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Abstract. Microblogs, although extremely peculiar pieces of data, con-
stitute a very rich source of information, which has been widely exploited
recently, thanks to the liberal access Twitter offers through its API. Nev-
ertheless, computing relevant answers to general queries is still a very
challenging task. We propose a new engine, the Twittering Machine,
which evaluates SQL like queries on streams of tweets, using ranking
techniques computed at query time. Our algorithm is real time, it pro-
duces streams of results which are refined progressively, adaptive, the
queries continuously adapt to new trends, invasive, it interacts with Twit-
ter by suggesting relevant users to follow, and query results to publish as
tweets. Moreover it works in a decentralized environment, directly in the
browser on the client side, making it easy to use, and server independent.

1 Introduction

The amounts of personal data accumulated at Internet scale constitute a re-
source, much like raw materials, with a huge economic potential. Google made
the first demonstration of the power of these data in 2003 with its Flu Trend,
which allows to monitor the flu activity in the world, based on the frequency in
all languages of flu related search on its engine, and has been shown not only to
be accurate but moreover ahead of disease control institutions [GMP+09].

Among the large Internet corporations handling users data, Twitter is the one
that provides the most liberal access to them. Since its inception in 2006, Twitter
grew at an exponential pace3, with now over 100 million active users, producing
about 250 million tweets daily. Although microblogs might seem restricted,
Twitter has an amazing potential, it serves more than a billion queries per day,
supports around a million Apps4, and its projected advertising revenue of $250
million in 2012 is predicted to have doubled by 2014.

In this paper, we propose a new approach to handle social network data.
Our objective is twofold. (i) First, develop real time algorithms to find the
most relevant data on any topic, whether popular or not, by using any
ranking techniques. (ii) Second, develop continuous server-less solutions,
with algorithms running on the client side.

3 http://www.dazeinfo.com/2012/02/27/twitter-statistics-facts-and-figures

-from-2006-2012-infographic/
4 http://gigaom.com/2011/08/16/twitter-by-the-numbers-infographic/
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On Twitter, our first objective is to identify the most relevant tweets sat-
isfying a query, the most relevant twitterers on a topic or the most important
tags to listen to. Our notion of relevance is similar to a topic specific Pagerank,
which could rely on any concept available in the social network system.

Extracting knowledge from tweets is a challenging task. Microblog data are
rather unconventional. On one hand, they are like most web data, relying on both
content and graph connections (followers, links to URL, etc.), but on the other
hand, their content is rather peculiar, both for its form, extremely short, and
for its substance, often very communication or notification oriented. Moreover,
inputs as well as most generally outputs, are streams of data, which should be
handled as most as possible in real time.

Our algorithms have the following characteristics. (i) The rankings are com-
puted at query time, streams of results are produced in realtime, with an accu-
racy which increases progressively. (ii) Queries are autonomic since they are con-
tinuously refined by taking into accounts trends expressed in the output streams.
(iii) The algorithms are associated with a twitterer, and interacts with Twitter,
by publishing query results, and following relevant twitterers.

Our second objective is to develop systems which are server-less and work
as soon as the client’s side is active. This approach is very promising. First,
functionalities which are not offered by Internet corporations, can be handled
directly by the users on their CPU. More generally, this model of decentralized
computation alleviates the burden of centralized systems, by pushing to the
periphery computations that do not need to be centralized, as Facebook does
with the Like button for instance. Complex computations on fragments of large
data sets can be performed as well at the client side, as is done by systems such
as seti@home.

We demonstrate our approach on Twitter, with the Twittering Machine, that
we developed in javascript, and which runs directly in the browser of the client. It
is associated with the personal account of the user, which will be used to follow
relevant twitterers as well as publish query results, and works essentially as
follows. The machine takes as input streams of tweets satisfying an initial query,
which are immediately displayed and analysed. The most relevant twitterers
are then computed, and it is suggested to follow them, adding to the input of
the machine their tweets. The keywords in the query are modified according
to query results. In fact, the query takes a stream of keywords as parameter.
Query results are regularly suggested for publication.

The paper is organized as follows. In the next section, we present the Twitter-
ing Machine. Section 3 is devoted to the presentation of the plug-ins specifying
the queries, while some experimental results are presented in Section 4.

2 The Twittering Machine

Twitter offers essentially two ways to access tweets, (i) by following specific
already known twitterers, with their complete stream of tweets, or (ii) by using
the search API. The latter provides a very efficient real time search [BGL+12],
with a simple query language that allows to filter tweets on their content, as
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well as on various attributes, such as their hashtags, URLs, locations, etc. It
produces a small percentage of the theoretical result, but often sufficient to
extract knowledge, and is widely used.

The main goal of the Twittering Machine is to evaluate complex queries over
streams of tweets. It relies on computations local to the client side, and works
autonomously, without any server except the queried social system, Twitter.
This section presents its global functionality, illustrated in Fig. 1., and explains
the implementation choices.

The machine takes as inputs incoming streams of tweets either results of
search queries, or produced by followed twitterers, performs algebraic computa-
tion corresponding to stream queries, and produces as output, streams of tweets
to display to the user, tweets to be produced by the user on a specific topic, as
well as instructions for the management of followed twitterers. Output results
are re-injected into the main system, thus leading to an autonomic querying
system, which self-regulates.

Fig. 1. The Twittering Machine

The Twittering Machine has the following main characteristics.

In-node execution We adopt a decentralized approach, with a system running
mainly at the border of the network, on the end-user’s computer, and to sim-
plify its use, we choose to run directly at the browser level. With the rapid
development of cloud architectures, more and more run-times are hidden at the
clients side. Whenever possible, we always provide in-browser function execu-
tion. For cross-domain browser limitation reasons5, we use a local run-time
based on nodejs6 that communicates locally with the browser and handles au-
thentication requests. From the Twitter side, our in-node approach behaves as
a standard end-user and develops a behavior similar to a real user.

Twitter friendliness The Twittering Machine interacts naturally with the API of
Twitter. It uses all functionalities Twitter offers in its API. Twitter’s data share

5 http://en.wikipedia.org/wiki/Same_origin_policy
6 http://nodejs.org/
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with other web data, the duality of graph connections (followers) and contents
(tweets), but its content is unconventional both in form and in substance. Tweets
can be grabbed either from the general search API or from the followed twitterers
through either REST or the stream based authenticated API. Followers can be
managed with the same authenticated API as the REST API.

Fig. 2. The displayed tweets with their counts

Stream based plugin architecture The Twittering Machine is build around dy-
namic modules orchestrated into the browser. Each plugin works in a stream
based way. It manages an input stream generally of tweets obtained through a
dedicated query, realizes a grouping and an ordering of tweets and finally gener-
ates a stream for instance of twitterers as output. Plugins can be cascaded since
the output from one plugin may be used as the input of another, as shown in Sec-
tion 3. Finally, we consider every input and output parameters as streams. For
instance the query parameters are extracted from an input stream and this in-
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put stream can be adapted at run-time to include relevant keywords for instance
that pop-up from the output computed so far.

Specifying plugins with a query Language Every plugin is expressed with a stream
based query that uses the select-project-join-aggregate syntax of SQL as pre-
sented in Section 3. The ranking is defined using such queries which recursively
lead to more accurate results.

Interaction with Twitter The Twittering Machine can suggest interactions with
Twitter to the user, such as manage its follow relation, follow or unfollow twit-
terers, as well as query results of interest which can be twitted by the user. This
interaction could be handled directly by the machine, but it would conflict with
the Automation Rules and Best Practices from Twitter which prevents from au-
tomatic (un-)following. In our experiment, we have used a Companion account
to interact with Twitter according to the recommendation of the machine.

Display of results The results are displayed in the user’s browser. We illustrate
the behavior of the machine on the query ”Hollande”, candidate to the French
presidential election. On Fig. 2., the first series of tweets, under ”Tweets Draft”,
satisfy a query extracted from Twitter, while the second series, under ”Tweets
Comp”, are tweets produced by twitterers followed by the Companion.

The tweets visualized in Tweets Draft are ordered in decreasing order by
twitterers that produced the largest number of tweets satisfying the query since
the query was launched. The twitterer together with the number of correspond-
ing tweets can be seen on the display. For the Tweets Comp, the twitterers are
displayed together with the proportion of their tweets satisfying the query. Con-
sider for instance the twitterer @LeSecondTour. It is associated with 21 tweets
caught by the Tweets Draft, while for the Companion, 16 tweets (vs 21) have
been caught (we started following this twitterer some time after the query was
initially launched), and 87.5% of its tweets satisfy the query.

3 The Twittering Machine plugins

The Twittering Machine is based on plugins injected at run-time that enable
the computation of queries. Each plugin is specified with a dedicated descrip-
tive SQL-like specification and the Twittering Machine hosts and schedules the
runtime of each plugin. The descriptive language handles streams manipulation.
Each stream interaction is triggered with clocks whose parameters are specified
within the query. The generic query structure has a form of the following type:

Every <X> seconds ,
insert into <OutStreamName> values <[Val ]>

Every <Y> seconds ,
compute <[Val ] = func t i on ()> ,
from <InStreamName>,
where <Request>.

This listing shows the two independent loops of the query. The internal
loop queries every <Y> seconds an <InStreamName> stream and maintains
an internal array of results [V al]. Then, every <X> seconds, the external loop
takes every [V al] and injects them into the <OutStreamName> stream.
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From this main structure, we can express a query that produces on the dis-
play, every five seconds, an array of the most active twitterers on French election
candidate François Hollande.

Every 10 s ,
insert into Console values [ t w i t t e r e r s ]

Every 5s ,
[ tw i t t e r e r s ] = topK ( screenname ) ,
from SearchAPI ,
where tweet l ike ’%Hollande%’

At runtime, when this request is plugged into the Twittering Machine, the
scheduling is controlled, such that all streams may not be requested too often.
The machine indexes every requested stream and collects timing constraints, if a
stream is too much in demand, the twittering machine will lower timing values.
Moreover, for performance reasons, if the internal memory for maintaining the
array of twitterers is overloaded, the Twittering Machine will reduce its size.
Finally, if the Twittering Machine can host the plugin, it compiles the query
and generates a equivalent JavaScript code fragment (in the current implemen-
tation, the code fragment is generated by hand) that interacts with Twitter. For
instance, without considering the topK computation part, the following code is
generated for the internal loop.

my. run = func t i on ( from) {
$ . getJSON( ”http :// search . tw i t t e r . com/ search . j son ? ca l l b a ck=?” ,

{ ’ s i n c e i d ’ : from , ’ q ’ : ’ ho l l ande ’ , ’ rpp ’ : ’ 40 ’ , ’ lang ’ : ’ f r ’ } ,
f unc t i on ( tweets ) {

i f ( typeo f ( tweets . r e s u l t s ) !== ’ undef ined ’ ) {
i f ( tweets . r e s u l t s . l ength > 0){

$ . each ( tweets . r e s u l t s , f unc t i on ( ) {
my. tweetsCpt++;
DICE. ee . emit ( ’ d r a f t : : addTweet ’ , t h i s ) ;

} ) ;
}

}
}

setTimeout ( func t i on ( )
{DICE. d r a f t . run ( tweets . max id st r ) ; } , 1 0 0 0 0 ) ;

}

The Twittering Machine identifies every input and output as streams. We
distinguish between the following streams.

– Non mutable streams. Those streams can be both used as input stream
such as the main search twitter stream or as output stream as the internal
console. These streams are mostly either read-only or write-only from the
Twittering Machine perspective.

– Authenticated streams. These streams identify user interactions with
the external system. For instance the Twittering Machine plugin may ex-
press actions such as insert a new follower within a user stream. If the user
validates this action the insertion is authenticated.
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– Internal Streams. These streams mimic an external stream, but for perfor-
mance, security or privacy reasons they are not available outside the Twitter-
ing Machine. For instance, we consider the ’where request’ as a flow of query
units that can be improved with specific tags. This ’request specification’
stream is internally maintained and is not subject to external announcement.

The Twittering Machine manages resources associated to local computations.
Each plugin is dynamically deployed within the machine. At deployment time,
the framework checks compatibilities with the current installed plugins. As soon
as a plugin is validated, the framework monitors its behavior and checks whether
it is compliant with Twitter’s rules, as well as the amounts of memory and CPU
it requires.

The stream SQL like queries describing the plugins are compiled into con-
trol behavioral constraints. Each input and output stream pace is dynamically
bounded and adapted to the current computer load. Each plugin internal mem-
ory is evaluated and adapted when possible to the currently available memory.
Our current target implementation uses the web browser javascript interpreter
as the Twittering Machine runtime. We designed a plugin based framework
that enables dynamic loading and hosting of requests with respect to available
resources.

4 Experiments

We have run experiments on tweets related to the French presidential election.
As we discussed above, there are many systems giving useful trends on the popu-
larity of candidates, which are now widely used together with traditional opinion
polls. They generally extract knowledge from tweets which are essentially seen
as raw data, and are often not included in the output. The Twittering Machine
on the other hand identifies the relevant tweets and the relevant twitterers, and
produces them as output.

Fig. 3. Statistical information displayed

We illustrate its behavior on a simple query searching for the keyword ”Hol-
lande”, the socialist candidate, whose result is shown on Fig. 2. The stream of
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tweets obtained from Twitter’s API is shown as Tweets Draft, while the stream
of tweets obtained from followed twitterers is shown as Tweets Comp. The initial
query was modified dynamically, with the evolution of the stream of keywords of
the query, to which hashtags occurring in the most relevant tweets were added,
in the limits permitted by the API.

Interestingly, the results obtained for other candidates overlapped massively
with one another, for tweets are often comparative. We did not use any se-
mantical or analytical methods, although they could clearly be combined to our
approach, but it is out of the scope of this paper. The Twittering Machine pro-
duces real time statistics on the tweets satisfying the query, which are shown
on Fig. 3. The curve on the left depends upon Twitter’s search API, while the
one on the right depends upon the twitterers followed. Interestingly, the two
curves become very similar with time, showing the relevance of the choices of
the machine.

Among the interesting results that this query allowed to grasp, was the hash-
tag #radioLondres, which was used by twitterers to publish results on the first
round of the election before it was legally allowed in France.

5 Related work

There has been an exponential increase of academic work on techniques to ex-
tract knowledge from the data contained in tweets, while online systems to an-
alyze them have flourished. The simplest systems offer graphical interfaces to
watch the tweets themselves, their numbers, or relative numbers, and their dy-
namics. Semiocast7 for instance produces a daily or monthly ranking of, for
instance, major French politicians on Twitter with associated mood. It harvests
the tweets continuously using queries on a set of keywords that can be updated,
depending upon current affairs or evolving nicknames. It disambiguates them,
and analyses their mood, and produces charts that are easily readable.

Twitter offers also various access to trends, which unlike Google trends, be-
long to the top trends only. They have been graphically organized on maps for
instance with tools such as Trendsmap8 which displays them on the world map.
Apart from France, search for Sarkozy gave (on April 30) results in Jakarta,
Kuala Lumpur and Brisbane, showing the sometimes awkward results of these
tools. An equivalent of Flu Trend [AGL+11] has been developed based on sim-
ilar principle as the one developed by Google. This illustrates the potential of
Twitter whose tweets can be easily accessed, while the search queries on Google
are out of reach of users and used exclusively by Google for commercial purposes.

Many systems rely on complex analysis of tweet data, including statistics,
semantics, etc. This is the main focus of most of the papers of the workshop
devoted to Making Sense of Microposts [RSD12]. Thompson [Tho12] defines a
stochastic model to detect anomalies in streaming communication data that is
applicable to information retrieval in data streams. Some systems also measure

7 http://semiocast.com/barometre_politique
8 http://trendsmap.com/
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the influence, e.g. Klout9, or the value in financial terms of a twitterer, e.g.
Tweetvalue10.

Our aim is to offer the capacity to find relevant tweets on any topic, sat-
isfying any type of queries. Two issues are thus at stake, the query language
and the ranking. Stream queries have attracted a lot of attention in the last ten
years, before their use for social data became important, with SQL like languages
[MWA+03], formalized in [GLdB07]. Markus et al. developed a streaming SQL-
like interface, TweeQL, to the Twitter API [MBB+11a,MBB+11b]. The lan-
guage in the Twittering Machine, differs essentially from TweeQL, for its richer
interactions with Twitter. We also assume that the continuous queries need to
evolve over time. This topic has been considered recently in [ESFT11].

Adaptive indexing mechanisms for tweets have been proposed distinguish-
ing between most frequent query terms [CLOW11]. Ranking is as for other web
data an important issue, which combines content information with graph connec-
tions, and requires a recursive computation. Mechanisms to rank tweets based
on pagerank like techniques have been proposed11. Topic-sensitive ranking algo-
rithm which take users interest into account [Hav03], have been considered for
tweets as well [KF11]. Variants of ranking can be considered in the Twittering
Machine, whose first version implements a simple algorithm computed at query
time. Various notions of relevance have been introduced. Tao et al. [TAHH12]
propose to combine topic independent aspects, such as hashtags, URLs, and
authorities of the twitterers.

6 Conclusion

Extracting knowledge from tweets has attracted considerable interest thanks to
the generous access Twitter gives through its API. Nevertheless, most tweets are
related to notification substance, not always of immediate interest. Identifying
relevant tweets and twitterers on a given topic, and not only for top trends is of
great importance. In this paper we have presented the Twittering Machine which
allows to get tweets according to a ranking, which is computed in a continuous
manner by a query engine which runs a stream SQL like query language.

The Twittering Machine, coded in javascript, runs directly in the Browser.
It requires essentially no server, runs on the client and relies directly on the API
of Twitter. We believe that this server-less approach is extremely promising.
We plan to extend the present machine to allow collaboration between users
interested in similar queries. The objective is to maintain the computation of
queries, by dynamic groups of users, that are organized in a peer to peer fashion,
and contribute to the update of the output stream of the query when they consult
it, much like a torrent. This query torrent, will rely on the cooperation of
peers for the computation of queries, with therefore more computation involved
than file torrents. This approach raises security issues related in particular to
communication between browsers that we are investigating.

9 http://klout.com/home
10 http://tweetvalue.com/
11 http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank/
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