
Quantifying The Cost of Context Switch∗

Chuanpeng Li
Dept. of Computer Science

University of Rochester
cli@cs.rochester.edu

Chen Ding
Dept. of Computer Science

University of Rochester
cding@cs.rochester.edu

Kai Shen
Dept. of Computer Science

University of Rochester
kshen@cs.rochester.edu

ABSTRACT
Measuring the indirect cost of context switch is a challenging
problem. In this paper, we show our results of experimen-
tally quantifying the indirect cost of context switch using a
synthetic workload. Specifically, we measure the impact of
program data size and access stride on context switch cost.
We also demonstrate the potential impact of OS background
interrupt handling on the measurement accuracy. Such im-
pact can be alleviated by using a multi-processor system on
which one processor is employed for context switch measure-
ment while the other runs OS background tasks.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—Measurements;
C.4 [Computer Systems Organization]: Performance of
Systems—Measurement techniques

General Terms
Experimentation, Measurement, Performance

Keywords
Context switch, Cache interference

1. INTRODUCTION
For a multitasking system, context switch refers to the

switching of the CPU from one process or thread to another.
Context switch makes multitasking possible. At the same
time, it causes unavoidable system overhead.

The cost of context switch may come from several as-
pects. The processor registers need to be saved and restored,
the OS kernel code (scheduler) must execute, the TLB en-
tries need to be reloaded, and processor pipeline must be
flushed [2]. These costs are directly associated with almost

∗This work was supported in part by the National Sci-
ence Foundation (NSF) grants CCF-0448413, CNS-0509270,
CNS-0615045, and CCF-0621472.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExpCS, 13-14 June 2007, San Diego, CA
(c) 2007 ACM 978-1-59593-751-3/07/06 ...$5.00.

every context switch in a multitasking system. We call them
direct costs. In addition, context switch leads to cache shar-
ing between multiple processes, which may result in perfor-
mance degradation. This cost varies for different workloads
with different memory access behaviors and for different ar-
chitectures. We call it cache interference cost or indirect
cost of context switch.

The report now proceeds to describe the approach and
result of our measurement on the direct and indirect cost of
context switching.

2. THE MEASUREMENT APPROACH
In previous work, Ousterhout measured the direct cost of

context switch using a benchmark with two processes com-
municating via two pipes [6]. McVoy et al. measured the
cost of context switch between multiple processes using lm-
bench [4]. Based on these traditional methods, we also used
pipe communication to implement frequent context switches
between two processes. We first measure the direct time cost
per context switch (c1) using Ousterhout’s method where
processes make no data access. Then we measure the total
time cost per context switch (c2) when each process allo-
cates and accesses an array of floating-point numbers. Note
that the total cost (c2) includes the indirect cost of restoring
cache state. The indirect cost is estimated as c2 − c1.

2.1 The direct cost per context switch (c1)
Following Ousterhout’s method, we have two processes

repeatedly sending a single-byte message to each other via
two pipes. During each round-trip communication between
the processes, there are two context switches, plus one read
and one write system call in each process. We measure the
time cost of 10,000 round-trip communications (t1).

We use a single process simulating two processes’ com-
munication by sending a single-byte message to itself via
one pipe. Each round-trip of the simulated communication
includes only one read and one write system call. There-
fore, the simulation process does half of the work as the
two communicating processes do except for context switches.
We measure the time cost of 10,000 simulated round-trip
communications (t2), which include no context switch cost.
We get the direct time cost per context switch as c1 =
t1/20000 − t2/10000.

2.2 The total cost per context switch (c2)
The control flow of this test program is similar to that of

section 2.1. However, after each process becomes runnable,
it will access an array of floating-point numbers before it

1

1 2 4 8 16 32 64 128 256 512 1024 2048
0

50

100

150

200

250
Cache size: 512KB

Array size (KB)

C
on

te
xt

 s
w

itc
h

tim
e

(m
ic

ro
 s

ec
)

RMW
Read
Write

Figure 1: The effect of data size on the cost of the context switch

writes a message to the other process and then blocks on
the next read operation. We still have a single process
simulating the two processes’ behavior except for context
switches. The simulation process will do the same amount
of array accesses as each of the two communicating pro-
cesses. Assuming the execution time of 10,000 round-trip
communications between the two test processes is (s1) and
the execution time of 10,000 simulated round-trip commu-
nications (s2), we get the total time cost per context switch
as c2 = s1/20000 − s2/10000.

We change the following two parameters during different
runs of our test.

• Array size: the total data accessed by each process.

• Access stride: the size of the strided access.

2.3 Avoid potential interference
To avoid potential interference from background interrupt

handling of the OS or from other processes in the system, we
use a dual-processor machine for our experiment. Since most
OS interrupt handlers are bound to one default processor,
we assign the communicating processes and the simulation
process in our experiment to the other processor. We also
set up our test processes with real-time scheduling policy
SCHED FIFO and give them the maximum priority. Pre-
sumably, most OS routine tasks and unexpected event han-
dling will not interfere with our measurement. And no other
process can preempt any of our test processes as long as our
process is runnable. Linux system calls sched setaffinity()
and sched setscheduler() are used to effect the design.

2.4 Time measurement
The timer we use is a high resolution timer that relies

on a counting register in the CPU. It measures the time by
counting the number of cycles the CPU has gone through
since startup. When the time length of the measured event
is extremely short, the overhead of the timer itself may cause
some error. Therefore, we measure the cost of a large num-
ber (20,000) of context switches and then report the average
cost.

3. EXPERIMENTAL RESULTS
The machine we use is an IBM eServer with dual 2.0 GHz

Intel Pentium Xeon CPUs. Each processor has 512KB L2

cache and the cache line size is 128B. The operating system
is Linux 2.6.17 kernel with Redhat 9. The compiler is gcc
3.2.2. We do not use any optimization option for compila-
tion.

The average direct context switch cost (c1) in our system
is 3.8 microsecond. The results shown below are about the
total cost per context switch (c2). In general, c2 ranges from
several microseconds to more than one thousand microsec-
onds. The indirect context switch cost can be estimated as
c2 − c1.

In the following subsections, we first discuss effects of data
size and access stride on the cost of context switch. Then
we discuss the effect of experimental environment on mea-
surement accuracy.

3.1 Effect of data size
We show the effect of data size on the cost of context

switch in figure 1. In this experiment, each process sequen-
tially traverses an array of size d (in byte) between context
switches. Each process does a read, write, or read-modify-
write (RMW) operation on each array element.

With the increment of the array size d, the three curves
in figure 1 show similar changing patterns. Each curve falls
into three regions. The first region ranges from array size
1KB to array size about 200KB. In this region, all the curves
are relatively flat, with context switch times ranging from
4.2µs to 8.7µs. This is because the entire dataset of our
benchmark (including the two communicating processes and
the simulation process) can fit into the L2 cache, and the
context switch does not cause any visible cache interference.

The second region ranges from array size 256KB to array
size 512KB. Because the dataset of the simulation process
fits in L2 cache but the combined dataset of the two com-
municating processes does not, the cost of context switch
increases dramatically, from 38.6µs to 203.2µs, with the in-
crement of array size. Upon each context switch, the newly
scheduled process need to refill the L2 cache with its own
data. We believe the additional cost is due to frequent cache
warm-ups. At array size 384KB, the cost starts to differ sig-
nificantly depending on the type of data access. Since the
test program incurs cache misses on contiguous memory lo-
cations, the execution time is mostly bounded by the mem-
ory bandwidth. Data writes consume twice the bandwidth,
hence the cases of RMW and write showing twice the cost

2

32 128 256 384 512 2048
0

500

1000

1500

Array size (KB)

C
on

te
xt

 s
w

itc
h

tim
e

(m
ic

ro
 s

ec
)

Cache size: 512KBstride= 8B

stride= 16B
stride= 32B
stride= 64B
stride=128B

Figure 2: The effect of the access stride on the cost of context switch

as the case of read at the next three array sizes.
The third region starts from the array size 512KB. Here

the dataset for both the communicating processes and the
simulation process is larger than the size of L2 cache. The
cost of context switch is still high compared to the first re-
gion, showing the presence of cache interference. But the
curves do not increase monotonously with the array size.
This is because context switch is not the only reason for
cache misses any more. Since the dataset of each process is
too large to fit in cache, cache misses will happen even when
there is no context switch.

These results show the nonlinear effect of cache sharing.
One may question whether it is proper to count this as part
of the indirect cost of a context switch, because contention
to the cache resource also happens when multiple processors
share the same cache, regardless whether they incur context
switches or not. However, we note that the overhead for a
time-shared cache is not the same as that for a concurrently
shared cache. Take the simple example of two concurrent
processes writing to the same data block. The cost of their
cache interference at each context switch is the re-loading of
the cache block, which is very different from the cost of par-
allel access. In general, the interference manifests as cache
warm-ups in the case of context switch. A number of past
studies have examined this cost in detail including the rela-
tion with the cache size and other parameters, the workload,
and the length of CPU quanta [5, 2, 7, 1]. Further work to
compare time-shared and concurrently shared caches would
be interesting.

3.2 Effect of access stride
We show the effect of access stride on the cost of context

switch in figure 2. In this experiment, each process accesses
an array of floating-point number numbers in a strided pat-
tern. Suppose the access stride size is s. Starting from the
first element, it accesses every s-th element. Then starting
from the second element, it accesses every next s-th element.
The process repeats striding until every element of the ar-
ray is accessed. We show the array access behavior in the
following code.

for (i=0; i<s; i++)

for (j=i; j<array_size; j=j+s)

array[j]++;

If s is 1, the access pattern is actually sequential. Each

process does a read-modify-write operation on each element
of the array. We show results on arrays of size between
32KB and 2MB, which include arrays from all the three
regions described in section 3.1.

For array size of 32KB and 128 KB, since datasets can
fit into cache, there is not much difference for the cost of
context switch when we change the access stride. However,
when the datasets do not fit into cache, the cost of context
switch increases significantly with the increment of the stride
size. When the access stride is 8B, the cost ranges between
44.1µs and 183.8µs with the mean 116.5µs. When the access
stride is 128B, the cost ranges between 133.8µs and 1496.1µs
with the mean 825.3µs. This substantial difference in the
cost of context switch is caused only by the increase in the
access stride. In other words, the data access pattern can
affect the cost of context switch significantly. The reason
is that the stride affects the cost of cache warm-ups in a
similar way it affects program running time. For contiguous
memory access, the hardware prefetching works well, and
the cost is relatively lower than in the case of strided access.

3.3 Effect of experimental environment on mea-
surement accuracy

All the above results are measured on a dual-processor
machine. According to our design, the two communicating
processes are bound to the same processor and they have
the maximum real-time priority. This design aims to avoid
the interference from background interrupt handling or from
other processes in the system. We call it the augmented
design for interfered measurement environment.

We evaluate the effectiveness of this design by compar-
ing the execution time of the two-process communication
program in the following experimental settings.

• dual-processor: The program with our augmented de-
sign runs in the dual-processor environment as de-
scribed in our experiment.

• single-processor: The program without our augmented
design runs in the single-processor environment we cre-
ate on the same machine by disabling multiple-processor
support in the Linux kernel.

We run the programs with 3 different array size in both
settings for 6 times. Assuming the measured results fol-
low a normal distribution, we report the 90% confidence

3

Array size dual-processor single-processor

256KB (242.07, 246.46) (221.00, 226.35)
384KB (462.78, 474.43) (461.80, 474.40)
512KB (614.68, 629.87) (614.69, 634.78)

Table 1: Confidence intervals of the execution time
in a quiet environment

Array size dual-processor single-processor

256KB (237.45, 245.54) (220.72, 263.79)
384KB (459.38, 470.03) (510.91, 555.67)
512KB (623.28, 630.77) (635.75, 683.84)

Table 2: Confidence intervals of the execution time
in the presence of external (network) interference

intervals [3] for the mean of each test. Generally, when the
confidence interval is wide, the results are unstable.

When the machine has nothing else to run and there is
no outside interference, we say it is in a quiet environment.
Table 1 reports confidence intervals of six tests in such a
environment. We can see the width of each confidence in-
terval in the dual-processor setting is similar to the width of
the corresponding confidence interval in the single-processor
setting. This means both settings generate relatively stable
results. The confidence interval boundary values for the
two settings are a little different. This is because the Linux
kernel scheduler code for the two settings is not the same.
Remember that single-processor has the multiple-processor
support disabled in the Linux kernel.

However, in reality, we can not always guarantee our ex-
perimental environment is not interfered. Thus, we simulate
outside interference by sending “ping” packets to the test
machine with a variable waiting intervals (between 0 and
200 milliseconds). We show the confidence intervals in the
interfered environment in table 2. The confidence intervals
obtained from single-processor is much larger than the in-
tervals from dual-processor. This shows the instability of
the results of single-processor in the interfered environment.
Comparing the results of single-processor in table 2 to the
corresponding results in table 1, we can see the measurement
inaccuracy of the single-processor setting in the interfered
environment.

4. SUMMARY
We summarize our observations from the experiment as

follows.

• In general, the indirect cost of context switch ranges
from several microseconds to more than one thousand
microseconds for our workload.

• When the overall data size is larger than cache size,
the overhead of refilling of L2 cache have substantial
impact on the cost of context switch. The cost in-
creases monotonously when the data size increases in
some cases as described in section 3.1.

• When the overall data size is larger than cache size,
the effect of access stride on the cost of context switch

is significant. The larger the stride is, the larger the
cost of context switch is.

• Experimental environment may affect the measurement
accuracy. Our suggested augmented design can help to
avoid the interference from background interrupt han-
dling or from other processes in the system.

5. ACKNOWLEDGMENTS
We wish to thank Linlin Chen for demonstrating how to

to use a statistical analysis package and Trishul Chilimbi
for pointing out a related paper in ACM TOCS. We thank
the anonymous reviewers of the ExpCS workshop and our
colleagues at Rochester in particular Michael Huang and
Michael Scott for their comments on the work and the pre-
sentation.

6. REFERENCES
[1] Anant Agarwal, John L. Hennessy, and Mark Horowitz.

Cache performance of operating system and
multiprogramming workloads. ACM Trans. Comput.
Syst., 6(4):393–431, 1988.

[2] R. Fromm and N. Treuhaft. Revisiting the cache
interference costs of context switching.
http://citeseer.ist.psu.edu/252861.html.

[3] R. Jain. The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation and Modeling. John Wiley &
Sons, 2001.

[4] L. McVoy and C. Staelin. lmbench: Portable Tools for
Performance Analysis. In In Proc. of the USENIX
Annual Technical Conference, pages 279–294, San
Diego, CA, January 1996.

[5] J. C. Mogul and A. Borg. The Effect of Context
Switches on Cache Performance. In In Proc. of the
Fourth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 75–84, Santa Clara, CA, April 1991.

[6] J. K. Ousterhout. Why Aren’t Operating Systems
Getting Faster As Fast As Hardware ? In In Proc. of
the USENIX Summer Conference, pages 247–256,
Anaheim, CA, June 1990.

[7] G. Edward Suh, Srinivas Devadas, and Larry Rudolph.
Analytical cache models with applications to cache
partitioning. In Proceedings of the International
Conference on Supercomputing, pages 1–12, 2001.

4

