
Model Driven Development with Ada
 Andy Lapping

I-Logix UK Ltd.
Cornbrash Park Bumpers Way

Chippenham
Wiltshire SN14 6RA England

Tel: +44 1249 467 600
andyl@ilogix.com

ABSTRACT
System and software development has become an increasingly
complex science. With so many emerging devices, processors,
systems specification languages, software implementation
languages, and tools for all of these, there needs to be a common
denominator in the development process that brings focus back on
the application. Model-Driven Development (MDD) based on the
UML has emerged as the preferred approach by a growing number
of systems engineers and software developers for addressing this
growing complexity. The UML has proven to be the standard visual
representation language capable of providing both systems and
software teams with a coherent set of interchangeable artefacts that
fully describe an application with rich enough specification to be
able to design and implement it in Ada.
This paper examines the pros and cons of a Model Based Approach,
the problems that might be encountered and some possible
solutions.

Categories and Subject Descriptors
D.3.3 [Programming Languages]:

General Terms
Design, Reliability, Standardization, Languages,

Keywords
Model Driven Development, Ada, Unified Modeling Language,
UML, Process

1. INTRODUCTION
1.1 “You Start Programming … I’ll Find Out
What They Want”
As our applications and systems grow in size and complexity, we are
forced to re-evaluate the way in which we develop. On every
project, we are forced to do more with less.
Applications are many times larger (in terms of lines of code) than
their predecessors. The complexity of applications is growing at a
frightening rate.

And yet, these applications have to run as fast (if not faster) than
before and frequently have to fit in exactly the same space as their
last incarnation. When was the last time you were told “Hey – this
new project – well you can have as much memory as you like and
take all the time you need to make it – no rush!)
With all these problems, re-use of code has become more important
than ever.
Developers are becoming increasingly aware that the old processes
and techniques are just not cutting it any more – something has to
change.

1.2 Don’t Look Down
It has become increasingly clear that it is no longer adequate to
focus solely on the code. For an application to be successful (and by
this I mean it meets all its functional and quality-of-service
requirements, within the time allotted for the project), developers
have to keep in mind the ‘bigger picture’.
Developers are raising their eyes from the code to a higher level of
abstraction. Rather than focussing on the code they are shifting
perspective – they are modelling. In essence they are designing
before they implement!
Modelling a system provides a mechanism for good communication,
and also prepares a design for future enhancement or modification
with the minimum of effort.
The UML has become the industry standard for visual modelling
and has attained unprecedented inter-disciplinary market
penetration. However – many people now view the UML as a
universal panacea, silver bullet, insert-your-own-metaphor-here.
True, when implemented correctly it can provide massive benefits to
the project.
The UML allows the developer to capture a visual model of the
application, allowing him to view it at a higher level of abstraction –
bringing together all the aspects of his project.
Requirements can be captured and expressed in UML.
The essential Design can be captured using UML notation.
BUT it is naïve to think we can forget the target language entirely –
we have to implement this design - eventually we have to get to
code.
BUT! Just because a developer has created a UML model – this
does not mean that the code will be good code; it does not mean that
all the team will create consistent code; it does not even guarantee
that the code produced will actually reflect that model. This is a
huge problem. When the code deviates from the model –then the

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGAda 2004, November 14-18, 2004, Atlanta, Georgia, USA.
Copyright 2004 ACM 1-58113-906-3/04/0011...$5.00.

19

model becomes a ‘step along the way’ rather than an integral part of
the process – it might as well be discarded.
And what about Testing? Can we use the UML to describe tests?
Can these tests be used then to actually test the implementation? Or
must we move away from the UML.
What about legacy code? This ‘un-modelled’ code still suffers from
all the problems we have previously described. Do we accept this
and live with it? Or can we take legacy code and re-express it into a
UML model? Is it worth our time?

1.3 From Design to Implementation (From
Model to Code)
When Ada (83) began its life in 1978 it was (and it could be argued
– still is) a procedural language, although it did contain some of the
concepts of an Object Orientated language (e.g. encapsulation via
packages). The advent of Ada95 introduced more OO concepts, but
Ada is still not a ‘true’ OO language. (Anyone that has tried to
implement a symmetric relation will agree). So how do we map
UML constructs, which are very OO, to Ada concepts? The answer
is of course in the same way that we map the UML to any other
implementation language. With rules.
When implementing a UML model in source code, developers need
rules. Rules that map each UML construct into its coding
equivalent. Rules that dictate coding styles, and coding standards.
Ada is very flexible - the way in which we might implement a UML
model in Ada code is very flexible. If we were working in C++ for
example, the mapping between a UML Class and code is a direct
one. Even in C most people agree that it would be represented by a
struct. But what about in Ada?
Almost everybody (but not everybody) agrees that a class in Ada 95
corresponds to a package containing a main type. In most of the
cases the main type is declared private or with a private extension.
Other types may also be declared within a package specification, but
we refer to them as regular types, used for interfacing purposes or to
define internal data structures.
But is it that obvious? – Do we use Tagged Types? Controlled
Types?
Some Classes should never be tagged – if we are not going to extend
them – why tag them?
If they are tagged and you derive from them, you will have to
overload all their primitive binary operators (such as "+" and "-“)
So do we never tag classes? Obviously not (although some in house
coding standards disagree).
So the way in which we could map each UML construct into Ada is
highly flexible – even for the simplest of constructs. But of course
all developers need to be using the same set of mapping rules.
This is where the concept of Code Generation comes into its own. If
we have enough rules and they are complete and rich enough we can
utilise auto-generation of Ada code from the concepts defined in the
UML model. Imagine a code generator that can automatically
process a UML design and create from it exactly the Ada code the
developer had in mind.

1.4 Considerations for Auto Code Generation
of Ada Code
We have already seen that the translation of a UML model into Ada
code could be achieved in many different ways using just one
‘flavour’ of Ada. What if we wanted Ada83 today and Ada95
tomorrow? Add in the different Ada flavours, e.g. SPARC, the
Ravenscar tasking profile etc and the possibilities become almost
endless. More and more layers of ‘what if?’ – More and more work
for our mapping rules.
Also consider the fact that we must cater for our developers needs –
the model that they create should be rich enough to be capable of
expressing what they had in mind in code. Any set of rules that we
define should be capable of implementing that desire.
Could a static ‘template based’ approach work? Unlikely. Any
solution would have to be dynamic in the way it processed our rule
set and interpreted the UML model. Our solution should be
intelligent, capable of making possibly complex decisions.
What we are talking about is a “transformation engine”. A dynamic
machine that can take a UML metamodel and interpret it using
dynamic, intelligent rules.
How about the rules themselves? How could they be expressed?
Well the UML Metamodel is Object Orientated, so should be the
rules. If our rule set could be expressed using an OO language, then
we could make use of advanced OO concepts like Inheritance and
Polymorphism. We could define a single rule based upon a UML
Classifier that would be inherited by any Classifier e.g. a Class,
Actor or Use Case.

1.5 Reverse Engineering
As we can have a set of rules that govern what UML constructs
should look like in Ada code, so we could also define a set of rules
that govern what Ada code should look like in a UML model. With
such a rule set we have a mechanism for our transformation engine
to reverse engineer our legacy Ada code and re-express it as a UML
model!
A related concept is one of ‘roundtripping’. Once we have a fully
defined rule set for forward generation and an intelligent
transformation engine, we could take the set of rules and ‘invert’
them – or tell the transformation engine to work in reverse. Thus we
could make code level changes to the generated code and have those
changes automatically change the original UML model – keeping
the model and the implementation in synchronisation. This concept
would guarantee that the UML model always reflects the
implementation code.

1.6 “Now I’ve Got To …. Keep Control”
With a fully defined rule set and an intelligent transformation
engine, we have the mechanism for Model Driven Development.
Now comes the question of control. Who owns the rules? Clearly if
we want to maintain consistency of code between team members,
access to the definition of our rule set has to be tightly controlled. It
is in no-ones interest that every developer maintains his own rule
set. With a common rule set, we can be certain that the code
accurately reflects the model. We can be certain that any code
produced by a team of developers would be written in the same way,
the same coding style, the same coding standards, the same
constructs.

20

The idea of Model Driven Development with a common rule set
also provides other advantages. We can employ domain experts for
their domain knowledge rather than their coding skill. Developers
new to Ada can produce ‘expert’ code without being Ada experts.
The true Ada experts would be the ones with the ‘keys to the coding
cabinet’.
Of course the developer must be capable of defining what he wants
in enough detail that the rule-set can comply. There may be times
when a developer wants something very specific in his code, and if
he has no access to the rule-set, he should still be capable of getting
the code he requires (unless there are very good reasons why – e.g.
the company enforcing a particular strategy).
The UML provides a very rich set of concepts for defining models,
and also has built in extension mechanisms that could be utilised to
overcome any perceived ‘shortcomings’ in what the developer wants
to describe.

1.7 Further Advantages
If we can guarantee that our code accurately reflects the model and
is always consistent, then we can use the model for more than just
documentation.

We can use the model to debug the code.
We can use the model to test the code.

1.8 Conclusion
Model Driven Development with Ada has the potential to provide
incalculable benefits to any company that produces Ada code. But
for these benefits to be realised, any Ada code produced must be
consistent with the Model. The implementation MUST accurately
reflect the design. The best way of ensuring this is to generate the
code from the model. But for this to be successful, any code
generation schema we use must be powerful enough to cope with
the specific challenges inherent in translating a UML model into
Ada code. It must be dynamic, it must be intelligent and it must be
capable of ‘roundtripping’ any code changes back into the UML
model.
Given these considerations, Model Driven Development is the
future of Ada projects.

21

