

The nanoworld of IC manufacturing:

smaller, faster, and more accurate

Patrick de Jager Director New Business

22 January 2014

Agenda

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

Slide 3 22 January 2014

Agenda

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

ASML

Public

Slide 4 22 January 2014

Slide 5 22 January 2014

More than 180 billion chips are made every year IC units, in billions

In 2012, 185 billion chips were produced — 27 for every man, woman and child on the planet.

Global semiconductor industry sales were about \$300 billion.

Data: WSTS

> 100% CAGR since 1990

Confidential

Slide 6

Content consumption drives traffic growth > 100% CAGR since 1990

ASML

Confidential

Slide 7

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Confidential

Slide 8

Content consumption drives traffic growth

> 100% CAGR since 1990

Source: Pieter Vorenkamp, Broadcom, IMEC Technology Forum, may 2012

Confidential

Slide 9

Market driven by mobile devices and Solid State Drives Mobile drives cloud, cloud drives infrastructure, driving servers and SSD

Bob Johnson, Gartner, ISS jan 2012

A chip up close: smallest details <20nm

Hair: 50.000nm Grows 8nm/sec

Red bloodcell: 7,500nm

Bacteria: 800 to 1,000nm

Grass grows: 33nm/sec

ASML

Rino virus: 20nm

Slide 11 22 January 2014

Agenda

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

ASML makes the machines for making those chips

Public

Slide 12 22 January 2014

- Lithography is the critical tool for producing chips
- All of the world's top chip makers are our customers
- 2013 sales: €5.2 bln
- Payroll: about 10,400 FTEs

Slide 13 22 January 2014

Over 70 sales and service offices located worldwide

Source: ASML Q4 2013

ASML

Public

Slide 14 22 Januar!2014

Veldhoven

Chandler (AZ)

ASML

Public

Slide 15 22 January 2014

Taiwan

Slide 16 22 Januar!2014

Technology Collaboration Award

Preferred Quality Supplier Award

'Good Partner' Award

For the 10th consecutive year, top five of VLSI's "Best Wafer Processing" suppliers

Source: Gartner, Q4 2013

Slide 17 22 January 2014

Agenda

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

ASML

Public

Slide 18 22 January 2014

Numbers have been rounded for readers' convenience

Slide 19 22 January 2014

Net system sales breakdown in value: Q4 2013

Total value is € 1,441 million

Numbers have been rounded for readers' convenience

Slide 20 22 January 2014

Agenda

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

The amount of transistors per given area doubles every 2 years at similar cost

The industry is sustained by the need to make cheaper, smaller ICs that do more

Factories and tools are more

expensive, but:

Transistors can be made faster and more economical, so:

Electronics becomes cheaper, or has more functionality for the same price

ASML

Public

Slide 21

ASML

Public

Slide 22 22 January 2014

Driving the semiconductor industry: Moore's Law

Fig. 2 Number of components per Integrated function for minimum cost per component extrapolated vs time.

Gordon Moore (1965): Number of transistors per chip doubles every year.

Later adjusted to two years, the trend has held for more than four decades.

ASML

Public

Slide 23 22 January 2014

Source: Gartner. High quality Flash

... and more energy-efficient

Computations per Kilowatt hour double every 1.5 years

Source: Jonathan Koomey, Lawrence Berkeley National Laboratory and Stanford University, 2009

ASML

Public

Slide 24 22 January 2014

Slide 25 22 January 2014

Moore's Law means doing more with less

Cray 1: The first supercomputer

- 8 megabytes of memory
- 5.5 tons
- 150 kilowatt power supply
- "Innovative Freon cooling system"
- \$8.8 million (\$30 million in today's dollars)

ASML

Public

Slide 26 16 October 2013

Slide 27 22 January 2014

Agenda

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

Key to Moore's Law: Making smaller transistors

Public

Slide 28 22 January 2014

The first integrated circuit on silicon, on a wafer the size of a fingernail (Fairchild Semiconductor, 1959)

Today: More than a billion transistors on the same area (Intel, 2012)

Slide 29 19 July 2012

The manufacturing loop

How a lithography system works

ASML

Public

Slide 30 19 July 2012

ASML

Keeping up with Moore's Law

Slide 31 22 January 2014

PAS 2500

ASML's first successful stepper, 1986

NXT:1970Ci

First shipped in Q3 2013

Keeping up with Moore's Law

ASML

Public Slide 32

22 January 2014

PAS 2500

ASML's first successful stepper, 1986

NXT:1970Ci

First shipped in Q3 2013

Public Slide 33 22 January 2014

Resolution: 38 nanometers

250 wafers per hour (300 mm wafers)

Overlay: As little as 2 nanometer ASML NXT: 1970cl

PAS 2500

ASML's first successful stepper, 1986

NXT:1970Ci

First shipped in Q3 2013

Keeping up with Moore's Law requires constant technology upgrades

Public

Slide 34 22 January 2014

- Single Exposure
- △ 1D SADP
- ♦ 1D SAQP

LE = Litho-Etch, n = number of iterations SADP = Self Aligned Double Patterning SAQP = Self Aligned Quadruple Patternii

* Note: Process development 1.5 ~ 2 years in

Slide 35 22 January 2014

Agenda

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

Side 3

The challenge of ASML engineers

- Make small structures that are all equal within nanometers
- Do that lightning fast
- And put 30 to 40 layers on top of each other within nanometers

AND all at the same time!

The basic rule of lithography

Public slide 37

John William Strutt, lord Rayleigh

Resolution:

$$R = \frac{k_1}{NA}$$

Numerical aperture:

$$NA = n \sin(\Theta)$$

State of the art in production

Smallest feature: 38nmWavelength: 193nmIncrease NA: 1.35

• k1: 0.265

Key innovation: TWINSCAN

ASML

Public

Slide 38 22 January 2014

Slide 39 22 January 2014

Agenda

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

High R&D spending to sustain technology leadership

Confidential

Slide 40

1984: **PAS 2000**

Resolution:>1µm overlay: 250 nm

1989: **PAS 5000**

Resolution: <500 nm overlay: 100 nm

1990s:

PAS 5500 (step/scan)

Resolution: 400 to 90 nm overlay: 100 to 12 nm

2000s:

TWINSCAN

Resolution: 100 to 38 nm overlay: 20 to 2 nm

2010s:

NXE EUV systems

Resolution: 32 to <18 nm overlay: <3 nm

Slide 41

Slide 42 22 January 2014

ASML