

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

Agenda

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

It's hard to imagine a world without chips

Public

More than 180 billion chips are made every year
IC units, in billions

Data: WSTS

Content consumption drives traffic growth > 100\% CAGR since 1990

Content consumption drives traffic growth > 100\% CAGR since 1990

ASML

Content consumption drives traffic growth > 100\% CAGR since 1990

19901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015
Source: Pieter Vorenkamp, Broadcom, IMEC Technology Forum, may 2012

Market driven by mobile devices and Solid State Drives
Mobile drives cloud, cloud drives infrastructure, driving servers and SSD

Bob Johnson, Gartner, ISS jan 2012

A chip up close: smallest details <20nm

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

- Lithography is the critical tool for producing chips
- All of the world's top chip makers are our customers
- 2013 sales: €5.2 bln
- Payroll: about 10,400 FTEs

Founded in 1984 as a spin-off from Philips

Slide 13 22 January 2014

Over 70 sales and service offices located worldwide

Wilton (CT)

Chandler (AZ)

Veldhoven

A market of 12 large ASML customers

Technology Collaboration Award

Preferred
Quality Supplier Award

TOSHIBA
'Good Partner' Award

For the $10^{\text {th }}$ consecutive year, top five of VLSI's "Best Wafer Processing" suppliers

Source: Gartner, Q4 2013

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

Total net sales M€

Numbers have been rounded for readers' convenience

Net system sales breakdown in value: Q4 2013
Total value is $€ 1,441$ million

Numbers have been rounded for readers' convenience

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

Moore's Law:

The amount of transistors per given area doubles every 2 years at similar cost

The industry is sustained by the need to make cheaper, smaller ICs that do more

Fig. 2 Number of components per tntegrated function for minimam cost per component extrapolated va time.

Gordon Moore (1965):
Number of transistors per chip doubles every year.
Later adjusted to two years, the trend has held for more than four decades.

[^0]... and more energy-efficient
Computations per Kilowatt hour double every 1.5 years

ASML
Public
Slide 24

[^1]Moore's Law means doing more with less

Public
Slide 25

1976

Cray 1: The first supercomputer

- 8 megabytes of memory
- 5.5 tons
- 150 kilowatt power supply
- "Innovative Freon cooling system"
- $\$ 8.8$ million ($\$ 30$ million in today's dollars)

Moore's Law means doing more with less

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

Key to Moore's Law: Making smaller transistors

The first integrated circuit on silicon, on a wafer the size of a fingernail
(Fairchild Semiconductor, 1959)

Today: More than a billion transistors on the same area
(Intel, 2012)

The manufacturing loop

PAS 2500
ASML's first successful stepper, 1986

NXT:1970Ci
First shipped in Q3 2013

Keeping up with Moore's Law

Public Slide 32

PAS 2500
ASML's first successful stepper, 1986

NXT:1970Ci

First shipped in Q3 2013

Keeping up with Moore's Law

PAS 2500
ASML's first successful stepper, 1986

NXT:1970Ci
First shipped in Q3 2013

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

The challenge of ASML engineers

Make small structures that are all equal within nanometers
Do that lightning fast
7. And put 30 to 40 layers on top of each other within nanometers

AND all at the same time!

The basic rule of lithography

John William Strutt, Iord Rayleigh
Resolution:
$R=k_{1} \frac{\lambda}{N A}$
Numerical aperture:

$$
N A=n \sin (\Theta)
$$

State of the art in production

- Smallest feature: 38nm
- Wavelength: 193nm
- Increase NA: 1.35
-k1:
0.265

Key innovation: TWINSCAN

ASML

Public

Slide 38

Agenda

- Chips are everywhere
- Introducing ASML
- Business update
- ASML's place in the industry
- Lithography, the driving force behind Moore's Law
- Technology
- How do we do it?

High R\&D spending to sustain technology leadership

Great people in an integrated supply chain

Open Innovation makes complexity and cost manageable

ASML

[^0]: Source: Gartner. High quality Flash

[^1]: Source: Jonathan Koomey, Lawrence Berkeley National Laboratory and Stanford University, 2009

