379

8 OS-9 System Calls
See Also

F_SEND
F_SLEEP
F_WAIT
380 OS-9 Technical Manual

8OS-9 System Calls
F_SIGRESET Reset Process Intercept Routine Recursion
Depth

Headers

#include <signal.h>

Parameter Block Structure

typedef struct f_sigrst_pb {
syscb cb;

} f_sigrst_pb, *F_sigrst_pb;

OS-9 Attributes

Description

F_SIGRESET should be used whenever a program uses a longjmp()
to get out of an intercept routine or unmasks signals in an intercept
service routine with the intent of never using the F_RTE call to return.

if(setjmp(x) != 0) {
 _os_sigreset();
 _os_sigmask(-1);

}

Under normal circumstances, OS-9 keeps the state of the main process
on the system stack while a signal intercept routine executes. However,
if the signals are unmasked during the intercept routine, a subsequent
signal causes the current state to be stacked on the user’s stack.

This does not happen in simple cases, but if the intercept routine
unmasks signals or uses a longjmp() call and then unmasks signals,
states are placed on the user’s stack. There is no functional difference,

State Threads Compatibility

User Safe
OS-9 Technical Manual 381

8 OS-9 System Calls
and if the code actually expects to return through the nested intercept
routines with multiple F_RTE calls, the states must be left where they
are.

If the code uses a longjmp() call to leave the intercept routine it
implicitly clears the saved context off the stack. The kernel performs
best if the code tells the kernel to remove the context through a
F_SIGRESET call.

Parameters

cb is the control block header.

See Also

F_ICPT
F_RTE
382 OS-9 Technical Manual

8OS-9 System Calls
F_SIGRS Resize Process Queue Block Parameter
Block

Headers

#include <srvcb.h>

Parameter Block Structure

typedef struct f_sigrs_pb {
syscb cb;
u_int32 signals;

} f_sigrs_pb, *F_sigrs_pb;

OS-9 Attributes

Description

F_SIGRS allows a process to change the maximum number of signals
queued on its behalf.

You can use this call to increase or decrease the number of signals
queued. An error is returned (EOS_PARAM) if a request is made to
reduce the number of queued signals while there are signals pending.
The initial default for the system is specified in the system init
module.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 383

8 OS-9 System Calls
This service returns EOS_PARAM if the user requests a signal-queue
size of zero (while the OS has no signals pending for this process) or a
signal-queue size less than the number of maximum signals (e.g., trying
to resize the queue to hold only five signals when the OS has one signal
pending for a process whose maximum signal count is ten).

This service returns EOS_NORAM if the process requests a queue
whose size is larger than available memory.

This service does not allow the caller to set the queue’s size to zero.
However, the caller (if and only if there are no signals pending) can use
this service to decrease the size of the queue (even down to one). If
there are pending signals, however, then the value for signals must
be greater than or equal to the maximum number of signals that the
process’ queue can hold.

Parameters

cb is the control block header.

signals is the new maximum number of signals.

Possible Errors

EOS_PARAM
EOS_NORAM
EOS_DAMAGE

See Also

F_SIGRESET
384 OS-9 Technical Manual

8OS-9 System Calls
F_SLEEP Put Calling Process to Sleep

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_sleep_pb {
syscb cb;
u_int32 ticks;
signal_code signal;

} f_sleep_pb, *F_sleep_pb;

OS-9 Attributes

Description

F_SLEEP deactivates the calling process until the requested number of
ticks have elapsed.

You cannot use F_SLEEP to time more accurately than ±1 tick because
it is not known when the F_SLEEP request was made during the current
tick.

A sleep of one tick is effectively a request to surrender the current time
slice. The process is immediately inserted into the active process queue
and resumes execution when it reaches the front of the queue.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 385

8 OS-9 System Calls
A sleep of two or more (n) ticks inserts the process in the active process
queue after (n-1) ticks occur and resumes execution when it reaches
the front of the queue. The process is activated before the full time
interval if a signal (S_WAKE) is received. Sleeping indefinitely is a good
way to wait for a signal or interrupt without wasting CPU time.

The duration of a tick is system dependent and may be determined
using F_TIME system call. If the high order bit of the ticks parameter is
set, the low 31 bits are interpreted as 1/256 second and converted to
ticks before sleeping. This allows program delays to be independent of
the system’s clock rate.

NoteNote
This function does not return any error code if the operating system
cannot wait for the requested time due to an overflow when converting
a time from 256ths-of-a-second into clock ticks. This only occurs if you
specify a time in 256ths-of-a-second and the system clock ticks occur at
a rate greater than 512 ticks-per-second. If an overflow occurs, the
operating system waits for the longest delay possible.

The system clock must be running to perform a timed sleep. The
system clock is not required to perform an indefinite sleep or to give up
a time slice.

Parameters

cb is the control block header.

ticks is the length of time to sleep in
ticks/second.

•If ticks is zero, the process sleeps
indefinitely.

•If ticks is one, the process gives up a
time slice but does not necessarily
sleep for one tick.
386 OS-9 Technical Manual

8OS-9 System Calls
signal is a returned value. It is the last signal
the process received. signal is
returned to the calling process at the
completion of the sleep.

•If signal is zero, the process slept for
the time specified by ticks.

•If signal is non-zero, the number
corresponds to the signal that awoke
the process.

Possible Errors

EOS_NOCLK

See Also

F_SEND
F_TIME
F_WAIT
OS-9 Technical Manual 387

8 OS-9 System Calls
F_SLINK Install User Subroutine Module

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_slink_pb {
syscb cb;
u_int16 sub_num;
u_char *mod_name;
void *lib_exec;
u_char *mem_ptr;
Mh_com *mod_head;

} f_slink_pb, *F_slink_pb;

OS-9 Attributes

Description

Subroutine libraries provide a convenient way to link to a standard set of
routines at execution time. Use of subroutine libraries keeps user
programs small and automatically updates programs using the
subroutine code if it is changed. This is accomplished without
recompiling or relinking the program itself. Most Microware utilities use
one or more subroutine libraries.

F_SLINK attempts to link or load the named module. It returns a pointer
to the execution entry point and a pointer to the library’s static data area
for subsequent calls to the subroutine.The calling program must store

State Threads Compatibility

User Safe

System
388 OS-9 Technical Manual

8OS-9 System Calls
and maintain the subroutine’s entry point and data pointer. The calling
program must also set the subroutine library’s data pointer and dispatch
to the correct address.

You can remove a subroutine by passing a null pointer for the name of
the module and specifying the subroutine number. A process can link to
a maximum of 16 subroutine libraries, numbered from 0 to 15.

The return value in the case of an error is -1, even though the type is a
pointer and a null is more common.

Parameters

cb is the control block header.

sub_num is the subroutine number.

mod_num points to the name of the subroutine
module.

lib_exec is a returned value. It points to the
subroutine entry point.

mem_ptr is a returned value. It points to the
subroutine static memory.

mod_head is a returned value. It points to the
module header.

Possible Errors

EOS_BPNAM
EOS_ISUB
EOS_NORAM
EOS_PERMIT

See Also

F_TLINK
OS-9 Technical Manual 389

8 OS-9 System Calls
F_SLINKM Link to Subroutine Module by Module
Pointer

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_slinkm_pb {
syscb cb;
u_int16 sub_num;
Mh_com mod_head;
void *lib_exec;
u_char *mem_ptr;

} f_slinkm_pb, *F_slinkm_pb;

OS-9 Attributes

Description

F_SLINKM is passed a pointer to the subroutine library module to
install. If a subroutine library already exists for the specified subroutine
number, an error is returned. If static storage is required for the
subroutine library, it is allocated and initialized.

State Threads Compatibility

User Safe

System
390 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

sub_num is the subroutine number.

mod_head points to the module header.

lib_exec is a returned value. It points to the
subroutine entry point.

mem_ptr is a returned value. It points to the
subroutine static memory.

Possible Errors

EOS_NORAM
EOS_PERMIT

See Also

F_TLINKM

Chapter 5: Subroutine Libraries and Trap Handlers
OS-9 Technical Manual 391

8 OS-9 System Calls
F_SPRIOR Set Process Priority

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_setpr_pb {
syscb cb;
process_id proc_id;
u_int16 priority;

} f_setpr_pb, *F_setpr_pb;

OS-9 Attributes

Description

F_SPRIOR changes the process priority to the value specified by
priority. A super user (group ID zero) may change any process’
priority. A non-super user can only change the priorities of processes
with the same user ID.

Two system global variables affect task switching.

• d_minpty is the minimum priority a task must have for OS-9 to age
or execute it.

• d_maxage is the cutoff aging point.

These variables are initially set in the Init module.

State Threads Compatibility

User Safe

System

Interrupt
392 OS-9 Technical Manual

8OS-9 System Calls
NoteNote
A small change in relative priorities has a tremendous effect. For
example, if two processes have the priorities 100 and 200, the process
with the higher priority runs 100 times before the low priority process
runs at all. In actual practice, the difference may not be this extreme
because programs spend a lot of time waiting for I/O devices.

Parameters

cb is the control block header.

proc_id is the process ID.

priority specifies the new priority. 65535 is the
highest priority; 0 is the lowest.

Possible Errors

EOS_IPRCID

See Also

Chapter 2: The Kernel, the Process Scheduling section
OS-9 Technical Manual 393

8 OS-9 System Calls
F_SRQMEM System Memory Request

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_srqmem_pb {
syscb cb;
u_char *mem_ptr;
u_int32 size;
u_int16 color;

} f_srqmem_pb, *F_srqmem_pb;

OS-9 Attributes

Description

F_SRQMEM allocates a block of a specific type of memory.

If more than one memory area has the same priority, the area with the
largest total free space is searched first. This allows memory areas to
be balanced (contain approximately equal amounts of free space).

The requested number of bytes is rounded up to a system defined
blocksize (currently 16 bytes). F_SRQMEM is useful for allocating I/O
buffers and any other semi-permanent memory. The memory always
begins on an even boundary.

State Threads Compatibility

User Safe

System
394 OS-9 Technical Manual

8OS-9 System Calls
Memory types or color codes are system dependent and may be
arbitrarily assigned by the system administrator. Microware reserves
values below 256 for future use.

NoteNote
Do not use F_SRQMEM from Interrupt Service Routines.

The byte count of allocated memory and the pointer to the block
allocated must be saved if the memory is ever to be returned to the
system.

Parameters

cb is the control block header.

mem_ptr points to the allocated memory block.

size specifies the byte count of the requested
memory. If size is -1, the largest block
of free memory of the specified type is
allocated to the calling process. Upon
completion of the service request, size
contains the actual size of the memory
block allocated.

color specifies the memory type.

•If color is non-zero, the search is
restricted to memory areas of that
color. The area with the highest
priority is searched first.
OS-9 Technical Manual 395

8 OS-9 System Calls
•If color is zero, the search is based
only on priority. This allows you to
configure a system such that fast
on-board memory is allocated before
slow off-board memory. Areas with a
priority of zero are excluded from the
search.

Possible Errors

EOS_MEMFUL
EOS_NORAM

See Also

F_SRTMEM
396 OS-9 Technical Manual

8OS-9 System Calls
F_SRTMEM Return System Memory

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_srtmem_pb {
syscb cb;
u_char *mem_ptr;
u_int32 size;

} f_srtmem_pb, *F_srtmem_pb;

OS-9 Attributes

Description

F_SRTMEM deallocates memory when it is no longer needed. The
returned number of bytes is rounded up to a system defined blocksize
before returning the memory. Rounding occurs identically to that
performed by F_SRQMEM.

In user state, the system keeps track of memory allocated to a process
and all blocks not returned are automatically deallocated by the system
when a process terminates.

In system state, the process must explicitly return its memory.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 397

8 OS-9 System Calls
Parameters

cb is the control block header.

mem_ptr points to the memory block to return.

size specifies the byte count of the returned
memory.

Possible Errors

EOS_BPADDR

See Also

F_MEM
F_SRQMEM
398 OS-9 Technical Manual

8OS-9 System Calls
F_SSPD Suspend Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_sspd_pb {
syscb cb;
process_id proc_id;

} f_sspd_pb, *F_sspd_pb;

OS-9 Attributes

Description

F_SSPD temporarily suspends a process. A super user (group ID zero)
may suspend any process. A non-super user can only suspend
processes with the same user ID.

The process may be reactivated with F_APROC.

Parameters

cb is the control block header.

proc_id identifies the target process.

State Threads Compatibility

User Safe

System

Interrupt
OS-9 Technical Manual 399

8 OS-9 System Calls
Possible Errors

EOS_IPRCID

See Also

F_APROC
400 OS-9 Technical Manual

8OS-9 System Calls
F_SSVC Service Request Table Initialization

Headers

#include <types.h>
#include <svctbl.h>

Parameter Block Structure

typedef struct f_ssvc_pb {
syscb cb;
u_int32 count;
u_int16 state_flag;
void *init_tbl,

*params;
} f_ssvc_pb, *F_ssvc_pb;

OS-9 Attributes

Description

F_SSVC adds or replaces service requests in OS-9’s user and
privileged system service request tables.

Parameters

cb is the control block header.

count is a count of the entries in the
initialization table.

state_flag specifies whether user or system state
tables, or both, are updated.

State Threads Compatibility

System Safe
OS-9 Technical Manual 401

8 OS-9 System Calls
•If state_flag is 1, only the user table
is updated.

•If state_flag is 2, only the system
table is updated.

•If state_flag is 3, both the system
and user tables are updated.

init_tbl points to the initialization table. An
example initialization table might look
like this:

error_code printmsg(), service();
svctbl syscalls[] =
{
 {F_PRINT, printmsg},
 {F_SERVICE, service}
};

params may be a pointer to anything, but is
intended to be a pointer to global static
storage. Whenever a system call is
executed, the params data pointer is
passed automatically.

The following structure definition of the initialization table is located in
svctbl.h:
#if !defined(_TYPES_H)
#include <types.h>
#endif
#define USER_State 1 /* user-state service routine flag */
#define SYSTEM_State 2 /* system-state service routine flag */
/* service routine initialization table structure. */
typedef struct {
 u_int16 fcode; /* system call function code */
 u_int32 (*service)(); /* service routine pointer */
 u_int32 attr; /* attributes of system call (reserved for future use) */
 u_int16 ed_low, /* low bound of acceptable service call edition */
 ed_high /* upper bound of edition */
} svctbl, *Svctbl;

#endif
402 OS-9 Technical Manual

8OS-9 System Calls
F_STIME Set System Date and Time

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_setime_pb {
syscb cb;
u_int32 time;

} f_setime_pb, *F_setime_pb;

OS-9 Attributes

Description

F_STIME sets the current system time and starts the system real-time
clock to produce time slice interrupts. F_STIME puts the time in the
system static storage area and links the clock module. If the link is
successful, the clock initialization routine is called.

The clock module has three responsibilities:

1. Sets up hardware-dependent functions to produce system tick
interrupts. This could include moving the new time into the
hardware.

2. Installs a service routine to clear the interrupt when a tick occurs.

State Threads Compatibility

User Safe

System
OS-9 Technical Manual 403

8 OS-9 System Calls
3. The interrupt service routine must call through to the kernel’s tick
routine to allow the kernel to keep accurate time in software. The
address to the kernel’s tick routine is provided by the kernel via the
clock module’s static storage structure when the kernel initializes the
clock module.

The OS-9 kernel keeps track of the current time in software, which
enables clock modules to be small and simple. Some OS-9 utilities and
functions expect the clock to have the correct time. Therefore, you
should run F_STIME whenever the system is started. This is usually
done in the system startup file.

Parameters

cb is the control block header.

time specifies the time. The time is stored as
the number of seconds since 1 January
1970 Greenwich Mean Time.

NoteNote
The time is not validated in any way. If time is zero on systems with a
battery-backed clock, the actual time is read from the real-time clock.

Possible Errors

EOS_MNF
EOS_NOCLK
EOS_NORAM

See Also

F_TIME
404 OS-9 Technical Manual

8OS-9 System Calls
F_STRAP Set Error Trap Handler

Headers

#include <types.h>
#include <settrap.h>
#include <regs.h>

Parameter Block Structure

typedef struct f_strap_pb {
syscb cb;
u_int32 *excpt_stack;
Strap init_tbl;

} f_strap_pb, *F_strap_pb;

typedef struct strap (
u_int32 vector,

(*routine)();
} strap, *Strap;

OS-9 Attributes

Description

F_STRAP enables the user programs to catch program exceptions such
as illegal instructions and divide-by-zeroes. The exceptions that may be
trapped are processor-dependent.

F_STRAP enters process local Error Trap routine(s) into the process
descriptor dispatch table. If an entry for a particular routine already
exists, it is replaced.

State Threads Compatibility

User Safe
OS-9 Technical Manual 405

8 OS-9 System Calls
If a user routine is not provided and one of these exceptions occurs, the
program is aborted.

When a user’s exception routine is executed, it is passed the following
information.
void errtrap(vector_errno, badpc, badaddr)
u_int32 vector_errno, /*error number of the vector */
 badpc, /* PC where exception occurred */
 badaddr; /*address where exception occurred.*/

You can disable an error exception handler by calling F_STRAP with an
initialization table specifying 0 as the offset to the routine(s) to remove.
For example, the following table would remove user routines for TRAPV
and CHK error exceptions.
Strap errtab[] = {
 {T_BUSERR, 0},
 {T_ADDERR, 0},
 {-1, NULL}
};

NoteNote
Beware of exceptions in exception handling routines. They are usually
not re-entrant.

Parameters

cb is the control block header.

excpt_stack points to the stack to use if an exception
occurs. If excpt_stack is zero,
F_STRAP uses the current stack.

init_tbl points to the service request initialization
table. An initialization table might appear
as follows:
Strap errtab[] = {

{T_BUSERR, errtrap},
{T_ADDERR, errtrap},
{-1, NULL}

};
406 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

 EOS_TRAP

See Also

F_ABORT
OS-9 Technical Manual 407

8 OS-9 System Calls
F_SUSER Set User ID Number

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_setuid_pb {
syscb cb;
owner_id user_id;

} f_setuid_pb, *F_setuid_pb;

OS-9 Attributes

Description

F_SUSER changes the current user ID to user_id.

The following restrictions apply to F_SUSER:

• Users with group ID zero may change their IDs to anything.

• A primary module owned by a group zero user may change its ID to
anything.

• Any primary module may change its user ID to match the module’s
owner.

All other attempts to change the user ID number return an
EOS_PERMIT error.

State Threads Compatibility

User Safe

System

Interrupt
408 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

user_id is the desired group/user ID number.

Possible Errors

EOS_PERMIT
OS-9 Technical Manual 409

8 OS-9 System Calls
F_SYSDBG Call System Debugger

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_sysdbg_pb {
syscb cb;
void *param1,

*param2;
} f_sysdbg_pb, *F_sysdbg_pb;

OS-9 Attributes

Description

F_SYSDBG calls the system level debugger, if one exists. This allows
you to debug system-state routines, such as device drivers. The caller
defines the parameters to this service request to values useful in
debugging. For example, a parameter could be a pointer to a critical
data structure.

When the system level debugger is active, it runs in system state and
effectively stops timesharing. F_SYSDBG can only be called by users in
group zero. Never use this call when other users are on the system.

NoteNote
The break utility calls F_SYSDBG.

State Threads Compatibility

User Safe

System
410 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

param1 and param2 are parameters passed to the debugger.
These are currently not used.

Possible Errors

EOS_PERMIT
OS-9 Technical Manual 411

8 OS-9 System Calls
F_SYSID Return System Identification

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_sysid_pb {
syscb cb;
u_int32 oem,

serial,
mpu_type,
os_type,
fpu_type;

int32 time_zone
u_int32 resv1,

resv2;
u_char *sys_ident,

*copyright,
*resv3;

} f_sysid_pb, *F_sysid_pb;

OS-9 Attributes

Description

F_SYSID returns information about the system.

State Threads Compatibility

User Safe

System

Interrupt
412 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

oem is the OEM identification number.

serial is the copy serial number.

mpu_type is the processor identifier (for example
80386).

os_type is the kernel (OS) MPU configuration.

fpu_type is the floating-point processor identifier
(for example 80387).

time_zone is the system time zone in minutes offset
from Greenwich Mean Time (GMT).

resv1, resv2, and resv3
are reserved pointers.

sys_ident points to a buffer for the system
identification message.

copyright points to a buffer for the copyright
message.
OS-9 Technical Manual 413

8 OS-9 System Calls
F_TIME Get System Date and Time

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_getime_pb {
syscb cb;
u_int32 time,

ticks;
} f_getime_pb, *F_getime_pb;

OS-9 Attributes

Description

F_TIME returns the current system time in the number of seconds since
1 January 1970 Greenwich Mean Time.

F_TIME returns a date and time of zero (with no error) if no previous
call to F_STIME has been made. A tick rate of zero indicates the clock
is not running.

State Threads Compatibility

User Safe

System

Interrupt
414 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

time is a returned value. It is the current time.

ticks contains the following:

•The clock tick rate in ticks per second is
returned in the most significant word.

•The least significant word contains the
current tick.

See Also

F_STIME
OS-9 Technical Manual 415

8 OS-9 System Calls
F_TLINK Install System State Trap Handling Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_tlink_pb {
syscb cb;
u_int16 trap_num;
u_char *mod_name;
void *lib_exec,

*mod_head,
*params;

u_int32 mem_size;
} f_tlink_pb, *F_tlink_pb;

OS-9 Attributes

Description

Trap handlers enable a program to execute privileged (system state)
code without running the entire program in system state. Trap handlers
only run in system state.

F_TLINK attempts to link or load the module specified by mod_name. If
the link/load is successful, F_TLINK installs a pointer to the module in
the user’s process descriptor for subsequent use in trap calls. If a trap

State Threads Compatibility

User Safe

System
416 OS-9 Technical Manual

8OS-9 System Calls
module already exists for the specified trap code, an error is returned. If
static storage is required for the trap handler, OS-9 allocates and
initializes it.

Parameters

cb is the control block header.

trap_num specifies the user trap number (1
through 15).

mod_name points to the name of the trap module. If
mod_name is zero or points to a null
string, the trap handler is unlinked.

lib_exec points to the pointer to the trap execution
entry point.

mod_head points to the pointer to the trap module.

params is a reserved field.

mem_size specifies the additional memory size to
be allocated for the trap modules static
data area.

Possible Errors

EOS_ITRAP
EOS_MNF
EOS_NORAM
EOS_PERMIT

See Also

F_TLINK

Chapter 5: Subroutine Libraries and Trap Handlers, the Trap Handlers
section
OS-9 Technical Manual 417

8 OS-9 System Calls
F_TLINKM Install User Trap Handling Module by
Module Pointer

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_tlinkm_pb {
syscb cb;
u_int16 trap_num;
Mh_com mod_head;
void *lib_exec;
void *params;
u_int32 mem_size;

} f_tlinkm_pb, *F_tlinkm_pb;

OS-9 Attributes

Description:

F_TLINKM is passed a pointer to the module to install. If a trap module
already exists for the specified trap number, an error is returned. If static
storage is required for the trap handler, it is allocated and initialized.

State Threads Compatibility

User Safe

System
418 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

trap_num specifies the user trap number (0
through 15).

mod_head points to the module header.

lib_exec points to the trap execution entry point.

params is a reserved field.

mem_size specifies the additional memory size to
be allocated for the trap module’s static
data area.

Possible Errors

EOS_ITRAP
EOS_NORAM
EOS_PERMIT

See Also

F_TLINK

Chapter 5: Subroutine Libraries and Trap Handlers, the Trap Handlers
section
OS-9 Technical Manual 419

8 OS-9 System Calls
F_UACCT User Accounting

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_uacct_pb {
syscb cb;
u_int16 acct_code;
Pr_desc proc_desc;

} f_uacct_pb, *F_uacct_pb;

OS-9 Attributes

Description

F_UACCT provides a means for users to set up an accounting system.
The kernel calls F_UACCT whenever it forks or exits a process.
Therefore, F_UACCT provides a mechanism for users to keep track of
system operators.

To install a handler for this service request, use the F_SSVC system call
to add the user’s accounting routine to the system’s service request
dispatch table. This is usually done in an OS9P2 module.

State Threads Compatibility

User Safe

System

Interrupt
420 OS-9 Technical Manual

8OS-9 System Calls
You may perform your own system accounting by calling F_UACCT with
a user defined acct_code identifying the operation to perform. For
example, when the kernel forks a process it identifies the operation by
passing the F_FORK code to the accounting routine.

Parameters

cb is the control block header.

acct_code is the operation identifier. This is usually
a system call function code.

proc_desc points to the current process descriptor.

Possible Errors

EOS_UNKSVC (This error should be ignored.)

See Also

F_SSVC
OS-9 Technical Manual 421

8 OS-9 System Calls
F_UNLINK Unlink Module by Address

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_unlink_pb {
syscb cb;
Mh_com mod_head;

} f_unlink_pb, *F_unlink_pb;

OS-9 Attributes

Description

F_UNLINK notifies OS-9 the calling process no longer needs a module.
The module’s link count is decremented. When the link count equals
zero (-1 for sticky modules), the module is removed from the module
directory and its memory is deallocated. When several modules are
loaded together as a group, they are only removed when the link count
of all modules in the group are zero (-1 for sticky modules).

Some modules cannot be unlinked; for example, device drivers in use
and all modules included in the bootfile.

State Threads Compatibility

User Safe

System
422 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

mod_head points to the module header.

Possible Errors

EOS_MODBSY

See Also

F_LINK
F_UNLOAD
OS-9 Technical Manual 423

8 OS-9 System Calls
F_UNLOAD Unlink Module by Name

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_unload_pb {
syscb cb;
u_char *mod_name;
u_int16 type_lang;

} f_unload_pb, *F_unload_pb;

OS-9 Attributes

Description

F_UNLOAD locates the module in the module directory, decrements its
link count, and removes it from the directory if the count reaches zero. A
sticky module is not removed until its link count is -1. This call is similar
to F_UNLINK, except F_UNLOAD is passed the pointer to the module
name instead of the address of the module header.

State Threads Compatibility

User Safe

System
424 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

mod_name points to the module name.

type_lang specifies the module’s type and
language.

Possible Errors

EOS_MNF
EOS_MODBSY

See Also

F_LINK
F_UNLINK
OS-9 Technical Manual 425

8 OS-9 System Calls
F_VMODUL Verify Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct f_vmodul_pb {
syscb cb;
Mh_com mod_head,

mod_block;
u_int32 block_size;

} f_vmodul_pb, *F_vmodul_pb;

OS-9 Attributes

Description

F_VMODUL checks the module header parity and CRC bytes of an OS-9
module. If the header values are valid, the module is entered into the
module directory. The current module directory is searched for another
module with the same name. If a module with the same name and type
exists, the one with the highest revision level is retained in the module
directory. Ties are broken in favor of the established module.

Parameters

cb is the control block header.

mod_head points to the module.

State Threads Compatibility

System Safe
426 OS-9 Technical Manual

8OS-9 System Calls
mod_block points to the memory block containing
the module.

block_size is the size of the memory block
containing the module.

Possible Errors

EOS_BMCRC
EOS_BMHP
EOS_BMID
EOS_DIRFUL
EOS_KWNMOD

See Also

F_CRC
F_LOAD
OS-9 Technical Manual 427

8 OS-9 System Calls
F_WAIT Wait for Child Process to Terminate

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_wait_pb {
syscb cb;
process_id child_id;
status_code status;

} f_wait_pb, *F_wait_pb;

OS-9 Attributes

Description

F_WAIT deactivates the calling process until a child process terminates.
The child’s ID number and exit status are returned to the parent.

If the caller has several children, the caller is activated when the first
child dies, so one F_WAIT call is required to detect the termination of
each child.

If a child died before the F_WAIT call, the caller is reactivated
immediately. F_WAIT returns an error only if the caller has no children.

State Threads Compatibility

User Safe

System
428 OS-9 Technical Manual

8OS-9 System Calls
NoteNote
The process descriptors for child processes are not returned to free
memory until their parent process performs an F_WAIT system call or
terminates.

If a signal is received by a process waiting for children to terminate, the
process is activated. In this case, child_id contains zero, because no
child process has terminated.

Parameters

cb is the control block header.

child_id is the process ID of the terminating child.

status is the child process’ exit status code.

Possible Errors

EOS_NOCHLD

See Also

F_EXIT
F_FORK
F_SEND
OS-9 Technical Manual 429

8 OS-9 System Calls
F_WAITLK Activate Next Process Waiting to Acquire
Lock

Headers

#include <types.h>

Parameter Block Structure

typedef struct f_waitlk_pb {
syscb cb;
lock_id lid;
signal_code signal;

} f_waitlk_pb, *F_waitlk_pb;

OS-9 Attributes

Description

F_WAITLK activates the next process waiting to acquire the lock. The
next process in the lock’s queue is activated and granted exclusive
ownership of the resource lock. If no other process is waiting on the
lock, the lock is simply marked free for acquisition. In either case, the
calling process is suspended and inserted into a waiting queue for the
resource based on relative scheduling priority.

If, during the course of waiting on a lock, a process receives a signal,
the process is activated without gaining ownership of the lock.

The process returns from the wait lock call with an EOS_SIGNAL error
code and the signal code is returned via the signal pointer.

State Threads Compatibility

System Safe
430 OS-9 Technical Manual

8OS-9 System Calls
NoteNote
If an S_WAKEUP signal is received by a waiting process, the signal code
does not register and will be zero.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 7: Resource Locking for more information about
resource locks.

Parameters

cb is the control block header.

lid is the lock ID on which to wait.

signal points to the received signal.

Possible Errors

EOS_SIGNAL

See Also

F_ACQLK
F_CAQLK
F_CRLK
F_DELLK
F_RELLK
OS-9 Technical Manual 431

8 OS-9 System Calls
I_ALIAS Create Device Alias

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_alias_pb {
syscb cb;
u_char *alias_name,

*real_name;
} i_alias_pb, *I_alias_pb;

OS-9 Attributes

Description

I_ALIAS creates an alternate name for a device pathlist. Processes
can then reference a specific device pathlist with a shorter or more
convenient name.

To delete an existing alias from the system, pass a NULL pointer for the
real name.

State Threads Compatibility

User Safe

System

I/O
432 OS-9 Technical Manual

8OS-9 System Calls
WARNING!
Do not use a real device name as alias_name.

Parameters

cb is the control block header.

alias_name points to the alternate name.

real_name points to the actual device name; it must
exist. OS-9 does not validate its
existence of the device.

Possible Errors

EOS_BPNAM
OS-9 Technical Manual 433

8 OS-9 System Calls
I_ATTACH Attach New Device to System

Headers

#include <io.h>
#include <modes.h>

Parameter Block Structure

typedef struct i_attach_pb {
syscb cb;
u_char *name;
u_int16 mode;
Dev_list dev_tbl;

} i_attach_pb, *I_attach_pb;

OS-9 Attributes

Description

I_ATTACH causes a new I/O device to become known to the system or
verifies the device is already attached.

If the descriptor is found and the device is not already attached,
I_ATTACH links to its file manager and device driver and places their
addresses in a new device list entry. I_ATTACH allocates and initializes
static storage memory for the file manager and device driver. After
initialization, the file manager’s I_ATTACH entry point is called to allow
for file manager specific initialization. In turn, the file manager calls the

State Threads Compatibility

User Safe

System

I/O
434 OS-9 Technical Manual

8OS-9 System Calls
driver’s initialization entry point to initialize the hardware. If the driver
has already been attached, the file manager usually omits calling the
driver.

I_ATTACH prepares the device for subsequent use by any process, but
does not reserve the device. I_ATTACH is not required to perform
routine I/O.

IOMAN attaches all devices at I_OPEN and detaches them at
I_CLOSE.

NoteNote
Attach and Detach for devices are used together like Link and
Unlink for modules. However, you can improve system performance
slightly by attaching all devices at startup. This increments each
device’s use count and prevents the device from being reinitialized
every time it is opened. If static storage for devices is allocated all at
once, memory fragmentation is minimized. If a device is attached, the
termination routine is not executed until the device is detached.

Parameters

cb is the control block header.

name points to the I/O device. name is used to
search the current module directory for a
device descriptor module with the same
name in memory. This is the name by
which the device is known. The
descriptor module contains the name of
the device’s file manager, device driver,
and other related information.

mode is the access mode used to verify
subsequent read and/or write operations
are permitted. It can be either S_IREAD
or S_IWRITE.
OS-9 Technical Manual 435

8 OS-9 System Calls
dev_tbl is a returned value. It points to the
device’s device list entry.

Possible Errors

EOS_BMODE
EOS_DEVBSY
EOS_DEVOVF
EOS_MEMFUL

See Also

I_CLOSE
I_DETACH
I_OPEN
436 OS-9 Technical Manual

8OS-9 System Calls
I_CHDIR Change Working Directory

Headers

#include <types.h>
#include <modes.h>

Parameter Block Structure

typedef struct i_chdir_pb {
syscb cb;
u_char *name;
u_int16 mode;

} i_chdir_pb, *I_chdir_pb;

OS-9 Attributes

Description

I_CHDIR changes a process’ working directory to the directory file
specified by the pathlist. The execution or data directory (or both) may
be changed, depending on the specified access mode. The file
specified must be a directory file, and the caller must have access
permission for the specified mode.

If the access mode is read, write, or update (read and write), the current
data directory is changed. If the access mode is execute, the current
execution directory is changed. You can change both simultaneously.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 437

8 OS-9 System Calls
NoteNote
The shell chd directive uses update mode. This means you must have
both read and write permission to change directories from the shell.
This is a recommended practice.

Parameters

cb is the control block header.

name points to the pathlist.

mode specifies the access mode. The following
are the valid modes:

Possible Errors

EOS_BMODE
EOS_BPNAM

Table 8-12 Valid Access Modes For I_CHDIR

Mode Description

S_IREAD Read

S_IWRITE Write

S_IEXEC Execute
438 OS-9 Technical Manual

8OS-9 System Calls
I_CIOPROC Get Pointer to I/O Process Descriptor

Headers

#include <io.h>

Parameter Block Structure

typedef struct i_cioproc_pb {
syscb cb;
process_id proc_id;
void *buffer;
u_int32 count;

} i_cioproc_pb, *I_cioproc_pb;

OS-9 Attributes

Description

I_CIOPROC copies the I/O process descriptor for the specified process
into a buffer.

State Threads Compatibility

User Safe

I/O

Interrupt
OS-9 Technical Manual 439

8 OS-9 System Calls
Parameters

cb is the control block header.

proc_id is the process ID of the process.

buffer points to the buffer in which to copy the
process descriptor.

count specifies the number of bytes to copy.

Possible Errors

EOS_IPRCID
440 OS-9 Technical Manual

8OS-9 System Calls
I_CLOSE Close Path to File/Device

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_close_pb {
syscb cb;
path_id path;

} i_close_pb, *I_close_pb;

OS-9 Attributes

Description

I_CLOSE terminates an I/O path.

The path number is no longer valid for OS-9 calls unless it becomes
active again through an I_OPEN, I_CREATE, or I_DUP system call.

When pathlists to non-sharable devices are closed, the devices become
available to other requesting processes.

If this is the last use of the path (it has not been inherited or duplicated
by I_DUP), all internally managed buffers and descriptors are
deallocated.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 441

8 OS-9 System Calls
NoteNote
F_EXIT automatically closes any open paths. By convention, standard
I/O paths are not closed unless it is desired to change the
corresponding files/devices.

I_CLOSE does an implied I_DETACH call. If this causes the device use
count to become zero, the device termination routine is executed.

Parameters

cb is the control block header.

path identifies the I/O path to close.

Possible Errors

EOS_BPNUM

See Also

F_EXIT
I_DETACH
I_DUP
442 OS-9 Technical Manual

8OS-9 System Calls
I_CONFIG Configure an Element of Process/System I/O

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_config_pb {
syscb cb;
u_int32 code;
void *param;

} i_config_pb, *I_config_pb;

OS-9 Attributes

Description

I_CONFIG is a wildcard call used to configure elements of the I/O
subsystem that may or may not be associated with an existing path. It is
intended to be used to dynamically reconfigure system I/O resources at
runtime. The target I/O resources may be system-wide resources or
they may be process- or path-specific, depending on the nature of the
configuration call being made.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 443

8 OS-9 System Calls
The following sub-code with the associated parameter and defined
function.

Parameters

cb is the control block header.

code identifies the target configuration code.

*param points to any additional parameters
required by the specified configuration
function.

See Also

F_CONFIG

Table 8-13 I_CONFIG Sub-code, Parameters, and Function

Code Parameter Function

IC_PATHSZ param points to
the number of
additional paths
the process wants
beyond its initial
32.

Increases the number of paths
the current process may have
open beyond its initial 32. This
call may only be used to
increase the number of paths a
process may have. It cannot be
used to reduce the number of
available paths.
444 OS-9 Technical Manual

8OS-9 System Calls
I_CREATE Create Path to New File

Headers

#include <types.h>
#include <modes.h>

Parameter Block Structure

typedef struct i_create_pb {
syscb cb;
u_char *name;
u_int16 mode;
path_id path;
u_int32 perm,

size;
} i_create_pb, *I_create_pb;

OS-9 Attributes

Description

I_CREATE creates a new file. On multi-file devices, the new file name is
entered in the directory structure. On non-multi-file devices, I_CREATE
is synonymous with I_OPEN. Also, if the file already exists on a multi-file
device, by default a path to the file will be opened and the contents
truncated.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 445

8 OS-9 System Calls
mode must have the write bit set if data is to be written to the file. The
file is given the attributes passed in perm. The individual bits are
defined as follows:

Table 8-14 Mode and Attribute Bits For I_CREATE

Mode Bits Attribute Bits

S_IREAD = read S_IREAD = owner read
permission

S_IWRITE = write S_IWRITE = owner write
permission

S_IEXEC = execute S_IEXEC = owner exec
permission

S_ICONTIG = ensure
contig

S_IGREAD = group read
permission

S_IEXCL = do not
recreate

S_IGWRITE = group write
permission

S_IAPPEND = append to
file

S_IGEXEC = group exec
permission

S_ISHARE = exclusive
use

S_IOREAD = public read
permission

S_ISIZE = set initial
size

S_IOWRITE = public write
permission
446 OS-9 Technical Manual

8OS-9 System Calls
If the S_IEXEC (execute) bit of the access mode byte is set, the working
execution directory is searched first, instead of the working data
directory.

If the S_IEXCL mode bit is not set and the target file already exists, the
file is truncated to zero length.

If the S_ICONTIG mode bit is set, the space for the file is allocated from
a single contiguous block.

If the S_IAPPEND mode bit is set and the target file already exists, the
file is opened and the associated file pointer points to the end of the file.

If the S_ISHARE mode bit is set, the opening process has exclusive
access to the file.

If the S_ISIZE mode bit is set, it is assumed the size parameter
contains the initial file size of the target file.

File space is allocated automatically by I_WRITE or explicitly by an
I_SETSTAT call.

If the pathlist specifies a file name that already exists, an error occurs.
You cannot use I_CREATE to make directory files (see I_MAKDIR).

I_CREATE causes an implicit I_ATTACH call. The device’s initialization
routine is executed if the device has not been attached previously.

S_IOEXEC = public exec
permission

S_ISHARE = file is
non-sharable

Table 8-14 Mode and Attribute Bits For I_CREATE (continued)

Mode Bits Attribute Bits
OS-9 Technical Manual 447

8 OS-9 System Calls
Parameters

cb is the control block header.

name points to the pathname of the new file.

mode specifies the access mode. If data is to
be written to the file, mode must have the
write bit set.

path is a returned value. It is the path number
that identifies the file in subsequent I/O
service requests until the file is closed.

perm specifies the attributes to use for the new
file.

size specifies the size of the new file. If the
S_ISIZE (initial file size) bit is set, you
may pass an initial file size estimate in
size.

Possible Errors

EOS_BPNAM
EOS_PTHFUL

See Also

I_ATTACH
I_CLOSE
I_MAKDIR
I_OPEN
I_SETSTAT
I_WRITE
448 OS-9 Technical Manual

8OS-9 System Calls
I_DELETE Delete File

Headers

#include <types.h>
#include <modes.h>

Parameter Block Structure

typedef struct i_delete_pb {
syscb cb;
u_char *name;

} i_delete_pb, *I_delete_pb;

OS-9 Attributes

Description

I_DELETE deletes the file specified by the pathlist. You must have
non-sharable write access to the file (the file may not already be open)
or an error results. Attempts to delete non-multi-file devices result in an
error.

NoteNote
The access mode is ignored if a full pathlist is specified (a full pathlist
begins with a slash (/)).

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 449

8 OS-9 System Calls
Parameters

cb is the control block header.

name points to the file to delete.

mode specifies the access mode. mode may
be S_IREAD, S_IWRITE, or S_IEXEC.
The access mode specifies the data or
execution directory (but not both) in the
absence of a full pathlist. If the access
mode is read, write, or update (read and
write), the current data directory is
assumed. If the execute bit is set, the
current execution directory is assumed.

Possible Errors

EOS_BPNAM

See Also

I_ATTACH
I_CREATE
I_DETACH
I_OPEN
450 OS-9 Technical Manual

8OS-9 System Calls
I_DETACH Remove Device from System

Headers

#include <io.h>

Parameter Block Structure

typedef struct i_detach_pb {
syscb cb;
Dev_list dev_tbl;

} i_detach_pb, *I_detach_pb;

OS-9 Attributes

Description

I_DETACH removes a device from the system device list if the device is
not in use by any other process.

If this is the last use of the device, the file manager’s I_DETACH routine
is called, and in turn, the device driver’s termination routine is called and
any permanent storage assigned to the file manager and driver is
de-allocated. The device driver and file manager modules associated
with the device are unlinked and may be lost if not in use by another
process. It is crucial for the termination routine to remove the device
from the IRQ system.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 451

8 OS-9 System Calls
I_DETACH must be used to detach devices attached with I_ATTACH.
Both of these attach and detach requests are used mainly by IOMAN
and are of limited use to the typical user. SCF also uses attach/detach
to set up its second (echo) device.

Most devices are attached at startup and remain attached while the
system is up. An infrequently used device can be attached and then
detached to free system resources when no longer needed.

Parameters

cb is the control block header.

dev_tbl points to the address of the device list
entry.

See Also

I_ATTACH
I_CLOSE
452 OS-9 Technical Manual

8OS-9 System Calls
I_DUP Duplicate Path

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_dup_pb {
syscb cb;
path_id dup_path,

*new_path;
} i_dup_pb, *I_dup_pb;

OS-9 Attributes

Description

I_DUP duplicates a path. The operation of I_DUP depends on the state
from which it is called.

When called from a user-state process and given an existing path
number, I_DUP returns a synonymous path number for the same file or
device. I_DUP always uses the lowest available path number. For
example, if you perform an I_CLOSE on path 0 and an I_DUP on path
4, path 0 is returned as the new path number. In this way, the standard
I/O paths may be manipulated to contain any desired paths.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 453

8 OS-9 System Calls
When called from a system-state process, I_DUP returns the next
available system path number.

The shell uses this service request when it redirects I/O. Service
requests using either the old or new path numbers operate on the same
file or device.

NoteNote
I_DUP increments the use count of a path descriptor and returns a
synonymous path number. The path descriptor is NOT copied. It is
usually not a good idea for more than one process to be performing I/O
on the same path concurrently. On RBF files, this can produce
unpredictable results.

Parameters

cb is the control block header.

dup_path is the path number of the path to
duplicate.

new_path is the new number for the same path.

Possible Errors

EOS_BPNUM
EOS_PTHFUL

See Also

I_CLOSE
454 OS-9 Technical Manual

8OS-9 System Calls
I_GETDL Get System I/O Device List Head Pointer

Headers

#include<io.h>

Parameter Block Structure

typedef struct i_getdl_pb{
syscb cb;
Dev_list dev_list_ptr;

} i_getdl_pb, *I_getdl_pb;

OS-9 Attributes

Description

I_GETDL returns a pointer to the first entry in the system’s I/O device
list.

Parameters

cb is the control block header.

dev_list_ptr is a returned value. It points to the first
entry in the device list.

State Threads Compatibility

User Safe

System

I/O

Interrupt
OS-9 Technical Manual 455

8 OS-9 System Calls
NoteNote
Never access this pointer directly in user state. You should use
F_CPYMEM to get a copy of the device list entry. This system call is used
by the devs utility to determine the presence of all of the active devices
in the system.

See Also

F_CPYMEM
456 OS-9 Technical Manual

8OS-9 System Calls
I_GETPD Find Path Descriptor

Headers

#include <types.h>
#include <io.h>

Parameter Block Structure

typedef struct i_getpd_pb {
syscb cb;
path_id path;
Pd_com path_desc;

} i_getpd_pb, *I_getpd_pb;

OS-9 Attributes

Description

I_GETPD converts a path number to the absolute address of its path
descriptor data structure.

Parameters

cb is the control block header.

path specifies the path number.

path-id is a returned value. It points to the path
descriptor.

State Threads Compatibility

System Safe

I/O

Interrupt
OS-9 Technical Manual 457

8 OS-9 System Calls
I_GETSTAT Get File/Device Status

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct i_getstat_pb {
syscb cb;
path_id path;
u_int16 gs_code;
void *param_blk;

} i_getstat_pb, *I_getstat_pb;

OS-9 Attributes

Description

I_GETSTAT is a wildcard call used to handle individual device
parameters that are not uniform on all devices or are highly hardware
dependent.

The exact operation of this call depends on the device driver and file
manager associated with the path. A typical use is to determine a
terminal’s parameters (such as echo on/off and delete character). It is
often used with I_SETSTAT, which sets the device operating
parameters.

State Threads Compatibility

User Safe

System

I/O
458 OS-9 Technical Manual

8OS-9 System Calls
The mnemonics for the status codes are found in the header file
funcs.h. Codes 0 - 127 are reserved for Microware’s use. You may
define the remaining codes and their parameter passing conventions.
The status codes that are currently defined and the functions they
perform are described in the functions with an SS_ prefix.

Supported getstats include:

Table 8-15 Getstats

Getstat Description

I_GETSTAT, SS_COPYPD Copy Contents of Path Descriptor
(All)

I_GETSTAT, SS_CSTATS Get Cache Status Information (RBF)

I_GETSTAT, SS_DEVNAME Return Device Name (All)

I_GETSTAT, SS_DEVOPT Read Device Path Options

I_GETSTAT, SS_DEVTYPE Return Device Type (All)

I_GETSTAT, SS_DSIZE Get Size of SCSI Devices (RBF)

I_GETSTAT, SS_EDT Get I/O Interface Edition Number
(All)

I_GETSTAT, SS_EOF Test for End of File (All)

I_GETSTAT, SS_FD Read File Descriptor Sector (RBF,
PIPE)

I_GETSTAT, SS_FdAddr Get File Descriptor Block Address for
Open File (RBF, PCF)

I_GETSTAT, SS_FDINFO Get Specified File Descriptor Sector
(RBF, Pipe)
OS-9 Technical Manual 459

8 OS-9 System Calls
Parameters

cb is the control block header.

path is the path number.

gs_code is the get status code.

param_blk points to the parameter block
corresponding to the function being
performed. If the get status function
does not require a parameter block,
param_blk should be null.

Possible Errors

EOS_UNKSVC

See Also

I_SETSTAT

I_GETSTAT, SS_LUOPT Read Logical Unit Options (All)

I_GETSTAT, SS_PARITY Calculate Parity of File Descriptor
(RBF)

I_GETSTAT, SS_PATHOPT Read Path Descriptor Option Section
(All)

I_GETSTAT, SS_POS Get Current File Position (RBF)

I_GETSTAT, SS_READY Test for Data Ready (RBF, SCF,
PIPE)

I_GETSTAT, SS_SIZE Set File Size (RBF, PIPE, PCF)

Table 8-15 Getstats (continued)

Getstat Description
460 OS-9 Technical Manual

8OS-9 System Calls
I_GETSTAT, SS_COPYPD Copy Contents of Path Descriptor (ALL)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_cpypd_pb {
u_int32 size;
void *path_desc;

} gs_cpypd_pb, *Gs_cpypd_pb;

OS-9 Attributes

Description

SS_COPYPD copies the contents of the specified path’s path descriptor
to the path descriptor buffer.

State Threads Compatibility

User Safe

System

I/O

Interrupt
OS-9 Technical Manual 461

8 OS-9 System Calls
Parameters

size is the number of bytes to copy from the
path descriptor. If the size value is
greater than the size of the target path
descriptor, size is updated with the
actual size of the path descriptor.

path_desc points to the buffer for the path
descriptor data.

Possible Errors

EOS_BPNUM
462 OS-9 Technical Manual

8OS-9 System Calls
I_GETSTAT, SS_CSTATS Get Cache Status Information (RBF)

Headers

#include <rbf.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_cstats_pb {
Cachestats cache_inf;

} gs_cstats_pb, *Gs_cstats_pb;

OS-9 Attributes

Description

SS_CSTATS returns a copy of the current cachestats structure.

Parameters

cache_inf points to a structure containing
information about RBF caching.

Possible Errors

EOS_BPNUM

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 463

8 OS-9 System Calls
I_GETSTAT, SS_DEVNAME Return Device Name (ALL)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_devname_pb {
u_char *namebuf;

} gs_devname_pb, *Gs_devname_pb;

OS-9 Attributes

Description

SS_DEVNAME returns the name of the device associated with the
specified path.

Parameters

namebuf points to the buffer containing the device
name.

Possible Errors

EOS_BPNUM

State Threads Compatibility

User Safe

System

I/O

Interrupt
464 OS-9 Technical Manual

8OS-9 System Calls
I_GETSTAT, SS_DEVOPT Read Device Path Options

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_dopt_pb {
u_int32 dopt_size;
void *user_dopts;

} gs_dopt_pb, *Gs_dopt_pb;

OS-9 Attributes

Description

SS_DEVOPT gets the initial (default) device path options. These options
are used for initializing new paths to the device.

Parameters

dopt_size is a returned value. It is the size of the
option area.

user_dopts points to the list of device path options
buffer.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 465

8 OS-9 System Calls
Possible Errors

EOS_BPNUM
466 OS-9 Technical Manual

8OS-9 System Calls
I_GETSTAT, SS_DEVTYPE Return Device Type (ALL)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_devtype_pb {
u_int16 type;
u_int16 class;

} gs_devtype_pb, *Gs_devtype_pb;

OS-9 Attributes

Description

SS_DEVTYPE returns the type and class of the device associated with
the specified path number.

The values for the device type and device class are defined in the io.h
header file.

State Threads Compatibility

User Safe

System

I/O

Interrupt
OS-9 Technical Manual 467

8 OS-9 System Calls
Parameters

type is a returned value. It is the device type.

class is a returned value. It is the device class.

Possible Errors

EOS_BPNUM
468 OS-9 Technical Manual

8OS-9 System Calls
I_GETSTAT, SS_DSIZE Get Size of SCSI Devices (RBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_dsize_pb {
u_int32 totblocks,

blocksize;
} gs_dsize_pb, *Gs_dsize_pb;

OS-9 Attributes

Description

SS_DSIZE gets information about the size of a SCSI disk drive.

Parameters

totblocks is a returned value. It is the total number
of blocks on the device.

blocksize is a returned value. It is the size of a disk
block in bytes.

Possible Errors

EOS_BPNUM

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 469

8 OS-9 System Calls
I_GETSTAT, SS_EDT Get I/O Interface Edition Number (ALL)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_edt_pb {
u_int32 edition;

} gs_edt_pb, *Gs_edt_pb;

OS-9 Attributes

Description

SS_EDT returns the I/O interface edition number of the driver. It
validates the compatibility of drivers and file managers.

Parameters

edition is the driver I/O interface edition number.

Possible Errors

EOS_BPNUM

State Threads Compatibility

User Safe

System

I/O
470 OS-9 Technical Manual

8OS-9 System Calls
I_GETSTAT, SS_EOF Test for End of File (ALL)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_eof_pb {
u_int32 eof;

} gs_eof_pb, *Gs_eof_pb;

OS-9 Attributes

Description

SS_EOF returns the EOS_EOF error if the current position of the file
pointer associated with the specified path is at the end-of-file. SCF
never returns EOS_EOF.

Parameters

eof is the end-of-file status of the specified
path. A value of 1 indicates end of file.

Possible Errors

EOS_BPNUM
EOS_EOF

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 471

8 OS-9 System Calls
I_GETSTAT, SS_FD Read File Descriptor Sector (RBF, PIPE)

Headers

#include <types.h>
#include <rbf.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_fd_pb {
u_int32 info_size;
Fd_stats fd_info;

} gs_fd_pb, *Gs_fd_pb;

OS-9 Attributes

Description

SS_FD returns a copy of the file descriptor sector for the file associated
with the specified path.

Parameters

infosize is the number of bytes of the file
descriptor to copy.

fdinfo points to the buffer for the file descriptor
sector.

State Threads Compatibility

User Safe

System

I/O
472 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BPNUM
OS-9 Technical Manual 473

8 OS-9 System Calls
I_GETSTAT, SS_FdAddr Get File Descriptor Block Address for Open
File (RBF, PCF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_fdaddr_pb {
u_int32 fd_blkaddr;

} gs_fdaddr_pb, *Gs_fdaddr_pb;

OS-9 Attributes

Description

SS_FdAddr returns the file descriptor block address associated with
the specified path number.

Only super users can make this call.

Parameters

fd_blkaddr is the block address of the file descriptor.

State Threads Compatibility

User Safe

System

I/O
474 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BPNUM
EOS_PERMIT
OS-9 Technical Manual 475

8 OS-9 System Calls
I_GETSTAT, SS_FDINFO Get Specified File Descriptor Sector (RBF,
PIPE)

Headers

#include <rbf.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_fdinf_pb {
u_int32 info_size,

fd_blk_num;
Fd_stats fd_info;

} gs_fdinf_pb, *Gs_fdinf_pb;

OS-9 Attributes

Description

SS_FDINFO returns a copy of the specified file descriptor sector for the
file associated with the specified path.

State Threads Compatibility

User Safe

System

I/O
476 OS-9 Technical Manual

8OS-9 System Calls
NoteNote
Typically, SS_FDINFO is used to rapidly scan a directory on a device.
You do not need to specify the path number of the file for which you
want the file descriptor. However, the path number must be an open
path on the same device as the file. The path number typically
represents a path to the directory you are currently scanning.

Parameters

info_size specifies the number of bytes of the file
descriptor block to copy.

fd_blk_num specifies the file descriptor sector
number to get.

fd_info points to the buffer for the file descriptor
block.

Possible Errors

EOS_BPNUM
OS-9 Technical Manual 477

8 OS-9 System Calls
I_GETSTAT, SS_LUOPT Read Logical Unit Options (ALL)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_luopt_pb {
u_int32 luopt_size;
void *user_luopts;

} gs_luopt_pb, *Gs_luopt_pb;

OS-9 Attributes

Description

SS_LUOPT copies the contents of the logical unit options for a path into
the options buffer.

Parameters

luopt_size the size of the options section to copy.
luopt_size may not be less than the
size of the file manager’s logical unit
option section.

user_luopts points to the options buffer.

State Threads Compatibility

User Safe

System

I/O
478 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BPNUM
EOS_BUF2SMALL
OS-9 Technical Manual 479

8 OS-9 System Calls
I_GETSTAT, SS_PARITY Calculate Parity of File Descriptor (RBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_parity_pb {
Fd_status fd;
u_int16 parity;

} gs_parity_pb, *Gs_parity_pb;

OS-9 Attributes

Description

SS_PARITY calculates a 32 bit vertical parity for file descriptor
structures. This call is used by utilities creating disk images (format
disks) and utilities checking the integrity of disks.

Parameters

fd points to the file descriptor block.

parity is the resulting parity.

Possible Errors

EOS_BPNUM

State Threads Compatibility

User Safe

System

I/O
480 OS-9 Technical Manual

8OS-9 System Calls
I_GETSTAT, SS_PATHOPT Read Path Descriptor Option Section (ALL)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_popt_pb {
u_int32 popt_size;
void *user_popts;

} gs_popt_pb, *Gs_popt_pb;

OS-9 Attributes

Description

SS_PATHOPT copies the option section of the path descriptor into the
variable-sized area options buffer. You must include rbf.h, sbf.h,
and/or scf.h for the corresponding file managers and to declare
popt_size according to the size of the rbf_opts, sbf_opts, or
scf_opts. SS_PATHOPT is typically used to determine the current
settings for functions such as echo and auto line feed.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 481

8 OS-9 System Calls
Parameters

popt_size is the size of the path options section to
copy.

user_opts points to the options buffer.

Possible Errors

EOS_BPNUM
482 OS-9 Technical Manual

8OS-9 System Calls
I_GETSTAT, SS_POS Get Current File Position (RBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_pos_pb {
u_int32 filepos;

} gs_pos_pb, *Gs_pos_pb;

OS-9 Attributes

Description

SS_POS returns the current position of the file pointer associated with
the specified path.

Parameters

filepos is the file position in byte-size units.

Possible Errors

EOS_BPNUM

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 483

8 OS-9 System Calls
I_GETSTAT, SS_READY Test for Data Ready (RBF,SCF, PIPE)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_ready_pb {
u_int32 incount;

} gs_ready_pb, *Gs_ready_pb;

OS-9 Attributes

Description

SS_READY checks for data available to be read on the specified path.
The number of characters available to be read is returned in the
incount parameter. RBF devices do not return the EOS_NRDY error.
SS_READY returns the number of bytes left in the file and SUCCESS.

Parameters

incount is the number of characters available to
be read.

State Threads Compatibility

User Safe

System

I/O
484 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BPNUM
EOS_NRDY
OS-9 Technical Manual 485

8 OS-9 System Calls
I_GETSTAT, SS_SIZE Set File Size (RBF, PIPE, PCF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct gs_size_pb {
u_int32 filesize;

} gs_size_pb, *Gs_size_pb;

OS-9 Attributes

Description

SS_SIZE gets the size of the file associated with the open path to the
specified filesize.

Parameters

filesize is the new size of the file in bytes.

Possible Errors

EOS_BPNUM

State Threads Compatibility

User Safe

System

I/O
486 OS-9 Technical Manual

8OS-9 System Calls
See Also

I_SETSTAT
OS-9 Technical Manual 487

8 OS-9 System Calls
I_GIOPROC Get Pointer to I/O Process Descriptor

Headers

#include <io.h>

Parameter Block Structure

typedef struct i_cioproc_pb {
syscb cb;
process_id proc_id;
Io_proc proc_desc;

} i_cioproc_pb, *I_cioproc_pb;

OS-9 Attributes

Description

I_GIOPROC returns a pointer to the I/O process descriptor for the
process specified.

Parameters

cb is the control block header.

proc_id specifies the process ID of the process.

proc_desc is a returned value. It points to the I/O
process descriptor.

Possible Errors

EOS_IPRCIDT

State Threads Compatibility

System Safe

I/O
488 OS-9 Technical Manual

8OS-9 System Calls
I_IODEL Check for Use of I/O Module

Headers

#include <module.h>

Parameter Block Structure

typedef struct i_iodel_pb {
syscb cb;
Mh_com mod_head;

} i_iodel_pb, *I_iodel_pb;

OS-9 Attributes

Description

I_IODEL is executed whenever the kernel unlinks a file manager,
device driver, or device descriptor module. It is used to determine if the
I/O system is still using the module.

Parameters

cb is the control block header.

mod_head points to the module header.

Possible Errors

EOS_MODBSY

State Threads Compatibility

System Safe

I/O
OS-9 Technical Manual 489

8 OS-9 System Calls
I_IOEXIT Terminate I/O for Exiting Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_ioexit_pb {
syscb cb;
process_id proc_id;
u_int32 path_cnt;

} i_ioexit_pb, *I_ioexit_pb;

OS-9 Attributes

Description

I_IOEXIT is executed whenever the kernel terminates or chains to a
process.

Parameters

cb is the control block header.

proc_id specifies the process ID.

path_cnt specifies the number of I/O paths.

If the most significant bit of path_cnt is
reset, the process’ default data and
execution directory paths and all other

State Threads Compatibility

System Safe

I/O
490 OS-9 Technical Manual

8OS-9 System Calls
open paths in the path translation table
are closed. The I/O process descriptor is
also deallocated.

If the most significant bit of path_cnt is
set, the remaining bits specify the
number of paths to leave open. The
default directory paths are not closed,
and the I/O process descriptor is not
deallocated.

Possible Errors

EOS_IPRCID
OS-9 Technical Manual 491

8 OS-9 System Calls
I_IOFORK Set Up I/O for New Process

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_iofork_pb {
syscb cb;
process_id par_proc_id,

new_proc_id;
u_int32 path_cnt;

} i_iofork_pb, *I_iofork_pb;

OS-9 Attributes

Description

I_IOFORK is executed whenever the kernel creates a new process.
I_IOFORK creates an I/O process descriptor for the new process.
IOMAN uses I/O process descriptors to maintain information about a
process’ I/O. Each I/O process descriptor contains the user-to-system
path number translation table and path numbers for the process’ default
data and execution directories.

Parameters

cb is the control block header.

par_proc_id is the parent’s process ID.

State Threads Compatibility

System Safe

I/O
492 OS-9 Technical Manual

8OS-9 System Calls
new_proc_id is the process ID of the new process.

path_cnt is the number of I/O paths the child is to
inherit from its parent.

Possible Errors

EOS_NORAM
OS-9 Technical Manual 493

8 OS-9 System Calls
I_MAKDIR Make New Directory

Headers

#include <modes.h>

Parameter Block Structure

typedef struct i_makdir_pb {
syscb cb;
u_char *name;
u_int16 mode;
u_int32 perm,

size;
} i_makdir_pb, *I_makdir_pb;

OS-9 Attributes

Description

I_MAKDIR creates and initializes a new directory as specified by the
pathlist. I_MAKDIR is the only way to create a new directory file. The
new directory file contains only entries for itself (.) and its parent
directory (..). I_MAKDIR fails on non-multi-file devices. If the execution
bit is set, OS-9 begins searching for the file in the working execution
directory, unless the pathlist begins with a slash. If the pathlist begins
with a slash, it is used as the pathlist.

The caller becomes the owner of the directory. I_MAKDIR does not
return a path number because directory files are not opened by this
request. You should use I_OPEN to open a directory.

State Threads Compatibility

User Safe

I/O
494 OS-9 Technical Manual

8OS-9 System Calls
The new directory automatically has its directory bit set in the access
permission attributes. The remaining attributes are specified by the
bytes passed in the mode and perm parameters. The individual bits for
these parameters are defined as follows (if the bit is set, access is
permitted):

Table 8-16 Mode and Permissions For I_MAKDIR

Mode Bits Attribute Bits

S_IREAD = read S_IREAD = owner read
permission

S_IWRITE = write S_IWRITE = owner write
permission

S_IEXEC = execute S_IEXEC = owner exec
permission

S_ITRUNC = truncate
on open

S_IGREAD = group read
permission

S_ICONTIG = ensure
contig

S_IGWRITE = group write
permission

S_IEXCL = do not
recreate

S_IGEXEC = group exec
permission

S_IAPPEND = append to
file

S_IOREAD = public read
permission

S_ISHARE = exclusive
use

S_IOWRITE = public write
permission
OS-9 Technical Manual 495

8 OS-9 System Calls
If the S_IEXEC (execute) bit of the access mode byte is set, the working
execution directory is searched first instead of the working data
directory.

If the S_IEXCL mode bit is not set and the target file already exists, the
file is truncated to zero length.

If the S_ICONTIG mode bit is set, the space for the file is allocated from
a single contiguous block.

If the S_ITRUNC mode bit is set and the target file already exists, the file
is truncated to zero length.

If the S_IAPPEND mode bit is set and the target file already exists, the
file is opened and the associated file pointer points to the end of the file.

If the S_ISHARE mode bit is set, the opening process has exclusive
access to the file.

If the S_ISIZE mode bit is set, it is assumed the size parameter
contains the initial file size of the target file.

Parameters

cb is the control block header.

name points to the pathlist.

mode specifies the access mode.

perm specifies the access permissions.

size is optional; it specifies the initial
allocation size.

S_ISIZE = set initial
size

S_IOEXEC = public exec
permission

S_ISHARE = file is
non-sharable

Table 8-16 Mode and Permissions For I_MAKDIR (continued)

Mode Bits Attribute Bits
496 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BPNAM
EOS_CEF
EOS_FULL

See Also

I_OPEN
OS-9 Technical Manual 497

8 OS-9 System Calls
I_OPEN Open Path to File or Device

Headers

#include <types.h>
#include <modes.h>

Parameter Block Structure

typedef struct i_open_pb {
syscb cb;
u_char *name;
u_int16 mode;
path_id path;

} i_open_pb, *I_open_pb;

OS-9 Attributes

Description

I_OPEN opens a path to an existing file or device as specified by the
pathlist. I_OPEN returns a path number used in subsequent service
requests to identify the path. If the file does not exist, an error is
returned.

State Threads Compatibility

User Safe

System

I/O
498 OS-9 Technical Manual

8OS-9 System Calls
NoteNote
A non-directory file may be opened with no bits set. This allows you to
use the I_GETSTAT system requests to examine characteristics such
as attributes and size, but does not permit any actual I/O on the path.

For RBF devices, use Read mode instead of Update if the file is not
going to be modified. This inhibits record locking and can dramatically
improve system performance if more than one user is accessing the file.
The access mode must conform to the access permissions associated
with the file or device (see I_CREATE).

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to modes.h for more information about the modes available for
I_OPEN.

Table 8-17 Mode Permissions For I_OPEN

Mode Description

S_IREAD Read

S_IWRITE Write

S_IEXEC Execute

S_ISHARE Open file for non-sharable use

S_IFDIR Open directory file
OS-9 Technical Manual 499

8 OS-9 System Calls
If the execution bit mode is set, OS-9 searches for the file in the working
execution directory, unless the pathlist begins with a slash. If the pathlist
begins with a slash, it uses the entire pathlist and opens the file or
device with the execute bit set.

I_OPEN searches only for executables in the execution directory if the
FAM_EXEC access mode is used. The execution directory is designed
for the location of executable modules, not data modules. The access
determination is done by IOMAN based on the file permissions. To
override this behavior, add S_IEXEC to the file creation permissions.

If the single user bit is set, the file is opened for non-sharable access
even if the file is sharable.

Files can be opened by several processes (users) simultaneously.
Devices have an attribute specifying whether or not they are sharable
on an individual basis.

I_OPEN always uses the lowest path number available for the process.

NoteNote
Directory files may be opened only if the directory bit (S_IFDIR) is set
in the access mode.

Parameters

cb is the control block header.

name points to the path name of the existing
file or device.

mode specifies which subsequent read and/or
write operations are permitted as follows
(if the bit is set, access is permitted).

path is the resulting path number.
500 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BMODE
EOS_BPNAM
EOS_FNA
EOS_PNNF
EOS_PTHFUL
EOS_SHARE

See Also

I_ATTACH
I_CLOSE
I_CREATE
I_GETSTAT
OS-9 Technical Manual 501

8 OS-9 System Calls
I_RDALST Copy System Alias List

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_rdalst_pb {
syscb cb;
u_char *buffer;
u_int32 count;

} i_rdalst_pb, *I_rdalst_pb;

OS-9 Attributes

Description

I_RDALST copies the system alias list to the caller’s buffer. At most,
count bytes are copied to the buffer. Each alias entry is null
terminated.

The I_RDALST system call is used by the alias utility to display the
list of aliases currently active in the system.

State Threads Compatibility

User Safe

System

I/O
502 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

buffer points to the buffer into which to copy the
alias list.

count is the total number of bytes to copy.
count is updated with the total number
of bytes copied.

Possible Errors

EOS_BPADDR

See Also

I_ALIAS
OS-9 Technical Manual 503

8 OS-9 System Calls
I_READ Read Data from File or Device

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_read_pb {
syscb cb;
path_id path;
u_char *buffer;
u_int32 count;

} i_read_pb, *I_read_pb;

OS-9 Attributes

Description

I_READ reads a specified number of bytes from the specified path
number. The path must previously have been opened in read or update
mode. The data is returned exactly as read from the file/device without
additional processing or editing such as backspace and line delete. If
not enough data is in the file to satisfy the read request, fewer bytes are
read than requested, but an end-of-file error is not returned.

After all data in a file has been read, the next I_READ service request
returns an end-of-file error.

State Threads Compatibility

User Safe

System

I/O
504 OS-9 Technical Manual

8OS-9 System Calls
NoteNote
The keyboard X-ON/X-OFF characters may be filtered out of the input
data on SCF-type devices unless the corresponding entries in the path
descriptor have been set to zero. You may want to modify the device
descriptor so these path descriptor values are initialized to zero when
the path is opened. SCF devices usually terminate the read request
when a carriage return is reached.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For RBF devices, if the file is open for update, the record read is locked
out. For more information, refer to the Record Locking section in
Chapter 6: OS-9 File System.

The number of bytes requested are read unless the end-of-file is
reached, an end-of-record occurs (SCF only), the read times out (SCF
only), or an error condition occurs.

Parameters

cb is the control block header.

path specifies the path number.

buffer points to the data buffer.

count is the number of bytes to read. Upon
completion, count is updated with the
number of bytes actually read.
OS-9 Technical Manual 505

8 OS-9 System Calls
Possible Errors

EOS_BMODE
EOS_BPNUM
EOS_EOF
EOS_READ

See Also

I_READLN
506 OS-9 Technical Manual

8OS-9 System Calls
I_READLN Read Text Line with Editing

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_readln_pb {
syscb cb;
path_id path;
u_char *buffer;
u_int32 count;

} i_readln_pb, *I_readln_pb;

OS-9 Attributes

Description

I_READLN reads the specified number of bytes from the input file or
device until an end-of-line character is encountered. On SCF-type
devices, I_READLN also causes line editing such as backspacing, line
delete, echo, and automatic line feed to occur. Some SCF devices may
limit the number of bytes read with one call.

SCF requires the last byte entered be an end-of-record character
(normally carriage return). If more data is entered than the maximum
specified, it is not accepted and a PD_OVF character (normally bell) is
echoed. For example, an I_READLN of exactly one byte accepts only a

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 507

8 OS-9 System Calls
carriage return to return without error and beeps when other keys are
pressed. An I_READLN to SCF returns the number of bytes requested
unless the read times out or an error occurs.

After all data in a file has been read, the next I_READLN service
request returns an end of file error.

Parameters

cb is the control block header.

path specifies the path number.

buffer points to the data buffer.

count is the number of bytes to read. Upon
completion, count is updated with the
number of bytes actually read.

Possible Errors

EOS_BMODE
EOS_BPNUM
EOS_EOF
EOS_READ

See Also

I_READ
508 OS-9 Technical Manual

8OS-9 System Calls
I_SEEK Reposition Logical File Pointer

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_seek_pb {
syscb cb;
path_id path;
u_int32 offset;

} i_seek_pb, *I_seek_pb;

OS-9 Attributes

Description

I_SEEK repositions the path’s file pointer. The file pointer is the 32-bit
address of the next byte in the file to be read or written. I_SEEK usually
does not initiate physical positioning of the media. You can perform a
seek to any value, even if the file is not large enough. Subsequent write
requests automatically expand the file to the required size, if possible.
Read requests return an end-of-file condition.

A seek to address zero is the same as a rewind operation. Seeks to
non-random access devices are usually ignored and return without
error.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 509

8 OS-9 System Calls
NoteNote
On RBF devices, seeking to a new disk sector rewrites the internal
sector buffer to disk if it has been modified. I_SEEK does not change
the state of record locks. Beware of seeking to a negative position. RBF
interprets negatives as large positive numbers.

Parameters

cb is the control block header.

path specifies the path number.

position specifies the new position.

Possible Errors

EOS_BPNUM

See Also

I_READ
I_WRITE
510 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT Set File/Device Status

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct i_seek_pb {
syscb cb;
path_id path;
u_int16 ss_code;
void *param_blk;

} i_seek_pb, *I_setstat_pb;

OS-9 Attributes

Description

I_SETSTAT is a wildcard call used to handle individual device
parameters that are not uniform on all devices or are highly hardware
dependent.

Typically, set status calls are used to set a terminal’s parameters for
functions such as backspace character, delete character, echo on/off,
null padding, and paging. I_SETSTAT is commonly used with
I_GETSTAT which reads the device’s operating parameters. The

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 511

8 OS-9 System Calls
mnemonics for the status codes are found in the header file funcs.h.
Codes 0-127 are reserved for Microware’s use. Users may define the
remaining codes and their parameter passing conventions.

Supported setstats include:

Table 8-18 Setstats

Setstat Description

I_SETSTAT, SS_ATTR Set File Attributes (RBF, Pipe, PCF)

I_SETSTAT, SS_BREAK Break Serial Connection (SCF)

I_SETSTAT, SS_CACHE Enable/Disable RBF Caching (RBF)

I_SETSTAT, SS_DCOFF Send Signal When Data Carrier
Detect Line Goes False (SCF)

I_SETSTAT, SS_DCON Send Signal When Data Carrier
Detect Line Goes True (SCF)

I_SETSTAT, SS_DEVOPT Set Device Path Options (Pipe,
SBF, SCF)

I_SETSTAT, SS_DSRTS Disable RTS Line

I_SETSTAT, SS_ENRTS Enable RTS Line

I_SETSTAT, SS_ERASE Erase Tape (SBF)

I_SETSTAT, SS_FD Write File Descriptor Sector (RBF,
PCF, PIPE)

I_SETSTAT, SS_FILLBUFF Fill Path Buffer With Data (SCF)
512 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_FLUSHMAP Flush Cached Bit Map Information
(RBF)

I_SETSTAT, SS_HDLINK Make Hard Link to Existing File
(RBF)

I_SETSTAT, SS_LOCK Lock Out Record (RBF)

I_SETSTAT, SS_LUOPT Write Logical Unit Options (All)

I_SETSTAT, SS_PATHOPT Write Option Section of Path
Descriptor (All)

I_SETSTAT, SS_RELEASE Release Device (SCF, PIPE)

I_SETSTAT, SS_RENAME Rename File (RBF, PIPE, SCF)

I_SETSTAT, SS_RESET Restore Head to Track Zero (RBF,
SBF, PCF)

I_SETSTAT, SS_RETEN Re-tension Pass on Tape Device
(SBF)

I_SETSTAT, SS_RFM Skip Tape Marks (SBF)

I_SETSTAT, SS_SENDSIG Send Signal on Data Ready (SCF,
PIPE)

I_SETSTAT, SS_SIZE Set File Size (RBF, PIPE, PCF)

I_SETSTAT, SS_SKIP Skip Blocks (SBF)

I_SETSTAT, SS_SKIPEND Skip to End of Tape (SBF)

Table 8-18 Setstats (continued)

Setstat Description
OS-9 Technical Manual 513

8 OS-9 System Calls
Parameters

cb is the control block header.

path is the path number.

ss_code is the set status code.

param_blk points to the parameter block
corresponding to the function being
performed. If the set status function does
not require a parameter block,
param_blk should be NULL.

Possible Errors

EOS_UNKSVC

See Also

I_GETSTAT

I_SETSTAT, SS_TICKS Wait Specified Number of Ticks for
Record Release (RBF)

I_SETSTAT, SS_WFM Write Tape Marks (SBF)

I_SETSTAT, SS_WTRACK Write (Format) Track (RBF)

Table 8-18 Setstats (continued)

Setstat Description
514 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_ATTR Set File Attributes (RBF, PIPE, PCF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_attr_pb {
u_int32 attr;

} ss_attr_pb, *Ss_attr_pb;

OS-9 Attributes

Description

SS_ATTR changes a file’s attributes to the new value, if possible. You
cannot set the directory bit of a non-directory file or clear the directory
bit of a non-empty directory.

Parameters

attr specifies the file attributes to change.

Possible Errors

EOS_BPNUM

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 515

8 OS-9 System Calls
See Also

I_GETSTAT
I_SETSTAT
516 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_BREAK Break Serial Connection (SCF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

OS-9 Attributes

Description:

SS_BREAK breaks a serial connection.

NoteNote
The driver is responsible for implementing this call.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 517

8 OS-9 System Calls
I_SETSTAT, SS_CACHE Enable/Disable RBF Caching (RBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_cache_pb {
u_int32 enblflag,

drvscize;
} ss_cache_pb, *Ss_cache_pb;

OS-9 Attributes

Description

SS_CACHE enables and disables RBF caching on an RBF device.

Parameters

enblflag is the cache enable/disable flag.

•If enblflag is zero, caching is
disabled.

•If enblflag is non-zero, caching is
enabled.

State Threads Compatibility

User Safe

System

I/O
518 OS-9 Technical Manual

8OS-9 System Calls
drvcsize is the memory size for the cache.

Possible Errors

EOS_CEF
EOS_PERMIT

See Also

I_SETSTAT
OS-9 Technical Manual 519

8 OS-9 System Calls
I_SETSTAT, SS_DCOFF Send Signal When Data Carrier Detect Line
Goes False (SCF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_dcoff_pb {
signal_code signal;

} ss_dcoff_pb, *Ss_dcoff_pb;

OS-9 Attributes

Description

When a modem has finished receiving data from a carrier, the Data
Carrier Detect line becomes false. SS_DCOFF sends a signal code
when this happens. I_SETSTAT, SS_DCON sends a signal when the
line becomes true.

NoteNote
The driver is responsible for implementing this call.

State Threads Compatibility

User Safe

System

I/O
520 OS-9 Technical Manual

8OS-9 System Calls
Parameters

signal is the signal code to send.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT, SS_DCON
I_SETSTAT, SS_RELEASE
OS-9 Technical Manual 521

8 OS-9 System Calls
I_SETSTAT, SS_DCON Send Signal When Data Carrier Detect Line
Goes True (SCF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_dcon_pb {
signal_code signal;

} ss_dcon_pb, *Ss_dcon_pb;

OS-9 Attributes

Description

When a modem receives a carrier, the Data Carrier Detect line
becomes true. SS_DCON sends a signal code when this happens.
I_SETSTAT, SS_DCOFF sends a signal when the line becomes false.

NoteNote
The driver is responsible for implementing this call.

State Threads Compatibility

User Safe

System

I/O
522 OS-9 Technical Manual

8OS-9 System Calls
Parameters

signal is the signal code to send.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT, SS_DCOFF
I_SETSTAT, SS_RELEASE
OS-9 Technical Manual 523

8 OS-9 System Calls
I_SETSTAT, SS_DEVOPT Set Device Path Options (PIPE, SBF, SCF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_dopt_pb {
u_int dopt_size;
void *user_dopts;

} ss_dopt_pb, *Ss_dopt_pb;

OS-9 Attributes

Description

SS_DOPT sets the initial (default) device path options. These options
initialize new paths to the device.

Parameters

dopt_size specifies the size of the options area to
copy.

user_dopts points to the default options for the
device.

State Threads Compatibility

User Safe

System

I/O
524 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BPNUM

See Also

I_GETSTAT
I_SETSTAT
OS-9 Technical Manual 525

8 OS-9 System Calls
I_SETSTAT, SS_DSRTS Disable RTS Line

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to set the status parameter block.

OS-9 Attributes

Description

SS_DSRTS disables the RTS line.

NoteNote
The driver is responsible for implementing this call.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT, SS_ENRTS

State Threads Compatibility

User Safe

System

I/O
526 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_ENRTS Enable RTS Line

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_dcoff_pb {
signal_code signal;

} ss_dcoff_pb, *Ss_dcoff_pb;

OS-9 Attributes

Description

SS_ENRTS asserts the RTS line.

NoteNote
The driver is responsible for implementing this call.

Parameters

signal is the signal code to send.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 527

8 OS-9 System Calls
Possible Errors

EOS_BPNUM

See Also

I_SETSTAT, SS_DSRTS
528 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_ERASE Erase Tape (SBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_erase_pb {
u_int32 blks;

} ss_erase_pb, *Ss_erase_pb;

OS-9 Attributes

Description

SS_ERASE erases a portion of the tape. The amount of tape erased
depends on the hardware capabilities.

This is dependent on both the hardware and the driver.

Parameters

blks specifies the number of blocks to erase.

• If blks is -1, SBF erases until the
end-of-tape is reached.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 529

8 OS-9 System Calls
• If blks is positive, SBF erases the
amount of tape equivalent to that
number of blocks.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT
530 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_FD Write File Descriptor Sector (RBF, PCF,
PIPE)

Headers

#include <rbf.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_fd_pb {
Fd_stats fd_info;

} ss_fd_pb, *Ss_fd_pb;

OS-9 Attributes

Description

SS_FD changes the file descriptor sector data. The path must be open
for write.

Parameters

fd_info points to the file descriptor’s buffer.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 531

8 OS-9 System Calls
NoteNote
You can only change fd_group, fd_owner, and the time stamps
fd_atime, fd_mtime, and fd_utime. These are the only fields
written back to the disk. These fields are defined in the fd_stats
structure in rbf.h. Only the super user can change the file’s owner ID.

Possible Errors

EOS_BPNUM

See Also

I_GETSTAT
I_SETSTAT
532 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_FILLBUFF Fill Path Buffer With Data (SCF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_fillbuff_pb {
u_int32 size;
u_char *user_buff;

} ss_fillbuff_pb, *Ss_fillbuff_pb;

OS-9 Attributes

Description

SS_FILLBUFF fills the input path buffer with the data in buffer.

Parameters

size specifies the size of the buffer (amount
of data to copy).

user_buff points to the data buffer.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 533

8 OS-9 System Calls
Possible Errors

EOS_BPNUM

See Also

I_SETSTAT
534 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_FLUSHMAP Flush Cached Bit Map Information (RBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

OS-9 Attributes

Description

SS_FLUSHMAP flushes the cached bit map information for an RBF
device. This normally would only be performed after the bit map on the
disk is changed by a utility such as format.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 535

8 OS-9 System Calls
I_SETSTAT, SS_HDLINK Make Hard Link to Existing File (RBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_link_pb {
u_char *link_path;

} ss_link_pb, *Ss_link_pb;

OS-9 Attributes

Description

SS_HDLINK creates a new directory entry specified by link_path.
This directory entry points to the file descriptor block of the open file
specified by path in the I_SETSTAT parameter block. SS_HDLINK
updates the pathlist pointer.

Parameters

link_path points to the new name for the directory
entry.

State Threads Compatibility

User Safe

System

I/O
536 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BPNUM
EOS_CEF
EOS_PNNF

See Also

I_SETSTAT
OS-9 Technical Manual 537

8 OS-9 System Calls
I_SETSTAT, SS_LOCK Lock Out Record (RBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_lock_pb {
u_int32 size;

} ss_lock_pb, *Ss_lock_pb;

OS-9 Attributes

Description

SS_LOCK locks out a section of the file from the current file pointer
position up to the specified number of bytes.

Parameters

size is the size of the section to lockout. If
size is zero, all locks are removed
(record lock, EOF lock, and file lock). If
$ffffffff bytes are requested, the entire
file is locked out regardless of the file
pointer’s location. This is a special type

State Threads Compatibility

User Safe

System

I/O
538 OS-9 Technical Manual

8OS-9 System Calls
of file lock that remains in effect until
released by an SS_LOCK with size set
to zero, a read or write of zero bytes, or
the file is closed.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT
OS-9 Technical Manual 539

8 OS-9 System Calls
I_SETSTAT, SS_LUOPT Write Logical Unit Options (ALL)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_luopt_pb {
u_int32 luopt_size;
void *user_luopts;

} ss_luopt_pb, *Ss_luopt_pb;

OS-9 Attributes

Description

SS_LUOPT writes the logical unit options for a path to a buffer.

Parameters

luopt_size specifies the buffer size of the logical unit
options area.

user_luopts points to the logical unit options.

State Threads Compatibility

User Safe

System

I/O
540 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BPNUM
EOS_BUF2SMALL

See Also

I_GETSTAT
I_SETSTAT
OS-9 Technical Manual 541

8 OS-9 System Calls
I_SETSTAT, SS_PATHOPT Write Option Section of Path Descriptor
(ALL)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_popt_pb {
u_int popt_size;
void *user_popts;

} ss_popt_pb, *Ss_popt_pb;

OS-9 Attributes

Description

SS_PATHOPT writes the option section of the path descriptor from the
status packet pointed to by user_opts. Typically, SS_PATHOPT sets
the device operating parameters (such as echo and auto line feed). This
call is handled by the file managers, and only copies values appropriate
for user programs to change.

State Threads Compatibility

User Safe

System

I/O
542 OS-9 Technical Manual

8OS-9 System Calls
Parameters

popt_size specifies the buffer size.

user_popts points to the options buffer.

Possible Errors

EOS_BPNUM
EOS_BUF2SMALL

See Also

I_GETSTAT
I_SETSTAT
OS-9 Technical Manual 543

8 OS-9 System Calls
I_SETSTAT, SS_RELEASE Release Device (SCF, PIPE)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

OS-9 Attributes

Description

SS_RELEASE releases the device from any SS_SENDSIG, SS_DCON, or
SS_DCOFF request made by the calling process.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT, SS_DCOFF
I_SETSTAT, SS_DCON
I_SETSTAT, SS_SENDSIG

State Threads Compatibility

User Safe

System

I/O
544 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_RENAME Rename File (RBF, PIPE, SCF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_rename_pb {
char *newname;

} ss_rename_pb, *Ss_rename_pb;

OS-9 Attributes

Description

SS_RENAME changes the file name of the directory entry associated
with the open path. You cannot change a file’s name to that of a file
already existing in a directory.

Parameters

newname points to the file’s new name.

Possible Errors

EOS_CEF

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 545

8 OS-9 System Calls
See Also

I_SETSTAT
546 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_RESET Restore Head to Track Zero (RBF, SBF, PCF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

OS-9 Attributes

Description

For RBF and PCF, SS_RESET directs the disk head to track zero. It is
used for formatting and error recovery. For SBF, SS_RESET rewinds the
tape.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 547

8 OS-9 System Calls
I_SETSTAT, SS_RETEN Re-tension Pass on Tape Drive (SBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

OS-9 Attributes

Description

SS_RETEN performs a re-tension pass on the tape drive.

Possible Errors

EOS_BPNUM
EOS_NOTRDY

See Also

I_SETSTAT

State Threads Compatibility

User Safe

System

I/O
548 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_RFM Skip Tape Marks (SBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_rfm_pb {
int32 cnt;

} ss_rfm_pb, *Ss_rfm_pb;

OS-9 Attributes

Description

SS_RFM skips the number of tape marks specified.

Parameters

cnt specifies the number of tape marks to
skip. If cnt is negative, the tape is
rewound the specified number of marks.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 549

8 OS-9 System Calls
Possible Errors

EOS_BPNUM
EOS_NOTRDY

See Also

I_SETSTAT
550 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_SENDSIG Send Signal on Data Ready (SCF, PIPE)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_sendsig_pb {
signal_code signal;

} ss_sendsig_pb, *Ss_sendsig_pb;

OS-9 Attributes

Description

SS_SENDSIG sets up a signal to be sent to a process when an
interactive device or pipe has data ready. SS_SENDSIG must be reset
each time the signal is sent. The device or pipe is considered busy and
returns an error if any read request arrives before the signal is sent.
Write requests to the device are allowed in this state.

Parameters

signal is the signal to send.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 551

8 OS-9 System Calls
Possible Errors

EOS_BMODE
EOS_BPNUM
EOS_NOTRDY

See Also

I_SETSTAT, SS_RELEASE
552 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_SIZE Set File Size (RBF, PIPE, PCF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_size_pb {
u_int32 filesize;

} ss_size_pb, *Ss_size_pb;

OS-9 Attributes

Description

SS_SIZE sets the size of the file associated with the open path to the
specified filesize.

WARNING!
If the specified size is smaller than the current size, the data beyond the
new end-of-file is lost.

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 553

8 OS-9 System Calls
Parameters

filesize is the new size of the file in bytes.

Possible Errors

EOS_BPNUM

See Also

I_SETSTAT
554 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_SKIP Skip Blocks (SBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_skip_pb {
int32 blks;

} ss_skip_pb, *Ss_skip_pb;

OS-9 Attributes

Description

SS_SKIP skips the specified number of blocks.

Parameters

blks specifies the number of blocks to skip. If
blks is negative, the tape is rewound
the specified number of blocks.

Possible Errors

EOS_BPNUM

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 555

8 OS-9 System Calls
See Also

I_SETSTAT
556 OS-9 Technical Manual

8OS-9 System Calls
I_SETSTAT, SS_SKIPEND Skip to End of Tape (SBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

This call does not use a substructure to the set status parameter block.

OS-9 Attributes

Description

SS_SKIPEND skips the tape to the end of data. This enables you to
append data to tapes on cartridge-type tape drives.

Possible Errors

EOS_BPNUM
EOS_NOTRDY

See Also

I_SETSTAT

State Threads Compatibility

User Safe

System

I/O
OS-9 Technical Manual 557

8 OS-9 System Calls
I_SETSTAT, SS_TICKS Wait Specified Number of Ticks for Record
Release (RBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_ticks_pb {
u_int32 delay;

} ss_ticks_pb, *Ss_ticks_pb;

OS-9 Attributes

Description:

Normally, if a read or write request is issued for part of a file locked out
by another user, RBF sleeps indefinitely until the conflict is removed.
SS_TICKS may be used to return an error (EOS_LOCK) to the user
program if the conflict still exists after the specified number of ticks have
elapsed.

State Threads Compatibility

User Safe

System

I/O
558 OS-9 Technical Manual

8OS-9 System Calls
Parameters

delay specifies the delay interval. The delay
interval is used directly as a parameter
to RBF’s conflict sleep request.

Possible Errors

EOS_BPNUM
EOS_LOCK

See Also

I_SETSTAT

Table 8-19

Value Description

0 The process sleeps until the record is released. This is
RBF’s default.

1 Returns an error if the record is not released
immediately.

Other Any other value specifies number of system clock ticks
to wait until the conflict area is released. If the high
order bit is set, the lower 31 bits are converted from
1/256 second to ticks before sleeping. This allows
programmed delays to be independent of the system
clock rate.
OS-9 Technical Manual 559

8 OS-9 System Calls
I_SETSTAT, SS_WFM Write Tape Marks (SBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_wfm_pb {
u_int32 cnt;

} ss_wfm_pb, *Ss_wfm_pb;

OS-9 Attributes

Description

SS_WFM writes the specified number of tape marks at the current
position.

Parameters

cnt specifies the number of tape marks to
write.

Possible Errors

EOS_BPNUM

State Threads Compatibility

User Safe

System

I/O
560 OS-9 Technical Manual

8OS-9 System Calls
See Also

I_SETSTAT
OS-9 Technical Manual 561

8 OS-9 System Calls
I_SETSTAT, SS_WTRACK Write (Format) Track (RBF)

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct ss_wtrack_pb {
void *trkbuf,

*ilvtbl;
u_int32 track,

head,
interleave;

} ss_wtrack_pb, *Ss_wtrack_pb;

OS-9 Attributes

Description

SS_WTRACK causes a format track operation (used with most floppy
disks) to occur. For hard or floppy disks with a format entire disk
command, this formats the entire media only when the track number
and side number are both zero. The interleave table contains byte
entries of LBNs ordered to match the requested interleave offset. The

State Threads Compatibility

User Safe

System

I/O
562 OS-9 Technical Manual

8OS-9 System Calls
path descriptor should be used with the track and side numbers to
determine what density and how many blocks a certain track should
have.

NoteNote
This function is implemented by the driver. Only super user programs
are allowed to issue this command.

Parameters

trkbuf points to the track buffer.

ilvtbl points to the interleave table. The
interleave table contains byte entries of
LBNs ordered to match the requested
interleave offset.

track is the track number.

head is the side number.

interleave is the interleave value.

Possible Errors

EOS_FMTERR
EOS_FORMAT

See Also

I_SETSTAT
OS-9 Technical Manual 563

8 OS-9 System Calls
I_SGETSTAT GetStat Call Using System Path Number

Headers

#include <types.h>
#include <sg_codes.h>

Parameter Block Structure

typedef struct i_getstat_pb {
syscb cb;
path_id path;
u_init16 gs_code;
void *param_blk;

} i_getstat_pb, *I_getstat_pb;

OS-9 Attributes

Description

I_SGETSTAT is a wildcard call used to handle individual device
parameters that are not uniform on all devices or are highly hardware
dependent. I_SGETSTAT provides the same functionality as
I_GETSTAT except the path number for I_SGETSTAT is assumed to be
a system path number and not a user path number.

State Threads Compatibility

User Safe

System

I/O
564 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

path is the system path number.

gs_code is the get status code.

param_blk points to the parameter block
corresponding to the function being
performed. If the get status function
does not require a parameter block
param_blk should be NULL.

Possible Errors

EOS_UNKSVC

See Also

I_GETSTAT
I_SETSTAT
OS-9 Technical Manual 565

8 OS-9 System Calls
I_TRANPN Translate User Path to System Path

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_tranpn_pb {
syscb cb;
process_id proc_id;
path_id user_path,

sys_path;
} i_tranpn_pb, *I_tranpn_pb;

OS-9 Attributes

Description

I_TRANPN translates a user path number to a system path number.
System-state processes use this call to access the user paths (standard
I/O paths).

Parameters

cb is the control block header.

proc_id specifies the process ID.

user_path specifies the user path to translate.

sys_path is the mapped system path.

State Threads Compatibility

System Safe

I/O
566 OS-9 Technical Manual

8OS-9 System Calls
Possible Errors

EOS_BPNUM
EOS_IPRCID
OS-9 Technical Manual 567

8 OS-9 System Calls
I_WRITE Write Data to File or Device

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_write_pb {
syscb cb;
path_id path;
u_char *buffer;
u_int32 count;

} i_write_pb, *I_write_pb;

OS-9 Attributes

Description

I_WRITE outputs bytes to a file or device associated with the specified
path number. The path must have been opened or created in the write
or update access modes.

Data is written to the file or device without processing or editing. If data
is written past the present end-of-file, the file is automatically expanded.

NoteNote
On RBF devices, any locked record is released.

State Threads Compatibility

User Safe

System

I/O
568 OS-9 Technical Manual

8OS-9 System Calls
Parameters

cb is the control block header.

path is the specified path number for the file
or device.

buffer points to the data buffer.

count is the number of bytes written.

Possible Errors

EOS_BMODE
EOS_BPNUM
EOS_WRITE

See Also

I_CREATE
I_OPEN
I_WRITELN
OS-9 Technical Manual 569

8 OS-9 System Calls
I_WRITELN Write Line of Text with Editing

Headers

#include <types.h>

Parameter Block Structure

typedef struct i_writln_pb {
syscb cb;
path_id path;
u_int32 count
u_char *buffer;

} i_writln_pb, *I_writln_pb;

OS-9 Attributes

Description

I_WRITELN outputs bytes to a file or device associated with the
specified path number. The path must have been opened or created in
write or update access modes. I_WRITELN writes data until it
encounters a carriage return character or count bytes. Line editing is
also activated for character-oriented devices such as terminals and
printers. The line editing refers to functions such as auto line feed and
null padding at end-of-line.

State Threads Compatibility

User Safe

System

I/O
570 OS-9 Technical Manual

8OS-9 System Calls
The number of bytes actually written (returned in count) does not
reflect any additional bytes added by file managers or device drivers for
device control. For example, if SCF appends a line feed and nulls after
carriage return characters, these extra bytes are not counted.

NoteNote
On RBF devices, any locked record is released.

Parameters

cb is the control block header.

path is the path number of the file or device.

buffer points to the data buffer.

count is the number of bytes written.

Possible Errors

EOS_BMODE
EOS_BPNUM
EOS_WRITE

See Also

I_CREATE
I_OPEN
I_WRITE

The OS-9 Porting Guide, the SCF Drivers (line editing) section
OS-9 Technical Manual 571

8 OS-9 System Calls
572 OS-9 Technical Manual

Appendix A: Example Code

Use the examples in this section as guides for creating your own
modules. These examples should not be considered the most current
software. Software for your individual system may be different.

This appendix includes the following topics:

• Sysgo

• Signals: Example Program

• Alarms: Example Program

• Events: Example Program

• Semaphores: Example Program

• Subroutine Library

• Trap Handlers
573

A Example Code
Sysgo

Sysgo can be configured as the first user process started after the
system start-up sequence. Its standard I/O is on the system console
device.

Sysgo executes as follows:

1. Change to the CMDS execution directory on the system device.

2. Execute the start-up file (as a script) from the SYS directory on the
root of the system device.

3. Fork a shell on the system console.

4. Wait for that shell to terminate and then fork it again. Unless Sysgo
dies, a shell is always running on the system console.

The standard Sysgo module for disk systems cannot be used on
non-disk systems, but is easy to customize.
/*---!
! !
! Copyright 1988 by Microware Systems Corporation !
! Reproduced Under License !
! !
!This source code is the proprietary confidential property of Microware !
!Systems Corporation, and is provided to licensee for documentation and !
!educational purposes only. Reproduction, publication, or distribution !
!in any form to any party other than the licensee is strictly prohibited. !
! !
!--*/

_asm("_sysedit: equ 2");

#include <const.h>
#include "defsfile"

/*
 * global variables and declarations
 */

u_int32 sighandler(), /* intercept handler */
 os9fork(); /* used by os9exec */
void errexit(), /* error printing routine */
 out3dec(); /* print three decimal digits */
error_code lerrmsg(); /* print the error message */
char *cmdsdir = "CMDS", /* the commands directory */
 startup = "SYS/startup", / the startup script */
 shell = "Shell"; / the shell command name */
574 OS-9 Technical Manual

AExample Code
/*
 * main - main program body
 */

void main(argc, argv)
register u_int32 argc; /* number of arguments */
register u_char *argv[]; /* the arguments themselves */
{
 register path_id stdid_dup; /* duped stdin ID */
 register process_id shellpid; /* the process ID */
 char *envp[1]; /* environment variables */
 static char *args[] = { /* argv for forked shell */
 "shell",
 "-npxt\n",
 NULL
 };

 intercept(sighandler); /* catch signals */
 if (chxdir(cmdsdir) == ERROR)
 errexit(errno, "can’t change to commands directory");
 if ((stdid_dup = dup(_fileno(stdin))) == ERROR)
 errexit(errno, "can’t duplicate standard input path");
 close(_fileno(stdin)); /* close stdin path */
 if (open(startup, S_IREAD) == ERROR) {
 lerrmsg(errno, "can’t open startup due to error #");
 dup(stdid_dup); /* reset stdin path */
 }
 envp[0] = NULL; /* initialize environments */
 for (;;) {
 if (os9exec(os9fork, shell, args, envp, 0, 0, 3) == ERROR)
 errexit(errno, "can’t fork shell");
 close(_fileno(stdin)); /* close old stdin */
 dup(stdid_dup); /* restore initial stdin */
 wait(0); /* wait for it to die */
 args[1] = "\n"; /* no more special options */
 }
}

/*
 * sighandler - ignore signals so we stay alive
 */

u_int32 sighandler(sigval)
register u_int32 sigval; /* the signal */
{
 return SUCCESS; /* don’t quit */
}

/*
 * errexit - print error message and leave
 */

OS-9 Technical Manual 575

A Example Code
void errexit(error, msg)
register error_code error; /* the error that caused us to quit
*/
register char *msg; /* our explanation */
{
 write(_fileno(stdout), msg, strlen(msg));
 exit(lerrmsg(error, " due to error #"));
}

/*
 * lerrmsg - print error message and number
 */

error_code lerrmsg(error, msg)
register error_code error; /* the error code */
register char *msg; /* the error message */
{
 write(_fileno(stdout), msg, strlen(msg));
 out3dec(error >> 16);
 write(_fileno(stdout), ":", 1);
 out3dec(error & 0xffff);
 writeln(_fileno(stdout), "\n", 1);
}

/*
 * out3dec - output 3 decimal digits
 */

void out3dec(num)
register u_int32 num; /* the number to print */
{
 register u_int32 i, /* a counter */
 j; /* divisor */
 char buf[3]; /* the buffer for the characters */

 for (i = 0, j = 100; i < 3; i++, j /= 10)
 buf[i] = (num / j) + 0x30; /* convert to decimal */
 write(_fileno(stdout), buf, 3);
}

576 OS-9 Technical Manual

AExample Code
Signals: Example Program

The following program demonstrates a subroutine that reads a \n
terminated string from a terminal with a ten second timeout between the
characters. This program illustrates signal usage, but does not contain
any error checking.

The _ss_ssig(path, value) library call notifies the operating
system to send the calling process a signal with signal code value when
data is available on path. If data is already pending, a signal is sent
immediately. Otherwise, control is returned to the calling program and
the signal is sent when data arrives.
#include <stdio.h>
#include <errno.h>

#define TRUE 1
#define FALSE 0

#define GOT_CHAR 2001
short dataready; /* flag to show that signal was received */

/* sighand - signal handling routine for this process */
sighand(signal)
register int signal;
{
 switch(signal) {
 /* ^E or ^C? */
 case 2:
 case 3:
 _errmsg(0,"termination signal received\n");
 exit(signal);
 /* Signal we’re looking for? */
 case GOT_CHAR:
 dataready = TRUE;
 break;
 /* Anything else? */
 default:
 _errmsg(0,"unknown signal received ==> %d\n",signal);
 exit(1);
 }
}

main()
{
 char buffer[256]; /* buffer for typed-in string */

 intercept(sighand); /* set up signal handler */

 printf("Enter a string:\n"); /* prompt user */
OS-9 Technical Manual 577

A Example Code
 /* call timed_read, returns TRUE if no timeout, -1 if timeout */
 if (timed_read(buffer) == TRUE)
 printf("Entered string = %s\n",buffer);
 else
 printf("\nType faster next time!\n");
}

int timed_read(buffer)
register char *buffer;
{
 char c = ’\0’; /* 1 character buffer for read */
 short timeout = FALSE; /* flag to note timeout occurred on read */
 int pos = 0; /* position holder in buffer */

 /* loop until <return> entered or timeout occurs */
 while ((c != ’\n’) && (timeout == FALSE)) {
 _os_sigmask(1); /* mask signals for signal setup */
 _ss_ssig(0,GOT_CHAR); /* set up to have signal sent */
 sleep(10); /* sleep for 10 seconds or until signal */

/* NOTE: we had to mask signals before doing _ss_ssig() so we did not get the
signal between the time we _ss_ssig()’ed and went to sleep. */

 /* Now we’re awake, determine what happened */
 if (!dataready)
 timeout = TRUE;
 else {
 read(0,&c,1); /* read the ready byte */
 buffer[pos] = c; /* put it in the buffer */
 pos++; /* move our position holder */
 dataready = FALSE; /* mark data as read */
 }
 }
 /* loop has terminated, figure out why */
 if (timeout)
 return -1; /* there was a timeout so return -1 */
 else {
 buffer[pos] = ’\0’; /* null terminate the string */
 return TRUE;
 }
}
578 OS-9 Technical Manual

AExample Code
Alarms: Example Program

The following example program can be compiled with this command:
$ cc deton.c
The complete source code for the example program is as follows:
/*--|
| Psect Name:deton.c |
| Function: demonstrate alarm to time out user input |
|--*/
@_sysedit: equ 1

#include <stdio.h>
#include <errno.h>
#include <const.h>

#define TIME(secs) ((secs << 8) | 0x80000000)
#define PASSWORD "Ripley"

/*--*/
sighand(sigcode)
{
 /* just ignore the signal */
}

/*--*/
main(argc,argv)
int argc;
char **argv;
{
 register int secs = 0;
 register int alarm_id;
 register char *p;
 register char name[80];

 intercept(sighand);
 while (--argc)
 if (*(p = *(++argv)) == ’-’) {
 if (*(++p) == ’?’)
 printuse();
 else exit(_errmsg(1, "error: unknown option - ’%c’\n", *p));
 } else if (secs == 0)
 secs = atoi(p);
 else exit(_errmsg(1, "unknown arg - \"%s\"\n", p));

 secs = secs ? secs : 3;
 printf("You have %d seconds to terminate self-destruct...\n", secs);

 /* set alarm to time out user input */
 if ((errno = _os_alarm_set(&alarm_id, 2, TIME(secs))) != SUCCESS)
 exit(_errmsg(errno, "can’t set alarm - "));

OS-9 Technical Manual 579

A Example Code
 if (gets(name) != 0)
 _os_alarm_delete(alarm_id); /* remove the alarm; it didn’t expire */
 else printf("\n");

 if (_cmpnam(name, PASSWORD, 6) == 0)
 printf("Have a nice day, %s.\n", PASSWORD);
 else printf("ka BOOM\n");

 exit(0);
}

/*--*/
/* printuse() - print help text to standard error */
printuse()
{
 fprintf(stderr, "syntax: %s [seconds]\n", _prgname());
 fprintf(stderr, "function: demonstrate use of alarm to time out I/O\n");
 fprintf(stderr, "options: none\n");
 exit(0);
}

580 OS-9 Technical Manual

AExample Code
Events: Example Program

The following program uses a binary semaphore to illustrate the use of
events. To execute this example:

Step 1. Enter or copy the code into a file called sema1.c.

Step 2. Copy sema1.c to sema2.c.

Step 3. Compile both programs.

Step 4. Run both programs using this command: sema1 & sema2.

The program does the following:

1. Creates an event with an initial value of 1 (free), a wait increment of
-1, and a signal increment of 1

2. Enters a loop that waits on the event

3. Prints a message

4. Sleeps

5. Signals the event

6. Unlinks itself from the event after ten times through the loop

7. Deletes the event from the system
#include <module.h>
#include <stdio.h>
#include <memory.h>
#include <errno.h>
#include <const.h>

void main()
{
 char *ev_name = "semaevent"; /* name of event to be used */
 event_id ev_id; /* ID that is used to access event */
 u_int16 perm = MP_OWNER_READ | MP_OWNER_WRITE; /* access perms for event
*/
 u_int32 value; /* returned event value */
 signal_code signal; /* returned signal value */
 int count = 0; /* loop counter */
OS-9 Technical Manual 581

A Example Code
 /* create to link to the event */
 if ((errno = _os_ev_link(ev_name, &ev_id)) != SUCCESS)
 if ((errno = _os_ev_creat(1,-1,perm,&ev_id,ev_name,1,MEM_ANY)) != SUCCESS)
 exit(_errmsg(errno,"error getting access to event - "));

 while (count++ < 10)
 {
 /* wait on the event */
 if ((errno = _os_ev_wait(ev_id, &value, &signal, 1, 1)) != SUCCESS)
 exit(_errmsg(errno,"error waiting on the event - "));

 _errmsg(0,"entering \"critical section \"\n");

 /* simulate doing something useful */
 sleep(2);

 _errmsg(0,"exiting \"critical section \"\n");

 /* signal event (leaving critical section) */
 if ((errno = _os_ev_signal(ev_id, &value, 0)) != SUCCESS)
 exit(_errmsg(errno, "error signalling the event -"));

 /* simulate doing something other than critical section */
 sleep(1);
 }
 /* unlink from event */
 if ((errno = _os_ev_unlink(ev_id)) != SUCCESS)
 exit(_errmsg(errno, "error unlinking from event - "));

 /* delete event from system if this was the last process to unlink from it */
 if ((errno = _os_ev_delete(ev_name)) != SUCCESS && errno != EOS_EVBUSY)
 exit(_errmsg(errno, " error deleting event from system - "));

 _errmsg(0, terminating normally\n");
}

582 OS-9 Technical Manual

AExample Code
Semaphores: Example Program

The following example shows how to use semaphores.
#ifndef _SEMAPHORE_H
#include <semaphore.h>
#endif
#ifndef _MODULE_H
#include <module.h>
#endif
Semaphore sema;
Semaphore locate_semaphore();
/* link/create the semaphore */
sema = locate_semaphore();
while (1) {
 /* perform semaphore "P" operation (reserve the semaphore) */
 if ((err = _os_sema_p(sema)) != SUCCESS)
 exit(_errmsg(err, "could not perform P operation - "));
 /* Enter critical section */
 /* perform semaphore "V" operation (release semaphore) */
 if ((err = _os_sema_v(sema)) != SUCCESS)
 exit(_errmsg(err, "could not perform V operation - "));
}
/* terminate usage of the semaphore */
_os_sema_term(sema);
}
#define ATTR_REV 0x8001 /* semaphore data-module’s attribute revision value */
/* locate_semaphore - link or create semaphore module (initialize it). */
Semaphore locate_semaphore()
{
 Semaphore sema;
 mh_com *semamod;
 static char *semaname = "semaphore";
 mh_com *modlink();
 mh_com *_mkdata_module();
 /* attempt to link to the semaphore */
 if ((semamod = modlink(semaname, MT_DATA)) == ((mh_com*)-1)) {
 /* semaphore module did not exist so create it */
 if ((semamod = _mkdata_module("semaphore", sizeof semaphore, ATTR_REV,
 MP_OWNER_READ|MP_OWNER_WRITE)) == ((mh_com*)(-1)))
 exit(_errmsg(errno, "can’t create the semaphore - "));
 /* get the address of the semaphore data structure */
 sema = (Semaphore)((char*)semamod + semamod->m_exec);
 /* initialize the semaphore prior to usage the first time */
 _os_sema_init(sema);
 } else {
 /* the semaphore module already exists */
 /* get the address of the semaphore data structure */
 sema = (Semaphore)((char*)semamod + semamod->m_exec);
 }
 return sema;
}

OS-9 Technical Manual 583

A Example Code
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Using UltraC/C++ for information about the os_sema_xxx
call’s operation and syntax.
584 OS-9 Technical Manual

AExample Code
Subroutine Library

The following example subroutine library consists of four files: slib.a,
slibc.c, and slibcalls.a.

slib.a

**
* *
* Copyright 1996 by Microware Systems Corporation *
* Reproduced Under License *
* *
* This source code is the proprietary confidential property of Microware *
* Systems Corporation, and is provided to licensee for documentation and *
* educational purposes only. Reproduction, publication, or distribution *
* in any form to any party other than the licensee is strictly prohibited. *
* *
**

 * User-state Subroutine Library Example

 use <oskdefs.d>

E_ILLFNC equ $40 Illegal subroutine library function code error

type equ (Sbrtn<<8)+Objct Subroutine module, object code
revs equ (ReEnt<<8) ReEntrant
edit equ 1 Edition #1
stack equ 0 Uses user’s stack

 psect slib_9000,type,revs,edit,stack,_slib_entry

_sysedit: equ edit set the edition number

 vsect
_caller_retpc: ds.l 1 caller’s return address
_caller_statics: ds.l 1 caller’s static storage pointer (r2)
 ends

* _slib_entry - subroutine library entry point code.
*
* input: 0(sp) = caller’s static storage pointer (r2)
* 4(sp) = function code (long)
* 8(sp) = function code
* 12+(sp) = user’s stack
*
_slib_entry:
OS-9 Technical Manual 585

A Example Code
 stwu r31,-4(sp)
stacked set 4*1
 lwz r0,8+stacked(r1) get return address
 stw r0,_caller_retpc(r2)
 lwz r0,0+stacked(r1) get caller statics
 stw r0,_caller_statics(r2)

 lwz r0,4+stacked(sp) load function code

 lwz r31,slib_max(r2) get max function number
 cmpw cr0,r0,r31
 bge _bad_func too big?

 addi r31,r2,slib_dsptable get sublib dispatch table
 slwi r0,r0,2 make function into address offset (* 4)
 lwzx r0,r31,r0 get routine address
 mtctr r0 prepare to call

 lwz r31,0(sp) restore register
 addi sp,sp,stacked+12 eat scall frame

 bctrl call C function

 lwz r0,_caller_retpc(r2) return to caller
 mtlr r0
 lwz r2,_caller_statics(r2) reload caller’s statics
 blr

_bad_func
* restore information and return to user with error
 lwz r31,_caller_retpc(r2) return to caller
 mtlr r31
 lwz r2,_caller_statics(r2)
 lwz r31,0(sp) restore registers
 addi sp,sp,stacked+12 pop save space and _subcall frame
 addi r3,r0,E_ILLFNC return error code
 blr

 ends
586 OS-9 Technical Manual

AExample Code
slibc.c

/*--,
! !
! Copyright 1996 by Microware Systems Corporation !
! Reproduced Under License !
! !
! This source code is the proprietary confidential property of Microware !
! Systems Corporation, and is provided to licensee for documentation and !
! educational purposes only. Reproduction, publication, or distribution !
! in any form to any party other than the licensee is strictly prohibited. !
! !
!---!
! !
! Example Subroutine library dispatch table definitions and functions. !
! !
! Note: the parameters to the subroutine library functions are accessable !
! to the functions just as they would be if the functions resided in !
! the main program and were called directly. This functionality is !
! provided by the interface code of the C library "_subcall" function !
! and the assembler interface code of the subroutine library. !
! !
‘--*/

/*
 Subroutine library example
*/

#include <types.h>

/* pre-declare subroutine library functions */
u_int32 add_10(u_int32 p1, u_int32 p2, u_int32 p3, u_int32 p4, u_int32 p5,
 u_int32 p6, u_int32 p7, u_int32 p8, u_int32 p9, u_int32 p10);
u_int32 sub_10(u_int32 p1, u_int32 p2, u_int32 p3, u_int32 p4, u_int32 p5,
 u_int32 p6, u_int32 p7, u_int32 p8, u_int32 p9, u_int32 p10);
u_int32 mul_10(u_int32 p1, u_int32 p2, u_int32 p3, u_int32 p4, u_int32 p5,
 u_int32 p6, u_int32 p7, u_int32 p8, u_int32 p9, u_int32 p10);
u_int32 div_10(u_int32 p1, u_int32 p2, u_int32 p3, u_int32 p4, u_int32 p5,
 u_int32 p6, u_int32 p7, u_int32 p8, u_int32 p9, u_int32 p10);

/* initialize subroutine library dispatch table */
u_int32 (*slib_dsptable[])() = {
 add_10,
 sub_10,
 mul_10,
 div_10
};

/* initialize maximum function count variable */
int slib_max = sizeof(slib_dsptable) / sizeof(u_int32 (*)());
OS-9 Technical Manual 587

A Example Code
/* add_10 - return sum of its 10 arguments */
u_int32 add_10(u_int32 p1, u_int32 p2, u_int32 p3, u_int32 p4, u_int32 p5,
 u_int32 p6, u_int32 p7, u_int32 p8, u_int32 p9, u_int32 p10)
{
 return p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10;
}

/* sub_10 - return difference of its 10 arguments */
u_int32 sub_10(u_int32 p1, u_int32 p2, u_int32 p3, u_int32 p4, u_int32 p5,
 u_int32 p6, u_int32 p7, u_int32 p8, u_int32 p9, u_int32 p10)
{
 return p1 - p2 - p3 - p4 - p5 - p6 - p7 - p8 - p9 - p10;
}

/* mul_10 - return product of its 10 arguments */
u_int32 mul_10(u_int32 p1, u_int32 p2, u_int32 p3, u_int32 p4, u_int32 p5,
 u_int32 p6, u_int32 p7, u_int32 p8, u_int32 p9, u_int32 p10)
{
 return p1 * p2 * p3 * p4 * p5 * p6 * p7 * p8 * p9 * p10;
}

/* div_10 - return division of its 10 arguments */
u_int32 div_10(u_int32 p1, u_int32 p2, u_int32 p3, u_int32 p4, u_int32 p5,
 u_int32 p6, u_int32 p7, u_int32 p8, u_int32 p9, u_int32 p10)
{
 return p1 / p2 / p3 / p4 / p5 / p6 / p7 / p8 / p9 / p10;
}

588 OS-9 Technical Manual

AExample Code
slibcalls.a

**
* *
* Copyright 1996 by Microware Systems Corporation *
* Reproduced Under License *
* *
* This source code is the proprietary confidential property of Microware *
* Systems Corporation, and is provided to licensee for documentation and *
* educational purposes only. Reproduction, publication, or distribution *
* in any form to any party other than the licensee is strictly prohibited. *
* *
**

* "stub" library for subroutine library

 psect scall_a,0,0,0,0,0

scall macro
 mflr r0 save caller’s return address
 bl _subcall dispatch to subroutine library
 dc.l 8 subroutine library number
 dc.l \1 function code
 endm

add_10: scall 0 call function #0
sub_10: scall 1 call function #1
mul_10: scall 2 call function #2
div_10: scall 3 call function #3

 ends
OS-9 Technical Manual 589

A Example Code
Trap Handlers

The following example trap handler consists of four files: trapc.a,
thandler.c, tcall.c, and ttest.c.

trapc.a

* *
* Copyright 1989 by Microware Systems Corporation *
* Reproduced Under License *
* *
* This source code is the proprietary confidential property of Microware *
* Systems Corporation, and is provided to licensee for documentation and *
* educational purposes only. Reproduction, publication, or distribution *
* in any form to any party other than the licensee is strictly prohibited. *
* *

 nam OS-9000 80386 Example System State Trap Handler

 use <oskdefs.d>

type equ (TrapLib<<8)+Objct
revs equ ((ReEnt+Ghost+SupStat)<<8)
edit equ 1
stack equ 1024

 psect Trap_9000,type,revs,edit,stack,_trap_entry
 _m_init: equ _trap_init * Trap Handler initialization entry point
 _m_term: equ _trap_term * Trap Handler termination entry point

_sysedit: equ edit edition number of module

E_ILLFNC equ $40 Illegal trap handler function code error

 vsect
_caller_eip: ds.l 1 caller’s return pc
_caller_statics: ds.l 1 caller’s static storage pointer (%ebx)
 ends

**
* _trap_entry - trap handler entry point code.
*
* input: 0(%esp) = caller’s static storage pointer (%ebx)
* 4(%esp) = trap number
* 6(%esp) = function code
* 8(%esp) = return address
590 OS-9 Technical Manual

AExample Code
*
_trap_entry: push.l %eax save registers
 push.l %esi
stacked set 2*4
 sub.l %eax,%eax sweep register
 mov.w 6+stacked(%esp),%eax get function code
 cmp.l trap_max(%ebx),%eax function code in range?
 jge.b _bad_trap branch if not
 lea trap_dsptable(%ebx),%esi get trap dispatch table
 mov.l (%esi,%eax*4),%eax get routine address
 mov.l %eax,4+stacked(%esp) set routine address
 pop.l %esi restore registers
 pop.l %eax
 pop.l _caller_statics(%ebx) save caller’s static storage
* call trap handler function
 ret

_bad_trap pop.l %esi restore registers
 pop.l %eax
 lea 2*4(%esp),%esp pop stack
 mov.l #E_ILLFNC,%eax return error code
 ret

 ends
OS-9 Technical Manual 591

A Example Code
thandler.c

/*--,
! !
! Copyright 1989 by Microware Systems Corporation !
! Reproduced Under License !
! !
! This source code is the proprietary confidential property of Microware !
! Systems Corporation, and is provided to licensee for documentation and !
! educational purposes only. Reproduction, publication, or distribution !
! in any form to any party other than the licensee is strictly prohibited. !
! !
‘--*/
/*
 System State Trap Handler Example. This file contains the trap handler
 dispatch table and functions.
*/

#include <const.h>

/* pre-declare trap handler functions */
int func1(), func2(), func3();

/* initialize maximum function count variable */
int trap_max = 3;

/* initialize trap handler dispatch table */
(* trap_dsptable[])() = {
 func1,
 func2,
 func3
};

/* _trap_init - trap handler initialization routine. */
_trap_init(trapnum, memsize, statics)
register int trapnum; /* trap handler number */
register int memsize; /* addtional trap handler memory size */
register void *statics; /* caller’s static storage pointer */
{
 return SUCCESS;
}

/* _trap_term - trap handler termination routine. */
_trap_term(trapnum, statics)
register int trapnum; /* trap handler number */
register void *statics; /* caller’s static storage pointer */
{
 return SUCCESS;
}

592 OS-9 Technical Manual

AExample Code
/* func1 - first trap handler function. */
func1()
{
 return 1;
}

/* func2 - second trap handler function. */
func2()
{
 return 2;
}

/* func3 - third trap handler function. */
func3()
{
 return 3;
}

OS-9 Technical Manual 593

A Example Code
tcall.c

/*--,
! !
! Copyright 1989 by Microware Systems Corporation !
! Reproduced Under License !
! !
! This source code is the proprietary confidential property of Microware !
! Systems Corporation, and is provided to licensee for documentation and !
! educational purposes only. Reproduction, publication, or distribution !
! in any form to any party other than the licensee is strictly prohibited. !
! !
‘--*/
/*
 Example system state trap handler calls for 80386 processor. This file
 contains the tcall references for the trap handler functions. The main
 program references these tcalls, and in turn the tcalls will dispatch
 to the associated trap handler via the OS9000 kernel. The return from
 the trap handler takes the flow of excution back to the initial function
 reference in the main program.
*/

_asm ("

* tcall - macro definition
*
* tcall trap,function
*
tcall macro
 dc.w $fecd
 dc.w \1
 dc.w \2
 ret
 dc.b $00
 endm

trap_func1: tcall 8,0
trap_func2: tcall 8,1
trap_func3: tcall 8,2

");
594 OS-9 Technical Manual

AExample Code
ttest.c

/*
 System State Trap Handler test program.
*/

#include <stdio.h>
#include <errno.h>

#ifndef SUCCESS
#define SUCCESS 0
#endif

char *libexec;
char *modhead;

/* _trapinit - trap handler exception routine, install trap handler. */
_trapinit(trapnum, funcode)
register int trapnum;
register int funcode;
{
 register int err;

 /* validate trap number */
 if (trapnum != 8) return errno = EOS_ITRAP;

 /* install the trap handler */
 if ((err = _os_tlink(8, "trap9000", &libexec, &modhead, 0, 0)) != SUCCESS)
 return errno = err;

 return SUCCESS;
}

main()
{
 printf("calling function %d.\n", trap_func1());
 printf("calling function %d.\n", trap_func2());
 printf("calling function %d.\n", trap_func3());
}

OS-9 Technical Manual 595

A Example Code
596 OS-9 Technical Manual

Appendix B: OS-9 Error Codes

This section lists OS-9 error codes in numerical order. The first three
numbers indicate a group of messages. Processor-specific error
messages can also be added with each processor family port. If this
manual has not been updated to include the messages for your
processor, see the errmsg file in the OS9000/SRC/SYS/ERRMSG
directory. This appendix includes the following topics:

• Error Categories

• Errors
597

B OS-9 Error Codes
Error Categories

OS-9 error codes are grouped in the following categories:

Table B-1 OS-9 Error Code Categories

Range Description

000:001 -
000:031

Miscellaneous Errors

Refer to Table B-2.

000:032 -
000:047

Ultra C Related Errors

Refer to Table B-3.

000:060 -
000:069

Miscellaneous Program Errors

Refer to Table B-4.

000:080 -
000:089

Miscellaneous OS Errors

Refer to Table B-5.

000:102 -
000:132
000:134 -
000:163

Reserved Errors

Refer to Table B-6.

000:133 Uninitialized User Trap (1-15) Error

Refer to Table B-6.

000:164 -
000:239

Operating System Errors
These errors are normally generated by the kernel
or file managers.

Refer to Table B-7.
598 OS-9 Technical Manual

BOS-9 Error Codes
000:240 -
000:255

I/O Errors
These error codes are generated by device drivers
or file managers.

Refer to Table B-8.

000:256 ANSI C Errors

ANSI C math out of range error

Refer to Table B-9.

001:000 -
001:099

Compiler Errors

Refer to Table B-10.

006:100 -
006:206

RAVE Errors.
Call Microware Customer Support for more
information.

Refer to Table B-11.

007:001 -
007:029

Internet Errors

Refer to Table B-12.

100:000 -
100:999

PowerPC Processor-specific Errors

Refer to Table B-13.

102:000 -
102:032

MIPS Processor-specific Errors

Refer to Table B-14.

103:000 -
103:008

ARM Processor-specific Errors

Refer to Table B-15.

Table B-1 OS-9 Error Code Categories (continued)

Range Description
OS-9 Technical Manual 599

B OS-9 Error Codes
Errors

The following OS-9 error codes are defined in the errno.h file:

Table B-2 OS-9 Miscellaneous Error Codes From the errno.h File

Number Name Description

000:001 Process has aborted.

000:002 S_Abort signal Keyboard quit (^E)
typed.

000:003 S_Intrpt signal Keyboard interrupt (^C)
typed.

000:004 S_HangUp signal Modem hangup.

Table B-3 OS-9 Ultra C Error Codes From the errno.h File

Number Name Description

000:032 EOS_SIGABRT An abort signal was
received.

000:033 EOS_SIGFPE An erroneous math
operation signal was
received.

000:034 EOS_SIGILL An illegal function image
signal was received.
600 OS-9 Technical Manual

BOS-9 Error Codes
000:035 EOS_SIGSEGV A segment violation (bus
error) signal was
received.

000:036 EOS_SIGTERM A termination request
signal was received.

000:037 EOS_SIGALRM An alarm time elapsed
signal was received.

000:038 EOS_SIGPIPE A write to pipe with no
readers signal was
received.

000:039 EOS_SIGUSR1 A user signal #1 was
received.

000:040 EOS_SIGUSR2 A user signal #2 was
received.

000:041 EOS_SIGCHECK A machine check
exception signal was
received.

000:042 EOS_SIGALIGN An alignment exception
signal was received.

000:043 EOS_SIGINST An instruction access
exception signal was
received.

000:044 EOS_SIGPRIV A privilege violation
exception signal was
received.

Table B-3 OS-9 Ultra C Error Codes From the errno.h File (continued)

Number Name Description
OS-9 Technical Manual 601

B OS-9 Error Codes
Table B-4 OS-9 Miscellaneous Program Error Codes From the errno.h
File

Number Name Description

000:064 EOS_ILLFNC Illegal function code.

000:065 EOS_FMTERR ASCII to numeric format
conversion error.

000:066 EOS_NOTNUM Number not found.

000:067 EOS_ILLARG Illegal argument.

Table B-5 OS-9 Miscellaneous OS Error Codes From the errno.h File

Number Name Description

000:080 EOS_MEMINUSE Memory already in use.

000:081 EOS_UNKADDR Do not know how to
translate.
602 OS-9 Technical Manual

BOS-9 Error Codes
Table B-6 OS-9 Reserved Error Codes From the errno.h File

Number Name Description

000:102 EOS_BUSERR A bus trap error
occurred.

000:103 EOS_ADRERR An address trap error
occurred.

000:104 EOS_ILLINS An illegal instruction
exception occurred.

000:105 EOS_ZERDIV A zero divide exception
occurred.

000:106 EOS_CHK A chk or chk2
instruction trap occurred.

000:107 EOS_TRAPV A trapv or trapcc
instruction occurred.

000:108 EOS_VIOLAT A privileged instruction
violation occurred.

000:109 EOS_TRACE An uninitialized Trace
exception occurred.

000:110 EOS_1010 A 1010 instruction
exception occurred.

000:111 EOS_1111 A 1111 instruction
exception occurred.

000:112 EOS_RESRVD An invalid exception
occurred (#12).
OS-9 Technical Manual 603

B OS-9 Error Codes
000:113 EOS_CPROTO Coprocessor protocol
violation.

000:114 EOS_STKFMT System stack frame
format error.

000:115 EOS_UNIRQ An uninitialized interrupt
occurred.

000:116 -
000:123

An invalid exception
occurred (#16 - #23).

000:124 Spurious Interrupt
occurred.

000:133 EOS_TRAP An uninitialized user
TRAP (1-15) was
executed.

000:148 EOS_FPUNORDC Floating point
coprocessor unordered
condition.

000:149 EOS_FPINXACT Floating point
coprocessor inexact
result.

000:150 EOS_FPDIVZER Floating point
coprocessor divide by
zero.

000:151 EOS_FPUNDRFL Floating point
coprocessor underflow.

Table B-6 OS-9 Reserved Error Codes From the errno.h File

Number Name Description
604 OS-9 Technical Manual

BOS-9 Error Codes
000:152 EOS_FPOPRERR Floating point
coprocessor operand
error.

000:153 EOS_FPOVERFL Floating point
coprocessor overflow.

000:154 EOS_FPNOTNUM Floating point
coprocessor not a
number.

000:155 An invalid exception
occurred (#55).

000:156 EOS_MMUCONF PMMU Configuration
exception.

000:157 EOS_MMUILLEG PMMU Illegal Operation
exception.

000:158 EOS_MMUACCES PMMU Access Level
Violation exception.

000:159 -
000:163

An invalid exception
occurred (#59 - #63).

Table B-6 OS-9 Reserved Error Codes From the errno.h File

Number Name Description
OS-9 Technical Manual 605

B OS-9 Error Codes
Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description

000:164 EOS_PERMIT No permission.
A user process has
attempted something
that can only be done by
a system super user.

000:165 EOS_DIFFER The arguments to
F_CHKNAM do not
match.

000:166 EOS_STKOVF System stack overflow.
F_ChkNam can return
this error if the pattern
string is too complex.

000:167 EOS_EVNTID Invalid or Illegal event ID
number specified.

000:168 EOS_EVNF Event name not found.

000:169 EOS_EVBUSY The event is busy (and
can’t be deleted).

000:170 EOS_EVPARAM Impossible event
parameters supplied.

000:171 EOS_DAMAGE System data structures
have been damaged.

000:172 EOS_BADREV Module revision is
incompatible with
operating system.
606 OS-9 Technical Manual

BOS-9 Error Codes
000:173 EOS_PTHLOST Path became lost
because network node
was down.

000:174 EOS_BADPART Bad (disk) partition data,
or no active partition.

000:175 EOS_HARDWARE Hardware damage has
been detected.

000:176 EOS_NOTME Not my device.
Error returned by an
interrupt service routine
when it is polled for an
interrupt its device did
not cause.

000:177 EOS_BSIG Fatal signal or no
intercept routine.
Process received a fatal
signal or did not have an
intercept function.

000:178 EOS_BUF2SMALL The buffer passed is too
small.
A routine was passed a
buffer too small to hold
the data requested.

000:179 EOS_ISUB Illegal/used subroutine
module number.

000:180 EOS_EVTFUL Event descriptor table
full.

Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description
OS-9 Technical Manual 607

B OS-9 Error Codes
000:196 EOS_SYMLINK Symbolic link found in
path list.
A link was attempted
that would have caused
recursion in the file
structure. You may not
link to a directory
containing the real
directory.

000:197 EOS_EOLIST End of alias list.

000:198 EOS_LOCKID Illegal I/O lock identifier
specified.
Usually this error occurs
because a user has
initialized a device for
use with more than one
file manager.

000:199 EOS_NOLOCK Lock not obtained.

000:200 EOS_PTHFUL The user’s (or system)
path table is full.
Usually this error occurs
because a user program
has tried to open more
than 32 I/O paths
simultaneously. It might
also occur if the system
path table becomes full
and can not be
expanded.

Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description
608 OS-9 Technical Manual

BOS-9 Error Codes
000:201 EOS_BPNUM Bad path number.
An I/O request has been
made with an invalid
path number, or one not
currently open.

000:202 EOS_POLL The system IRQ table is
full.
To install another
interrupt producing
device, one must first be
removed. The system’s
init module specifies
the maximum number of
IRQ devices that may be
installed.

000:203 EOS_BMODE Bad I/O mode.
An attempt has been
made to perform I/O on
a path incapable of
supporting it. For
example, writing to a
path open for input.

000:204 EOS_DEVOVF The system’s device
table is full.
To install another device
descriptor, one must first
be removed. The system
init module can be
changed to allow more
devices.

Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description
OS-9 Technical Manual 609

B OS-9 Error Codes
000:205 EOS_BMID Bad module ID.
An attempt has been
made to load a module
without a valid module
header.

000:206 EOS_DIRFUL The module directory is
full.
No more modules can
be loaded or created
unless one is first
unlinked. Although OS-9
automatically expands
the module directory
when it becomes full,
this error may be
returned because the
there is not enough
memory or the memory
is too fragmented to use.

000:207 EOS_MEMFUL Memory full.
This error is returned
from the F_SRqMem
service call when there
is not enough system
RAM to fulfill the
request, or if a process
has already been
allocated the maximum
number of blocks
permitted by the system.

Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description
610 OS-9 Technical Manual

BOS-9 Error Codes
000:208 EOS_UNKSVC Unknown service code.
An OS-9 call specified
an unknown or invalid
service code, or a
getstat/setstat call was
made with an unknown
status code.

000:209 EOS_MODBSY The module is busy.
An attempt has been
made to access (through
F_Link) a non-sharable
module or non-sharable
device already in use.

000:210 EOS_BPADDR Bad page address.
A memory de-allocation
request has been given
a buffer pointer or size
that is invalid, often
because it references
memory that has not
been allocated to the
caller. The system
detects trouble when the
buffer is returned to free
memory or if it is used as
the destination of a data
transfer, such as
I_Read.

Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description
OS-9 Technical Manual 611

B OS-9 Error Codes
000:211 EOS_EOF The end of file has been
reached.
An end of file condition
was encountered on a
read operation.

000:212 EOS_VCTBSY IRQ vector is busy.
A device has tried to
install itself in the IRQ
table to handle a vector
claimed by another
device.

000:213 EOS_NES Non-existing segment.
A search was made for a
disk file segment that
cannot be found. The
device could have a
damaged file structure.

000:214 EOS_FNA File not accessible.
An attempt to open a file
failed. The file was
found, but is
inaccessible in the
requested mode. Check
the file’s owner ID and
access attributes.

000:215 EOS_BPNAM Bad pathlist specified.
The specified pathlist
has a syntax error, for
example, an illegal
character.

Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description
612 OS-9 Technical Manual

BOS-9 Error Codes
000:216 EOS_PNNF File not found.
The specified pathlist
does not lead to any
known file.

000:217 EOS_SLF File segment list is full.
A file has become too
fragmented to
accommodate further
growth. This can occur
on a nearly full disk, or
one whose free space
has become scattered.
The simplest way to
solve the problem is to
copy the file, which
should move it into more
contiguous space.

000:218 EOS_CEF Tried to create an
existing file.
The specified filename
already appears in the
current directory.

000:219 EOS_IBA Illegal memory block
specified.
The system was called
to return memory, but
was passed an invalid
pointer or block size.

Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description
OS-9 Technical Manual 613

B OS-9 Error Codes
000:220 EOS_HANGUP Telephone (modem)
connection terminated.
This error is returned
when an I/O operation is
attempted on a path
after irrecoverable line
problems have occurred,
such as data carrier lost.
It may be returned from
network devices, if the
network connection is
lost.

000:221 EOS_MNF Module not found.
An F_Link call was
made to a module not in
memory. Modules with
corrupted or modified
headers will not be
found.

000:222 EOS_NOCLK No system clock.
A request was made
requiring a system clock,
but one is not running.
For example, a timed
F_Sleep call has been
requested, but the clock
was not running. The
setime utility is used to
start the system clock.

Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description
614 OS-9 Technical Manual

BOS-9 Error Codes
000:223 EOS_DELSP Deleting stack memory.
A process tried to return
the memory containing
it’s current stack pointer
to the system. This is
also known as a suicide
attempt.

000:224 EOS_IPRCID Illegal process ID.
A system call was
passed a process ID to a
non-existent or
inaccessible process.

000:225 EOS_PARAM Bad parameter.
A system call was
passed an illegal or
impossible parameter.

000:226 EOS_NOCHLD No children.
An F_Wait call was
made with no child
processes to wait for.

000:227 EOS_ITRAP Invalid trap number.
An F_Tlink call was
made with an invalid
user trap code or one
already in use.

000:228 EOS_PRCABT The process has been
aborted.

Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description
OS-9 Technical Manual 615

B OS-9 Error Codes
000:229 EOS_PRCFUL Too many active
processes.
The system’s process
table is full. (Too many
processes are currently
running.) The kernel
automatically tries to
expand the process
table, but returns this
error if there is not
enough contiguous
memory to do so.

000:230 EOS_IFORKP Illegal fork parameter
(not currently used)

000:231 EOS_KWNMOD Known module.
A call was made to
install a module that is
already in memory.

000:232 EOS_BMCRC Bad module CRC.
A CRC calculation is
performed on every
module when it is
installed in the system
module directory. Only
modules with good
CRCs are accepted. To
generate a valid CRC
value in an intentionally
altered module, use the
fixmod utility.

Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description
616 OS-9 Technical Manual

BOS-9 Error Codes
000:233 EOS_SIGNAL Signal error (replaces
EOS_USIGP.)

000:234 EOS_NEMOD Non executable module.

000:235 EOS_BNAM Bad name.
This error is returned by
the F_PrsNam system
call if there is a syntax
error in the name.

000:236 EOS_BMHP Bad module header
parity.

000:237 EOS_NORAM No RAM available.
A process has made an
F_Mem request to
expand its memory size.
F_Mem is no longer
supported and
F_SrqMem should be
used. This error may
also be returned if there
is not enough
contiguous memory to
process a fork request or
if a device driver does
not specify any static
storage requirements.

Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description
OS-9 Technical Manual 617

B OS-9 Error Codes
000:238 EOS_DNE The directory is not
empty.

The directory attribute of
a file cannot be removed
unless the directory is
empty. This prevents
accidental loss of disk
space.

000:239 EOS_NOTASK No available task
number.
All of the task numbers
are currently in use and
a request was made to
execute or create a new
task. This error could be
returned by a system
security module (SSM).

Table B-8 OS-9 I/O Error Codes From the errno.h File

Number Name Description

000:240 EOS_UNIT Illegal unit (drive)
number.

000:241 EOS_SECT Bad disk sector number.

000:242 EOS_WP Media is write protected.

Table B-7 OS-9 Operating System Error Codes From the errno.h File

Number Name Description
618 OS-9 Technical Manual

BOS-9 Error Codes
000:243 EOS_CRC Bad module cyclic
redundancy check value.
A CRC error occurred on
read or write verity.

000:244 EOS_READ Read error.
A data transfer error
occurred during a disk
read operation, or an
SCF (terminal) input
buffer overrun.

000:245 EOS_WRITE Write error.
A hardware error
occurred during a disk
write operation.

000:246 EOS_NOTRDY Device not ready.

000:247 EOS_SEEK Seek error.
A physical seek
operation was unable to
find the specified sector.

000:248 EOS_FULL Media full.
Media has insufficient
free space.

Table B-8 OS-9 I/O Error Codes From the errno.h File (continued)

Number Name Description
OS-9 Technical Manual 619

B OS-9 Error Codes
000:249 EOS_BTYP Bad type (incompatable
media).
A read operation was
attempted on
incompatible media. For
example, a read
operation for a
double-sided disk was
tried on a single-sided
disk.

000:250 EOS_DEVBSY Device busy.
A non-sharable device is
in use.

000:251 EOS_DIDC Disk ID change.
RBF copies the disk ID
number (from sector
zero) into the path
descriptor of each path
when it is opened. If this
does not agree with the
driver’s current disk ID,
this error is returned.
The driver updates the
current disk ID only
when sector zero is
read; it is therefore
possible to swap disks
without RBF noticing.
This check helps to
prevent this possibility.

Table B-8 OS-9 I/O Error Codes From the errno.h File (continued)

Number Name Description
620 OS-9 Technical Manual

BOS-9 Error Codes
000:252 EOS_LOCK Record is busy.
Another process is
accessing the record.
Normal record locking
routines wait forever for
a record in use by
another user to become
available. However, RBF
may be told (through a
SetStat call) to wait for
a finite amount of time. If
the time expires before
the record becomes
free, this error is
returned.

000:253 EOS_SHARE Non-sharable file/device
is busy.
The requested file or
device has the single
user bit set or it was
opened in single user
mode and another
process is accessing the
file. This error is
commonly returned
when an attempt is
made to delete an open
file.

Table B-8 OS-9 I/O Error Codes From the errno.h File (continued)

Number Name Description
OS-9 Technical Manual 621

B OS-9 Error Codes
000:254 EOS_DEADLK I/O deadlock error.
This error is returned
when two or more
processes are waiting for
each other to release I/O
resources before they
can proceed. One
process must release
control to enable the
other to proceed.

000:255 EOS_FORMAT Device is format
protected.
This error occurs when
an attempt is made to
format a format
protected disk. A bit in
the device descriptor
may be changed to allow
the device to be
formatted. Formatting is
usually inhibited on hard
disks to prevent
accidental erasure.

Table B-9 OS-9 ANSI C Error Codes From the errno.h File

Number Name Description

000:256 ERANGE ANSI C math out of
range error.

Table B-8 OS-9 I/O Error Codes From the errno.h File (continued)

Number Name Description
622 OS-9 Technical Manual

BOS-9 Error Codes
Table B-10 OS-9 Compiler Error Codes From the errno.h File

Number Name Description

001:000 ERANGE ANSI C Number out of
range error.

001:001 EDOM ANSI C Number Not in
Domain.

Table B-11 OS-9 RAVE Error Codes From the errno.h File

Number Name Description

006:000 EOS_ILLPRM Illegal parameter.
An illegal parameter was
passed to a function.

006:001 EOS_IDFULL Identifier (ID) table full.
An ID table could not be
expanded any further.

006:002 EOS_BADSIZ Bad size error.

006:003 EOS_RGFULL Region definition full
(overflow).
The region is too
complex.
OS-9 Technical Manual 623

B OS-9 Error Codes
006:004 EOS_UNID Unallocated identifier
number.
An attempt was made to
use an ID number for an
object (drawmap, action
region, etc.) that was not
allocated.

006:005 EOS_NULLRG Null region.

006:006 EOS_BADMOD Bad drawmap/pattern
mode.
An illegal mode was
passed to create a
drawmap or pattern.

006:007 EOS_NOFONT No active font.
No font was activated
when an attempt to
output text was made.

006:008 EOS_NODM No drawmap.
No character output
drawmap was available
when attempting an
_os_write or
_os_writeln call.

006:009 EOS_NOPLAY No audio play in
progress.
An attempt was made to
stop an audio play when
none was in progress.

Table B-11 OS-9 RAVE Error Codes From the errno.h File (continued)

Number Name Description
624 OS-9 Technical Manual

BOS-9 Error Codes
006:010 EOS_ABORT Asynchronous operation
aborted.

006:011 EOS_QFULL Audio queue is full.
The driver queue could
not handle the number of
soundmaps you were
attempting to output.

006:012 EOS_BUSY Audio processor is busy.

Table B-12 OS-9 Internet Error Codes From the errno.h File

Number Name Description

007:001 EWOULDBLOCK I/O operation would
block.
An operation was
attempted that would
cause a process to block
on a socket in
non-blocking mode.

007:002 EINPROGRESS I/O operation now in
progress.
An operation taking a
long time to complete
was performed, such as
a connect() call, on a
socket in non-blocking
mode.

Table B-11 OS-9 RAVE Error Codes From the errno.h File (continued)

Number Name Description
OS-9 Technical Manual 625

B OS-9 Error Codes
007:003 EALREADY Operation already in
progress.
An operation was
attempted on a
non-blocking object that
already had an operation
in progress.

007:004 EDESTADDRREQ Destination address
required.
The attempted socket
operation requires a
destination address.

007:005 EMSGSIZE Message too long.
A message sent on a
socket was larger than
the internal message
buffer or some other
network limit.

007:006 EPROTOTYPE Protocol wrong type for
socket.
A protocol was specified
that does not support the
semantics of the socket
type requested.

007:007 ENOPROTOOPT Bad protocol option.
A bad option or level was
specified in a
getsockopt() or
setsockopt() call.

Table B-12 OS-9 Internet Error Codes From the errno.h File

Number Name Description
626 OS-9 Technical Manual

BOS-9 Error Codes
007:008 EPROTONOSUPPORT Protocol not supported.
The requested protocol
is not available or not
configured for use.

007:009 ESOCKNOSUPPORT Socket type not
supported.
The requested socket
type is not supported or
not configured for use.

007:010 EOPNOTSUPP Operation unsupported
on socket.

007:011 EPFNOSUPPORT Protocol family not
supported.

007:012 EAFNOSUPPORT Address family
unsupported by protocol.

007:013 EADDRINUSE Address already in use.
Only one use of each
address is normally
permitted. Wildcard use
and connectionless
communication are the
exceptions.

Table B-12 OS-9 Internet Error Codes From the errno.h File

Number Name Description
OS-9 Technical Manual 627

B OS-9 Error Codes
007:014 EADDRNOTAVAIL Cannot assign
requested address.
Normally results when
an attempt is made to
create a socket with an
address not on the local
machine.

007:015 ENETDOWN Network is down.

007:016 ENETUNREACH Network is unreachable.
This is usually caused by
network interface
hardware that is
operational, but not
physically connected to
the network. This error is
also returned when the
network has no way to
reach the destination
address.

007:017 ENETRESET Network lost connection
on reset.
The host crashed and
rebooted.

007:018 ECONNABORTED Software caused
connection abort.
The local (host) machine
caused a connection
abort.

Table B-12 OS-9 Internet Error Codes From the errno.h File

Number Name Description
628 OS-9 Technical Manual

BOS-9 Error Codes
007:019 ECONNRESET Connection reset by
peer.
A peer forcibly closed
the connection. This
normally results from a
loss of connection on the
remote socket due to a
time out or reboot.

007:020 ENOBUFS No buffer space
available.
A socket operation could
not be performed
because the system
lacked sufficient buffer
space or queue was full.

007:021 EISCONN Socket is already
connected.
The connection request
was made for an already
connected socket.
Sending a sendto()
call to an already
connected destination
could cause this error.

Table B-12 OS-9 Internet Error Codes From the errno.h File

Number Name Description
OS-9 Technical Manual 629

B OS-9 Error Codes
007:022 ENOTCONN Socket is not connected.
A request to send or
received data was
rejected because the
socket was not
connected or no
destination was given for
a datagram socket.

007:023 ESHUTDOWN Cannot send after socket
shutdown.
Additional data
transmissions are not
allowed after the socket
was shut down.

007:024 ETOOMANYREFS Too many references.

007:025 ETIMEDOUT Connection timed out.
A connect() or
send() request failed
because the connected
peer did not properly
respond after a set
period of time. The time
out period depends on
the protocol used.

Table B-12 OS-9 Internet Error Codes From the errno.h File

Number Name Description
630 OS-9 Technical Manual

BOS-9 Error Codes
007:026 ECONNREFUSED Connection refused by
target.
No connection could be
established because the
target machine actively
refused it. This usually
results from trying to
connect to an inactive
service on the target
host.

007:027 EBUFTOOSMALL Buffer too small for
F_MBuf operation.
The specified buffer
cannot be used to
support
F_MBUF(SysMbuf) calls.

007:028 ESMODEXISTS Socket module already
attached.
An attach was requested
of an already attached
socket.

007:029 ENOTSOCK Path is not a socket.
A socket function was
attempted on a path that
is not a socket.

Table B-12 OS-9 Internet Error Codes From the errno.h File

Number Name Description
OS-9 Technical Manual 631

B OS-9 Error Codes
Table B-13 OS-9 PowerPC Error Codes From the errno.h File

Number Name Description

100:002 EOS_PPC_MACHCHK Machine check
exception.

100:003 EOS_PPC_DATAACC Data access exception.

100:004 EOS_PPC_INSTACC Instruction access
exception.

100:005 EOS_PPC_EXTINT External interrupt.

100:006 EOS_PPC_ALIGN Alignment exception.

100:007 EOS_PPC_PROGRAM Program exception.

100:008 EOS_PPC_FPUUNAV FPU unavailable
exception.

100:009 EOS_PPC_DEC Decrementer exception.

100:010 EOS_PPC_IOCONT I/O controller exception.

100:012 EOS_PPC_SYSCALL System call exception.

100:032 EOS_PPC_TRACE Trace exception.
632 OS-9 Technical Manual

BOS-9 Error Codes
Table B-14 OS-9 MIPS Error Codes From the errno.h File

Number Name Description

102:000 EOS_MIPS_EXTINT External interrupt.

102:001 EOS_MIPS_MOD TLB Modification
exception.

102:002 EOS_MIPS_TLBL TLB Miss exception
(load or instruction
fetch).

102:003 EOS_MIPS_TLBS TLB Miss exception
(store).

102:004 EOS_MIPS_ADEL Address Error exception
(load or instruction
fetch).

102:005 EOS_MIPS_ADES Address Error exception
(store).

102:006 EOS_MIPS_IBE Bus Error exception
(instruction fetch).

102:007 EOS_MIPS_DBE Bus Error exception
(load or store).

102:008 EOS_MIPS_SYS SYSCALL exception.

102:009 EOS_MIPS_BP Breakpoint exception.

102:010 EOS_MIPS_RI Reserved Instruction
exception.
OS-9 Technical Manual 633

B OS-9 Error Codes
102:011 EOS_MIPS_CPU CoProcessor Unusable
exception.

102:012 EOS_MIPS_OVF Arithmetic Overflow
exception.

102:013 EOS_MIPS_TR Trap exception.

102:023 EOS_MIPS_WATCH Watch exception.

102:032 EOS_MIPS_UTLB User State TLB Miss
exception.

Table B-15 OS-9 ARM Error Codes From the errno.h File

Number Name Description

103:001 EOS_ARM_UNDEF Undefined instruction
exception.

103:003 EOS_ARM_PFABORT Instruction pre-fetch
abort exception.

103:004 EOS_ARM_DTABORT Data abort exception.

103:008 EOS_ARM_ALIGN Alignment exception.

Table B-14 OS-9 MIPS Error Codes From the errno.h File (continued)

Number Name Description
634 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index

Symbols
.

dot
path of current directory 138

..
double dot

path of parent directory 138
@

at character
physical IO of RBF device 139

warning
about physical IO on RBF devices 139

_os_sema_init()
semaphore initialization 104

_os_sema_p()
semaphore

reservation 104
_os_sema_term()

semaphore terminate 104
_os_sema_v()

semaphore release 104
_oscall() 163
_sliblink()

to unlink a subroutine library 122
_subcall

to call a subroutine library 121

A
A_ATIME 181
A_ATIME, F_ALARM

system-state alarms 94
user-state alarm 92
OS-9 Technical Manual 635

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A_CYCLE 183
A_CYCLE, F_ALARM

system-state alarms 94
user-state alarm 92

A_DELET 185
A_DELET, F_ALARM

system-state alarms 94
user-state alarm 92

A_RESET 187
A_RESET, F_ALARM

system-state alarms 94
user-state alarm 92

A_SET 189
A_SET, F_ALARM

system-state alarms 94
user-state alarm 92

access permission
change for module directory 220

accounting system
user 420

acquire
conditional ownership of resource lock 171, 199

acquire lock
C example 153
check return value 154

activate next process waiting to acquire lock 430
active process queue

insert process into 197
remove process 353

add device to IRQ table 337
alarms

A_ATIME 181
A_CYCLE 183
A_DELET 185
A_RESET 187
A_SET 189
cyclic 92
F_ALARM 178

call reference 173
flags

TH_DELPB 177
636 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
TH_SPOWN 177
relative time

defined 94
remove pending request 92, 94, 185
reset

existing request 92, 94, 187
reset request 187
system state

defined and listed 94
time of day

defined 93
user state

defined and listed 92
alias

copy system alias list 502
alloc.h 43
allocate

process descriptor 191
resource lock descriptor 231
task 193

allocation map
defined for disk structures 130
for disks 129

allow access to memory block 355
alternate module directory 34
anonymous pipes

unnamed 108
ARM

errors
list of 599

at character
@

for physical IO of RBF device 139
Attach 74
attach

device 434
attr

utility
for creating non-sharable files 141
OS-9 Technical Manual 637

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B
B_NVRAM 42
B_PARITY 42
B_ROM 42
B_USERRAM 42
bit map

flush cached information 535
blocks

skip 555
SS_SKIP 555

break serial connection 517
breakpoints

defined 246
hard 247
soft 247

C
C_ADDR 205
C_DISDATA 204
C_DISINST 205
C_ENDATA 204
C_ENINST 205
C_FLDATA 202, 204
C_FLINST 202, 205
C_GETCCTL 204, 205
C_INVDATA 205
C_STODATA 205
cache

control 201, 203
disable

data 204
instruction 205
RBF caching 518

enable
data 204
instruction 205
RBF caching 518

F_CCTL 201
638 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
flush
data 202, 204
instruction 202, 205

get status information 463
invalidate data 205
invalidate instruction 205
SS_CACHE 518
SS_CSTATS 463

calculate parity of file descriptor 480
call system debugger 410
change

file name 545
module directory permissions 220
process’ current module directory 216
system global variables 372
working directory 437

check
CRC 228
for deadlock situation 237
for use of I/O module 489
memory block’s accessibility 213

Chgdir 75
clock

defined 10
Close 75
color codes 395
colored memory 40, 44

definition list 40
list 41, 45

command interpreter 12
compare names 222
Compiler errors 599
configuration module 46
conflict detection 142

RBF record locking 140
conflict detection and prevention

RBF record locking 140
constant table 60
contract data memory area 348
copy external memory 226
copy system alias list 502
OS-9 Technical Manual 639

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
CRC 17
check 228
F_CRC 228
F_SETCRC 370
F_VMODUL 426
generate 228, 370
verify module 426

CRCCON 229
Create 75
create

data module 233
device alias 432
directory 494
event 273
module directory 346
new descriptor 231
new process 312, 316
new resource lock descriptor 152
path 445

critical regions
locking 150

cyclic alarm 92

D
d_maxage 53, 392
d_minpty 53, 392
d_tslice 52
data

modules 83
create 233
F_DATMOD 233

ready
send signal on 551
SS_SENDSIG 551

data modules
creating 117

DBG_M_CONTROL 248
DBG_M_COUNT 246, 248
DBG_M_HARD 246, 247
DBG_M_INACTV 247
640 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
DBG_M_SOFT 246, 247
DBG_S_BRKPNT 249
DBG_S_CHAIN 249
DBG_S_CHILDSIG 249
DBG_S_CONTROL 249
DBG_S_EXCEPT 246, 249
DBG_S_EXIT 249
DBG_S_FINISH 249
DBG_S_PARENTSIG 249
DBG_S_WATCH 249
DC_RND 65, 70
DC_SEQ 65, 70
dd_com structure 61
dd_drvr 65
dd_fmgr 65
dd_lu_num 61
dd_mode 63
dd_pd_size 61
dd_port 61
dd_type 61
deadlock detection

error message 142
explained for

RBF record locking 142
RBF record locking 140

de-allocate process descriptor 365
deallocate process descriptor 243
debug mode 247
debugged program

debug modes 245
execute 245
exit 251
F_DEXEC 245
F_DEXIT 251
F_DFORK 253
F_DFORKM 256
fork process 253, 256

debugger
attach to a running process 235
call system debugger 410
F_SYSDBG 410
OS-9 Technical Manual 641

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Delete 75
delete

event 275
existing lock descriptor 239
existing module directory 241
file 449
pending alarm request 185

Detach 75
device

add to IRQ table 337
attach 434
close 441
F_IRQ 337
get

size of SCSI device 469
status 458

I_DETACH 451
I_GETSTAT 458
I_OPEN 498
I_READ 504
I_READLN 507
I_SETSTAT 511
I_WRITE 568
I_WRITELN 570
open path to 498
read

data from 504, 507
path options 465

release 544
remove 451

from IRQ table 337
return

name 464
type 467

set
path options 524
status 511

SS_DEVNAME 464
SS_DEVOPT 465
SS_DEVTYPE 467
SS_DOPT 524
642 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
SS_DSIZE 469
SS_RELEASE 544
write data to 568, 570

Device Alias
create 432

device descriptor 56, 58
defined 11
format of name 60
module 60

device descriptors
pipe 107

device driver
defined 11
function 79

device list 58
element 67

dexec.h 247, 249
dir_fd_addr

directory structure
LBN for first file descriptor block 138

dir_name
file name field

for directory structure 138
directory

access mode 494
attribute bits 495
attributes 494
change 437

permission 220
create 494
entry structure 138
F_DELMDIR 241
F_FMOD 310
F_GETMDP 321
F_GMODDR 325
F_MKMDIR 346
format

defined 137
I_MAKDIR 494
mode bits 495
module directory 321
OS-9 Technical Manual 643

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
change current 216
create 346
delete 241
find entry 310
get copy of 325
remove 241
set alternate 195

dirent structure 138
disable

data cache 204
instruction cache 205
RBF caching 518

disk
allocation map 129
opening as one file 139
physical organization 128

disk media
identification of 129

dispatch table 73
DMA 80
dot

path of current directory 138
double dot

path of parent directory 138
drivers

resource locking 150
DT_CDFM 62, 68
DT_DVDFM 63, 69
DT_DVM 62, 69
DT_GFM 62, 68
DT_INET 62, 69
DT_ISDN 62, 69
DT_MFM 62, 69
DT_MODFM 63, 69
DT_MPFM 62, 69
DT_NFM 62, 68
DT_NRF 62, 68
DT_NULL 63, 69
DT_PCF 62, 68
DT_PIPE 62, 68
DT_PTTY 62, 68
644 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
DT_RBF 61, 68
DT_RTNFM 62, 69
DT_SBF 62, 68
DT_SCF 61, 68
DT_SOCK 62, 68
DT_SPF 62, 69
DT_UCM 62, 68
dump utility

using to examine
data modules 118

Dupe 76
duplicate path 453
dynamic-sized data structures 37

E
enable

data cache 204
instruction cache 205
RBF caching 518

end of file
lock 142
test for 471

EOF lock
advantage

for sequential files 142
from a write call 142

EOS_SIGNAL
no lock acquired 154

erase tape 529
error

EOS_SIGNAL
no lock acquired 154

error handling
F_STRAP 405

errors
list of

ARM 599
MIPS 599
PowerPC 599

trapping 405
OS-9 Technical Manual 645

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
EV_ALLCLR 102, 263
EV_ALLSET 102, 265
EV_ANYCLR 102, 267
EV_ANYSET 102, 269
EV_CHANGE 102, 271
EV_CREAT 102, 273
EV_DELET 102, 275
ev_id

EV_INFO field
ID 99

EV_INFO 102, 277
ev_infostr structure 98
EV_LINK 102, 279
ev_link 99
EV_LNK 279
ev_name

EV_INFO field
name 99

ev_namsz
EV_INFO field

name size 99
ev_owner 99
ev_perm 99
EV_PULSE 103, 281
ev_quen 99
ev_quep 99
EV_READ 103, 283
EV_SET 103, 285
EV_SETAND 103, 287
EV_SETOR 103, 289
EV_SETR 103, 291
EV_SETXOR 103, 293
EV_SIGNL 103, 295
ev_sinc 99
ev_str structure 98
EV_TSTSET 103, 297
EV_UNLNK 103, 299
ev_value 99
EV_WAIT 103, 301
EV_WAITR 103, 303
ev_winc 99
646 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
events
create 273
delete 275
EV_ALLCLR 263
EV_ALLSET 265
EV_ANYCLR 267
EV_ANYSET 269
EV_CHANGE 271
EV_CREAT 273
EV_DELET 275
EV_INFO 277
EV_INFO fields 99
EV_LNK 279
EV_PULSE 281
EV_READ 283
EV_SET 285
EV_SETAND 287
EV_SETOR 289
EV_SETR 291
EV_SETXOR 293
EV_SIGNL 295
EV_TSTSET 297
EV_UNLNK 299
EV_WAIT 301
EV_WAITR 303
example

synchronization 101
F_EVENT 259
F_EVENT call

using to synchronize resources 101
link to existing 279
read 283
remove event 275
return information 277
set event variable 285, 287, 289, 293

relative 291
signal event occurrence 281, 285, 287, 289, 291, 293,

295
unlink 299
using to coordinate

non-sharable resources 100
OS-9 Technical Manual 647

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
wait and signal operations 100
wait for event 263, 265, 267, 269, 271, 297, 301

relative 303
events.h 97
examine system global variables 372
example code

alarms 579
events 581
semaphores 583
signals 577
slibc.c 587
slibcalls.a 589
subroutine libraries 585
sysgo 574
tcall.c 594
thandler.c 592
trap handlers 590
trapc.a 590
ttest.c 595

exception jump table 37
execute

module 207
subroutine

after interval 94
at intervals 94
at time 94

exit debugged program 251
expand data memory area 348
extension modules 47
external memory

copy 226
F_CPYMEM 226

F
F_ACQLK 171

resource locking 150
F_ALARM

A_ATIME 181
A_CYCLE 183
A_DELET 185
648 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A_RESET 187
A_SET 189
call reference 173
system state 173
user state 178

F_ALARM, A_ATIME
system-state alarms 94
user-state alarm 92

F_ALARM, A_CYCLE
system-state alarms 94
user-state alarm 92

F_ALARM, A_DELET
system-state alarms 94
user-state alarm 92

F_ALARM, A_RESET
system-state alarms 94
user-state alarm 92

F_ALARM, A_SET
system-state alarms 94
user-state alarm 92

F_ALLPRC 191
F_ALLTSK 193
F_ALTMDIR 195
F_APROC 197
F_CAQLK 171, 199

resource locking 150
F_CCTL 201

system state 203
user state 201

F_CHAIN 207
F_CHAINM 210
F_CHKMEM 213
F_CHMDIR 216
F_CLRSIGS 218
F_CMDPERM 220
F_CMPNAM 222
F_CONFIG 224

configure 224
F_CPYMEM 226
F_CRC 228
F_CRLK 152, 231
OS-9 Technical Manual 649

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
resource locking 150
F_DATMOD 233

to create data modules 117
F_DATTACH 235

attach Debugger to a Running Process 235
F_DDLK 237
F_DELLK 152, 239

resource locking 150
F_DELMDIR 241
F_DELTSK 243
F_DEXEC 245
F_DEXIT 251
F_DFORK 253
F_DFORKM 256
F_EVENT 259

EV_ALLCRL 263
EV_ALLSET 265
EV_ANYCLR 267
EV_ANYSET 269
EV_CHANGE 271
EV_CREAT 273
EV_DELET 275
EV_INFO 277
EV_LINK 279
EV_PULSE 281
EV_READ 283
EV_SET 285
EV_SETAND 287
EV_SETOR 289
EV_SETR 291
EV_SETXOR 293
EV_SIGNL 295
EV_TSTSET 297
EV_UNLNK 299
EV_WAIT 301
EV_WAITR 303

F_EXIT 49, 305
F_FINDPD 308
F_FMOD 310
F_FORK 48, 312
F_FORKM 316
650 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
F_GBLKMP 318
F_GETMDP 321
F_GETSYS 323
F_GMODDR 325
F_GPRDBT 327
F_GPRDSC 329
F_ICPT 331

for installing signal intercept routine 86
F_ID 333
F_INITDATA 335
F_IRQ 337
F_LINK 339
F_LINKM 341
F_LOAD 343
F_MEM 348
F_MKMDIR 346
F_MODADDR 350
F_MOVE 351
F_NPROC 353
F_PERMIT 355
F_PROTECT 358
F_PRSNAM 361
F_RELLK 363

resource locking 151
F_RETPD 365
F_RTE 366
F_SEMA

semaphore call 105
F_SEND 367

for signal communications 86
F_SETCRC 370
F_SETSYS 372
F_setsys 53
F_SIGLNGJ 375

to wait for signal 87
F_SIGMASK 378

enable/disable signal 87
F_SIGRESET 381

signal reset 381
to wait for signal 87

F_SIGRS 383
OS-9 Technical Manual 651

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
signal resize 383
F_SLEEP 385

to wait for signal 87
F_SLINK 388

installing a subroutine library 120
F_SLINKM 390
F_SPRIOR 392
F_SRQMEM 394
F_SRTMEM 397
F_SSPD 399
F_SSVC 401
F_STIME 403, 414
F_STRAP 405
F_SUSER 408
F_SYSDBG 410
F_SYSID 412
F_TIME 414
F_TLINK 416

to install trap handler 124
F_TLINKM 418
F_UACCT 420
F_UNLINK 422
F_UNLOAD 424
F_VMODUL 426
F_WAIT 428
F_WAITLK 430

FIFO buffer sychronization 157
resource locking 151

FD
See file descriptor block. 130

fd_atime
file descriptor block

flag 134
fd_btime

file descriptor block
flag 135

fd_ctime
file descriptor block

flag 134
652 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
FD_DIRECTORY
file descriptor block

flag 133
FD_EXCLUSIVE

file descriptor block
flag 133

fd_flag 136
fd_flags

file descriptor block
attributes and permissions 133

fd_group
file descriptor block

flag 134
fd_links

file descriptor block
flag 134

fd_links structure 136
fd_mtime

file descriptor block
flag 134

fd_owner
file descriptor block

flag 134
fd_parity

file descriptor block
parity value 132

fd_rev
file descriptor block

flag 135
fd_segment structure 135
FD_SMALLFILE 136

file descriptor block
flag 133

fd_stats structure 132
fd_sync

file descriptor block
ID 132

fd_utime
file descriptor block

flag 135
OS-9 Technical Manual 653

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
FIFO buffer resource
synchronize reader and writer 157

file
access modes 445
attribute bits 446
attributes 445
change name 545
close 441
create 445
delete 449
descriptor

calculate parity of 480
get

address 474
specified sector 476

read sector 472
SS_FD 472, 531
SS_FdAddr 474
SS_FDINFO 476
SS_PARITY 480
write sector 531

get
current position 483
status 458

I_CREATE 445
I_DELETE 449
I_GETSTAT 458
I_OPEN 498
I_READ 504
I_READLN 507
I_SETSTAT 511
I_WRITE 568
I_WRITELN 570
load module from 343
locking

non-sharable files 141
make hard link to 536
managers

defined 11
organization 73
PCF 13, 73, 147
654 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
PIPEMAN 13, 72, 107
RBF 13, 57, 72
responsibilities 72
SBF 13, 73
SCF 13, 57, 72

mode bits 446
non-sharable

creating 141
open path to 498
pointer

I_SEEK 509
reposition 509

read data from 504, 507
rename 545
security 146
set

attributes 515
size 486, 553
status 511

SS_ATTR 515
SS_HDLINK 536
SS_POS 483
SS_RENAME 545
SS_SIZE 486, 553
structure

OS-9 type 130
write data to 568, 570

file descriptor
structure

explained 131
file descriptor block

segment descriptors 135
structure,

example of 132
file managers

RBF
overview 128

resource locking 150
fill path buffer with data 533
find

module 350
OS-9 Technical Manual 655

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
module directory entry 310
process descriptor 308

fixmod 17
flush

cached bit map information 535
data cache 202, 204
instruction cache 202, 205

fork process under control of debugger 253, 256
fork_params structure 208, 211, 313
format

OS-9 disk utility
defined 128

track 562
free memory pool 38

G
generate CRC 228, 370
get

cache status information 463
current file position 483
device status 458
file

descriptor block address 474
descriptor sector 476
status 458

free memory block map 318
I/O interface edition number 470
pointer to I/O process descriptor 439
process

descriptor copy 329
ID 333

size of SCSI device 469
system

date/time 414
global variable 323

user ID 333
Get Current File Position (RBF) 483
GetStat

using system path number 564
Getstat 76
656 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
ghost bit
see sticky bit. 118

global
path number table 33
variables 392

change 372
examine 323, 372
set 372

group 146
group ID 49

H
hang-up signal 86
hardware controller

absolute physical address 61
header files

dexec.h 247, 249
events.h 97
io.h 58, 60, 61, 66, 68
modes.h 63
module.h 19, 20, 229
rbf.h

directory entry structure 138
segment block links defined 136
segment descriptor defines 135

svctbl.h 402

I
I/O 32, 33

attach device 434
class 61
close path 441
descriptor 48
device list

get 455
I_GETDL 455

module
check for use of 489
OS-9 Technical Manual 657

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
I_IODEL 489
process descriptor

get pointer to 488
I_CIOPROC 439
I_GIOPROC 488

request 58
system 56
terminate for exiting process 490

I/O errors 599
I_ALIAS 432
I_ATTACH 74, 434
I_CHDIR 437
I_CIOPROC 439
I_CLOSE 68, 441
I_CONFIG 443

configure 443
I_CREATE 63, 445

to create pipes 109
I_DELETE 449
I_DETACH 75, 451
I_DUP 68, 76, 453
I_GETDL 455
I_GETPD 457
I_GETSTAT 458

SS_COPYPD 461
SS_CSTATS 463
SS_DEVNAME 464
SS_DEVOPT 465
SS_DEVTYPE 467
SS_DSIZE 469
SS_EDT 470
SS_EOF 471
SS_FD 472
SS_FdAddr 474
SS_FDINFO 476
SS_LUOPT 478
SS_PARITY 480
SS_PATHOPT 481
SS_POS 483
SS_READY 484
SS_SIZE 486
658 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
I_GETSTAT, SS_DEVOPT
get status

pipes 112
I_GETSTAT, SS_FD

get status
pipes 113

set status
pipes 114

I_GETSTAT, SS_FDINFO
get status

pipes 113
I_GETSTAT, SS_LUOPT

get status
pipes 113

I_GETSTAT, SS_PATHOPT
get status

pipes 113
I_GETSTAT, SS_SIZE

get status
pipes 113

I_GIOPROC 488
I_IODEL 489
I_IOEXIT 490
I_IOFORK 492
I_MAKDIR 494
I_OPEN 63, 498

opening anonymous pipes 110
I_RDALST 502
I_READ 504

I_READLN
difference between

for pipes 111
reading pipes 111

I_READLN 507
I_READ

difference between
for pipes 111

reading pipes 111
I_SEEK 509
I_SETSTAT 511

SS_ATTR 515
OS-9 Technical Manual 659

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
SS_BREAK 517
SS_CACHE 518
SS_DCOFF 520
SS_DCON 522
SS_DOPT 524
SS_DSRTS 526
SS_ENRTS 527
SS_ERASE 529
SS_FD 531
SS_FILLBUFF 533
SS_FLUSHMAP 535
SS_HDLINK 536
SS_LOCK 538
SS_LUOPT 540
SS_PATHOPT 542
SS_RELEASE 544
SS_RENAME 545
SS_RESET 547
SS_RETEN 548
SS_RFM 549
SS_SENDSIG 551
SS_SIZE 553
SS_SKIP 555
SS_SKIPEND 557
SS_TICKS 558
SS_WFM 560
SS_WTRACK 562

I_SETSTAT, SS_ATTR
set status

pipes 114
I_SETSTAT, SS_DEVOPT

set status
pipes 114

I_SETSTAT, SS_LUOPT
set status

pipes 114
I_SETSTAT, SS_PATHOPT

set status
pipes 114

I_SETSTAT, SS_RELEASE
660 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
set status
pipes 114

I_SETSTAT, SS_RENAME
set status

pipes 114
I_SETSTAT, SS_SENDSIG

set status
pipes 115

I_SETSTAT, SS_SIZE
set status

pipes 115
I_SGETSTAT 564
I_TRANPN 566
I_WRITE 111, 568

I_WRITELN
difference between

for pipes 111
writing pipes 111

I_WRITELN 111, 570
I_WRITE

difference between
for pipes 111

writing pipes 111
idblock structure

for disk formats 129
ident 12
identification block

converting track/block address
to byte address 139

Init module 40, 45, 46
defined 10

init.h 46
initialization table

example 402
structure table 402
svctbl 402

initialize
directory 494
process descriptor 191
resource lock descriptor 231
static storage 335
OS-9 Technical Manual 661

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
insert process
in active process queue 197

install
system state trap module 416
user

trap handling module 418
intercept routine

install 331
Internet errors 599
interprocess communication

A_RESET 187
clear process signal queue 218
create new event 273
delete existing event 275
link to existing event 279
read event value without waiting 283
remove pending alarm request 185
reset

alarm
request 187

return event information 277
send signal 183, 187, 367
set

alarm 173
event variable 285, 287, 289, 293
relative event variable 291
signal intercept trap 331

signal event occurrence 281, 285, 287, 289, 291, 293,
295

unlink event 299
wait for

bits to clear 263
events to occur 265, 267, 269, 271, 297, 301
relative event to occur 303

interrupt manipulation functions
add device to IRQ table 337
F_IRQ 338
F_RTE 366
remove device to IRQ table 337
return from interrupt exception 366

interrupts 80
662 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
invalidate
data cache 205
instruction cache 205

io.h 58, 60, 61, 66, 68
IOMAN 37, 58, 60, 66, 74

defined 11
internal data structures 58

IRQ
add device to table 337
F_IRQ 337
remove device from table 337

K
kernel 13, 33, 40, 44, 46, 47, 52, 58, 95

defined 10
lock structure definition 151

keyboard signal
abort 85, 368
interrupt 85, 368

L
LBN

See logical unit block number. 128
limit process access

with resource locking 150
link

count
for data modules 118

make hard link 536
subroutine libraries 388
to existing event 279
to memory module 339, 341
to subroutine module 390

load module 343
lock

acquire
C example 153

activate next 430
OS-9 Technical Manual 663

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
conditionally acquire ownership 171, 199
create 231
deadlock situation 237
deallocate 152
delete descriptor 239
dynamic creation

C example 152
F_CRLK 152, 231
F_DDLK 237
F_DELLK 239
F_RELLK 363
F_WAITLK 430

FIFO buffer synchronization 157
identifier 152
initialize fields 153
out record 538
preallocate in resource 153
queue,

using signals to 154
release ownership 363
request queueing 151
signal sensitive 154
synchronize FIFO reader and writer 157

lock structure
definition 151

logical
block number

for accessing disk devices 128
block zero

as identification block 129
blocks

number in file descriptor segment 135
device name 60
unit

read options 478
SS_LUOPT 478, 540
static storage 58, 60, 61
write options 540

logical file
for raw physical IO

on RBF devices 139
664 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
M
m_access 20
m_attrev 24, 34
m_cbias 26
m_data 25
m_dbias 26
m_edit 24
m_excpt 25
m_exec 25, 46
m_idata 25
m_ident 26
m_idref 25
m_init 26
m_name 20
m_owner 20
m_parity 26
m_share 25
m_size 20
m_slice 52
m_stack 25
m_symbol 25
m_sync 20
m_sysrev 20
m_term 26
m_tylan 15, 21
Makdir 76
make

hard link to existing file 536
new directory 494

Mask/Unmask Signals During Critical Code 378
MEM_SHARED 41
MEM_SYS 41
memlist 41
memory

assigning 38
avoiding fragmentation 39
block

allow access to 355
check accessibility 213
F_GBLKMP 318
OS-9 Technical Manual 665

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
F_PERMIT 355
F_PROTECT 358
map 318
prevent access to 358

colored 40
definitions 44
lists 45

copy external 226
F_CPYMEM 226
F_MEM 348
F_SRQMEM 394
fragmentation 39
list 41, 45
management functions

allocate task 193
allow access to memory block 355
check memory block’s accessibility 213
deallocate process descriptor 243
F_ALLTSK 193
F_CHKMEM 213
F_DELTSK 243
F_MEM 348
F_PERMIT 355
F_PROTECT 358
prevent access to memory block 358
resize data memory areas 348

map 36
modules 15

ROMed 17
protection calls

deallocate process descriptor 243
F_DELTSK 243
F_PERMIT 355
F_PROTECT 358

required 36
resize data area 348
system memory request 394

memory.h 41
mfree 39
mh_com structure 19
MIPS
666 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
errors
list of 599

Miscellaneous errors 598
modes.h 63
module

basic structure 16
body 16
check

CRC 426
for use of 489
header parity 426

device
descriptor 60
driver 79

directory 34
alternate 34
change

permission 220
create 346
defined 34
delete 241
F_CMDPERM 220
F_DELMDIR 241
F_FMOD 310
F_GETMDP 321
F_GMODDR 325
F_MKMDIR 346
find entry 310
get

alternate pathlist 321
copy of 325
current pathlist 321

remove 241
set alternate 195

exeute 207
F_LINK 339
F_LINKM 341
F_LOAD 343
F_MODADDR 350
F_SETCRC 370
F_UNLINK 422
OS-9 Technical Manual 667

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
F_UNLOAD 424
F_VMODUL 426
find 350
generate CRC 228, 370
header 16
I_IODEL 489
link to 339, 341
load 207, 343
manipulation functions

change
permissions of module directory 220
process’ current module directory 216

create
data module 233
new module directory 494

delete
existing module directory 241

execute
new primary module 210

find
module directory entry 310
module given pointer 350

initialize static storage 335
install

system state trap handling module 416
user trap handling module 418

set alternate working module directory 195
position-independent 15
re-entrant 15
unlink 422, 424
verify 426

module.h 19, 20, 229
move data 351
MT_DEVDESC 60
MT_DEVDRVR 80
MT_SYSTEM 46

N
name
668 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
valid characters 361
non-sharable

coordinating resources
with events 100

file
creating 141

non-sharable devices
RBF record locking 140

non-sharable files
creating with file locking 141
problem with 141

O
Open 76
open path 498
Operating system errors 598
OS9P2 31
owner 146

P
p_spuimg 356
p_state 198
parse path name 361
path

access modes 445
attributes 445
close 441
create path to file 445
descriptor 58, 66

copy contents 461
find 457
group/user number 67
I_GETPD 457
number of users on path 68
read option section 481
requested access mode 67
size 61, 66
SS_PATHOPT 481, 542
OS-9 Technical Manual 669

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
system path number 67
write option section 542

duplicate 453
F_PRSNAM 361
fill buffer with data 533
I_DUP 453
I_OPEN 498
I_TRANPN 566
open 498
options

set 524
SS_DOPT 524

parse name 361
SS_FILLBUFF 533
table 58
terminate 441
translate user to system 566

PC file manager 13, 73, 147
PCF 13, 73, 147
pd_async 70
pd_class 70
pd_com 66
pd_com structure 67
pd_count 68
pd_cproc 70
pd_dev 67
pd_dpd 67
pd_id 67
pd_mode 67
pd_own 67
pd_paths 67
pd_plbsz 70
pd_plbuf 70
pd_plist 70
pd_state 71
pd_type 68
670 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
PERM_GROUP_EXEC
file descriptor block

flag 133
PERM_GROUP_READ

file descriptor block
flag 133

PERM_GROUP_SRCH
file descriptor block

flag 133
PERM_GROUP_WRITE

file descriptor block
flag 133

PERM_OWNER_EXEC
file descriptor block

flag 133
PERM_OWNER_READ

file descriptor block
flag 133

PERM_OWNER_SRCH
file descriptor block

flag 133
PERM_OWNER_WRITE

file descriptor block
flag 133

PERM_WORLD_EXEC
file descriptor block

flag 133
PERM_WORLD_READ

file descriptor block
flag 133

PERM_WORLD_SRCH
file descriptor block

flag 133
PERM_WORLD_WRITE

file descriptor block
flag 133

permissions
change module directory 220

pipe file manager 13, 72, 107
pipelines

process communications
OS-9 Technical Manual 671

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
shell 108
PIPEMAN 13, 72, 107

status codes
listed 112

pipes 13
closing 112
creating 109
device descriptors 107
directories 115
named 108
opening

explanation 110
returning data from 111
unnamed 108
writing data 111

PowerPC errors
list of 599

prevent access to memory block 358
priority

F_SPRIOR 392
set 392

proc_id 440
process 52

active 50
clear process signal 218
create 312, 316
data area 50
descriptor 48

allocate 191
de-allocate 365
deallocate 243
F_DELTSK 243
F_FINDPD 308
F_GPRDBT 327
F_GPRDSC 329
F_RETPD 365
find 308
get

copy of 329
table 327

pointer to 439, 488
672 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
I/O 439
I_GIOPROC 488
initialize 191
return resources 243

end 305
ensure protection hardware is ready 193
F_DFORK 253
F_DFORKM 256
F_EXIT 305
F_FORK 312
F_FORKM 316
F_SEND 367
F_SPRIOR 392
F_SSPD 399
I_IOEXIT 490
I_IOFORK 492
ID 49, 70, 333
inactive 50, 51
insert in active process queue 197
insert prodess in active process queue 197
manipulation functions

create new functions 312
create new process 316
deallocate process descriptor 365
F_APROC 197
F_CHAIN 207
F_DFORK 253
F_DFORKM 256, 316
F_FINDPD 308
F_FORK 312
F_GPRDBT 327
F_GPRDSC 329
F_ID 333
F_NPROC 353
F_RETPD 365
F_SPRIOR 392
F_SSPD 399
F_WAIT 428
find process descriptor 308
fork process under control of debugger 253, 256
get
OS-9 Technical Manual 673

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
copy of process descriptor block table 327
process descriptor copy 329
process ID/user ID 333

insert process in active process queue 197
load and execute module 207
set process priority 392
start next process 353
suspend process 399
wait for child process to terminate 428

memory area 49
F_DFORK 253
F_DFORKM 256
F_EXIT 305
F_FORK 312
F_FORKM 316
F_NPROC 353
F_SEND 367
F_SSPD 185, 399
I_IOEXIT 490
I_IOFORK 492
priority 392
scheduling 197

priority 392
ready for execution 50
scheduling 52
send signal to 367
set

priority 392
up I/O 492

start next process 353
state

active 50
event 50
sleeping 51
suspended 51
waiting 51

states 50
stop 490
suspend 399
terminate 49, 305

I/O 490
674 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
wait for child to terminate 428
process queueing 158
protect critical section of code 154
public 146
Put Calling Process to Sleep 385

Q
queue

active process
insert process 197

clear process signal 218
queue a process 158

R
random block file manager 13, 57, 72

RBF overview 128
RAVE errors 599
RBF 13, 57, 72

overview 128
record locking

deadlock detection 140
deadlock detection explained 142
non-sharable devices 140

record locking,
problem with 140

RBF device
doing raw physical IO 139

rbf.h
defines for segment descriptors 135
directory entry structure 138
segment block links defined 136

Read 76
read

data 504
device path options 465
event value 283
file descriptor sector 472
logical unit options 478
OS-9 Technical Manual 675

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
path descriptor option section 481
Readln 77
record

lock out 538
locking

details for I/O functions 144
RBF devices 140

SS_LOCK 538
SS_TICKS 558
wait for release 558

release
device 544
ownership of resource lock 363

remove
device 451

from IRQ table 337
event information 275
pending alarm request 92, 94, 185

rename file 545
repostion logical file pointer 509
reset

alarm request 92, 94, 187
resize

data memory area 348
resource lock

acquire
C example 153

activate 430
conditionally acquire ownership 171, 199
create 231
deadlock situation 237
delete descriptor 152, 239
dynamic creation

C example 152
F_CRLK 152, 231
F_DDLK 237
F_DELLK 239
F_RELLK 363
F_WAITLK 430

FIFO buffer synchronization 157
for creating file managers/drivers 150
676 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
initialize fields 153
preallocate in resource 153
release ownership 363
synchronize FIFO buffer reader and writer 157

restore head to track zero 547
retension pass on tape drive 548
return

device
name 464
type 467

event information 277
from interrupt exception 366
system

identification 412
Return System Memory 397
rid_bitmap

to locate allocation map file descriptor 130
rid_rootdir

locate root directory file descriptor 130
root directory

for disk structures 130
for disks

disk
root directory 129

RTS line
disable 526
enable 527

S
S_HANGUP 368
S_IAPPEND 64, 446, 495
S_ICONTIG 64, 446, 495
S_ICREAT 64
S_IEXCL 64, 446, 495
S_IEXEC 64, 438, 446, 495, 499
S_IFDIR 499
S_IGEXEC 64, 446, 495
S_IGREAD 64, 446, 495
S_IGSEARCH 64
S_IGWRITE 64, 446, 495
OS-9 Technical Manual 677

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
S_INT 368
S_IOEXEC 64, 447, 496
S_IOREAD 64, 446, 495
S_IOSEARCH 64
S_IOWRITE 64, 446, 495
S_IPRM 63
S_IREAD 63, 438, 446, 495, 499
S_ISEARCH 64
S_ISHARE 64, 446, 447, 495, 496, 499
S_ISIZE 446, 496
S_ITRUNC 64, 446, 495
S_IWRITE 64, 438, 446, 495, 499
S_KILL 368
S_QUIT 368
S_WAKE 368
save utility

using to save to disk
data module 118

SBF 13, 73
SCF 13, 57, 72
SCSI device

get size of 469
Seek 77
seek(0)

before closing file
explained 137

seg_count
file desriptor block

segment descriptor field 135
seg_offset

file desriptor block
segment descriptor field 135

segment
allocation size value

explained 136
multiple contiguous type

file structure 130
semaphore.h

structure 106
semaphores

acquiring access 106
678 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
application example 105
binary event synchronization 104
defined 104
example code 583
header file structure 106
initialization

_os_sema_init() 104
releasing

_os_sema_v() 104
releasing access 106
reservation

_os_sema_p() 104
states 105
structure definition 106
terminate

_os_sema_term() 104
sements

file descriptor block 135
send signal

after specified time interval 92
at specific time 92
at specified time intervals 92, 183
on data ready 551
to another process 367

sequential block file manager 13, 73
sequential character file manager 13, 57, 72
service request codes

range of valid 401
service request table initialization 401
set

alternate working module directory 195
device

path options 524
status 511

event variable 285, 287, 289, 293
file

attributes 515
size 486, 553
status 511

process priority 392
relative event variable 291
OS-9 Technical Manual 679

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
system
date/time 403
global variables 372

up I/O for process 492
up signal intercept trap 331
user ID number 408

Setstat 77
SHARED 42
shell 12
signal

clear queue 218
codes 368

listed 85
communications

using F_SEND 86
enable/disable

with F_SIGMASK 87
event occurrence 281, 285, 287, 289, 291, 293, 295
F_SEND 367
for events

defined 100
for lock queuing 154
handler

syntax 332
hang-up 86, 368
intercept routine installing

using F_ICPT 86
keyboard

abort 85, 368
interrupt 85, 368

make process wait for
using F_SIGLNGJ 87
using F_SIGRESET 87
using F_SLEEP 87

remove 218
reset

F_SIGRESET 381
resize

F_SIGRS 383
S_HANGUP 368
S_INT 368
680 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
S_KILL 368
S_QUIT 368
S_WAKE 368
send

after specified time 92, 189
at specific time 92
at specified time 92, 181
at specified time intervals 183
on data ready 551
to another process 367
when DCD line goes false 520
when DCD line goes true 522

sensitive locks 154
set mask value

return on stack image
F_SIGLNGJ 375

SS_SENDSIG 551
system abort 368
unconditional system abort 85
wake up process 368
wake-up 85

skip
blocks 555
tape marks 549
to end of tape 557

small files 136
software interrupts 84
SS_ATTR 515
SS_BREAK 517
SS_CACHE 518
SS_COPYPD 461
SS_CSTATS 463
SS_DCOFF 520
SS_DCON 522
SS_DEVNAME 464
SS_DEVOPT 465
SS_DEVTYPE 467
SS_DOPT 524
SS_DSIZE 469
SS_DSRTS 526
SS_EDT 470
OS-9 Technical Manual 681

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
SS_ENRTS 527
SS_EOF 471

get status
pipes 112

SS_ERASE 529
SS_FD 472, 531
SS_FdAddr 474
SS_FDINFO 476
SS_FILLBUFF 533
SS_FLUSHMAP 535
SS_HDLINK 536
SS_LOCK 538
SS_LUOPT 478, 540
SS_OPT 113
SS_PARITY 480
SS_PATHOPT 66, 481, 542
SS_POS 483
SS_READY 484

get status
pipes 113

SS_RELEA 114
SS_RELEASE 544
SS_RENAME 545
SS_RESET 547
SS_RETEN 548
SS_RFM 549
SS_SENDSIG 551
SS_SIZE 113, 115, 486, 553
SS_SKIP 555
SS_SKIPEND 557
SS_SSIG 115
SS_TICKS 558
SS_WFM 560
SS_WTRACK 562
standard I/O functions

attach new device to system 434
change working directory 437
check for use of I/O module 489
close path to file/device 441
copy system alias list 502
create
682 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
device alias 432
path to new file 445

delete file 449
duplicate path 453
get

pointer to I/O process descriptor 439, 488
system I/O device list head pointer 455

I_ALIAS 432
I_ATTACH 434
I_CHDIR 437
I_CIOPROC 439
I_CLOSE 441
I_CREATE 445
I_DELETE 449
I_DETACH 451
I_DUP 453
I_GETDL 455
I_GIOPROC 488
I_IODEL 489
I_IOEXIT 490
I_IOFORK 492
I_MAKDIR 494
I_OPEN 498
I_RDALST 502
I_READ 504
I_READLN 507
I_WRITE 568
I_WRITELN 570
make new directory 494
open path to file or device 498
read

data from file or device 504
text line with editing 507

remove device from system 451
set up I/O for new process 492
terminate I/O for exiting process 490
write

data to file/device 568
line of text with editing 570

start next process 353
static storage
OS-9 Technical Manual 683

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
F_INITDATA 335
initialize 335

status functions
break serial connection 517
calculate parity of file descriptor 480
copy contents of path descriptor 461
disable RBF caching 518
enable RBF caching 518
erase tape 529
examine system global variable 323, 372
F_GETSYS 323
F_SETSYS 372
fill path buffer with data 533
flush cached bit map information 535
get

cache status information 463
current file position 483
file descriptor for open file 474
file/device status 458
I/O interface edition number 470
size of SCSI devices 469
specified file descriptor sector 476

GetStat call using system path number 564
I_GETSTAT 458
I_SETSTAT 511
I_SGETSTAT 564
lock out record 538
make hard link to existing file 536
read

device path options 465
file descriptor sector 472
logical unit options 478
path descriptor option section 481

release device 544
rename file 545
restore head to track zero 547
retension pass on tape drive 548
return

device
name 464
type 467
684 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
send
signal on data ready 551
signal when DCD liine goes

false 520
true 522

wait for record release 558
set

device path options 524
file attributes 515
file size 486, 553
file/device status 511
OS-9 system global variables 372

skip
blocks 555
tape marks 549
to end of tape 557

SS_ATTR 515
SS_BREAK 517
SS_CACHE 518
SS_COPYPD 461
SS_CSTATS 463
SS_DCOFF 520
SS_DCON 522
SS_DEVNAME 464
SS_DEVOPT 465
SS_DEVTYPE 467
SS_DOPT 524
SS_DSIZE 469
SS_EDT 470
SS_EOF 471
SS_ERASE 529
SS_FD 472, 531
SS_FdAddr 474
SS_FILLBUFF 533
SS_FLUSHMAP 535
SS_HDLINK 536
SS_LOCK 538
SS_LUOPT 478, 540
SS_PARITY 480
SS_PATHOPT 481, 542
SS_POS 483
OS-9 Technical Manual 685

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
SS_READY 484
SS_RELEASE 544
SS_RENAME 545
SS_RESET 547
SS_RETEN 548
SS_RFM 549
SS_SENDSIG 551
SS_SIZE 486, 553
SS_SKIP 555
SS_SKIPEND 557
SS_TICKS 558
SS_WFM 560
SS_WTRACK 562
test for

data ready 483
end of file 471

write
file descriptor sector 531
logical unit options 540, 542
tape marks 560
track 562

sticky module 24, 34
setting link count 118

storage volume
See disk media. 129

structures
dd_com 61
dirent 138
ev_infostr 98
ev_str 98
fd_links 136
fd_segment 135
fd_stats 132
fork_params 208, 211, 313
idblock

for disk formats 129
pd_com 67
svctbl 402

subroutine
execute

after interval 94
686 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
at intervals 94
at time 94

F_SLINKM 390
library 120

calling with _subcall 121
creating 122
installing 120
terminating 122

link to 390
subroutine libraries

link 388
super-user 146
suspend process 399

with F_WAITLK 157
svctbl structure 402
svctbl.h 402
Symbols

F_CRLK 152
F_DELLK 152

symbols
F_WAITLK

FIFO buffer synchronization 157
sysboot 12
sysglob.h 37, 47
Sysgo 574
system

debugger
call 410
F_SYSDBG 410

F_STIME 403
F_SYSID 412
F_TIME 414
functions of 28
get date/time 414
global

area 37
variables

change 372
examine 323, 372
F_GETSYS 323
F_SETSYS 372
OS-9 Technical Manual 687

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
set 372
memory request 394
path numbers 33
remove device table entry 451
return identification 412
set date/time 403
state 29

advantages 29
installing routines 30

system-state
alarms

defined and listed 94
systype.des 45
systype.h 40

T
tape

erase 529
retension 548
skip

tape marks 549
to end 557

SS_ERASE 529
SS_RETEN 548
SS_RFM 549
SS_SKIPEND 557
SS_WFM 560
write marks 560

task 52
allocate 193
switching 52

pre-emptive 53
system global variables 53
variables affecting 392

tcall
dispatching 125
relocatable macro assembler

mnemonic for trap calls 124
terminate

calling process 305
688 OS-9 Technical Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
I/O for process 490
test for

data ready 484
end of file 471

TH_DELPB 177
TH_SPOWN 95, 177
time

functions
F_STIME 403
F_TIME 414
get system date and time 414
set system date and time 403

slice 52
track

SS_WTRACK 562
write 562

track/block address
converting to byte address 139

translate user path to system path 566
trap

handler 31
calling 124
creating library 125
described 416
execution entry points 123
explained 123
F_TLINK 416
F_TLINKM 418
installing 124

system state module 416
user 418

number 124
program exceptions 405
vector 124

U
Ultra C related errors 598
unconditional system abort signal 85
unlink

event 299
OS-9 Technical Manual 689

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
module 422, 424
user

ID 49, 333
set 408

state 29
user accounting system 420
user-state

alarms
defined and listed 92

utilities
attr

for creating non-sharable files 141
format

defined 128

V
valid pathlist characters 361
verify module 426

W
wait

for child to terminate 428
for event 263, 265, 267, 269, 271, 297, 301
for events

defined 100
for record release 558
for relative event 303

wake-up signal 85
Write 78
write

data 568
file descriptor sector 531
line of text 570
logical unit options 540
option section of path descriptor 542
tape marks 560
track 562

Writeln 78
690 OS-9 Technical Manual

691

Product Discrepancy Report

To: Microware Customer Support

FAX: 515-224-1352

From:___

Company:_______________________________________

Phone:__

Fax:_____________________Email:__________________

Product Name: OS-9

Description of Problem:
__

__

__

__

__

__

__

__

__

__

Host Platform______________________________________

Target Platform____________________________________

	HOME
	OS-9® Technical Manual
	Table of Contents
	Chapter 1: System Overview
	System Modularity
	Level 1 — The Kernel, the Clock, and the Init Modules
	Level 2 — IOMAN
	Level 3 — File Managers
	Level 4 — Device Drivers
	Level 5 — Device Descriptors

	I/O Overview
	Memory Modules
	Basic Module Structure
	The CRC Value
	ROMed Memory Modules
	Module Header Definitions
	mh_com

	Chapter 2: The Kernel
	Kernel Functions
	System Call Overview
	User State and System State
	Installing System-State Routines

	Kernel System Call Processing
	Non-I/O Calls
	I/O Calls

	Memory Management
	OS-9 Memory Map
	System Memory Allocation
	Operating System Object Code
	System Global Memory
	System Dynamic Memory
	User Memory

	Memory Fragmentation
	Colored Memory
	Colored Memory Definition List
	Colored Memory in Homogenous Memory Systems
	System Performance
	Reconfiguring Memory Areas

	System Initialization
	Init: The Configuration Module

	Extension Modules
	Process Creation
	Process Memory Areas
	Process States

	Process Scheduling
	Preemptive Task Switching

	Chapter 3: The OS-9 Input/Output System
	The OS-9 Unified Input/Output System
	The I/O Manager
	The File Manager
	The Device Driver

	IOMAN
	Device Descriptor Modules
	dd_com

	Path Descriptors
	pd_com

	File Managers
	File Manager Organization
	Dispatch Table Sample Listing

	Device Driver Modules
	Basic Functional Driver Requirements
	Interrupts and DMA

	Chapter 4: Interprocess Communications
	Signals
	Signal Codes
	Signal Implementation
	Non-recursive Calling
	Recursive Calling

	Alarms
	User-state Alarms
	Cyclic Alarms
	Time of Day Alarms
	Relative Time Alarms
	System-State Alarms

	Events
	ev_str/ev_infostr
	Wait and Signal Operations
	Wait
	Signal

	The F_EVENT System Call

	Semaphores
	Semaphore States
	Acquiring Exclusive Access
	Releasing Exclusive Access

	Pipes
	Named and Unnamed Pipes

	Operations on Pipes
	Creating Pipes
	Opening Pipes
	Read/Readln
	Write/Writeln
	Close
	Getstat/Setstat
	GetStat Status Codes Supported by PIPEMAN
	SetStat Status Codes Supported by PIPEMAN
	Pipe Directories

	Data Modules
	Creating Data Modules
	The Link Count
	Saving to Disk

	Chapter 5: Subroutine Libraries and Trap Handlers
	Subroutine Libraries
	Installing and Executing Subroutine Libraries
	Terminating Subroutine Libraries

	Trap Handlers
	Installing and Executing Trap Handlers

	Chapter 6: OS-9 File System
	Disk File Organization
	Basic Disk Organization
	Identification Block
	Allocation Map
	Root Directory
	Basic File Structure

	fd_stats
	Small Files
	Logical Block Numbers
	Segment Allocation
	Directory File Format

	Raw Physical I/O on RBF Devices
	Record Locking
	Record Locking and Unlocking
	Non-Sharable Files
	End of File Lock
	Deadlock Detection

	Record Locking Details for I/O Functions
	Open/Create
	Read/ReadLine
	Write/WriteLine
	Seek
	SetStatus

	File Security
	PC File Manager (PCF)
	Getting Top Performance from PCF
	Differences from RBF

	Chapter 7: Resource Locking
	Overview
	Lock Structure Definition
	Create and Delete Resource Locks

	Preallocate Locks as Part of the Resource
	Signals and Locks
	Signal Sensitive Locks
	Ignoring Signals

	FIFO Buffers
	Process Queuing

	Chapter 8: OS-9 System Calls
	Using OS-9 System Calls
	_oscall Function
	Using the System Calls
	System Call Descriptions
	Interrupt Context

	System Calls Reference
	F_ABORT
	F_ACQLK
	F_ALARM (System-State)
	F_ALARM (User-State)
	F_ALARM, A_ATIME
	F_ALARM, A_CYCLE
	F_ALARM, A_DELET
	F_ALARM, A_RESET
	F_ALARM, A_SET
	F_ALLPRC
	F_ALLTSK
	F_ALTMDIR
	F_APROC
	F_CAQLK
	F_CCTL (User-State)
	F_CCTL (System State)
	F_CHAIN
	F_CHAINM
	F_CHKMEM
	F_CHMDIR
	F_CLRSIGS
	F_CMDPERM
	F_CMPNAM
	F_CONFIG
	F_CPYMEM
	F_CRC
	F_CRLK
	F_DATMOD
	F_DATTACH
	F_DDLK
	F_DELLK
	F_DELMDIR
	F_DELTSK
	F_DEXEC
	F_DEXIT
	F_DFORK
	F_DFORKM
	F_EVENT
	F_EVENT, EV_ALLCLR
	F_EVENT, EV_ALLSET
	F_EVENT, EV_ANYCLR
	F_EVENT, EV_ANYSET
	F_EVENT, EV_CHANGE
	F_EVENT, EV_CREAT
	F_EVENT, EV_DELET
	F_EVENT, EV_INFO
	F_EVENT, EV_LINK
	F_EVENT, EV_PULSE
	F_EVENT, EV_READ
	F_EVENT, EV_SET
	F_EVENT, EV_SETAND
	F_EVENT, EV_SETOR
	F_EVENT, EV_SETR
	F_EVENT, EV_SETXOR
	F_EVENT, EV_SIGNL
	F_EVENT, EV_TSTSET
	F_EVENT, EV_UNLNK
	F_EVENT, EV_WAIT
	F_EVENT, EV_WAITR
	F_EXIT
	F_FINDPD
	F_FMOD
	F_FORK
	F_FORKM
	F_GBLKMP
	F_GETMDP
	F_GETSYS
	F_GMODDR
	F_GPRDBT
	F_GPRDSC
	F_ICPT
	F_ID
	F_INITDATA
	F_IRQ
	F_LINK
	F_LINKM
	F_LOAD
	F_MKMDIR
	F_MEM
	F_MODADDR
	F_MOVE
	F_NPROC
	F_PERMIT
	F_PROTECT
	F_PRSNAM
	F_RELLK
	F_RETPD
	F_RTE
	F_SEND
	F_SETCRC
	F_SETSYS
	F_SIGLNGJ
	F_SIGMASK
	F_SIGRESET
	F_SIGRS
	F_SLEEP
	F_SLINK
	F_SLINKM
	F_SPRIOR
	F_SRQMEM
	F_SRTMEM
	F_SSPD
	F_SSVC
	F_STIME
	F_STRAP
	F_SUSER
	F_SYSDBG
	F_SYSID
	F_TIME
	F_TLINK
	F_TLINKM
	F_UACCT
	F_UNLINK
	F_UNLOAD
	F_VMODUL
	F_WAIT
	F_WAITLK
	I_ALIAS
	I_ATTACH
	I_CHDIR
	I_CIOPROC
	I_CLOSE
	I_CONFIG
	I_CREATE
	I_DELETE
	I_DETACH
	I_DUP
	I_GETDL
	I_GETPD
	I_GETSTAT
	I_GETSTAT, SS_COPYPD
	I_GETSTAT, SS_CSTATS
	I_GETSTAT, SS_DEVNAME
	I_GETSTAT, SS_DEVOPT
	I_GETSTAT, SS_DEVTYPE
	I_GETSTAT, SS_DSIZE
	I_GETSTAT, SS_EDT
	I_GETSTAT, SS_EOF
	I_GETSTAT, SS_FD
	I_GETSTAT, SS_FdAddr
	I_GETSTAT, SS_FDINFO
	I_GETSTAT, SS_LUOPT
	I_GETSTAT, SS_PARITY
	I_GETSTAT, SS_PATHOPT
	I_GETSTAT, SS_POS
	I_GETSTAT, SS_READY
	I_GETSTAT, SS_SIZE
	I_GIOPROC
	I_IODEL
	I_IOEXIT
	I_IOFORK
	I_MAKDIR
	I_OPEN
	I_RDALST
	I_READ
	I_READLN
	I_SEEK
	I_SETSTAT
	I_SETSTAT, SS_ATTR
	I_SETSTAT, SS_BREAK
	I_SETSTAT, SS_CACHE
	I_SETSTAT, SS_DCOFF
	I_SETSTAT, SS_DCON
	I_SETSTAT, SS_DEVOPT
	I_SETSTAT, SS_DSRTS
	I_SETSTAT, SS_ENRTS
	I_SETSTAT, SS_ERASE
	I_SETSTAT, SS_FD
	I_SETSTAT, SS_FILLBUFF
	I_SETSTAT, SS_FLUSHMAP
	I_SETSTAT, SS_HDLINK
	I_SETSTAT, SS_LOCK
	I_SETSTAT, SS_LUOPT
	I_SETSTAT, SS_PATHOPT
	I_SETSTAT, SS_RELEASE
	I_SETSTAT, SS_RENAME
	I_SETSTAT, SS_RESET
	I_SETSTAT, SS_RETEN
	I_SETSTAT, SS_RFM
	I_SETSTAT, SS_SENDSIG
	I_SETSTAT, SS_SIZE
	I_SETSTAT, SS_SKIP
	I_SETSTAT, SS_SKIPEND
	I_SETSTAT, SS_TICKS
	I_SETSTAT, SS_WFM
	I_SETSTAT, SS_WTRACK
	I_SGETSTAT
	I_TRANPN
	I_WRITE
	I_WRITELN

	Appendix A: Example Code
	Sysgo
	Signals: Example Program
	Alarms: Example Program
	Events: Example Program
	Semaphores: Example Program
	Subroutine Library
	slib.a
	slibc.c
	slibcalls.a

	Trap Handlers
	trapc.a
	thandler.c
	tcall.c
	ttest.c

	Appendix B: OS-9 Error Codes
	Error Categories
	Errors

	Index
	Product Discrepancy Report

