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1 Introduction

The purpose of these notes is to give the reader a rough idea about the trace
formula and its applications. The trace formula was introduced by Selberg in
his seminal work [Sel56]. Selberg mostly developed the trace formula for quo-
tients of the hyperbolic plane by a Fuchsian group Γ of the first kind (both in the
co-compact and the non co-compact case). One of his original motivations and ap-
plications was to show the existence of Maass forms with respect to Γ = SL(2,Z).
It was subsequently vastly generalized by Arthur in the context of adelic quotients
G(F )\G(A) of a reductive group G over a number field F . Arthur’s main driving
force was the functoriality conjectures of Langlands. See [Gel] and [Art03] for
more information about this.

Selberg’s trace formula is a far reaching non-commutative generalization of
the Poisson summation formula. It underlines a duality between geometric and
spectral objects. Such a duality appears in other (not unrelated) contexts as well.
For example the Lefschetz fixed-point theorem, in its various contexts, establishes
a duality between fixed points and cohomology. This is a crucial ingredient in
Grothendieck’s approach, completed by Deligne, for the proof of the Weil con-
jectures ([FK88]). Another instance is Weil’s explicit formula which, following
Riemann, establishes in a precise way a duality between prime numbers and zeros
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of the Riemann zeta function. An intimate connection between Weil’s explicit
formula and the Selberg trace formula plays a dominant role in a relatively re-
cent approach of Connes towards the Riemann Hypothesis ([Con99a], [Con99b],
[Con00]; see also [Hej76a], [Gol89].) Other contexts of the trace formula include a
discrete analogue by Terras ([Ter04], [Ter99]) and a guise in Mathematical Physics
called the Gutzwiller trace formula ([Uri00], [Gut97], [Gut86]). An interesting
connection between the Selberg trace formula and the L2-index Theorem appears
in the work of Stanton-Moscovici ([MS91], [MS89], [MS]). Finally, there is also the
topological trace formula of Goresky-MacPherson [GM03].

Our goal in these notes is not to develop the trace formula from scratch, or
even to discuss its derivation in any serious way, but rather to indicate what kind of
problems the trace formula is suitable for. We will try to illustrate the techniques
on several examples and along the way discuss the necessary background in various
degrees of detail. For the interested reader we provide further references for a more
in-depth discussion of the topics which are only mentioned here briefly.

There are already a number of excellent survey articles on the Arthur-Selberg
trace formula. The most comprehensive one is a recent treatise by Arthur himself
[Art05]. The present notes can hopefully serve as a preparation for [loc. cit.]. Addi-
tional sources include Gelbart [Gel96], Jacquet [Jac86], Knapp-Rogawski [KR97],
Knightly-Li [KL06b], Konno [Kon00], Labesse [Lab86], Lai [Lai92], Langlands
[Lan01], Shokranian [Sho92] and Tamagawa [Tam60]. The trace formula is also
discussed in conjunction with other topics in Bump [Bum03], Gelbart [Gel75],
Iwaniec [Iwa02], Langlands [Lan89], Terras [Ter85] and Venkov [Ven90]. For some
survey articles on the relative trace formula we refer the reader to [Jac05a], [Jac97],
[Lai88], [Lap06a].

I would like to thank Yakov Varshavsky for his help in explaining to me some
of the material of §10.5 and Andrew Knightly for helpful remarks.

2 Poisson summation formula

Let us start with a very familiar case. Let f be a Schwartz function on R. (In fact,
it is sufficient to require that f is twice continuously differentiable and f, f ′, f ′′ ∈
L1(R).) Let R(f) be the convolution operator on L2(T) = L2(Z\R). We can write
it as an integral operator in the following way

R(f)ϕ(x) =
∫

R
f(y)ϕ(x + y) dy =

∫

R
f(y − x)ϕ(y) dy

=
∫

T

∑

n∈Z
f(y + n− x)ϕ(y) dy =

∫

T
Kf (x, y)ϕ(y) dy

where Kf (x, y) =
∑

n∈Z f(y + n − x) ∈ C∞((Z\R)2). We can compute the trace
of R(f) in two ways. On the one hand,

trR(f) =
∫

T
Kf (x, x) dx =

∑

n∈Z
f(n).
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On the other hand, we can diagonalize R(f) using the orthonormal basis en =
e2πin·, n ∈ Z. In fact, R(f)en = f̂(n)en. Therefore trR(f) =

∑
n∈Z f̂(n). Alto-

gether,
∑

n∈Z
f(n) =

∑

n∈Z
f̂(n).

The Poisson summation formula admits very many applications. We will only
describe a typical one. Taking the dilation of f by x we get

∑

n∈Z
f

(n

x

)
= x

∑

n∈Z
f̂(nx).

If all the derivatives of f are in L1(R) (for example, if f is a Schwartz function)
then f̂ is rapidly decreasing and we get

1
x

∑

n∈Z
f

(n

x

)
=

∫

R
f(y) dy + O(x−N ) (1)

for all N > 0. Thus, the Riemann sum on the left-hand side is an extremely good
approximation for the integral of f .

3 The hyperbolic plane

We refer to [Iwa02] and [Ter85] for a more elaborate discussion. Let

H = {x + iy : y > 0}

be the upper half-plane. The group G = SL(2,R) acts transitively by Möbius
transformations (

a b
c d

)
z =

az + b

cz + d
.

The stabilizer of the point i is K = SO(2) and therefore we can identify H with
G/K = SL(2,R)/SO(2).

The space H is a Riemannian manifold with the metric ds2 = dx2+dy2

y2 , and
volume form dx dy

y2 . The effect of the factor y2 in the denominator is dramatic:
under this metric H is of constant negative curvature, and its geometry is very
different from the Euclidean one. The metric and the volume form defined above
are invariant under the action of G. The Laplacian of H is the second order
differential operator given by

∆ = y2(
∂2

∂x2
+

∂2

∂y2
).

It is negative-definite and commutes with the action of G. In fact, any differential
operator on H which commutes with the G-action is a polynomial in ∆.
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3.1 Spectral analysis on H
Just like for the Euclidean plane, one can write down a basis of eigenfunctions
for ∆ and obtain a rather explicit spectral decomposition with respect to this
basis. In fact, there are (at least) two natural ways to do it, corresponding to the
rectangular and polar coordinates of H. One solves the partial differential equation
∆f + λf = 0 by separating the variables. The rectangular coordinates give rise to
the solutions

Ws(z) =
√

yKs(2πy)e2πix, s ∈ C
where Ks is the Bessel function. More precisely, Ws is an eigenfunction for ∆ with
λ = 1

4 − s2. Similarly, Ws(rz), r > 0. Any f ∈ C∞c (H) can be expanded as

f(z) =
1
2π

∫ ∞

0

∫ ∞

0

(f,Wit(r·))HWit(rz)t sinhπt dt
dr

r
.

The polar coordinates give rise to an alternative expansion

f(z) =
∑

m∈Z

∫ ∞

0

(f, Um
it )Um

it (z)t tanhπt dt

where the Um
s are given in terms of Legendre functions. This is especially useful

when f is K-invariant, that is, it depends only on ρ(z, i), where ρ is the hyperbolic
distance. In this case only the term m = 0 appears.

Suppose that Γ is a discrete subgroup (say, torsion-free) of G which is co-
compact in H. (That is, Γ is a uniform lattice in G.) Let X be the quotient space
Γ\H. It is called a compact hyperbolic surface. By the uniformization theorem
for surfaces, the hyperbolic surfaces are precisely the compact Riemann surfaces
of genus > 1. The Laplacian ∆ on H descends to X, being invariant under G.
However, in contrast to H, the (unbounded) operator ∆ has pure point spectrum
on X, since X is compact. How to analyze its spectrum?

The problem is that it is very difficult to write down eigenfunctions explicitly.
A natural procedure would be to average an eigenfunction of H over Γ. However,
this will rarely converge. Even when it does, it may be very difficult to show that
it is not zero!

Nevertheless, one can show that eigenfunctions do exist and give a precise
asymptotics for their number. In fact, this is known in great generality (for
any compact Riemannian manifold and any elliptic differential (or even pseudo-
differential) operator) – see [Hör68].

We will outline a proof of this fact using the trace formula, which we introduce
next.

4 Selberg’s trace formula – Group theoretic
formulation

Let G be any locally compact group and Γ a uniform lattice in G. (In particular,
G is unimodular.) Let R be the regular representation of G on L2(Γ\G)

[R(g)φ](x) = φ(xg) g ∈ G, x ∈ Γ\G.
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We can extend R to bounded measures on G. In particular, fixing a Haar mea-
sure dg on G we define a representation of the algebra L1(G) (with respect to
convolution) by

R(f)φ(x) =
∫

G

f(g)φ(xg) dg =
∫

G

f(x−1g)φ(g) dg.

Suppose that f ∈ C∞c (G). By splitting the integral, we can write

R(f)φ(x) =
∫

Γ\G

∑

γ∈Γ

f(x−1γg)φ(g) dg =
∫

Γ\G
Kf (x, y)φ(y) dy.

Thus, R(f) is an integral operator with smooth kernel

Kf (x, y) =
∑

γ∈Γ

f(x−1γy). (2)

In particular, R(f) is trace class (X is compact!) and we can compute its trace in
two ways. First we can write

trR(f) =
∫

Γ\G
Kf (x, x) dx =

∫

Γ\G

∑

γ∈Γ

f(x−1γx) dx.

We can break the sum over γ into conjugacy classes of Γ. The conjugacy class

[γ] = {δ−1γδ : δ ∈ Γγ\Γ}

where Γγ is the centralizer of γ in Γ contributes
∫

Γ\G

∑

δ∈Γγ\Γ
f(x−1δ−1γδx) dx =

∫

Γγ\G
f(x−1γx) dx = vol(Γγ\Gγ)I(γ, f)

where I(γ, f) is the orbital integral

I(γ, f) =
∫

Gγ\G
f(x−1γx) dx.

Note that Γγ is a uniform lattice in Gγ (exercise). All in all,

trR(f) =
∑

[γ]

vol(Γγ\Gγ)I(γ, f).

Alternatively, we can compute trR(f) by recalling that according to a re-
sult due to Gelfand, Graev and Piatetski-Shapiro, L2(Γ\G) decomposes discretely
into a direct sum of irreducible representations of G, each occurring with finite
multiplicity ([GGPS90]). Thus,

trR(f) =
∑

π∈Ĝ

m(π) tr π(f)
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where Ĝ is the unitary dual of G, m(π) is the multiplicity of π in L2(Γ\G) and
trπ(f) is the trace of the operator

∫
G

f(x)π(x) dx in the space of π.
Comparing the two we obtain the trace formula equality

∑

{γ}
vol(Γγ\Gγ)I(γ, f) =

∑

π∈Ĝ

m(π) tr π(f)

underlying the duality between conjugacy classes and irreducible representations.
Note that in the left-hand (geometric) side the first factor depends on Γ but

not on f while the second depends on f but not on Γ. Similarly for the right-hand
(spectral) side.

The distributions I(γ, f) and trπ(f) are invariant in the sense that they
vanish on any commutator (with respect to convolution); alternatively, they are
invariant under conjugation of f by an element of G.

5 Geometric interpretation

To make the trace formula useful we have to understand the relation between
the invariant distributions I(γ, f) and trπ(f), and to cast them in differential
geometric terms.

We specialize to the case G = SL(2,R). We first recall the well-known clas-
sification of the irreducible representations of G. (See [HT92] for more details and
beautiful applications of the representation theory of SL(2,R).) Recall that there
is a unique irreducible representation of G of dimension n for n = 1, 2, . . . namely
the symmetric n − 1 power Symn−1 of the standard two-dimensional represen-
tation. Consider the representation of G on the space of (smooth) functions on
R2 \ {0} (with G acting on the right). This representation is far from irreducible.
In fact, for any (not necessarily unitary) character χ of R∗ we can consider the
subspace πχ of those functions such that f((rx, ry)) = (χ(r)|r|)−1f((x, y)) for all
r ∈ R∗. (The factor |r| is a convenient normalization factor.) It turns out that
the πχ’s completely describe the irreducible representations of G. The characters
of R∗ are of the form χ(r) = |r|s or |r|s sgn r where sgn denotes the signum
function. Since πχ and πχ−1 have the same character it is enough to consider
the case Re(s) > 0. The representation πχ is irreducible unless χ is one of the
characters χn(r) = rnsgn(r), n ∈ Z. For χ = χn, n > 0 the representation πχ

has length three (two if n = 0), namely it has a unique irreducible quotient (for
n 6= 0), equivalent to Symn−1, and two inequivalent irreducible subrepresentations
π±n . Conversely, if π is an irreducible representations of G then exactly one of the
following holds

1. π is of finite dimension n, in which case it is equivalent to the irreducible
quotient Symn−1 of πχn , or,

2. π is equivalent to πχ, χ 6= χn, n ∈ Z; χ is uniquely determined up to taking
inverse, or,

3. π is equivalent to π±n for a unique n ∈ Z>0 and sign ±.
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Note that the finite-dimensional representations of G (except for the 1-dimensional
one) are not unitarizable. For any s ∈ C the representation π|·|s admits a unique
irreducible subquotient πs which has a vector fixed under SO(2), and such a vector
(called spherical vector) is unique up to scalar. In fact, πs = π|·|s unless s is an odd
integer, in which case πs ' Sym|s|−1. Note that πs ' πs′ if and only if s = ±s′.
Moreover, πs is unitarizable if and only if s ∈ iR ∪ [−1, 1]. The representations
π±n , n ∈ Z>0 are exactly the irreducible subrepresentations of L2(G). They are
therefore unitarizable and constitute the discrete series of G. (The representations
π±0 are sometimes called limits of discrete series. They are also unitarizable.)

To tie the representation theoretic context to our previous discussion we note
that eigenfunctions of the Laplacian on X with eigenvalue (1−s2)/4 correspond to
isometric embeddings of πs in L2(Γ\G). This is a simple application of Frobenius
reciprocity, together with the fact that the action of ∆ corresponds to the action
of the Casimir element (the generator of the center of the universal enveloping
algebra) on the spherical vector. Thus the multiplicity of (1 − s2)/4 is exactly
m(πs).

Suppose that f ∈ C∞c (G//K), that is f is bi-K-invariant. We can think of
f as a K-invariant compactly supported function on H. As such it depends only
on ρ(·, i). On the spectral side trπ(f) is non-zero only if π = πs for some s ∈ C.
In fact, trπ(f) is simply the scalar by which π(f) acts on the spherical vector.

Let A =
{(

t 0
0 t−1

)
: t > 0

}
be the subgroup of positive diagonal elements

and N =
{(

1 x
0 1

)
: x ∈ R

}
. Then NA is an index two subgroup of the group of

upper triangular matrices and G = NAK (Gram-Schmidt). We define the Abel
transform of f by

A(f)(t) =
∫

R
f

((
et/2 x
0 e−t/2

))
dx.

This is closely related to the hyperbolic orbital integral of f . In fact, by a change
of variable and the NAK decomposition we have for t 6= 0

A(f)(2t) = |et − e−t|
∫

N

f

(
n−1

(
et 0
0 e−t

)
n

)
dn

= |et − e−t|
∫

T\G
f

(
g−1

(
et 0
0 e−t

)
g

)
dg

= |et − e−t|I
((

et 0
0 e−t

)
, f

)
.

It turns out that A is an isomorphism of algebras between C∞c (G//K) and
C∞c (R)even. We can recover f from its Abel transform h (or rather, from the
Fourier transform ĥ of h) by the Plancherel inversion formula

f(e) =
∫

R
ĥ(r)r tanh r dr.

Moreover, it is easy to see from the polar decomposition G = KAK that ĥ(r) =
trπ2ir(f).
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Finally, the non-trivial conjugacy classes in Γ exactly correspond to the closed
geodesics in Γ\X. (Since Γ was assumed to be torsion free, all conjugacy classes

are hyperbolic.) If γ is conjugate to
(

et/2 0
0 e−t/2

)
then the length l(γ) of the

corresponding closed geodesic is t. Moreover, vol(Γγ\Gγ) = log(l(γ0)) where γ =
γk
0 , γ0 ∈ Γ and k is maximal with respect to this property (i.e., γ0 is primitive).

Altogether, Selberg’s trace formula takes the form

∑
ĥ(rn) =

Area(Γ\H)
2π

∫

R
ĥ(r)r tanh(πr) dr +

∑ log l(γ0)
el(γ)/2 − e−l(γ)/2

h(l(γ))

where on the left-hand side 1
4 + r2

n ranges over the eigenvalues of the Laplacian
while on the right-hand side γ ranges over the non-trivial conjugacy classes of Γ
(i.e. closed geodesics) and γ0 is as before.

Thus, viewed as an identity of distributions on h the Selberg trace formula
is similar in shape to the Poisson summation formula. The non-identity geometric
terms and the spectral terms are atomic distributions of h and ĥ respectively. The
roles of the integers are played by the Laplace eigenvalues on the left-hand side
and by the length of closed geodesics on the right-hand side (and there are also
weights which have to be taken into account).

6 Application: Weyl’s law

We first recall Weyl’s classical result. Let Ω be a bounded region in the Euclidean
plane with smooth boundary ∂Ω. Consider the Euclidean Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2

on the plane. We want to count solutions of the differential equation

∆φ + λφ = 0, λ > 0

with Dirichlet boundary condition φ|∂Ω = 0. Let NΩ(R) be the counting function
for the number of linearly independent solutions with λ 6 R. Weyl’s result is

NΩ(R) ∼ Area(Ω)
4π

R as R →∞.

In a more modern setting we consider a compact Riemannian d-manifold
(M, g) and its Laplacian ∆ = div grad. This is a negative definite (unbounded)
operator on L2(M, g). Let NT be the counting function for the number of eigen-
functions with λ 6 T 2. In this context Weyl’s law is

NT ∼ vol(M)
(4π)d/2Γ(d/2 + 1)

T d as T →∞.

This was proved by Minakshisundaram and Pleijel ([MP49]). As mentioned be-
fore, a stronger statement with remainder term O(T d−1) was later proved by
Hörmander, in a much more general context. (See also [DG75].)

Consider for example the sphere S2. The eigenfunctions of ∆ are the spherical
harmonics. The eigenvalues are n(n + 1), n = 0, 1, 2, . . . with multiplicity 2n + 1.
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Next, consider the two-dimensional torus R2/Z2. Once again, we can write
down the eigenfunctions explicitly, in this case as periodic exponential functions.
The eigenvalues are 4π(n2 + m2). We can approximate #{(n,m) : n2 + m2 < R2}
by the area of the circle of radius R. A trivial upper bound for the remainder term
is O(R). To find the exact order of magnitude of the remainder term is a much
more serious question called Gauss’ circle problem.

Now we return to the compact hyperbolic surfaces M of the form Γ\H where
Γ is a uniform lattice of SL(2,R). Let λ0 = 0 < λ1 6 λ2 6 · · · be the eigenvalues
of ∆ acting in L2(Γ\H). It is useful to set λj = 1

4 +r2
j with rj ∈ R>0∪

[
0, 1

2

]
i, and

r−j = −rj . Thus, NT = #{j : |rj | 6 T}. We will use the trace formula only for
h ∈ C∞c (R)even supported near 0 so that their inverse Abel transform vanishes on
any conjugate of a non-trivial element of Γ. In this case Selberg’s trace formula
simplifies to

∞∑

j=−∞
ĥ(rj) =

Area(Γ\H)
2π

∫

R
ĥ(r)r tanh(πr) dr.

We can assume that h as well as its Fourier transform ĥ are non-negative and ĥ
is also non-negative on [− 1

2 , 1
2 ] after analytic continuation. For t ∈ R let

ht(a) =
1
2
h(a)(eiat + e−iat)

so that

ĥt(r) =
1
2
(ĥ(t− r) + ĥ(t + r)).

We use the trace formula with ht to get

∑

j

ĥ(t− rj) = Area(M)ft(1) =
Area(M)

4π

∫

R
ĥ(t− r)rtanh(πr) dr. (3)

Since |tanh| 6 1 the right-side is O(T ). We infer that

#{j : |rj − T | 6 1} = O(T ). (4)

Next, we integrate the equality (3) over t ∈ [−T, T ]. On the left-hand side,

∫ T

−T

∑

j

ĥ(t− rj)dt = NT +
∑

|rj |>T

∫ T

−T

ĥ(t− rj) dt−
∑

|rj |6T

∫ ∞

T

ĥ(t− rj)dt.

Using (4) it is easy to see that this is NT + O(T ). On the other hand, on the
right-hand side it is easy to see by integration by parts that

∫ T

−T

∫

R
ĥ(t− r)r tanh(πr) dr dt = T 2 + O(T ).

Altogether NT = Area(M)
4π T 2 + O(T ) as required.
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What happens for Γ = SL(2,Z)? This is a case of a non-uniform lattice. The
fundamental domain is the familiar hyperbolic triangle

{z ∈ H : |z| > 1 and |Rez| 6 1/2}.
It has a cusp at ∞, so it is not compact; yet, vol(Γ\G) < ∞. If we try to apply
the trace formula approach there are several important differences. The operator
R(f), while still an integral operator with smooth kernel given by (2), is not of
trace class, or even compact, since Kf (x, y) is not in L2(Γ\G×Γ\G). Likewise, the
kernel is not integrable over the diagonal. Moreover, L2(Γ\G) does not decompose
discretely – it admits continuous spectrum as well. Finally, the terms vol(Γγ\Gγ)
appearing on the geometric side, could be infinite.

In order to deal with these issues Selberg regularized the integral of the kernel
over the diagonal by truncating the kernel in a suitable way.

The upshot is an identity with additional terms coming from the continuous
spectrum on the one hand and parabolic conjugacy classes on the other hand. To
describe the continuous contribution we define the Eisenstein series

E(z; s) =
∑

(m,n)=1

ys+ 1
2

|mz + n|2s+1
=

∑

γ∈Γ∞\Γ
y(γz)s+ 1

2 z ∈ H

where Γ∞ =
{(

1 n
0 1

)
: n ∈ Z

}
. The series converges for Re s > 1

2 and E(γz; s) =

E(z; s) for all γ ∈ Γ. Also, ∆E(·; s) = ( 1
4 − s2)E(·; s) since this is true for the

function ys+ 1
2 and E is obtained from it by averaging. Less evident is the fact

that E(z, ·) admits meromorphic continuation to C and a functional equation

E(z; s) = φ(s)E(z;−s), φ(s) =
√

πΓ(s)ζ(2s)
Γ(s + 1

2 )ζ(2s + 1)
.

While E(z, s) admits many poles for Re(s) < 0, it is holomorphic on Re s > 0
except for a simple pole at s = 1

2 with a constant residue (as a function of z).
Let

L2(Γ\H) = L2
disc(Γ\H)⊕ L2

cont(Γ\H)

be the spectral decomposition of ∆ into the discrete and continuous parts respec-
tively. Then the map L2(R)even → L2(Γ\H) given by

f 7→ Ef =
∫

f(t)E(z; it) dt

is an isometry onto L2
cont(Γ\H) and

∆(Ef) = E

((
1
4

+ t2
)

f

)
.

Alternatively, any f ∈ L2(Γ\H) admits a decomposition

f(z) =
∑

j

(f, uj)uj(z) +
1
4π

∫ ∞

−∞
(f,E(·; it))E(z; it)dt
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into eigenfunctions where the first sum is taken over an orthonormal basis of
eigenfunctions of ∆ in L2(Γ\H). Equivalently,

||f ||22 =
∑

j

|(f, uj)|2 +
1
4π

∫ ∞

−∞
|(f,E(·; it))|2dt.

The main additional term in the trace formula coming from the continuous
spectrum is

− 1
2π

∫

R
ĥ(r)

φ′

φ
(ir)dr.

In the general case φ has to be interpreted as the determinant of the scattering
matrix. (There are additional terms in the trace formula, which we won’t specify.)
Using the trace formula (in the non-compact case) Selberg showed

NT + MT ∼ Area(Γ\H)
4π

T 2

where MT is the winding number φ, namely − 1
4π

∫ T

−T
φ′

φ (it) dt. Roughly, it is the
counting function for the poles of φ (on Re(s) < 0) with imaginary part < T . This
is the contribution of continuous spectrum.

In the case where Γ is a congruence subgroup Selberg proved that φ has
order 1 and hence MT = o(T 1+ε) for every ε > 0. Thus, the Weyl law holds.
(See [Sel89, p. 668], [Hej76b]). This is remarkable because for SL(2,Z) we do not
know how to write down explicitly a single Maass form (=eigenfunction of ∆) in
a closed form. (See [BSV06] and [BS07] for numerical aspects of Maass forms and
the trace formula.)

What happens for non-uniform lattices which are not congruence subgroups?
Selberg believed that the Weyl law should hold for them as well. However,

the work of Phillips and Sarnak on the dissolution of cusp forms under deformation
of congruence subgroups suggests quite the contrary. In fact, it may very well be
the case that the discrete spectrum is finite for a generic Γ in a family! (See [PS92]
and the literature cited there for more details. Also cf. Wolpert [Wol94] and Luo
[Luo01] where results toward the invalidity of Weyl’s law are proved.)

The error term in Weyl’s law trivially gives a bound on the multiplicity of
a given Laplace eigenvalue. Remarkably, this bound is difficult to substantially
improve. See [Sar03] for this and related problems.

The Weyl law was obtained by localizing the geometric side of the trace
formula. What happens if we localize the spectral side instead? We obtain infor-
mation on the object dual to the Laplacian spectrum, namely the length spectrum –
the set of lengths of closed geodesics of M . In fact, one obtains an analogue of
the Prime Number Theorem for the lengths of closed geodesics. A remarkable
example was obtained by Sarnak in his thesis, where he considered the case of
SL(2,Z) and obtained the asymptotic behavior of the average of class numbers of
real quadratic fields, ordered by the size of the fundamental unit ([Sar82]).

Pushing the analogy between prime numbers and closed geodesics further,
Selberg defined a zeta function, which bears his name, which is an “Euler product”
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(in a non-orthodox sense) over the closed geodesics, and proved analytic properties
of it [Sel56]. For more details see [Vig78]. There are some attempts in the literature
to generalize the Selberg zeta functions to higher dimensional situations, but a lot
remains to be done.

7 Eichler-Selberg trace formula

In the same celebrated 1956 paper of Selberg [Sel56] he developed, along with the
trace formula for Maass forms, a formula for traces of Hecke operators acting on
modular forms of weight k. In fact, a special case of this formula was published in
the preceding issue of the same Journal by Eichler ([Eic55]). The difference from
the previous case is that instead of functions on X = Γ\H we look at sections of
a certain line bundle on X. Roughly speaking the Maass form case corresponds
to k = 0. We can treat both cases in a uniform way group theoretically by
considering test functions on G with K-type k (with k = 0 corresponding to
spherical functions). To describe Eichler-Selberg trace formula let Γ = SL(2,Z),
Sk+1(Γ) the space of cuspidal modular forms of weight k + 1, and let T (n) be
Hecke operator on Sk+1(Γ). Then

−2trT (n) =
∑

r:r264n

Pk(r, n)H(4n− r2) +
∑

dd′=n

min(d, d′)k (5)

where Pk(r, n) is the coefficient of xk−1 in (1 − rx + nx2)−1 and H(n) is the
Hurwitz class number, counting (not necessarily primitive) binary quadratic forms
of discriminant −n up to equivalence. Note that

Pk(r, n) =
ρk − ρk

ρ− ρ
where ρ2 − rρ + n = 0.

We refer to [Lan95] for the derivation of the trace formula in this context.
Let us describe a curious application. Recall that the L-function of a Hecke

eigenform is given by

L(s, f) =
∞∑

n=1

λn(f)n−(s+ k
2 )

where λn = λn(f) is the eigenvalue of f under Tn. Thus,

∞∑
n=1

trT (n)n−(s+ k
2 ) =

∑

f

L(s, f)

where f ranges over an orthonormal basis of Hecke eigenforms of Sk+1(Γ). By (5)
this is related to

∞∑
m=1

H(m)m−s

(
1√
m

∑

r∈Z

Im( r√
m

+ i)k

| r√
m

+ i|2s+k

)
.
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(We will suppress the other term on the right-hand side of (5), although it can be
handled as well.) By the Poisson summation formula (cf. (1)) the Riemann sum
in the parentheses of the expression above is equal to

∫

R

Im(x + i)k

(x2 + 1)s+ k
2
dx + O(m−N )

for all N > 0, where the implied constant depends only on N and k. The integral
can be evaluated explicitly in terms of Γ-functions. Thus, the analytic properties
of L(s, f) are governed by

∞∑

d=1

H(d)d−s. (6)

This is a well-known object whose analytic properties can be studied from seve-
ral points of view. It is essentially the Shintani zeta function pertaining to the
prehomogeneous space of binary quadratic forms (see [Shi75], [Yuk93]) for a gen-
eral setup). It is also the Mellin transform of a weight 3/2 Eisenstein series.
We refer to [Fri] for more information about this and related objects. The real
quadratic analogue of (6) is closely related to Selberg’s zeta function for SL(2,Z)
(cf. [Vig79]).

The analytic properties of Hecke L-functions of modular forms are of course
well-known, and can be seen more directly. However, the meromorphic continua-
tion of symmetric power L-functions of modular forms is still wide open. One may
try to approach them in the same way as above. The picture becomes much more
complicated, and the whole approach seems dubious. However, on a very crude
level one can see that in a suitable sense, the main term in the geometric side “is”
what is expected from the spectral side. For more details I refer to the notes “A
different look at the trace formula” available on my home page. This approach is
an outgrowth of an idea of Langlands who tried to analyze the logarithmic deriva-
tives of higher symmetric power L-functions using the trace formula. We refer the
interested reader to [Art05, p. 251-257] and [Lan07].

In companion with the Eichler-Selberg trace formula there is an older formula
due to Petersson. It states that for any m,n > 1

(k − 1)!
(4π

√
mn)k

∑

f

am(f)an(f) = δm,n +
2π

ik−1

∞∑
c=1

S(n,m; c)
c

Jk

(
4π
√

mn

c

)

where f ranges over an orthonormal basis in Sk+1(Γ), an(f) is the n-th Fourier
coefficient, S(n,m; c) is the Kloosterman sum

S(n,m; c) =
∑

x,y∈(Z/cZ)∗:xy=1

e
2πi(nx+my)

c

and Jk is the k-th Bessel function

Jk(t) =
∮

et(τ− 1
τ ) dτ

τk+1
.
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This formula, originally derived from a computation of Fourier coefficients of
Poincare series, has a representation theoretic interpretation, and a counterpart
for Maass forms. This is known as the Kuznetsov trace formula. The advantage
of Petersson’s formula over the Eichler-Selberg trace formula is that it does not
involve the class numbers, which are difficult to handle. Of course, the Klooster-
man sums are also far from trivial objects, but there is a whole slew of algebraic
geometric tools to work with them. It is therefore not surprising that it has a lot
of applications. Unfortunately we will not discuss any of them here. We would
however at least like to mention one of them, communicated to me by Akshay
Venkatesh (unpublished). Let φ be an L2-normalized Hecke-Maass eigenform on
SL(2,Z)\H. There is an intriguing formula of Waldspurger expressing φ(i) in
terms of L-functions. Roughly,

|φ(i)|2 ∼ L

(
1
2
, π

)
L

(
1
2
, π ⊗

(−4
·

))
.

We can try to prove this formula using the Kuznetsov trace formula. The idea is
to consider ∑

n

|φn(i)|ĥ(λn) (7)

as (the discrete part of) the kernel at the identity, i.e. as
∑

γ∈Γ

Fh(ρ(γi, i))

where Fh is an appropriate transform of h. On the other hand, we can write

∑
π

ĥ(π)L
(

1
2
, π

)
L

(
1
2
, π ⊗

(−4
·

))

in terms of Kuznetsov formulas by expanding the L-functions using the “approxi-
mate functional equation”. By an ingenious argument one can prove the spectral
comparison by comparing the geometric sides. The hypothetical equality boils
down to a certain identity involving Kloosterman sums.

A similar idea appears in a work by Iwaniec on yet another formula of Wald-
spurger pertaining to half-integer modular forms [Iwa87]. It is also worth men-
tioning Venkatesh’ thesis where he uses limiting forms of the Kuznetsov formula
to obtain (previously known) cases of functoriality [Ven04].

In passing, let us note that studying the expression (7) from a different angle
is related to the hyperbolic lattice point problem. A typical result is

#{γ ∈ SL(2,Z) : ||γ||2 6 x} ∼ 6x

where
∥∥∥∥

(
a b
c d

) ∥∥∥∥
2

= a2 + b2 + c2 + d2. See [Ter85, §3.7, Example 1] and the

references cited therein.
See [LY06] and [KL06a] for more about the Petersson and Kuznetsov trace

formulas and applications to analytic number theory.
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8 Jacquet-Langlands correspondence

One of the striking applications of the trace formula for GL(2) is the Jacquet-
Langlands correspondence between the automorphic representations of a quater-
nion algebra and those of GL(2). In fact, a precursor of this correspondence
appears in the works of Eichler ([Eic56]) and Shimizu ([Shi63]).

To motivate it, let us first recall that the irreducible representations of the
compact group SO(3) are determined (up to equivalence) by their dimension,
which can be any odd positive integer. We write σn for the n-dimensional ir-
reducible representation of SO(3) (n odd). Similarly, the irreducible square-
integrable representations of PGL(2,R) are indexed by odd positive integers. We
write them as πn (with π1 equal to the Steinberg representation). If we denote by
χπ the character of a representation (viewed as a function) then

χπn

((
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

))
= −χσn




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 θ ∈ [0, 2π].

In fact, πn together with the n-dimensional representation of PGL(2,R) comprise
the irreducible subquotients of an induced representation, whose character vanishes
on the elliptic elements.

This picture is the Archimedean aspect of the local Jacquet-Langlands corre-
spondence. To describe the p-adic aspect we recall that any p-adic field F admits a
unique quaternion algebra D with center F . The multiplicative group D∗ = D\{0}
of D is an inner form of G = GL(2, F ). Moreover, the conjugacy classes of D∗

correspond bijectively to the elliptic conjugacy classes of G. If x maps to g under
this correspondence then the reduced trace of x is equal to the trace of g and
the reduced norm Nrd of x is equal to the determinant of g. The local Jacquet-
Langlands correspondence asserts a bijection between the equivalence classes of
the irreducible representations of D∗ and those of the square-integrable represen-
tations of G. If σ maps to π under this correspondence then χσ(x) = −χπ(g)
whenever the conjugacy classes of x and g correspond. Philosophically this may
seems strange at first because finite-dimensional representations correspond to
infinite-dimensional ones!

There is a closely related, and even more striking, global statement. Recall
that the quaternion algebras over Q are in one-to-one correspondence with finite
subsets of places of Q (including the Archimedean one) with even cardinality. This
correspondence is achieved by assigning to D the set S of places where it ramified,
that is for which D ⊗Q Qp is a quaternion algebra, rather than M2(Qp). Let D
(and therefore S) be given. Set G′ = D∗, and write G′(A) for the locally compact
group of invertible elements of the ring D ⊗Q A. (The topology on D∗(A) is the
one induced from (D ⊗ A)2 under the map x 7→ (x, x−1).) Let

G′(A)1 = {x ∈ G′(A) : |Nrd(x)| = 1}.

Thus, G′(A)1 is a normal subgroup of G′(A) and the quotient is R>0. Then
G′\G′(A)1 is compact and therefore L2(G′\G′(A)1) decomposes discretely into a
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direct sum of irreducible representations. The one-dimensional constituents are
the characters χ ◦ Nrd where χ is a Dirichlet character of Q∗\I. They naturally
correspond to the one-dimensional representations χ ◦ det of L2(G(F )\G(A)1).

The global Jacquet-Langlands correspondence asserts the following state-
ments.

1. L2(G′\G′(A)1) is multiplicity free, i.e., all irreducible constituents occur with
multiplicity one.

2. Suppose that σ = ⊗vσv is an irreducible constituent which is not one-
dimensional. Define π = ⊗vπv where πv = σv if v /∈ S and πv corresponds
to σv under the local Jacquet-Langlands correspondence if v ∈ S. Then π is
a cuspidal representation of G(A).

3. Conversely, any cuspidal representation π = ⊗πv of G(A) such that πv is
square-integrable for all v ∈ S is obtained from an automorphic representa-
tion of G′ by the above procedure.

Since the main terms in the spectral side of the trace formula are traces of
representations, it seems very plausible to try to prove these assertions using the
trace formula. In fact, the idea would be to compare the trace formula for the two
groups G′ and G. On the geometric side, the basic fact to bear in mind is that the
conjugacy classes of G′(F ) are in canonical bijection with the conjugacy classes of
G(F ) which are elliptic for all v ∈ S.

To explain how the comparison goes we had better rephrase the spectral
theory for GL(2) in the adelic setting. Let R be the right regular representation of
G(A) on L2(G(Q)\G(A)). Let f ∈ C∞c (G(A)). That is, f is compactly supported,
smooth in the Archimedean variable and bi-invariant under an open subgroup of
G(Af ) where Af denotes the finite adeles. The operator R(f) is integral with
kernel

Kf (x, y) =
∑

γ∈G(F )

f(x−1γy).

The spectral theory for GL(2) gives

Kf (x, y) = Kdisc
f (x, y) + Kcont

f (x, y)

where
Kdisc

f =
∑

{ϕ}
R(f)ϕ(x)ϕ(y),

the sum being taken over an orthonormal basis of the discrete part (the sum of
the irreducible subrepresentations) of L2(G(Q)\G(A)1), and

Kcont
f (x, y) =

∑
χ

∑

{ϕ}

∫ ∞

−∞
E(x, I(f, χ, it)ϕ, it)E(y, ϕ, it)dt

where the sum is over pairs χ = (χ1, χ2) of Dirichlet characters and over an
orthonormal basis {ϕ} of the space

I(χ) =

{
ϕ : G(A) → C|ϕ

((
t1 ∗
0 t2

)
g

)
= χ1(t1)χ2(t2)

∣∣∣∣
t1
t2

∣∣∣∣
1
2

ϕ(g)

}
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with the inner product

(ϕ1, ϕ2) =
∫
n“

at1 ∗
0 at2

”
:a∈R>0,t1,t2∈Q

o∖
G(A)

ϕ1(g)ϕ2(g) dg.

On this space there is a family of representations I(χ, s) given by

I(g, χ, s)ϕ(·) = (ϕs(·g))−s

where ϕs is defined by

ϕs

((
t1 ∗
0 t2

)
k

)
=

∣∣∣∣
t1
t2

∣∣∣∣
s

ϕ(k).

The (adelic) Eisenstein series E(ϕ, s) is defined as the meromorphic continuation
of the sum

E(g, ϕ, s) =
∑

γ∈B(Q)\G(Q)

ϕs(γg)

which converges for Re(s) > 1. Whenever regular it defines an intertwining map
from I(χ, s) to the space of automorphic forms on G.

The idea is to compare the trace of the regular representation on the quotients
G(F )\G(A) and G′(F )\G′(A) for matching functions f and f ′ on G(A) and G′(A)
respectively. This is done through the geometric sides of both trace formulas,
and ultimately yields the spectral comparison. More precisely, suppose that f ′ is
given. Without loss of generality we can assume that f ′ is decomposable, that is
f ′ = ⊗f ′v where f ′v ∈ C∞c (G′(Qv)). We choose f = ⊗vfv on G(A) in the following
manner. For places v /∈ S we simply take f ′v = fv once we fix a splitting of
D over v to identify G(Fv) with G′(Fv). The orbital integrals of fv and f ′v will
coincide (independently of the choice of splitting). At the places v ∈ S we take
fv whose hyperbolic orbital integrals vanish and whose elliptic orbital integrals
exactly match those of f ′v. (Of course, one has to show that this is possible.)

Some explicit arithmetic consequences of the Jacquet-Langlands correspon-
dence are mentioned in a short note by Langlands (available on his electronic
archive).

Another curious outcome of the Jacquet-Langlands correspondence is the
existence of non-isometric compact hyperbolic surfaces with the same Laplacian
spectrum! ([Vig80]).

9 Higher dimension

What are the analogues of the hyperbolic plane in higher dimension? The clue is
in terms of the Riemannian structure (rather than the complex structure, which is
special to the hyperbolic plane). The relevant notion is that of a symmetric space –
a classical notion which goes back to Cartan. We will not give a precise definition.
Roughly speaking, it is a Riemannian manifold with a lot of symmetries. In par-
ticular, the group of isometries acts transitively with a compact stabilizer. Cartan
classified the symmetric spaces. There are three types (according to curvature)
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1. The Euclidean plane (sectional curvature 0),
2. Compact type (positive sectional curvature),
3. Non-compact type (negative sectional curvature).

An example of the second type is the sphere Sn, which can be identified with
SO(n + 1)/SO(n). Examples of the third type (which is the most important to
us) include real or complex hyperbolic n-spaces, and the spaces of positive-definite
quadratic or hermitian forms up to homothety in n > 2 variables. The general
example of the third type is X = G/K where G is a semisimple Lie group and K
is its maximal compact subgroup (uniquely determined up to conjugation). The
Riemannian metric comes from the Killing form which induces a positive-definite
form on g/k where g (resp. k) is the Lie algebra of G (resp. K).

By definition, a locally symmetric space is a space whose universal cover is a
symmetric space. This is especially interesting in the third case – it has the form
Γ\G/K where G, K is as above and Γ is a torsion free (not necessarily uniform)
lattice of G. Of course the Laplacian on G/K commutes with the G action and
therefore descends to Γ\G/K.

What is the known about the Weyl Law in this context?
Let us first consider the compact case. As mentioned before, the Weyl law,

with a remainder term, is known for any compact Riemannian manifold.
We recall some facts about harmonic analysis of symmetric spaces. The

standard reference is Helgason’s books, e.g. [Hel00]; see also [Ter88] and [JL05].
The differential operators D on X commuting with G form an algebra isomorphic
to the polynomial algebra in r variables. Here r is the rank of G (the dimension
of a maximal split torus, or alternatively, the dimension of a maximal flat in X).
The invariant differential operators descend to the quotient Γ\X. Therefore it
makes sense to ask for joint distributions of eigenvalues, i.e. consider f such that
Df = λ(D)f for a character λ of D and consider the multiplicity m(λ). Fixing a
maximal split torus with connected part A and letting a be its Lie algebra, we can
identify the spectrum of D with a∗/W where W is the Weyl group (the quotient
of the normalizer of A by its centralizer). We can therefore view λ as an element
of a∗/W . In particular, λ(∆) = ‖λ‖2.

Let N be the unipotent radical of a minimal parabolic subgroup containing A.
Then the product map N ×A×K → G is a diffeomorphism. The decomposition
G = NAK is called the Iwasawa decomposition. Set H(nak) = log a ∈ a for
a ∈ A, n ∈ N , k ∈ K.

The role of the exponential functions in the Euclidean space is played by
Harish-Chandra’s spherical functions. For each λ there is a unique bi-K-invariant
eigenfunction φλ : G → C with eigenvalue λ and φλ(1) = 1. In fact, φλ is given by

φλ(g) =
∫

K

e〈λ+ρ,H(kg)〉 dk.

If λ ∈ ia∗ then |φλ(g)| 6 1 for all g ∈ G.
The Abel transform is the map

A : C∞c (G//K) A−→ C∞c (A)W
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given by

A(f)(a) = δ0(a)
1
2

∫

N

f(an) dn

where δ0 is the modulus function of AN . In fact, A is an isomorphism of topological
algebras (under convolution). We also have the Fourier-Laplace transform

ˆ: C∞c (A)W → PW(a∗C)
W

where PW denotes the Paley-Wiener space. The spherical inversion asserts that
for any f ∈ C∞c (G//K) we have

f(1) =
∫

ia∗/W

Â(f)(λ)β(λ) dλ

where β is the Plancherel measure. The latter is given by

β(λ) = |c(λ)|−2

where c(λ) is Harish-Chandra’s c-function which can be expressed in terms of the
Γ-function via the Gindikin-Karpelevic formula.

Roughly, β(iλ) ∼ ‖λ‖d−r where d = dimX for λ away from the walls.
Consider the case of G = SL(n). Then K = SO(n), r = n−1, d = n(n+1)

2 −1,
A is the subgroup of diagonal matrices with positive entries, W is the symmetric
group on n letters, N is the group of upper triangular matrices with 1’s on the
diagonal and the Iwasawa decomposition amounts to the Gram-Schmidt process.
We can identify a∗ with {(λ1, . . . , λn) :

∑
λi = 0}. The c-function is given by

c(λ) =
∏

i<j

ΓR(λi − λj)
ΓR(λi − λj + 1)

, ΓR(s) = π−s/2Γ(s/2)

Using the trace formula, Duistermaat, Kolk and Varadarajan proved the
following remarkable Theorem.

Theorem 1 ([DKV79]). Let M be a compact quotient of X = G/K. Suppose that
Ω ⊂ ia∗ is a W -invariant compact domain with piecewise C2-boundary. Then

∑

λ∈tΩ

m(λ) =
vol(M)
|W |

∫

tΩ

β(λ) dλ + O(td−1) as t →∞

In particular, when Ω is the unit ball, we recover Weyl’s law with an error
term à la Hörmander.

The proof of Theorem 1 follows the same guidelines of the proof in the case
of SL(2) described above. Of course, it is technically more complicated, but
nonetheless it uses Selberg’s trace formula only for test functions for which on the
geometric side the contribution is only from the identity element.

What about the non-compact case?
It turns out that it is more natural to consider here not the entire discrete

spectrum, but a subspace called the cuspidal part. We will not define this im-
portant concept here. It is expected that the cuspidal part exhausts most of the
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discrete part, although this is not known in general. At any rate one can ask about
the validity of Weyl’s law for the cuspidal spectrum. Sarnak conjectured that this
is true for congruence subgroups. It should be noted that by a well-known result
of Margulis all finite volume locally symmetric spaces of rank > 1 are arithmetic
([Mar91]).

Donnelly gave the correct upper bound for the cuspidal part of the spectrum
of any finite volume locally symmetric space ([Don82]).

As for lower bounds, Reznikov proved the Weyl law for arithmetic real or
complex hyperbolic n-manifolds (a rank one situation) ([Rez93]).

The first non-compact higher rank situation was treated by Miller who showed
that the Weyl law holds for SL(3,Z)\SL(3,R)/SO(3) ([Mil01]).

This was extended by Müller to ΓN\SL(n,R)/SO(n), n > 2 where

ΓN = {γ ∈ SL(n,Z) : γ ≡ 1 (mod N)}, N > 1

is the principal congruence subgroup ([Mül07]).
Recently, Lindenstrauss and Venkatesh showed that for any Chevalley group

G (e.g. SL(n), Sp(n), and the like) and any congruence subgroup Γ of G(Z) the
locally symmetric space Γ\G(R)/K obeys Weyl’s law ([LV07]) proving Sarnak’s
conjecture, at least in that case. Their proof is beautiful, very accessible and
surprisingly short. It uses the existence of Hecke operators in a crucial way. The
method of proof should carry over to any quotient by a congruence subgroup
without too much difficulty.

What about the error term?
Recently, we were able to obtain an analogue of Theorem 1 (with a slightly

weaker error term) in the case of GL(n).

Theorem 2 ([LM]) Let X = SL(n,R)/SO(n),M = ΓN\X, N > 3. (The latter
guarantees that ΓN is torsion free. ) Then

∑

λ∈tΩ

m(λ) =
vol(M)
|W |

∫

tΩ

β(λ) dλ + O(td−1(logt)n)

as t →∞
Let us briefly indicate what goes into the proof of Theorem 2. Roughly,

the argument follows that of [DKV79]. However, there are important differences.
First, because of the non-compactness, in order to get started we have to use
Arthur’s trace formula instead of Selberg’s trace formula described above. Before
describing its shape we have to say a few words about the continuous spectrum of
L2(Γ\G). This was carried out in a seminal work of Langlands ([Lan76]) following
Selberg [Sel63]; cf. [MW95] for a more detailed account of Langlands’ work (and
[Wal03] for the analogous local statement). We will describe it for G = GL(n),
and only in rough terms. Let (n1, . . . , nk) be a partition of n, i.e. n = n1 + · · ·+nk

and write any matrix in blocks according to this partition. Let P be the parabolic
subgroup consisting of matrices whose lower diagonal blocks ni × nj , i > j are all
zero. We can write P = MU where M is the group of diagonal block matrices
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isomorphic to GL(n1) × · · · × GL(nk) and U is the unipotent radical (in which
all diagonal blocks are the identity matrices). Let M1 be the normal subgroup
consisting of elements whose diagonal blocks have determinant ±1. Then, roughly
speaking, L2(Γ\G) can be decomposed into a direct sum over partitions up to
permutation. The part corresponding to an equivalence class of a partition is
isomorphic to the integral over Rk of the representation parabolically induced
from the discrete spectrum of ΓM\M1. To make this more precise one has to work
in the adelic setting and introduce Eisenstein series in full generality, but we shall
not do it here.

Arthur’s trace formula in its original form, developed in the late 70’s and the
80’s, is an identity of the form

∑
o

Jo(f) =
∑

χ

Jχ(f)

where o ranges over semi-simple conjugacy classes of G(Z) and χ ranges over
spectral data. (Again, this is an oversimplification. One should really work in the
adelic setting; see [Art05, §§1-21].)

Unlike in the co-compact case the distributions Jo are given in terms of
weighted orbital integrals

∫

Gγ\G
f(g−1γg)w(g) dg

of elements γ whose semi-simple part is in o. In particular, they are non-invariant.
Similarly, the distributions on the spectral side are built from weighted traces.

The weighted orbital integrals are hard to define, but they have a reasonably
simple qualitative description. For example, for the regular unipotent classes it
has the form ∫

N

f(n)w(n) dn

where w is a linear combination of products of log(|p(n)|) where p is a non-zero
polynomial in the entries of n.

Unlike in the co-compact case, we can not localize the geometric side to the
identity element itself. However, we can still localize to the terms corresponding
to o = {e}, that is to the unipotent conjugacy classes. It turns out the mild
logarithmic singularities of the weight factor enable the analysis of the weighted
orbital integrals of the non-trivial unipotent conjugacy classes to be carried out
using a technique from another paper by Duistermaat, Kolk and Varadarajan
[DKV83], namely the method of stationary phase. (See [Var97] for a very accessible
account on the method of stationary phase and its application.) The crucial fact
is that the function 〈µ,H(kn)〉 on K ×N is a Morse function. That is, its critical
points are isolated (in this case (w, 1), w ∈ W ) and the Hessian is non-singular
at any critical point. (By the Morse Lemma, around each critical point one can
choose local coordinates in which the function is quadratic.)

What are the issues on the spectral side? Here, we have to control the
contribution of the continuous spectrum, just like in the rank one situation. The
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combinatorics and the analysis is much more complicated. Just to give a feeling,
the mere fact that Arthur’s expansion of the spectral side is absolutely convergent
(in an appropriate strong sense) and that it can be written (like the spectral
expansion itself) in terms of discrete data is a very recent development ([FLM]).
It relies on refining Arthur’s expression in terms of (suitably defined) winding
numbers as in Selberg’s case. Among other things, this enables us to have more
lax conditions on the test functions for which the trace formula is applicable,
namely functions which are L1 together with sufficiently many derivatives. This
is in accordance with the situation for the Poisson summation formula.

To make a long story short, what we need in addition is the fine analytic
behavior of the Rankin-Selberg L-functions studied by Jacquet, Shalika and others.
It is here where the restriction to GL(n) is essential.

What is the import of estimating the error term? It turns out that for some
application it is not only necessary to find the main term, but we need also a
power saving (not matter how small) in the error term. A typical case is the
distribution of low-lying zeros of L-functions. It is a general principle that the
zeros of an automorphic L-function (normalized in an appropriate way according
to the analytic conductor [IS00]) are distributed according to a universal law called
GUE, namely, they are spaced like eigenvalues of a large unitary matrix. A finer
look at the zeros suggests that we sample them by

D(f ;φ) =
∑

γ

φ(γ)

where γ ranges over the (normalized) zeros of the L-function and φ is a test
function. For this to be meaningful we have to average over a sufficiently rich
family F of L-functions (depending on a parameter Q going to ∞), namely to
consider

E(F(Q);φ) =
1

|F(Q)|
∑

f∈F(Q)

D(f ;φ).

This will pick up the distribution of low-lying zeros of L-functions in the family.
The sensible question is what is the limit W of this distribution as Q →∞?

The Katz-Sarnak philosophy suggests that there are four possible limiting
distributions W corresponding to the type of symmetry of the family (unitary,
symplectic, even or odd orthogonal) — see [KS99b].

In the function field case there is a spectral interpretation of the zeros as
eigenvalues of Frobenius acting on cohomology. Their distribution is governed by
the monodromy group of the family ([KS99a]).

In the number field case we don’t have such a spectral interpretation (which
is partly responsible for our lack of knowledge of the Riemann Hypothesis). Nev-
ertheless, there are partial results, conditional on GRH, concerning the low lying
zeros of certain families of modular forms for GL(2) ([ILS00]).

To extend these results to the context of (certain families of) automorphic
forms of GL(m), m > 2 one needs to show that

trTn(F(Q)) = δn(F)|F(Q)|+ O(|F(Q)|1−εnk)
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for some ε > 0 and k. The coefficient δn(F) (which could vanish for many n’s)
governs the distribution of low-lying zeros in the family. The case n = 1 is just
estimating the size of the family with a power saving in the remainder term.

10 Other applications of the trace formula

We now mention additional higher rank applications of the trace formula; however,
we will not go into much detail.

10.1 Generalized Jacquet-Langlands correspondence

Let G′ be the multiplicative group of a central simple algebra of degree n over
a number field F and G = GL(n). The discrete spectrum of L2(G′(F )\G′(A)1)
is “contained” in L2(G(F )\G(A)1). This is somewhat implicit in [AC89]. It is
made more explicit in recent work by Badulesco ([Ba]). The corresponding local
statement had been proved earlier by Rogawski ([Rog83]) – see also [Hen06].

This is the case of a relation between automorphic representations of a group
and its quasi-split inner form. Such a relation is of course a very special case
of what Langlands functoriality predicts. When dealing with groups other than
GL(n) the problem of stabilization arrises. This is a key notion introduced by
Langlands with far reaching consequences ([Lan83])2. We will not discuss it here
but refer the reader to [Art05, §§27-29]. Let me just mention a major recent
breakthrough by Ngô who proved one of the main stumbling blocks to stabiliza-
tion, namely the “Fundamental Lemma” ([Ngô]; cf. [Ngô06], [Lau06]). Also, it
should be noted here that one of the first steps of stabilization, carried out by
Kottwitz, already yields an important arithmetic payoff, namely, the solution of
Weil’s conjecture on the Tamagawa number ([Kot88]). We refer to [Clo89] for
more details and the exciting history of this problem.

10.2 Base change

Let G be a reductive group over a number field F and E/F be a finite extension.
One of the basic instances of functoriality predicts a transfer of automorphic rep-
resentations of G(AF ) to those of G(AE). Very little is known about this if E/F
is not solvable (but see [Clo95]). On the other hand, if E/F is cyclic then we
can hope to characterize the image as the automorphic representations of G(AE)
which are equivalent to their Galois twist. Henceforth assume that E/F is cyclic.
Langlands, building on earlier work by Doi-Naganuma ([DN70]), Saito ([Sai75])
and Shintani ([Shi79]), established the correspondence between automorphic rep-
resentations of GL(2,AF ) and Galois invariant automorphic representations of
GL(2,AE) ([Lan80]). Remarkably, he used it to prove a new case of the the
Artin conjecture. Namely, he showed that to any irreducible two-dimensional rep-
resentation ρ : Gal(F̄ /F ) → GL(2,C) with a finite solvable image of a certain

2Historically, stabilization and the related notion of endoscopy were conceived by Langlands
while studying the zeta functions of Shimura varieties; see below.
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kind corresponds an automorphic cuspidal representation of GL(2,A), and hence
ρ admits an entire Artin L-function. Later, this was extended by Tunnell to any
continuous representation with a solvable image ([Tun81]), after results of Jacquet,
Piatetski-Shapiro and Shalika became available ([JPSS81]). For more details see
[Rog97]. These cases of the Artin’s conjecture were extremely useful (years later)
in the work of Wiles on Fermat’s last theorem [Wil95]. In a sense they were
used to jump-start the modularity argument. (See [Tay04] for more about Galois
representations and modularity.)

At the heart of the trace formula approach for base change is the comparison
between the usual trace formula for GL(2,AF ) and the twisted trace formula for
GL(2,AE). The latter is, by definition (a suitable regularization of)

∫

GL(2,E)\GL(2,AE)1
Kf (x, xσ) dx

where σ is a generator for the Galois group. One of the main difficulties is to
find sufficiently many pairs of matching functions. (This is much harder than
in the Jacquet-Langlands case, because here the groups are genuinely distinct.)
The same idea in principle carries over to GL(n), but this had to await for the
development of Arthur’s trace formula. (There is also an approach of Labesse
which uses a less refined version of the trace formula – cf. [Lab99].) Ultimately,
Arthur and Clozel extended Langlands’ result to GL(n) ([AC89], [Jac89]). This is
an extremely important and useful result which marks one of the biggest victories
of the trace formula so far. Among other things it was used (again, much later)
in the proof of the Sato-Tate conjecture by Clozel, Harris, Shepherd-Barron and
Taylor ([CHT], [HSBT], [Tay]).

10.3 Formula for traces of Hecke operators

We already saw that the trace formula is a very natural tool in studying the
asymptotic behavior of eigenvalues. However, by the uncertainty principle, it is
hopeless for the trace formula to tell the dimension of a single eigenvalue. On the
other hand, there is a closed formula for the dimension of cusp forms of a given
weight > 1 and level. This is obtained either by the Riemann-Roch theorem or
from the Eichler-Selberg trace formula. (In contrast, the cusp forms of weight
1 are much more subtle. Deligne and Serre constructed an odd two-dimensional
representation of the Galois group from any weight 1 cusp form [DS74]. Recently
Khare and Wintenberger proved the converse statement, namely, that any odd
Galois representation is modular. This results from their proof of Serre’s conjecture
([KWa], [KWb]).)

To reconcile the apparent contradiction we recall that the cuspidal modular
forms of weight > 1 correspond to automorphic representations whose compo-
nent at the Archimedean place is square-integrable. The fact that the Plancherel
measure is atomic on square-integrable representations enables us to obtain exact
formulas for the dimension. This is true in higher dimension as well.

Harish-Chandra’s most well-known work is the classification of square-
integrable representations of a semi-simple group G. (For more details see [Her91],
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[Var00] and the references cited therein.) There is a close connection between
square-integrable representations and representations of compact groups. A nece-
ssary and sufficient condition for G to have a square-integrable representation is
that G admits a compact torus T which is a maximal torus. (That is, the rank of
G over C coincides with the rank of K. Alternatively, G is an inner form of its
compact form.) In this case, the square-integrable representations are parameteri-
zed by regular characters of T up to conjugation by the Weyl group W of K. If λ
is the Harish-Chandra parameter of π then the character χπ of π on T is given by

χπ(γ) =
∑

w∈W (−1)l(w)λ(wγ)
∆(γ)

(8)

where W is the Weyl group of K and ∆ is Weyl’s discriminant. This is of course
a generalization of Weyl’s character formula in the compact case.

Suppose that π is a square-integrable representation of G which admits an in-
tegrable matrix coefficient ξ. The last condition amounts to a regularity condition
on the Harish-Chandra parameter of π. (For PGL(2) it excludes the Steinberg
representation, which corresponds to weight 2 modular forms.) By applying the
trace formula to ξ (which is possible since ξ is L1) Langlands obtained a closed
formula for the multiplicity m(π) of π in the automorphic spectrum of any uniform
lattice Γ of G. In fact, we see that

m(π) =
∑

γ

vol(Γγ\Gγ)
∫

Gγ\G
ξ(g−1γg) dg.

By Harish-Chandra, the orbital integral of ξ vanishes unless γ is elliptic (i.e.,
belongs to a compact subgroup of G), in which case it is equal to χπ(γ−1). The
character is given explicitly by (8).

Arthur generalized this to give a closed formula for the trace of a Hecke
operator on any (stable) isotypic component of a square-integrable representation
(L-packet) with a regular parameter. It is given by a finite sum of geometric terms,
but now there are additional boundary terms coming from parabolic subgroups.
We refer the interested reader to [Art05, §24] and [Art89] for more details. There
is also a geometric counterpart of this formula [GKM97].

10.4 Automorphic forms of classical groups

A major current development in the trace formula is work in progress by Arthur
aiming at understanding the relation between self-dual automorphic representa-
tions of GL(n,AF ) and automorphic representations of classical groups. More
precisely, self-dual cuspidal representations of GL(2n) should correspond to rep-
resentations of either SO(2n + 1) or SO(2n) (depending on whether the exterior-
square or the symmetric-square L-function has a pole), while the self-dual cuspidal
representations of GL(2n+1) (in which case the symmetric square L-function has
a pole) should correspond to Sp(2n). The idea is to compare the twisted trace
formula for GL(n) with respect to the Cartan involution with trace formula for
classical groups. This is a very serious undertaking which involves stabilization on
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both sides. It relies on suitable versions of the fundamental lemma which are ex-
pected to be proved soon, following the afore-mentioned work by Ngô. See [Art05,
§30] for more details.

10.5 Shimura varieties and Langlands correspondence

The Eichler-Shimura correspondence (cf. [Shi94]) attaches to any weight two Hecke
eigenform on Γ0(N) with integer coefficients an, an elliptic curve E over Q such
that for almost all primes p the number of points of the reduction of E modulo p
is p + 1 − ap. (The converse statement – the modularity of elliptic curves, is the
famous Taniyama-Shimura-Weil conjecture which was eventually solved by Breuil,
Conrad, Diamond and Taylor [BCDT01] following the work of Wiles and Taylor.)

The Eichler-Shimura correspondence in essence describes the action of the
Galois group on the `-adic cohomology of the modular curve X0(N) in terms of
Hecke correspondences. The modular curves admit a vast generalization, namely,
Shimura varieties. A Shimura variety is, roughly speaking, a system G(Q)\G(A)/
K∞Kf where Kf ranges over open subgroups of G(Af ) where G is a reductive
group over Q. The fundamental fact, due to Shimura, is that for certain G’s, we
get this way “nice” varieties defined over a number field E. (We refer the reader
to [Mil05] for an excellent introduction to Shimura varieties.) The (étale) coho-
mologies of Shimura varieties inherit an action of the Galois group, and passing
to the inductive limit over Kf , this action commutes with the action of G(Af ). It
was Langlands’ idea that this may be used to obtain certain cases of the global
Langlands correspondence (or, reciprocity laws) by decomposing the ensuing rep-
resentation of Gal(Q/E)×G(Af ). The idea is to compare the trace of the action
of an element σ of the Galois group and a test function h on G(Af ) with the
spectral side of the trace formula (with a suitable function at G(R)) – see [Lan77],
[Lan79b]. Such a comparison is done in two steps. The first, using a version of
the Lefschetz trace formula, is to express the trace of pairs (σ, h) acting on the
cohomology with compact support (with suitable coefficients) in terms of orbital
and twisted orbital integrals, namely the geometric side of the trace formula. The
second step, using Arthur’s trace formula, is to recast these traces in terms of
automorphic forms – see [Kot90], [Kot84], [Clo93].

The intimate relation, envisioned by Langlands, between automorphic forms
and Shimura varieties, is a two-sided road. On the one hand, it gives (at least in
principle) deep arithmetic information about Shimura varieties (such as, relating
their Hasse-Weil zeta functions to automorphic L-functions). On the other hand,
it gives (again, at least in theory) invaluable information (such as the Ramanujan-
Petersson conjecture) about automorphic representations which are of algebraic
type (an integrality condition on the Archimedean component) – cf. [Clo91]. Any
serious discussion of these matters lies well beyond the scope of these notes (and
the author’s expertise). We refer the reader to [Del79], [Cas79] and to the books
[LR92], [CM90a], [CM90b], [Mor] to get a feeling of the wide ramifications of the
problems involved. A major on-going project in Paris (including four books in
various stages of writing) aims to solve these problems in great generality.

As pointed out before, not all automorphic representations correspond to
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Galois representations and therefore they cannot all be realized through Shimura
varieties. (See [Lan79a], [Clo90] for a hypothetical substitute.) However, Shimura
varieties give sufficiently many automorphic representations in order to obtain at
least the local Langlands correspondence ([HT01], [Hen00], [Car00]; see [BH06] for
a more direct approach for GL(2)).

For global fields of positive characteristic (function fields of curves over finite
fields) the analogues of Shimura varieties are Drinfeld moduli spaces of elliptic
modules. Among other things, they provide a means to prove the local Langlands
correspondence in the equal characteristic case ([LRS93], [Fal94]) and substantial
information toward the global Langlands correspondence. We refer the reader to
the volumes [Lau96], [Lau97] for an excellent exposition of this circle of ideas. (See
also Rogawski’s featured review on the MathSciNet.)

To achieve the global Langlands conjecture in full generality (in the function
field case) one has to use the so-called Shtukas, also invented by Drinfeld. This
was done by Drinfeld for n = 2 ([Dri80]) and extended to GL(n) by Lafforgue
([Laf02], [Lau02b], [Lau02a]). Once again, the method is to compare the Lefschetz
trace formula and the Arthur-Selberg trace formula. (For a state of the art result
in the context of the Lefschetz trace formula see [Var07].) It should be noted
however that Arthur developed the trace formula over number fields only, so that
additional work had to be done by Lafforgue in order to apply it to the function
field case ([Laf96a], [Laf96b]). Finally, a different approach (originally also due
to Drinfeld) for the global Langlands conjecture in the function field case is the
geometric Langlands correspondence. For more about this see [Lau03], [Fre07],
[FGV02], [Gai03], [Fre04].

11 Other forms of the trace formula; the relative
trace formula

Arthur’s trace formula admits various other forms. We already encountered one of
them, namely the Petersson/Kuznetsov trace formula. There is also an important
local counterpart of the trace formula, also developed by Arthur [Art91]. Yet ano-
ther variant is the trace formula for Lie algebras developed by Waldspurger in the
local case ([Wal95]) and by Chaudouard in the global case ([Cha02]). The article
[Kot05] by Kottwitz provides an excellent exposition and a thorough discussion of
the local trace formula for Lie algebras and its applications to harmonic analysis.

We will end our discussion on the trace formula by saying a few words on the
relative trace formula and its background.

The symmetric spaces of Cartan admit a generalization – namely pseudo-
Riemannian homogeneous spaces. It is not clear to what extent one can speak
about automorphic forms in this context. (See [KY05] for an elaborate discus-
sion about related topics.) However, there has been a lot of work, starting with
Flensted-Jensen, aiming at generalizing Harish-Chandra’s work on L2(G) to the
context of L2(G/H) where H the fixed point subgroup of an involution of H. (See
[Del02] for more details.)
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There is a (yet not completely polished) global counterpart of this setup, to
which the relative trace formula is pertinent.

We will focus on the following example as a model for the relative trace
formula. (For more details see [Off].)

Let E/F be quadratic extension of number fields and σ the Galois involution.
Let G be the group GL(n) over E. Consider for each hermitian form in n variables
the unitary group

Hξ = {g ∈ G : tσ(g) ξg = ξ}
as a group defined over F . We say that a cuspidal representation π of G(A) is
distinguished with respect to a unitary group if the period integral

∫

Hξ(F )\Hξ(A)

ϕ(h) dh

does not vanish on the space of π for some hermitian form ξ.
Can we describe the distinguished representations? The question was posed,

and eventually answered, by Jacquet.

Theorem 3 ([Jac05b]). π is distinguished with respect to a unitary group if and
only if σ(π) = π.

Note that by Arthur-Clozel the characterization coincides with the image of
base change from G′ = GL(n)/F . In fact, what Jacquet showed more directly is
that the distinguished representations are exactly those arising from base change.

To describe his approach, consider the variety Hn of hermitian forms with
the G-action g ? ξ = tσ(g) ξg. For Φ ∈ S(Hn(A)) define the “relative kernel”

KΦ(g) =
∑

ξ∈Hn(F )

Φ(g ? ξ) g ∈ G(AE).

Let Nn be the group of upper triangular matrices, ψ′ a non-degenerate character
of Nn(F )\Nn(A) and ψ = ψ′ ◦ trE/F . The idea is to compare

RTF (Φ) =
∫

Nn(E)\Nn(AE)

KΦ(u)ψ(u) du

with the Kuznetsov trace formula

KTF (f ′) =
∫

(Nn(F )\Nn(A))2
Kf ′( tu−1

1 , u2)ψ′(u1u
−1
2 ) du1 du2

for matching Φ ∈ S(Hn(A)) ↔ f ′ ∈ S(G′(A)).
Building on our previous experience we will expand both RTF and KTF geo-

metrically according to double cosets. In the RTF side we expand along Nn(E)-
orbits of Hn(F ). The regular orbits (those for which the stabilizer is trivial) are
parameterized by the F -points of the diagonal torus T ′ of G′. Ignoring the singular
terms we have

RTF (Φ) ∼
∑

a∈T ′(F )

Ω[Φ; a]
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where
Ω[Φ; a] =

∫

Nn(AE)

Φ( tσ(u)au)ψ(u) du.

Similarly, on the KTF side, the regular orbits of Nn(F )×Nn(F ) contribute

∑

a∈T ′
Ω′[f ′; a] :=

∫

(Nn(AF ))2
f ′(ut

1au2)ψ′(u1u2) du1 du2.

The matching condition is

Ωv[Φv; av] = η(av)Ω′v[f ′v; av]

for a certain quadratic character η = ⊗vηv of T ′(F )\T ′(A).
As before, one needs to show the existence of sufficiently many matching pairs

of functions and compatibility with Hecke algebra base change homomorphism.
(The latter is the fundamental lemma in this context.) On the spectral side,
one has to write down the expansion in terms of cuspidal data in order to apply
Langlands’ argument on the separation of the discrete and continuous part. We
refer to [Jac05b] and [Lap06b] for exact statements and proofs.

The characterization of distinguished representations naturally leads to the
following question: what is the value of the unitary period?

We describe a typical result. Let F = Q, D < 0 a fundamental discriminant,
E = Q(

√
D) and OD the ring of integers of E. Let X be the locally symmetric

space X = GL(n,OD)\GL(n,C)/U(n) and ϕ a cuspidal L2-normalized Hecke
eigenform on X. Let

Λ = GL(n,OD)\GL(n,E)U(n)/U(n) ⊂ X

be the (finite) genus of the standard hermitian form ‖·‖2.
Theorem 4 ([LO07]). The (weighted) sum

∑∗
x∈Λ ϕ(x) vanishes unless ϕ is ob-

tained as a base change from a cusp form ϕ′ on Γ0(D)\GL(n,R)/O(n). In this
case, if π is the cuspidal representation of GL(n,A) corresponding to ϕ′, then

∣∣∣∣∣
∑

x∈Λ

∗
ϕ(x)

∣∣∣∣∣

2

= ∗(local factors)
L(1, π × π̃ × χD)
Ress=1 L(s, π × π̃)

where χD is the quadratic character of conductor D and L(s, π×π′) is the Rankin-
Selberg L-function.
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[MP49] S. Minakshisundaram and Å. Pleijel, Some properties of the eigen-
functions of the Laplace-operator on Riemannian manifolds, Canad. J.
Math. 1 (1949), 242–256. MR0031145 (11, 108b)

[MS] Henri Moscovici and Robert J. Stanton, Holomorphic torsion and Bott-
Chern numbers for hermitian locally symmetric manifolds, preprint.

[MS89] , Eta invariants of Dirac operators on locally symmetric mani-
folds, Invent. Math. 95 (1989), no. 3, 629–666. MR979370 (90b:58252)

[MS91] , R-torsion and zeta functions for locally symmetric manifolds,
Invent. Math. 105 (1991), no. 1, 185–216. MR1109626 (92i:58199)

[Mül07] Werner Müller, Weyl’s law for the cuspidal spectrum of SLn, Ann. of
Math. (2) 165 (2007), no. 1, 275–333. MR2276771

[MW95] C. Mœglin and J. -L. Waldspurger, Spectral decomposition and Eisen-
stein series, Cambridge Tracts in Mathematics, Vol. 113, Cambridge
University Press, Cambridge, 1995, Une paraphrase de l’Écriture [A
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[Ngô06] , Fibration de Hitchin et structure endoscopique de la formule
des traces, International Congress of Mathematicians. Vol. II, Eur.
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