ALGORITHMS FOR CONSTRUCTING VORONOI DIAGRAMS

Vera Sacristán

Computational Geometry Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

Naive algorithm

NAIVE ALGORITHM

NAIVE ALGORITHM

For each p_i , construct its Voronoi region $Vor(p_i) = \bigcap_{j \neq i} H_{ij}$.

NAIVE ALGORITHM

For each p_i , construct its Voronoi region $Vor(p_i) = \bigcap_{j \neq i} H_{ij}$.

Inconvenients:

• It can cause inconsistency due to precision problems

NAIVE ALGORITHM

For each p_i , construct its Voronoi region $Vor(p_i) = \bigcap_{j \neq i} H_{ij}$.

Inconvenients:

- It can cause inconsistency due to precision problems
- It does not produce immediate neighborhood information

NAIVE ALGORITHM

For each p_i , construct its Voronoi region $Vor(p_i) = \bigcap_{j \neq i} H_{ij}$.

Inconvenients:

- It can cause inconsistency due to precision problems
- It does not produce immediate neighborhood information
- It runs in $O(n^2 \log n)$ time

NAIVE ALGORITHM

For each p_i , construct its Voronoi region $Vor(p_i) = \bigcap_{j \neq i} H_{ij}$.

Inconvenients:

- It can cause inconsistency due to precision problems
- It does not produce immediate neighborhood information
- It runs in $O(n^2 \log n)$ time

The fact that each Voronoi region, $Vor(p_i)$, is built in optimal $\Theta(n \log n)$ time does not implie that the construction of the entire diagram, Vor(P), requires $\Omega(n^2 \log n)$ time, as we will see.

incremental algorithm

INCREMENTAL ALGORITHM

INCREMENTAL ALGORITHM

Starting with the Voronoi diagram of $\{p_1, \ldots, p_i\}$...

 \dots add point p_{i+1}

Explore all candidates to find the site p_j $(1 \le j \le i)$ closest to p_{i+1} .

... compute its region

Build its boundary starting from bisector $b_{i+1,j}$.

... and prune the initial diagram.

While building the Voronoi region of p_{i+1} , update the DCEL.

INCREMENTAL ALGORITHM

Starting with the Voronoi diagram of $\{p_1, \ldots, p_i\}$...

 \dots add point p_{i+1}

Explore all candidates to find the site p_j $(1 \le j \le i)$ closest to p_{i+1} .

... compute its region

Build its boundary starting from bisector $b_{i+1,j}$.

... and prune the initial diagram.

While building the Voronoi region of p_{i+1} , update the DCEL.

How to update the DCEL

How to update the DCEL

Each time an edge e, generated by p_{i+1} and p_j , intersects a preexistent edge, e', a new vertex v is created and a new edge starts, e + 1. Then, these are the tasks to perform:

- Assign $v_E(e) = v$, $e_N(e) = e'$, $f_L(e) = i + 1$, $f_R(e) = j$
- Create e + 1 and assign $v_B(e + 1) = v$, $e_P(e + 1) = e$
- Delete all edges of the region of p_j , that lie between $v_B(e)$ and $v_E(e)$ in clockwise order
- Update $e(p_j) = e$
- Create v with e(v) = e

How to update the DCEL

Each time an edge e, generated by p_{i+1} and p_j , intersects a preexistent edge, e', a new vertex v is created and a new edge starts, e + 1. Then, these are the tasks to perform:

- Assign $v_E(e) = v$, $e_N(e) = e'$, $f_L(e) = i + 1$, $f_R(e) = j$
- Create e + 1 and assign $v_B(e + 1) = v$, $e_P(e + 1) = e$
- Delete all edges of the region of p_j , that lie between $v_B(e)$ and $v_E(e)$ in clockwise order
- Update $e(p_j) = e$
- Create v with e(v) = e

How to update the DCEL

Each time an edge e, generated by p_{i+1} and p_j , intersects a preexistent edge, e', a new vertex v is created and a new edge starts, e + 1. Then, these are the tasks to perform:

- Assign $v_E(e) = v$, $e_N(e) = e'$, $f_L(e) = i + 1$, $f_R(e) = j$
- Create e + 1 and assign $v_B(e + 1) = v$, $e_P(e + 1) = e$
- Delete all edges of the region of p_j , that lie between $v_B(e)$ and $v_E(e)$ in clockwise order
- Update $e(p_j) = e$
- Create v with e(v) = e

INCREMENTAL ALGORITHM

Starting with the Voronoi diagram of $\{p_1, \ldots, p_i\}$...

 \dots add point p_{i+1}

Explore all candidates to find the site p_j $(1 \le j \le i)$ closest to p_{i+1} .

... compute its region

Build its boundary starting from bisector $b_{i+1,j}$.

... and prune the initial diagram.

While building the Voronoi region of p_{i+1} , update the DCEL.

INCREMENTAL ALGORITHM

Starting with the Voronoi diagram of $\{p_1, \ldots, p_i\}$...

 \dots add point p_{i+1}

Explore all candidates to find the site p_j $(1 \le j \le i)$ closest to p_{i+1} .

... compute its region

Build its boundary starting from bisector $b_{i+1,j}$.

... and prune the initial diagram.

While building the Voronoi region of p_{i+1} , update the DCEL.

Running time: Each step runs in O(i) time, therefore the total running time of the algorithm is $O(n^2)$.

divide and conquer algorithm

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

...consider the Voronoi diagram of the sets R and B...

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

...consider the Voronoi diagram of the sets R and $B\ldots$

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

...consider the Voronoi diagram of the sets R and $B\ldots$

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

...consider the Voronoi diagram of the sets R and $B\ldots$

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

...consider the Voronoi diagram of the sets ${\cal R}$ and ${\cal B}...$

...then the Voronoi diagram of P substantially coincides with the Voronoi diagrams of R and B!

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

...consider the Voronoi diagram of the sets ${\cal R}$ and ${\cal B}...$

...then the Voronoi diagram of P substantially coincides with the Voronoi diagrams of R and B!

In fact, there exists a monotone chain of edges of Vor(P) such that Vor(P) coincides with Vor(R) to the left of the chain, and it coincides with Vor(B) to its right.

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

...consider the Voronoi diagram of the sets R and $B\ldots$

...then the Voronoi diagram of P substantially coincides with the Voronoi diagrams of R and B!

In fact, there exists a monotone chain of edges of Vor(P) such that Vor(P) coincides with Vor(R) to the left of the chain, and it coincides with Vor(B) to its right.

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

...consider the Voronoi diagram of the sets ${\cal R}$ and ${\cal B}...$

...then the Voronoi diagram of P substantially coincides with the Voronoi diagrams of R and B!

In fact, there exists a monotone chain of edges of Vor(P) such that Vor(P) coincides with Vor(R) to the left of the chain, and it coincides with Vor(B) to its right.

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

...consider the Voronoi diagram of the sets ${\cal R}$ and ${\cal B}...$

...then the Voronoi diagram of P substantially coincides with the Voronoi diagrams of R and B!

In fact, there exists a monotone chain of edges of Vor(P) such that Vor(P) coincides with Vor(R) to the left of the chain, and it coincides with Vor(B) to its right.

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

...consider the Voronoi diagram of the sets R and $B\ldots$

...then the Voronoi diagram of P substantially coincides with the Voronoi diagrams of R and B!

In fact, there exists a monotone chain of edges of Vor(P) such that Vor(P) coincides with Vor(R) to the left of the chain, and it coincides with Vor(B) to its right.

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

...consider the Voronoi diagram of the sets R and $B\ldots$

...then the Voronoi diagram of P substantially coincides with the Voronoi diagrams of R and B!

In fact, there exists a monotone chain of edges of Vor(P) such that Vor(P) coincides with Vor(R) to the left of the chain, and it coincides with Vor(B) to its right.

DIVIDE AND CONQUER ALGORITHM

Let P be a set of n points in the plane.

If the points are vertically partitioned into two subsets R and B...

...consider the Voronoi diagram of the sets ${\cal R}$ and ${\cal B}...$

...then the Voronoi diagram of P substantially coincides with the Voronoi diagrams of R and B!

In fact, there exists a monotone chain of edges of Vor(P) such that Vor(P) coincides with Vor(R) to the left of the chain, and it coincides with Vor(B) to its right.

Definition. Let b(R, B) be the set of all edges and vertices of Vor(P) belonging to the common boundary of the regions of some $p_i \in R$ and $p_j \in B$.

Observation 1. The bisector b(R, B) contains two half-lines, belonging to the bisectors b_{ij} of the two "bridges" connecting the convex hulls of R and B.

Definition. Let b(R, B) be the set of all edges and vertices of Vor(P) belonging to the common boundary of the regions of some $p_i \in R$ and $p_j \in B$.

Observation 1. The bisector b(R, B) contains two half-lines, belonging to the bisectors b_{ij} of the two "bridges" connecting the convex hulls of R and B.

Proof. The vertical separation of R and B guarantees the existence of the "bridges", which are the edges of ch(P) connecting a $p_i \in R$ to a $p_j \in B$.

Definition. Let b(R, B) be the set of all edges and vertices of Vor(P) belonging to the common boundary of the regions of some $p_i \in R$ and $p_j \in B$.

Observation 1. The bisector b(R, B) contains two half-lines, belonging to the bisectors b_{ij} of the two "bridges" connecting the convex hulls of R and B.

Observation 2. The bisector b(R, B) is a ymonotone chain leaving the regions of the points $p_i \in R$ to its left and those of $p_j \in B$ to its right.

Definition. Let b(R, B) be the set of all edges and vertices of Vor(P) belonging to the common boundary of the regions of some $p_i \in R$ and $p_j \in B$.

Observation 1. The bisector b(R, B) contains two half-lines, belonging to the bisectors b_{ij} of the two "bridges" connecting the convex hulls of R and B.

Observation 2. The bisector b(R, B) is a ymonotone chain leaving the regions of the points $p_i \in R$ to its left and those of $p_j \in B$ to its right.

Proof. Every edge e_{ij} of b(R, B) must be non-horizontal, and leave $p_i \in R$ to its left and $p_j \in B$ to its right.

Definition. Let b(R, B) be the set of all edges and vertices of Vor(P) belonging to the common boundary of the regions of some $p_i \in R$ and $p_j \in B$.

Observation 1. The bisector b(R, B) contains two half-lines, belonging to the bisectors b_{ij} of the two "bridges" connecting the convex hulls of R and B.

Observation 2. The bisector b(R, B) is a ymonotone chain leaving the regions of the points $p_i \in R$ to its left and those of $p_j \in B$ to its right.

Observation 3. Let π_R and π_B respectively be the regions of the plane located to the left and to the right of b(R, B). Then Vor(P) consists of $Vor(R) \cap \pi_R$, $Vor(B) \cap \pi_B$ and b(R, B).

Definition. Let b(R, B) be the set of all edges and vertices of Vor(P) belonging to the common boundary of the regions of some $p_i \in R$ and $p_j \in B$.

Observation 1. The bisector b(R, B) contains two half-lines, belonging to the bisectors b_{ij} of the two "bridges" connecting the convex hulls of R and B.

Observation 2. The bisector b(R, B) is a ymonotone chain leaving the regions of the points $p_i \in R$ to its left and those of $p_j \in B$ to its right.

Observation 3. Let π_R and π_B respectively be the regions of the plane located to the left and to the right of b(R, B). Then Vor(P) consists of $Vor(R) \cap \pi_R$, $Vor(B) \cap \pi_B$ and b(R, B).

Proof. Let e be an edge of Vor(P):

- If e separates two points of R in Vor(P), then it is (a portion of) the edge separating them in Vor(R). Due to Obs. 2, e cannot belong to π_B .

- If e separates two points of $B\xspace$, the case is analogous.
- If e separates one point of R from one of B, then $e \in b(R, B)$.

DIVIDE AND CONQUER ALGORITHM

1. Sort the points of P by abscissa (only once) and vertically partition P into two subsets R and B, of approximately the same size.

DIVIDE AND CONQUER ALGORITHM

1. Sort the points of P by abscissa (only once) and vertically partition P into two subsets R and B, of approximately the same size.

2. Recursively compute Vor(R) and Vor(B).

DIVIDE AND CONQUER ALGORITHM

1. Sort the points of P by abscissa (only once) and vertically partition P into two subsets R and B, of approximately the same size.

2. Recursively compute Vor(R) and Vor(B).

DIVIDE AND CONQUER ALGORITHM

1. Sort the points of P by abscissa (only once) and vertically partition P into two subsets R and B, of approximately the same size.

2. Recursively compute Vor(R) and Vor(B).

3. Compute the separating chain.

DIVIDE AND CONQUER ALGORITHM

1. Sort the points of P by abscissa (only once) and vertically partition P into two subsets R and B, of approximately the same size.

2. Recursively compute Vor(R) and Vor(B).

3. Compute the separating chain.

4. Prune the portion of Vor(R) lying to the right of the chain and the portion of Vor(B) lying to its left.

DIVIDE AND CONQUER ALGORITHM

1. Sort the points of P by abscissa (only once) and vertically partition P into two subsets R and B, of approximately the same size.

2. Recursively compute Vor(R) and Vor(B).

3. Compute the separating chain.

4. Prune the portion of Vor(R) lying to the right of the chain and the portion of Vor(B) lying to its left.

DIVIDE AND CONQUER ALGORITHM

1. Sort the points of P by abscissa (only once) and vertically partition P into two subsets R and B, of approximately the same size.

2. Recursively compute Vor(R) and Vor(B).

3. Compute the separating chain.

4. Prune the portion of Vor(R) lying to the right of the chain and the portion of Vor(B) lying to its left.

How to compute the chain?

How to compute the chain?

Initialization

Find the two halflines

How to compute the chain?

Initialization

Find the two halflines

How to compute the chain?

Initialization

Find the two halflines

How to compute the chain?

Initialization

Find the two halflines

How to compute the chain?

Initialization

Find the two halflines

How to compute the chain?

Initialization

Find the two halflines

How to compute the chain?

Initialization

Find the two halflines

How to compute the chain?

Initialization

Find the two halflines

How to compute the chain?

Initialization

Find the two halflines

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

Each time an edge $e \in b(R, B)$ begins, such that $e \subset b_{ij}$, $p_i \in R$ and $p_j \in B$, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

Each time an edge $e \in b(R, B)$ begins, such that $e \subset b_{ij}$, $p_i \in R$ and $p_j \in B$, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge
How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

Each time an edge $e \in b(R, B)$ begins, such that $e \subset b_{ij}$, $p_i \in R$ and $p_j \in B$, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

Each time an edge $e \in b(R, B)$ begins, such that $e \subset b_{ij}$, $p_i \in R$ and $p_j \in B$, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

Each time an edge $e \in b(R, B)$ begins, such that $e \subset b_{ij}$, $p_i \in R$ and $p_j \in B$, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

Each time an edge $e \in b(R, B)$ begins, such that $e \subset b_{ij}$, $p_i \in R$ and $p_j \in B$, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

Each time an edge $e \in b(R, B)$ begins, such that $e \subset b_{ij}$, $p_i \in R$ and $p_j \in B$, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

Each time an edge $e \in b(R, B)$ begins, such that $e \subset b_{ij}$, $p_i \in R$ and $p_j \in B$, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization

Find the two halflines

Advance

Starting with one of the halflines, and until getting to the other one, do:

- Detect its intersection with $Vor_R(p_i)$
- Detect its intersection with $Vor_B(p_j)$
- Choose the first of the two intersection points
- Detect the site p_k corresponding to the new starting region
- Replace p_i or p_j (as required) by p_k
- Restart with the new edge

How to compute the chain?

Initialization running time: O(n)

How to compute the chain?

Initialization running time: O(n)

From Vor(R) and Vor(B).

How to compute the chain?

Initialization running time: O(n)

Advance running time: O(n)

How to compute the chain?

Initialization running time: O(n)

Advance running time: O(n)

If e is an edge of b(R, B) that entered $Vor_R(p_i)$ through some vertex $v \in Vor(P)$, then the exit point of b(R, B) is found clockwise along the boundary of $Vor_R(p_i)$.

How to do the merging?

How to do the merging?

It consists in updating the DCEL:

How to do the merging?

It consists in updating the DCEL:

Each time a face $Vor_B(p_i)$ is left through an edge $e' \in b_{ij}$, while staying in the same face $Vor_R(p_k)$, a new vertex v is created, an edge e ends and another edge e + 1 begins:

- Create e+1 and assign to it $v_B = v$ and $e_P = e'$
- Assign to $e: v_E = v$, $e_N = e + 1$, $f_L = i$ and $f_R = k$
- Modify for e': $v_* = v$, $e_* = e + 1$
- Delete all edges of $Vor_B(p_k)$ found in counterclockwise order between the entry and exit points
- Update $e(p_i) = e$
- Create the new vertex v and assign e(v)=e

The procedure is analogous when exiting a face $Vor_R(p_i)$.

DIVIDE AND CONQUER ALGORITHM

1. Sort the points of P by abscissa (only once) and vertically partition P into two subsets R and B, of approximately the same size.

2. Recursively compute Vor(R) and Vor(B).

3. Compute the separating chain.

4. Prune the portion of Vor(R) lying to the right of the chain and the portion of Vor(B) lying to its left.

The total running time of the algorithm is $O(n\log n)$

DIVIDE AND CONQUER ALGORITHM

1. Sort the points of P by abscissa (only once) and vertically partition P into two subsets R and B, of approximately the same size.

2. Recursively compute Vor(R) and Vor(B).

3. Compute the separating chain.

4. Prune the portion of Vor(R) lying to the right of the chain and the portion of Vor(B) lying to its left.

The total running time of the algorithm is $O(n\log n)$

This running time is optimal, because ch(P) can be computed from Vor(P) in O(n) time.

DIVIDE AND CONQUER ALGORITHM

1. Sort the points of P by abscissa (only once) and vertically partition P into two subsets R and B, of approximately the same size.

2. Recursively compute Vor(R) and Vor(B).

3. Compute the separating chain.

4. Prune the portion of Vor(R) lying to the right of the chain and the portion of Vor(B) lying to its left.

The total running time of the algorithm is $O(n\log n)$

This running time is optimal, because ch(P) can be computed from Vor(P) in O(n) time.

OTHER ALGORITHMS

There exist other algorithms with the same running time:

- Fortune's Algorithm (sweep)
- 3D projection algorithm