
IF/Prolog V5.3

Constraints Package

Siemens AG Austria

Is there

anything you would like to tell us about this manual?
Please send us your comments.

Siemens AG Austria
PSE KB B3
Gudrunstrasse 11
A-1100 Vienna
Austria

Fax.: +43-1-1707 56992

email: prolog@siemens.at

The information in this document is subject to change and does not represent a commitment
on the part of Siemens AG Austria. The software described in this document is furnished
under a license agreement. The software may be used or copied only in accordance with the
terms of the agreement.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open and the X device are trademarks of X/Open Company Ltd.

Copyright c©Siemens AG Austria, 1999. All rights reserved.
The reproduction, transmission, translation or exploitation of this document or its contents is not
permitted without express written authority. Offenders will be liable for damages. Delivery subject
to availability; right of technical modifications reserved.

mailto:prolog@siemens.at

Contents

Contents iii

1 Constraints 7

1.1 Big integers and rational numbers . 8

1.1.1 Arithmetic operations . 9

1.1.2 Operator for rational division . 10

1.2 General built-in predicates . 10

1.2.1 Test for constraint variable . 11

1.2.2 Test numbers . 11

is_constraint/1/2 – Test for constraint variable 12

rational/1 – Test for rational number . 14

rational/3 – Decompose a rational number 15

2 Coroutines 17

2.1 Built-in predicates . 19

conjunctive_freeze/2 – Delay goal proving 20

dif/2 – Term unequality . 22

disjunctive_freeze/2 – Delay goal proving 24

freeze/2 – Delay goal proving . 26

3 Linear constraints 29

3.1 Linear terms . 29

3.2 Built-in predicates and operators . 31

3.2.1 Linear operators . 32

iii

3.2.2 Constraints for list elements . 32

3.2.3 Delaying proof of a goal . 32

3.2.4 Optimization . 32

$=/2, $\=/2, $</2, $=</2, $>/2, $>=/2 – Linear equations and in-
equations . 33

all_different/1 – Constraint for different list elements 35

all_negative/1 – Constraint for non-positive list elements 36

all_positive/1 – Constraint for non-negative list elements 37

linear_if/2/3 – Conditional execution of a goal 38

linear_maximize/2, linear_minimize/2 – Linear optimization 40

4 Constraints for finite domains 43

4.1 Domain variables . 43

4.2 Arithmetic constraints . 44

4.3 Built-in operators and predicates . 49

4.3.1 Arithmetic Constraints . 49

4.3.2 Symbolic constraints . 49

4.3.3 Selection predicates . 50

4.3.4 Non-logical predicates . 50

4.3.5 Delaying proof of a goal . 50

4.3.6 Optimization . 51

?=/2, ?\=/2, ?</2, ?=</2, ?>/2, ?>=/2 – Arithmetic equations and
inequations . 52

all_distinct/1 – Generate constraint for distinct list elements 54

atleast/3, atmost/3 – Constrain minimum or maximum number of identi-
cal values . 56

cardinality/3 – Cardinality constraint . 58

cumulative/4 – Cumulative constraint . 61

deleteff/3, deleteffc/3, deleteff0/3 – Select variable 64

diffn/1 – Non-overlapping rectangles . 66

diffn/3 – Non-overlapping rectangles . 69

diffn/4 – Non-overlapping rectangles . 72

iv

disjunctive/2 – Disjunctive constraint . 75

distance/4 – Absolute distance between variables 78

domain/2 – Query domain . 81

domain_if/2/3 – Conditional execution of a goal 83

domain_maximum/2, domain_minimum/2 – Query domain limits 85

domain_size/2 – Query domain size . 86

element/3 – Generate constraint for list elements 88

exactly/3 – Generate number of identical values in a list 90

in/2 – Delimit domain . 92

indomain/1/2 – Generate value . 95

is_consecutive/1 – Test variable type . 97

is_domain/1 – Test variable type . 98

is_enumeration/1 – Test variable type . 99

is_in_domain/2 – Test domain affiliation 100

is_interval/1 – Test variable type . 102

label/1 – Generate values . 103

label/2 – Generate values . 105

label_tb/3 – Generate values . 107

lmaxdomain/2, lmindomain/2 – Query domain limits 109

lmaxmin/2, lminmax/2 – Query domain limits 111

maximum/2, minimum/2 – Constraint for maximum and minimum values of a
list . 113

minimize_bb/2/5 – Optimize result value 115

minimize_maximum/2/5 – Optimize . 117

monitor_domain/3 – Monitor variable domain 120

notin/3 – Remove interval from domain . 123

relation/2 – Establish relations . 125

5 Boolean constraints 127

5.1 Syntax of Boolean constraints . 128

5.2 Built-in operators and predicates . 128

<=>/2 – Boolean equivalence . 129

=>/2 – Boolean implication . 131

v

Bibliography 133

Index 134

vi

Preface

The IF/Prolog system from Siemens AG Austria is an implementation of the ISO Prolog
standard (ISO = International Standardization Organization). This standard was prepared
by ISO Working Group 17, comprising representatives from various national standardization
bodies.

IF/Prolog also contains interfaces and predicates which extend the language and ensure
compatibility with earlier versions of the product.

The Standard dictates us to supply a strictly conforming mode, where the Prolog system
only accepts and supplies conforming language predciates. To invoke this mode, see the
section on invoking IF/Prolog in the User’s Guide.

The constraints package is entirely an extension, and is not part of the ISO Prolog Standard
[11].

Target group

The IF/Prolog Constraints Package manual is intended for anyone wishing to use con-
straints to enhance the efficiency and expressiveness of Prolog programs.

Manuals

The documentation for IF/Prolog comprises of the following manuals:

• IF/Prolog Reference Manual

• IF/Prolog User’s Guide

• IF/Prolog Windows Interfaces

• IF/Prolog OSF/Motif Interface

• IF/Prolog Constraints Package

• IF/Prolog Java Interface

1

Introduction

The IF/Prolog Reference Manual contains a description of the semantics, built-in predicates,
C interface functions, debugger commands and environment control of IF/Prolog. It also
contains an overview of the syntax of the Prolog language.

Predicates associated with an interface or package are described in the respective manuals.
The IF/Prolog User’s Guide describes how to work with Prolog on a computer running
under the UNIX, DOS, Windows and other operating system.

As the set of manuals for IF/Prolog are not tutorials, you should be familiar with the Prolog
language. You should also be familiar with the basics of the operating system and know how
to use one of the editors installed on your computer.

Summary of contents

The IF/Prolog Constraints Package manual provides a short introduction describing the
general characteristics of constraints and the extension of the number domain by big integers
and rational numbers. In the following chapters, the individual classes of constraints for
IF/Prolog are then described. You will find the built-in predicates for each constraint class
described in alphabetical order in the latter part of the respective chapters.

Each chapter is divided into a descriptive and a reference part in accordance with the or-
ganization of IF/Prolog. The built-in predicates for each constraint class are defined in
separate modules and consequently, after importing a given constraint module, you can use
the associated predicates and operators.

Constraints Package 2 IF/Prolog V5.3

Introduction

Notational conventions

The following notational conventions are used throughout this manual:

xxx Syntax definitions are enclosed within a frame.
bind Prolog language elements, operating system commands and outputs

from the system are printed in teletype font.
Name Italics are used to represent variable parts in inputs and outputs

where you should substitute them with your own values.
[] Square brackets denote optional entries in the syntax notation; the

brackets are not part of the Prolog text.
[] Square brackets in bold type are elements of the Prolog list notation

and are part of the Prolog text.
{ } Braces denote alternatives in the syntax notation; the brackets are

not part of the Prolog text.
| A bar denotes alternatives in the syntax notation.
() Parentheses are required parts of the Prolog predicate notation and

is part of the Prolog text.
... Ellipsis indicate that the preceding syntax element may be re-

peated.
atom/1 Predicates are specified in the form Name/Arity.
nl/0/1 Several predicates with the same name and different arities are

denoted in this form.
[1] A number in square brackets indicates a reference to another man-

ual or a textbook. The number identifies the publication in the
Bibliography at the end of the manual.

The following pictograms are also used:

i for important advice and related information.

! for warnings.

Representation of built-in predicates

The descriptions of the built-in predicates have a standard format. They contain, if required,
in the following order:

• Descriptive title (meaning of the predicate)
The function of the predicate is described here in keywords.

• Predicate head (boxed)
Contains the functor of the predicate, followed by the arguments and their call modi.
Metacharacters which are explained below are used to represent the syntax.

IF/Prolog V5.3 3 Constraints Package

Introduction

• Full description
Begins with a passage of text which gives a detailed explanation of how the predicate
works, and the function of its arguments. If two or more similar predicates are described
together, their differences will be pointed out here.

• Description of arguments
Shows for each argument the modes of terms that are either required for instantiation
(call modes + and @) or permissible (call mode ?) when the predicate is called.
If only a specific set of values are permitted as arguments, these are shown in the form
of a list, separated by ’|’ symbols.

• Description of exceptions
Possible runtime exceptions are described here.

• Hints
Contains explanatory details on the use and special features of the predicate.

• Example
Illustrates how to use the predicate.

• Reference to related predicates
Lists cross-references to other IF/Prolog predicates.

Some of these subsections may be omitted if they are inapplicable for the predicate concerned;
for example, the subsection headed ’Hints ’ does not always appear.

Predicates which permit backtracking are indicated by a hash character (’#’) in front of the
functor. This character does not appear with predicates not having this capability.

For metapredicates, the argument list is followed by the text [@ +Module]. The module
qualification can be specified by @/2. Metapredicates are supplied with information on
the calling module.

Directives are special syntactic structures which can be specified in IF/Prolog texts and
which are processed when these texts are read in (e.g. with consult/1). They are indicated
by :- in front of the functor, as they would be written in a Prolog text.

User definable predicates are automatically called at particular points by IF/Prolog if
the user has defined them. They are identified by the text [:- Body] after the argument
list.

The call mode specifies the instantiation of an argument at the time of the call. In front of
each argument there is a sign (’@’, ’+’, ’-’, or ’?’) to indicate the call type of the argument,
as follows:

@ The argument is a pure input parameter. The current parameter specified in the call
must be of the prescribed type and any uninstantiated variables contained in this
parameter are not instantiated in the call.

Constraints Package 4 IF/Prolog V5.3

Introduction

+ The argument is an input parameter. The current parameter specified in the call must
be of the prescribed type. Any uninstantiated variables contained in this parameter
may be instantiated in the call.

When the argument is an atomic term, there is no difference between the modes + and
@. The mode @ is therefore used only when the argument may be a compound term.

? The argument is an input/output parameter. The current parameter must be either
a variable or a term of the prescribed type. In the course of the execution of the
predicate, this parameter is unified. If this unification is not successful, then the entire
predicate call will fail. Any uninstantiated variables contained in this parameter may
be instantiated in the call.

- The argument is a pure output parameter. The current parameter must be an uninstan-
tiated variable. If the predicate succeeds, this variable is instantiated with the result of
the predicate call. The type of result from the predicate call is indicated in the section
on ’Arguments’ in the full description.

Several call patterns are possible for some predicates.

IF/Prolog V5.3 5 Constraints Package

Introduction

Constraints Package 6 IF/Prolog V5.3

Chapter 1

Constraints

Prolog is designed as a declarative programming language with a number of procedural
language constructs. For reasons of efficiency however, many problems have been solved
by means of procedural algorithms. Constraints constitute a powerful extension of the
descriptive Prolog language. Constraints allow you to describe more simply dependencies
within a system. For theoretical background of constraints, please refer to Hentenryck [15].

In standard Prolog, an uninstantiated variable may assume any value. The variable must
be instantiated before testing can take place to determine whether consistency requirements
are satisfied. Consistency conditions are thus used passively, i.e. not until the variable has
a value.

You can specify constraints, however, before the Prolog system attempts any instantiations.
The variables are instantiated during normal goal proving (or through constraint propaga-
tion). This may influence other variables if you have again defined constraints between these
variables (propagation). The Prolog system automatically takes account of the newly ac-
quired information. If only one value is left in the domain, the variable can be instantiated.

Constraints are thus conditions relating to one or more variables in a particular domain.
Three domains are differentiated:

• The linear domain is infinite and contains rational numbers.

• The finite domain includes integers and is defined either as an interval, as an enumer-
ation, or as a sequence of values.

• The Boolean domain is a subset of the finite domain and contains only the values 0
for false and 1 for true.

The domains are nested, as illustrated by the following diagram. The Boolean domain is a
subset of the finite domain which is in turn a subset of the linear domain.

Linear domain
(rational numbers)

Finite domain
(integers)

Boolean domain
(0 and 1)

7

Rational numbers Constraints

By analogy with this division into three domains, the constraints are also divided into dif-
ferent classes:

• the class of constraints for the linear domain: linear constraints

• the class of constraints for the finite domain: finite constraints

• the class of constraints for the Boolean domain: Boolean constraints

Coroutines constitute a separate class of constraints which cannot be defined by way of a
separate domain. A coroutine allows you to delay the proof of a goal until a variable has
been instantiated, and thus to define more complex constraints. Coroutines are, so to speak,
the basis on which constraints can be developed.

A constraint is entered by using built-in predicates or operators which are assigned to par-
ticular system modules. A check is performed during processing of the built-in predicate to
determine whether the constraint can be satisfied. If the constraint cannot be satisfied, the
predicate will fail. If IF/Prolog is able to immediately ascertain that the constraint is al-
ways satisfied, the predicate will succeed. If IF/Prolog cannot immediately ascertain whether
the predicate is satisfiable, the constraint will be suspended until sufficient information is
available.

Constraints allow you to formulate conditions for one or more variables, which restrict the
permissible domain. A constraint may be

• unary, i.e. it applies only to one variable which can assume a value from a particular
range or from a set.

• binary, i.e. two variables must satisfy a condition, e.g. they should form a constant
sum.

• global, i.e. several variables must satisfy one condition, e.g. variables in a list should
all be different or all negative.

The enormous efficiency benefits offered by constraints result from the immediacy of infor-
mation access for the system; all information derived from preceding data is available to the
system at any point in the program execution. Unnecessary searching is minimized and the
solution is reached at over the most direct path possible.

When backtracking is used, IF/Prolog automatically resets changes in constraints.

1.1 Big integers and rational numbers

The range of terms which are interpreted as numbers in IF/Prolog has been extended. Big
integers are integers requiring more than machine word (32 or 64 bits) to represent them.

Constraints Package 8 IF/Prolog V5.3

Constraints Rational numbers

Based on this data type, rational numbers have been implemented. In contrast to floating-
point numbers, rational numbers permit numerically precise arithmetic without rounding.

You can enter big integers in the same way as small integers, in decimal or hexadecimal
form. IF/Prolog outputs them in decimal form. You identify hexadecimal integers by the
prefix 0x.

Example

[user] ?- X = 0xffffffff. ←↩

X = 42949672295 ←↩

yes

On a 32-bit machine, small integers lie in the range -0x80000000 through 0x7fffffff (-2147
483 648 through +2147 483 647), big integers in the range -21048576+1 through +21048576-1.
The biggest integer thus has approximately 300000 decimal places.

You identify rational numbers by the prefix 0r. You can enter a rational number as an
uncanceled fraction. The denominator and numerator are positive big integers and are
separated by a slash /. IF/Prolog normalizes (cancels) the rational number and outputs it
in normal form.

Example

[user] ?- X = 0r24/3. ←↩

X = 8 ←↩

yes

i If you specify a value outside the big integer range for a big integer, or if
an arithmetic evaluation produces too large a value, IF/Prolog terminates
with the system error ’multiple precision integer too big’.

1.1.1 Arithmetic operations

Arithmetic operations have been extended with the result that IF/Prolog will, where neces-
sary, convert a term to the more general number range:

Integers Rational numbers Real numbers
special general

You can also apply the operations //, max, min, mod and rem (see IF/Prolog Reference
Manual [1], predicate is/2) to big integers. All other arithmetic functions retain the same
result types.

IF/Prolog V5.3 9 Constraints Package

Predicates Constraints

When comparing terms of different types by means of the predicates @< and @>, the following
relations are applicable:

big integer @< rational number
rational number @< real number
real number @< small integer
small integer @< big integer

All predicates and operators which work with small integers can still only process small
integers. If you specify big integer with these predicates and operators, IF/Prolog generates
the exception range_error(integer). You can use the functions minint and maxint to
query the limits of the range for small integers. The operations \/, /\, >> and <<, which
interpret an integer as a bit field, also remain restricted to values between minint and
maxint.

i During rounding of big integers to real numbers an overflow will occur if
the domain for the real number is exceeded.

1.1.2 Operator for rational division

The operator rdiv allows you to divide rational numbers. rdiv has the precedence 400 and
is right-associative (xfy).

Example

[user] ?- A = 6, B = 10, X is A rdiv B. ←↩

A = 6

B = 10

X = 0r3/5 ←↩

yes

[user] ?- X is 15 rdiv 0r1/15. ←↩

X = 225 ←↩

yes

1.2 General built-in predicates

The following built-in predicates are assigned to the module system; consequently you can
still call them even if you have not imported any of the constraint modules.

This section provides a tabular overview of the built-in predicates followed by descriptions
of the predicates in alphabetical order.

Constraints Package 10 IF/Prolog V5.3

Constraints Predicates

1.2.1 Test for constraint variable

Predicate Purpose
is_constraint/1 Tests whether constraints are defined for the variable.
is_constraint/2 Queries constraint classes.

1.2.2 Test numbers

The following predicates allow you to test the number type of a term:

Predicate Purpose
integer/1 Test whether a term is a small or big integer.
rational/1 Test whether a term is a rational number.
rational/3 Reduces a rational number to denominator and numerator.

IF/Prolog V5.3 11 Constraints Package

is_constraint/1/2 Predicate Constraints

Test for constraint variable

is_constraint(+Variable)
is_constraint(+Variable, ?List)

The predicates is_constraint/1/2 succeed if Variable has one or more constraints; other-
wise they fail.

The predicate is_constraint/2 unifies List with a list of atoms which specify the constraint
classes in which Variable has constraints.

Arguments

Variable Term
List List of atoms

Exceptions

type_error(list)
The argument List must be a variable or a list, but is a term of another type.

type_error(atom)
An element of List must be a variable or an atom, but is a term of another type.

Example

[user] ?- [user].

> :- import(const_delay).

> :- import(const_linear).

> % A predicate to test if a variable has delayed goals

> % associated with it:

> is_delayed(Var) :-

| is_constraint(Var, List), member(delay, List).

> end_of_file.

*** consult ’user’: loaded in 0.03 sec.

yes

[user] ?- freeze(V, write(gabba)), V = a, is_delayed(V).

gabba

no

[user] ?- freeze(V, write(gabba)), is_delayed(V), V=a.

gabba

Constraints Package 12 IF/Prolog V5.3

Constraints Predicate is_constraint/1/2

V = a

yes

[user] ?- freeze(A, B is A + 1), A $= C - 5,

| is_constraint(A), C = 12.

A = 7

B = 8

C = 12

yes

[user] ?- freeze(A, B is A + 1), A $= C - 5, C = 12,

| is_constraint(A).

no

[user] ?- freeze(A, B is A + 1), A $= C - 5,

| is_constraint(A, L), C = 12.

A = 7

B = 8

C = 12

L = [delay,linear]

yes

IF/Prolog V5.3 13 Constraints Package

rational/1 Predicate Rational numbers

Test for rational number

rational(@TestTerm)

The predicate rational/1 succeeds if TestTerm is a rational number (but not an integer),
otherwise it fails. This distinction is important because the integers are normally considered
to be a subset of the rational numbers.

Arguments

TestTerm Term

Example

[user] ?- rational(0r3/7).

yes

[user] ?- X is 0r1/6 + 0r1/5 + 0r1/4 + 0r1/3 + 0r1/2,

rational(X).

X = 0r29/20

yes

[user] ?- rational(7).

no

See also

rational/3

Constraints Package 14 IF/Prolog V5.3

Rational numbers Predicate rational/3

Decompose a rational number

rational(+Number, ?Numerator, ?Denominator)

The predicate rational/3 determines the denominator and numerator of a rational number.

If Number is a rational number, then Numerator is unified with the numerator and Denom-
inator with the denominator of this number. If Number is an integer, Numerator is unified
with Number and Denominator with 1.

Arguments

Number Rational number or integer
Numerator Integer
Denominator Integer

Exceptions

instantiation_error
The argument Number must not be a variable, but a variable was specified.

type_error(rational)
The argument Number must be a rational number or an integer, but is a term of
another type.

type_error(integer)
The argument Numerator or Denominator must be a variable or an integer, but is
a term of another type.

Example

[user] ?- rational(0r3/7, Numer, Denom).

Numer = 3

Denom = 7

yes

[user] ?- X is 0r1/6 + 0r1/5 + 0r1/4 + 0r1/3 + 0r1/2,

rational(X, Numer, Denom).

X = 0r29/20

Numer = 29

Denom = 20

IF/Prolog V5.3 15 Constraints Package

rational/3 Predicate Rational numbers

yes

[user] ?- rational(7, Numer, Denom).

Numer = 7

Denom = 1

yes

See also

rational/1, is/2 (operator rdiv)

Constraints Package 16 IF/Prolog V5.3

Chapter 2

Coroutines

Coroutines constitute a separate class of constraints. They enable you to satisfy a goal under
data control, i.e. the proof of a goal is initiated by the instantiation of a variable. Coroutines
allow you to write Prolog programs in a more declarative fashion.

In accordance with the proof model, Prolog proves subgoals procedurally from left to right.
This may result in cases which, from the declarative point of view, are not correct:

[user] ?- A \= a, A = b. ←↩

no

[user] ?- A = b, A \= a. ←↩

A = b ←↩

yes

From the logical viewpoint, the order of subgoals is equivalent with respect to satisfiabil-
ity. Using freeze/2, the built-in predicate of the coroutine constraint class, you can delay
proving the first goal (A \= a) until the variable A is instantiated with b:

[user] ?- freeze(A, A \= a), A = b. ←↩

A = b ←↩

yes

Coroutines are inadequate as a general constraint mechanism since, as is the case with
standard Prolog, they test consistency conditions passively, i.e. not until a variable has been
instantiated. The more efficient method is to restrict the domain of a variable in advance.
In this way, the consistency conditions are handled actively, i.e. on instantiation of the
variables. Coroutines, however, allow you to define more complex constraints.

17

Coroutines

The built-in predicate freeze/2 for the coroutine constraint class is contained in the module
const_delay. Use the import directive to import the module into your database.

[user] ?- [user]. ←↩

> :- import(const_delay). ←↩

> end_of_file. ←↩

*** consult ’user’: loaded in 0.02 sec.

yes

i In order to work with coroutines you must always import the module
const_delay.

Example

The Prolog negation (\+/1) succeeds if a goal cannot be proved (negation by failure). Data-
controlled proof allows you to achieve a logically correct negation.

not_log(Goal) :- deep_freeze(Goal, \+ Goal).

/* Goal is not proved until all variables are ground.*/

deep_freeze(Args, Goal) :-

var_extract(Args, [], VarList), /* Filter out variables */

list_freeze(VarList, Goal). /* Freeze goal */

list_freeze([], Goal) :- Goal. /* Prove goal */

list_freeze([Var|T], Goal) :-

freeze(Var, deep_freeze([Var|T], Goal)).

var_extract(V, VL, VL) :-

var(V),

member(VV, VL), /* Variable already exists */

V == VV, !.

var_extract(V, VL, [V|VL]) :-

var(V), !. /* New variable */

var_extract(V, VL, VL) :-

ground(V), !. /* Ground */

var_extract([E|T], VL, VL1) :-

!,

var_extract(E, VL, VL0), /* Test for list */

var_extract(T, VL0, VL1).

Constraints Package 18 IF/Prolog V5.3

Coroutines Predicates

var_extract(S, VL, VL1) :-

compound(S), !, /* Test for structure */

S =.. [_|Args],

var_extract(Args, VL, VL1).

Once you have reconsulted the predicates, the following dialog is possible:

[user] ?- \+(member(A, [3,4])), A = 5. ←↩

no

[user] ?- not_log(member(A, [3,4])), A = 5. ←↩

A = 5 ←↩

yes

2.1 Built-in predicates

The following built-in predicates are assigned to the module const_delay; consequently you
can call them only if you have imported this module.

IF/Prolog V5.3 19 Constraints Package

conjunctive_freeze/2 Predicate Coroutines

Delay goal proving

conjunctive_freeze(+List, ?Goal) [@ +Module]

The predicate conjunctive_freeze/2 delays the proof of Goal until all elements in List
have been instantiated.

When all elements of List are instantiated, the frozen goal is woken up and inserted in the
proof tree following the subgoal that caused the instantiation.

Goal can be a composite goal, e.g. a conjunction. In this case, the argument, consisting of
subgoals separated by commas, must be enclosed in parenthesis.

Arguments

List List of terms
Goal Goal

Exceptions

instantiation_error
The argument List must not be a variable, but a variable was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

instantiation_error
The argument Goal must not be a variable, but a variable was specified.

type_error(callable)
The argument Goal must have the syntactical structure of a Prolog goal.

existence_error(procedure)
In executing Goal, a predicate was to be activated which is not defined and the
Prolog flag unknown has the value error.

type_error(atom)
The argument Goal or a subgoal has been qualified by means of @/2 or :/2 with
a term that is not an atom.

existence_error(module)
The argument Goal or a subgoal is qualified by means of @/2 or :/2 with an atom
that does not name an existing module.

Constraints Package 20 IF/Prolog V5.3

Coroutines Predicate conjunctive_freeze/2

Hints

The predicate conjunctive_freeze/2 is a metapredicate and calls its goal in the calling
module or in the specified Module.

The predicates activated in the goal must be visible in the calling module or in the
specified Module, unless the :/2 qualification is used for such a predicate to indicate
explicitly the module in which this predicate is visible.

The predicates activated in the goal are normally executed in the context of the module
in which they are defined. This does not apply to metapredicates, which are executed in
the context of calling module or the specified Module, unless the @/2 qualification is used
for a metapredicate to indicate explicitly the module context in which this predicate is
to be executed.

Example

[user] ?- conjunctive_freeze([A,B,C], Sum is A+B+C),

A is 11, C is 20, B is (C / A + 3.14), X is Sum - 5.2.

A = 11

B = 4.95818

C = 20

Sum = 35.9582

X = 30.7582

Compatibility

V5.0B The predicate conjunctive freeze/2 is new.

See also

freeze/2, disjunctive freeze/2

IF/Prolog V5.3 21 Constraints Package

dif/2 Predicate Coroutines

Term unequality

dif(+Term1, +Term2)

The predicate dif/2 succeeds, if Term1 and Term2 are not unifiable (Prolog predicate =/2).
The predicate fails, if the terms are equal (Prolog predicate ==/2). Otherwise, the terms are
unifiable but not equal. Since it cannot be immediately determined, if the terms will always
be unequal, the predicate is suspended. The test is resumed as soon as one variable in
either of the terms is instantiated.

If the terms are not unifiable after the instantiation, the predicate that caused the instan-
tiation succeeds. If the terms are equal after the instantiation, the predicate that caused
the instantiation fails. Otherwise, the terms are still unifiable but not equal, and the test is
suspended again.

Arguments

Term1 Term
Term2 Term

Example

[user] ?- dif(A, B), A = a(1), B = a(2).

A = a(1)

B = a(2)

yes

[user] ?- A = B, dif(a(A), a(B)).

no

[user] ?- dif(A, B), A = t(A1), B = t(B1), A1 = a, B1 = b.

A = t(a)

B = t(b)

A1 = a

B1 = b

yes

Constraints Package 22 IF/Prolog V5.3

Coroutines Predicate dif/2

Compatibility

V5.0B The predicate dif/2 is new.

IF/Prolog V5.3 23 Constraints Package

disjunctive_freeze/2 Predicate Coroutines

Delay goal proving

disjunctive_freeze(+List, ?Goal) [@ +Module]

The predicate disjunctive_freeze/2 delays the proof of Goal until one of the elements in
List has been instantiated.

When one element of List is instantiated, the frozen goal is woken up and inserted in the
proof tree following the subgoal that caused the instantiation. The goal is activated only
once, even if more elements of List become instantiated later on.

Goal can be a composite goal, e.g. a conjunction. In this case, the argument, consisting of
subgoals separated by commas, must be enclosed in parenthesis.

Arguments

List List of terms
Goal Goal

Exceptions

instantiation_error
The argument List must not be a variable, but a variable was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

instantiation_error
The argument Goal must not be a variable, but a variable was specified.

type_error(callable)
The argument Goal must have the syntactical structure of a Prolog goal.

existence_error(procedure)
In executing Goal, a predicate was to be activated which is not defined and the
Prolog flag unknown has the value error.

type_error(atom)
The argument Goal or a subgoal has been qualified by means of @/2 or :/2 with
a term that is not an atom.

existence_error(module)
The argument Goal or a subgoal is qualified by means of @/2 or :/2 with an atom
that does not name an existing module.

Constraints Package 24 IF/Prolog V5.3

Coroutines Predicate disjunctive_freeze/2

Hints

The predicate disjunctive_freeze/2 is a metapredicate and calls its goal in the calling
module or in the specified Module.

The predicates activated in the goal must be visible in the calling module or in the
specified Module, unless the :/2 qualification is used for such a predicate to indicate
explicitly the module in which this predicate is visible.

The predicates activated in the goal are normally executed in the context of the module
in which they are defined. This does not apply to metapredicates, which are executed in
the context of calling module or the specified Module, unless the @/2 qualification is used
for a metapredicate to indicate explicitly the module context in which this predicate is
to be executed.

Example

[user] ?- disjunctive_freeze([A,B], current_prolog_flag(A,B)),

B = on.

A = char_conversion

B = on ;

A = signal

B = on ;

A = warnings

B = on ;

no

Compatibility

V5.0B The predicate disjunctive freeze/2 is new.

See also

freeze/2, conjunctive freeze/2

IF/Prolog V5.3 25 Constraints Package

freeze/2 Predicate Coroutines

Delay goal proving

freeze(+Variable, ?Goal) [@ +Module]

The predicate freeze/2 delays the proof of Goal until the Variable has been instantiated.

When the Variable is instantiated, the frozen goal is woken up and inserted in the proof tree
following the subgoal that caused the instantiation.

Goal can be a composite goal, e.g. a conjunction. In this case, the argument, consisting of
subgoals separated by commas, must be enclosed in parenthesis.

Arguments

Variable Term
Goal Goal

Exceptions

instantiation_error
The argument Goal must not be a variable, but a variable was specified.

type_error(callable)
The argument Goal must have the syntactical structure of a Prolog goal.

existence_error(procedure)
In executing Goal, a predicate was to be activated which is not defined and the
Prolog flag unknown has the value error.

type_error(atom)
The argument Goal or a subgoal has been qualified by means of @/2 or :/2 with
a term that is not an atom.

existence_error(module)
The argument Goal or a subgoal is qualified by means of @/2 or :/2 with an atom
that does not name an existing module.

Hints

The predicate freeze/2 is a metapredicate and calls its goal in the calling module or
in the specified Module.

The predicates activated in the goal must be visible in the calling module or in the
specified Module, unless the :/2 qualification is used for such a predicate to indicate
explicitly the module in which this predicate is visible.

The predicates activated in the goal are normally executed in the context of the module
in which they are defined. This does not apply to metapredicates, which are executed in

Constraints Package 26 IF/Prolog V5.3

Coroutines Predicate freeze/2

the context of calling module or the specified Module, unless the @/2 qualification is used
for a metapredicate to indicate explicitly the module context in which this predicate is
to be executed.

Example

The predicate print_var/2 enables you to output the instantiations of a variable.

print_var(Info, Var) :-

freeze(Var, (write(Info), write(’:’), write(Var),nl).

print_var(Info, Var) :-

write(’Backtrack: ’),

write(Info),

write (’:’),

write(Var),

nl,

fail.

[user] ?- print_var(’now’, A), write(’between’), nl , A = 3.

between

A = 3 ;

Backtrack: now : _105

no

See also

conjunctive freeze/2, disjunctive freeze/2

IF/Prolog V5.3 27 Constraints Package

freeze/2 Predicate Coroutines

Constraints Package 28 IF/Prolog V5.3

Chapter 3

Linear constraints

Linear constraints are conditions applying to linear domain variables. The linear domain
comprises big integers and rational numbers, and is infinite. Using linear constraints, it
is possible to solve non-discrete problems. Non-discrete means that there are an infinite
number of points under which a solution is sought in the search area. These points are
represented as rational numbers.

Linear constraints are a set of equations and inequations. A network of constraints arises
between the variables which you specify in the equations. With each new equation or in-
equation, IF/Prolog attempts to solve the equation system with an incremental algorithm.

If you wish to work with linear constraints, you must import the module const_linear,
which contains the built-in predicates for the linear constraints. Use the import directive
to import the module into your database:

[user] ?- [user]. ←↩

> :- import(const_linear). ←↩

> end_of_file. ←↩

*** consult ’user’: loaded in 0.03 sec.

yes

i You can work with constraints only if you have configured the rational
number support and the constraints support at installation.

3.1 Linear terms

Big integers and rational numbers form the basis for linear constraints. Based on these you
use linear terms to formulate a linear constraint. A linear term is a rational number, or
an arithmetic conjunction of rational numbers. Integers, both big and small, constitute a
subset of the rational numbers. The syntax of a linear constraint looks like this:

29

Linear terms Linear constraints

linear constraint ::= linear term

$ =
$\ =
$ <
$ =<
$ >
$ >=

linear term

linear term ::=

variable
rational constant
+linear term
−linear term

linear term

+
−
?

 linear term

linear term

{
/

rdiv

}
rational constant

(linear term)

rational constant ::=

integer
rational number
+rational constant
−rational constant

rational constant

+
−
?
/

rdiv

rational constant

(rational constant)

A linear constraint is thus an equation or inequation with two linear terms as operands. Each
linear term, which may contain any number of variables, must be reducible to a rational
number during the course of processing. This permits efficient processing of the relations.

If an operand fails to comply with the syntax rules, IF/Prolog generates the exceptions
domain_error(linear_term,...). The following goals are declaratively not equal, conse-
quently an exception is generated in the second case.

[user] ?- A $= 6, A = a. ←↩

no

[user] ?- A = a, A $= 6. ←↩

*** E X C E P T I O N: domain_error(linear_term,a)

>>> goal = const_linear : (a $= 6)}

no

Constraints Package 30 IF/Prolog V5.3

Linear constraints Predicates

Multiplication of two variables in linear terms is allowed, but division is not permitted. With
multiplication, IF/Prolog delays the proof until one of the variables has been instantiated,
thereby making the term linear again. You can achieve such a delay explicitly by using the
predicate linear_if/2/3. This predicate works in a similar fashion to freeze/2 in the sense
that it is necessary to determine the satisfiability of a condition before Prolog can prove the
goal.

Example

A farmer can grow wheat or corn on his field. Each produces a different yield per unit of area
of land but also requires a different amount of time for its care; there is also a limit to the
maximum amount of work time. The following query to IF/Prolog calculates the maximum
yield.

[user] ?- Area = 100, % total available area

| WorkTime = 40, % maximum work time

| OutputCorn = 0r5/2, % corn yield per unit area

| OutputWheat = 0r7/2, % yield per unit area

| CostsCorn = 0r1/3, % time spent per unit area for corn

| CostsWheat = 0r2/3, % time spent per unit area for wheat

| all_positive([AreaCorn, AreaWheat]),

| Area $>= AreaCorn + AreaWheat,

| WorkTime $>= CostsCorn * AreaCorn + CostsWheat * AreaWheat,

| Output $= AreaCorn * OutputCorn + AreaWheat * OutputWheat,

| linear_maximize(Output, MaxOutput).

Area = 100

WorkTime = 40

OutputCorn = 0r5/2

OutputWheat = 0r7/2

CostsCorn = 0r1/3

CostsWheat = 0r2/3

AreaCorn = 80

AreaWheat = 20

Output = 270

MaxOutput = 270

yes

3.2 Built-in predicates and operators

The following built-in predicates are assigned to the module const_linear; consequently
you can call them only if you have imported this module.

This section provides a tabular overview of the built-in predicates followed by descriptions
of the predicates in alphabetical order.

IF/Prolog V5.3 31 Constraints Package

Predicates Linear constraints

3.2.1 Linear operators

The built-in operators have been extended to include the linear operators. The operators
generate a constraint which is satisfiable when the linear terms on both sides match in the
specified relation. The prefix $ identifies the new operators as linear relational operators.

Operator Precedence Typ Meaning

$= 700 xfx equal
$\= 700 xfx not equal
$< 700 xfx less than
$=< 700 xfx less than or equal
$> 700 xfx greater than
$>= 700 xfx greater than or equal

3.2.2 Constraints for list elements

Predicate Purpose

all_different/1 All list elements must be different.
all_negative/1 All list elements must be non-positive.
all_positive/1 All list elements must be non-negative.

3.2.3 Delaying proof of a goal

Conditional execution can delay the proof of a goal until sufficient information is obtained
from other program elements. A linear constraint is specified as the condition. Once the
satisfiability of this condition has been determined a goal dependent on the condition will
automatically be proved.

Predicate Purpose

linear_if/2/3 Delay goal proving until satisfiability of a condition can be determined.

3.2.4 Optimization

Linear terms can be regarded as goal functions. The following predicates can be used to
minimize or maximize the value of a goal function under the applicable constraints.

Predicate Purpose

linear_maximize/2 Maximize value of goal function.
linear_minimize/2 Minimize value of goal function.

Constraints Package 32 IF/Prolog V5.3

Linear constraints Predicate$=/2, $\=/2, $</2, $=</2, $>/2, $>=/2

Linear equations and inequations

?LinearTerm1 $= ?LinearTerm2
?LinearTerm1 $\= ?LinearTerm2
?LinearTerm1 $< ?LinearTerm2
?LinearTerm1 $=< ?LinearTerm2
?LinearTerm1 $> ?LinearTerm2
?LinearTerm1 $>= ?LinearTerm2

The predicates $=/2, $\=/2, $</2, $=</2, $>/2 and $>=/2 generate linear constraints be-
tween the variables in the LinearTerms. The constraint is satisfiable, if the linear expressions
are in the specified relation to each other.

The multiplication of two variables is delayed until one of them has been instantiated. For
example, the subgoal

..., X ∗ Y $= Z , ...
will be delayed until either X or Y is bound to a rational constant. When it happens, the
corresponding new linear constraint (e.g. X ∗ C $= Z) is added to the system.

Arguments

LinearTerm1 Linear term
LinearTerm2 Linear term

Exceptions

domain_error(linear_term)
The argument LinearTerm1 or LinearTerm2 must be a linear term. However, it
contains non-linear operations.

Example

[user] ?- 2*X + 3*Y $= 28, 6*X - 4*Y $= 6.

X = 5

Y = 6

yes

[user] ?- [user].

> circle(Circle, Radius) :-

| Pi is 0r355/113,

IF/Prolog V5.3 33 Constraints Package

$=/2, $\=/2, $</2, $=</2, $>/2, $>=/2Predicate Linear constraints

| Circle $= 2 * Pi * Radius.

> end_of_file.

*** consult ’user’: loaded in 0.00 sec.

yes

[user] ?- circle(U, 5).

U = 0r3550/113

yes

[user] ?- circle(10, R).

R = 0r113/71

yes

Constraints Package 34 IF/Prolog V5.3

Linear constraints Predicate all_different/1

Constraint for different list elements

all_different(+List)

The predicate all_different/1 generates a constraint whereby all elements of the List are
different rational numbers or may be instantiated only with such values. The constraint is
not satisfied if

• a value in List is not a rational number.

• a variable in List is instantiated with a value which is not a rational number.

• two or more elements in List are the same.

• two or more elements in List are instantiated with the same value.

Arguments

List List of rational numbers or linear variables

Exceptions

instantiation_error
The argument List must not be a variable, but a variable was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

See also

$\=/2

IF/Prolog V5.3 35 Constraints Package

all_negative/1 Predicate Linear constraints

Constraint for non-positive list elements

all_negative(+List)

The predicate all_negative/1 generates a constraint whereby all elements of the List must
be rational numbers less than or equal to 0 or may be instantiated only with such values.
The constraint is not satisfied if

• a value in List is a positive rational number.

• a variable in List can be instantiated only with a positive rational number.

• a variable in List is instantiated with a positive rational number.

Arguments

List List of rational numbers or linear variables

Exceptions

instantiation_error
The argument List must not be a variable, but a variable was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

Example

[user] ?- A $>= 0, all_negative([A]).

A = 0

yes

[user] ?- all_negative([A]), A $> 1.

no

See also

all positive/1

Constraints Package 36 IF/Prolog V5.3

Linear constraints Predicate all_positive/1

Constraint for non-negative list elements

all_positive(+List)

The predicate all_positive/1 generates a constraint whereby all elements of the List must
be rational numbers greater than or equal to 0 or may be instantiated only with such values.
The constraint is not satisfied if

• a value in List is a negative rational number.

• a variable in List can be instantiated only with a negative rational number.

• a variable in List is instantiated with a negative rational number.

Arguments

List List of rational numbers or linear variables

Exceptions

instantiation_error
The argument List must not be a variable, but a variable was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

Example

[user] ?- A $=< 0, all_positive([A]).

A = 0

yes

[user] ?- all_positive([A]), A $< -1.

no

See also

all negative/1

IF/Prolog V5.3 37 Constraints Package

linear_if/2/3 Predicate Linear constraints

Conditional execution of a goal

linear_if(@LinearCondition, ?ThenGoal) [@ +Module]

linear_if(@LinearCondition, ?ThenGoal, ?ElseGoal) [@ +Module]

The predicates linear_if/2/3 are used to call a goal conditionally. If the constraint Lin-
earCondition is satisfied, ThenGoal is called. If the condition is not satisfiable, either true

(linear_if/2) or ElseGoal (linear_if/3) is called. The execution of the predicate is de-
layed as long as the satisfiability of LinearCondition has not been determined.

It cannot be guaranteed that linear_if/2/3 will be activated immediately when it be-
comes possible to decide the satisfiability of the condition. For example, a decision on the
satisfiability of the condition is delayed in the following situation:

linear_if(A $\= B, ThenGoal, ElseGoal), A $\= B, ...

In the following situations, however, IF/Prolog has decided that the condition can be satis-
fied:

linear_if(A $\= B, ThenGoal, ElseGoal), A $> B, ...

linear_if(A $\= B, ThenGoal, ElseGoal), A $< 3, B $>= 5, ...

Arguments

LinearCondition Linear constraint
ThenGoal Goal
ElseGoal Goal

Hints

The predicate differs from ->/2 by delaying the execution of ThenGoal or ElseGoal
until the satisfiability of LinearCondition has been determined. The other difference is
that linear_if/2 succeeds, if LinearCondition is not satisfied.

The predicates linear_if/2/3 are metapredicates and call their goals in the calling
module or in the specified Module.

The predicates activated in the goal must be visible in the calling module or in the
specified Module, unless the :/2 qualification is used for such a predicate to indicate
explicitly the module in which this predicate is visible.

The predicates activated in the goal are normally executed in the context of the module
in which they are defined. This does not apply to metapredicates, which are executed in
the context of calling module or the specified Module, unless the @/2 qualification is used
for a metapredicate to indicate explicitly the module context in which this predicate is
to be executed.

Constraints Package 38 IF/Prolog V5.3

Linear constraints Predicate linear_if/2/3

Exceptions

instantiation_error
The argument LinearCondition must not be a variable, but a variable was specified.

domain_error(linear_constraint)
The argument LinearCondition must be a linear constraint. However, it contains
non-linear operations.

instantiation_error
The argument ThenGoal or ElseGoal must not be a variable, but a variable was
specified.

type_error(callable)
The argument ThenGoal or ElseGoal must have the syntactical structure of a
Prolog goal.

existence_error(procedure)
In executing ThenGoal or ElseGoal, a predicate was to be activated which is not
defined and the Prolog flag unknown has the value error.

type_error(atom)
The argument ThenGoal or ElseGoal or a subgoal has been qualified by means of
@/2 or :/2 with a term that is not an atom.

existence_error(module)
The argument ThenGoal or ElseGoal or a subgoal is qualified by means of @/2 or
:/2 with an atom that does not name an existing module.

See also

$=/2, $\=/2, $</2, $=</2, $>/2, $>=/2, ->/2

IF/Prolog V5.3 39 Constraints Package

linear_maximize/2, linear_minimize/2 Predicate Linear constraints

Linear optimization

linear_maximize(?LinearTerm, ?Maximum)
linear_minimize(?LinearTerm, ?Minimum)

The predicates linear_maximize/2 and linear_minimize/2 search for a maximum or min-
imum for the given linear term LinearTerm, taking consideration the currently applicable
constraints, and unify this value with Maximum or Minimum. If no maximum or minimum
satisfying the constraints is found, the predicate fails.
If the current constraints do not delimit a maximum or minimum, then the exception

evaluation_error(unbounded_solution)

is generated.

Arguments

LinearTerm Linear term
Maximum Rational number
Minimum Rational number

Exceptions

domain_error(linear_term)
The argument LinearTerm must be a linear term. However, it contains non-linear
operations.

evaluation_error(unbounded_solution)
The currently applicable constraints do not delimit a domain; consequently no
Minimum or Maximum can be determined.

Example

[user] ?- L = [X1, X2, X3, X4, X5, X6, X7, X8],

| all_positive(L),

| 2*X1 - X3 + 3*X4 + X8 $= 1,

| X2 + 3*X4 $= 2,

| 2*X1 + X7 $= 6,

| X3 + X6 $= 6,

| -2*X1 + X3 - 3*X4 + X5 $= 2,

| linear_minimize(4*X1 - 6*X3 + 9*X4 + 66, Min).

L = [2,2,6,0,0,0,2,3]

X1 = 2

X2 = 2

Constraints Package 40 IF/Prolog V5.3

Linear constraints Predicate linear_maximize/2, linear_minimize/2

X3 = 6

X4 = 0

X5 = 0

X6 = 0

X7 = 2

X8 = 3

Min = 38

yes

[user] ?- L = [X1, X2, X3, X4, X5, X6, X7, X8],

| all_positive(L),

| 2*X1 - X3 + 3*X4 + X8 $= 1,

| X2 + 3*X4 $= 2,

| 2*X1 + X7 $= 6,

| X3 + X6 $= 6,

| -2*X1 + X3 - 3*X4 + X5 $= 2,

| linear_maximize(4*X1 - 6*X3 + 9*X4 + 66, Max).

L = [0,1,0,0r1/3,3,6,6,0]

X1 = 0

X2 = 1

X3 = 0

X4 = 0r1/3

X5 = 3

X6 = 6

X7 = 6

X8 = 0

Max = 69

yes

[user] ?- X $> 4, linear_minimize(X, Min).

no

[user] ?- X $> 4, linear_maximize(X, Max).

*** E X C E P T I O N: evaluation_error(unbounded_solution)

>>> const_linear : linear_maximize(_146,_147)

no

[user] ?- 2*X1 + 2*X2 - X3 $=< 10,

| 3*X1 - 2*X2 + X3 $=< 10,

IF/Prolog V5.3 41 Constraints Package

linear_maximize/2, linear_minimize/2 Predicate Linear constraints

| X1 - 3*X2 + X3 $=< 10,

| X1 $>= 0,

| X2 $>= 0,

| X3 $>= 0,

| Min $\= -10,

| linear_minimize(X1 + 3*X2 - X3, Min).

no

Constraints Package 42 IF/Prolog V5.3

Chapter 4

Constraints for finite domains

Constraints for finite domains are conditions for a variable in a finite domain. A finite domain
may contain only certain integers which you can specify directly as intervals, enumerations
or sequences. A finite number of instantiation possibilities result from this finite domain.
By analogy, it is possible, using constraints for finite domains, to solve discrete problems.
Discrete means that only a finite number of values satisfy the conditions.

Within the class of constraints for finite domains, you can specify arithmetic and symbolic
constraints between variables. You generate arithmetic constraints by using the arithmetic
relational operators, and symbolic constraints by using the built-in predicates. The domain
variables in the argument(s) should satisfy the generated constraint.

If you wish to work with constraints for finite domains, you must import the module const_-
domain which contains the built-in predicates for these constraints. Use the import directive
to import the module into your database:

[user] ?- [user]. ←↩

> :- import(const_domain). ←↩

> end_of_file. ←↩

*** consult ’user’: loaded in 0.02 sec.

yes

i You can work with constraints only if you have configured the rational
number support and the constraint support at installation.

4.1 Domain variables

As mentioned above, there are different ways in which you can specify finite domains. From
the declarative point of view, you specify the same domains with each domain definition;
only the respective memory requirement is different:

43

Arithmetic constraints Constraints for finite domains

• For an interval, only the domain limits are stored. You specify an interval as follows:
Variable in Min:Max

• For an enumeration, all permissible values are stored explicitly. You specify an
enumeration as follows:
Variable in [V1, V2, V3, ..., Vn]

• For a sequence, the permissible values are stored in a bit array. You specify a sequence
as follows:
Variable in Min..Max

Variable is a term or a list of terms and is also referred to as a domain variable. The type
of a domain variable can change during goal proving as a result of the constraints.

Min and Max are constant integers. A finite domain may only contain numbers in the range
-134217728 through +134217727. A number in this domain is also referred to as a domain
integer. If the domain is exceeded, IF/Prolog generates the exception

domain_error(domain_integer).

A domain variable can be unified only with a domain integer.

Since a domain integer can also be regarded as a variable with only a single value in its
domain, the concept of domain variables also includes domain integers. The exception

type_error(domain_variable)

is therefore extended to include domain integers.

Unification between a domain variable and an integer will succeed if the number lies in the
current domain for the variable. If a domain variable is unified with a normal variable, the
normal variable is bound to the domain variable. If two domain variables are unified, an
intersection of the domains is first formed. If this intersection is empty, the unification will
fail. If the intersection consists of only one number, both variables are instantiated with
this value. Otherwise, one of the domain variables is bound to the second variable. Their
domain is then the intersection.

4.2 Arithmetic constraints

Arithmetic constraints are a set of equations and inequations. A network of constraints
thus arises between the variables which you specify in the equations. The operands of arith-
metic constraints are domain terms. A domain term is a domain integer, or an arithmetic
conjunction of domain integers. The syntax of a finite constraint looks like this:

arithmetic constraint ::= domain term

? =
?\ =
? <
? =<
? >
? >=

domain term

Constraints Package 44 IF/Prolog V5.3

Constraints for finite domains Arithmetic constraints

domain term ::=

variable
domain integer
+domain term
−domain term

domain term

+
−
?

 domain term

(domain term)

Each domain term, which may contain any number of variables, must be reducible to a
domain integer during the course of processing. This permits efficient processing of the
relations. If an operand fails to comply with the syntax rules, IF/Prolog generates the
exception

domain_error(linear_term,...).

During the processing of equations and inequations, reasoning over intervals takes place, i.e.
between the limits of the domain (minimum, maximum). This allows IF/Prolog to deduce
whether the relation is (still) satisfiable, or whether it can exclude values from the domain
of a variable.

For reasons of efficiency, it is not possible to perform a general overflow test. You should
therefore restrict the domains right at the outset so as to avoid overflow errors.

Example

time_conversion(Time, Hour, Min) :-

Min in 0 : 59,

Hour in 0 : 23,

Time ?= Hour * 60 + Min.

IF/Prolog defines the minimum and maximum values of the right and left sides so as to
determine the satisfiability of the equation. If the variable Hour were not limited in this
example, it would have a maximum value of 134217727. This number multiplied by 60 would
cause an overflow resulting in undefined behavior.

Only linear terms can be used as operands for constraint relations. As an exception, two
variables may be multiplied by each other, but the multiplication is delayed until one of the
variables has been instantiated. Division of domain terms is not permitted.

You can achieve a delay explicitly by using the predicate domain_if/2/3. This predicate
works in a similar fashion to freeze/2 in the sense that it is necessary to determine the
satisfiability of the condition before IF/Prolog can prove the goal.

IF/Prolog V5.3 45 Constraints Package

Arithmetic constraints Constraints for finite domains

Example

Use the constraints for finite domains to solve the following puzzle:

Five men of different nationalities live in the first five houses of a street. They have different
professions and different pets, and drink different drinks. The houses of the five men are
painted in different colors:

1. The Englishman lives in the red house.

2. The Spaniard has a dog.

3. The Japanese is a painter.

4. The Italian drinks tea.

5. The Norwegian lives in the first house on the left.

6. The occupier of the green house drinks coffee.

7. The green house stands next to the white house.

8. The sculptor breeds snakes.

9. The diplomat lives in the yellow house.

10. The occupier of the middle house drinks milk.

11. The Norwegian’s house stands immediately to the right of the

blue house.

12. The violinist drinks fruit juice.

13. The house next to the doctor’s has a fox.

14. The house next to the diplomat’s has a horse.

And the question is: who owns the zebra and who drinks water?

The following arbitrary table is provided to assist in formulating the problem using con-
straints:

House/ 1 2 3 4 5
Variables
N ation England Spain Japan Italy Norway
C olor green red yellow blue white
P rofession painter diplomat violinist doctor sculptor
A nimal dog zebra fox snails horse
D rink juice water tea coffee milk

Solving of the puzzle requires 25 domain variables, five each for the different nationalities
(N1 - N5), colors (C1 - C5) etc. with a domain between 1 and 5. The values represent the
house from left to right. According to this table, England corresponds to the variable N1.
By analogy with the table, the statements can now be converted into arithmetic constraints:

1. N1 ?= C2,

2. N2 ?= A1,

3. N3 ?= P1,

4. N4 ?= D3,

Constraints Package 46 IF/Prolog V5.3

Constraints for finite domains Arithmetic constraints

5. N5 = 1,

6. C1 ?= D4,

7. C1 ?= C5 + 1,

8. P5 ?= A4,

9. P2 ?= C3,

10. D5 = 3,

11. (N5 ?= C4 -1 ; N5 ?= C4 + 1),

12. P3 ?= D1,

13. (A3 ?= P4 - 1 ; A3 ?= P4 + 1),

14. (A5 ?= P2 - 1 ; A5 ?= P2 + 1).

The following query will solve the puzzle:

[user] ?- L = [N1,N2,N3,N4,N5,C1,C2,C3,C4,C5,P1,P2,P3,P4,P5,

| A1,A2,A3,A4,A5,D1,D2,D3,D4,D5],

| L in 1..5,

| N1 ?= C2,

| N2 ?= A1,

| N3 ?= P1,

| N4 ?= D3,

| N5 = 1,

| C1 ?= D4,

| C1 ?= C5 + 1,

| P5 ?= A4,

| P2 ?= C3,

| D5 = 3,

| (N5 ?= C4 -1 ; N5 ?= C4 + 1),

| P3 ?= D1,

| (A3 ?= P4 - 1 ; A3 ?= P4 + 1),

| (A5 ?= P2 - 1 ; A5 ?= P2 + 1),

| all_distinct([C1, C2, C3, C4, C5]),

| all_distinct([N1, N2, N3, N4, N5]),

| all_distinct([P1, P2, P3, P4, P5]),

| all_distinct([A1, A2, A3, A4, A5]),

| all_distinct([D1, D2, D3, D4, D5]),

| label(L).

L = [3,4,5,2,1,5,3,1,2,4,5,1,4,2,3,4,5,1,3,2,4,1,2,5,3]

N1 = 3

N2 = 4

N3 = 5

N4 = 2

N5 = 1

C1 = 5

C2 = 3

C3 = 1

IF/Prolog V5.3 47 Constraints Package

Arithmetic constraints Constraints for finite domains

C4 = 2

C5 = 4

P1 = 5

P2 = 1

P3 = 4

P4 = 2

P5 = 3

A1 = 4

A2 = 5

A3 = 1

A4 = 3

A5 = 2

D1 = 4

D2 = 1

D3 = 2

D4 = 5

D5 = 3

yes

The table now looks like this:

Houses 1 2 3 4 5
N ation Norway Italy England Spain Japan
C olor yellow blue red white green
P rofession diplomat doctor sculptor violinist painter
A nimal fox horse snails dog zebra
D rink water tea milk juice coffee

The zebra thus belongs to the Japanese and the Norwegian drinks water.

Constraints Package 48 IF/Prolog V5.3

Constraints for finite domains Predicates

4.3 Built-in operators and predicates

The following built-in predicates are assigned to the module const_domain; consequently
you can call them only if you have imported this module.

This section provides a tabular overview of the built-in predicates followed by descriptions
of the predicates in alphabetical order.

4.3.1 Arithmetic Constraints

The built-in operators have been extended to include the relational operators for domains.
The operators generate a constraint which is satisfiable when the domain terms on both sides
match in the specified relation. The prefix ? identifies the new operators as relational oper-
ators for finite domains. The constraints which you generate with these relational operators
are also referred to as arithmetic constraints.

Operator Precedence Type Meaning

?= 700 xfx equal
?\= 700 xfx not equal
?< 700 xfx less than
?=< 700 xfx less than or equal
?> 700 xfx greater than
?=< 700 xfx greater than or equal

4.3.2 Symbolic constraints

Symbolic constraints allow you to express dependencies between domain variables in a simple
way. A predicate which generates a symbolic constraint normally contains a list as its
argument. The domain variables in this list should satisfy the specified constraint.

Predicate Purpose

all_distinct/1 Constraint for different list elements
atmost/3 Define maximum number of identical values
cardinality/3 Cardinality constraint
cumulative/4 Cumulative constraint
element/3 Constraints for list elements
exactly/3 Define specific number of identical elements in a list
in/2 Limit domain
maximum/2 Constraint for maximum value
minimum/2 Constraint for minimum value

IF/Prolog V5.3 49 Constraints Package

Predicates Constraints for finite domains

4.3.3 Selection predicates

The selection predicates allow you to generate consistent instantiations for domain variables.

Predicate Purpose

deleteff/3 Select variable
deleteffc/3 Select variable
deleteff0/3 Select variable
indomain/1 Generate value for variable(s)
label/1 Generate values for variable(s)
label/2 Generate values for variable(s)
label_tb/3 Generate values for variable(s)

4.3.4 Non-logical predicates

Non-logical predicates allow you to request information about one or more domain variables.

Predicate Purpose

domain/2 Query domain
domain_maximum/2 Query domain maximum
domain_minimum/2 Query domain minimum
domain_size/2 Query domain size
is_consecutive/1 Test variable type
is_domain/1 Test variable type
is_enumeration/1 Test variable type
is_in_domain/2 Test domain affiliation
is_interval/1 Test variable type
lmaxdomain/2 Query domain limit
lmindomain/2 Query domain limit
lmaxmin/2 Query domain limit
lminmax/2 Query domain limit

4.3.5 Delaying proof of a goal

Conditional execution can delay the proof of a goal until sufficient information is obtained
from other program elements. An arithmetic constraint is specified as the condition. Once it
has been determined that this condition can be satisfied, a goal dependent on the condition
will automatically be proved.

Predicate Purpose

domain_if/2/3 Delay goal proving until satisfiability of a condition can be determined

Constraints Package 50 IF/Prolog V5.3

Constraints for finite domains Predicates

4.3.6 Optimization

The following predicates optimize a given goal function using the ”branch-and-bound” -
method.

Predicate Purpose

minimize_bb/2/5 Optimize result value
minimize_maximum/2/5 Optimize maximum value of a list

IF/Prolog V5.3 51 Constraints Package

?=/2, ?\=/2, ?</2, ?=</2, ?>/2, ?>=/2Predicate Constraints for finite domains

Arithmetic equations and inequations

?DomainTerm1 ?= ?DomainTerm2
?DomainTerm1 ?\= ?DomainTerm2
?DomainTerm1 ?< ?DomainTerm2
?DomainTerm1 ?=< ?DomainTerm2
?DomainTerm1 ?> ?DomainTerm2
?DomainTerm1 ?>= ?DomainTerm2

The predicates ?=/2, ?\=/2, ?</2, ?=</2, ?>/2, ?>=/2 generate arithmetic constraints
between the variables in the DomainTerms. The constraint is satisfiable when the variables
in the terms are constrained to such values that the specified relation is satisfiable.

When the arguments are ground, it can be immediately checked whether the condition is
true or false. Otherwise, the satisfiability of a condition can be decided by checking the limit
values of the domain variables. Each time a limit value of a variable changes, the condition
is checked again. It is thus possible to determine the satisfiability of a condition without
instantiating the variables. At the latest, the satisfiability is determined when all variables
have been instantiated.

Generally the arguments should be linear. However, the multiplication of two variables is
allowed, but is delayed until one of them has been instantiated.

Arguments

DomainTerm1 Domain term
DomainTerm2 Domain term

Exceptions

domain_error(linear_term)
The argument DomainTerm1 or DomainTerm2 must be a domain term. However,
it contains non-linear operations.

type_error(domain_integer)
An element of DomainTerm1 or DomainTerm2 must be a domain integer, but is
a term of another type.

Example

[user] ?- X in 1..4, Y in 3..7, X ?= Y, indomain(Y).

X = 3

Y = 3 ;

Constraints Package 52 IF/Prolog V5.3

Constraints for finite domains Predicate?=/2, ?\=/2, ?</2, ?=</2, ?>/2, ?>=/2

X = 4

Y = 4 ;

no

[user] ?- X in 1..4, Y in 6:8, X ?= Y.

no

[user] ?- R in 0:1, [E, T] in 0..9, E ?\= 1, T ?\= 1,

| R + E + 1 ?= 10 + T,

| domain(T, DT), domain(E, DE), domain(R, DR).

R = __1

E = __2

T = 0

DT = [0]

DE = [8,9]

DR = [0,1]

yes

See also

in/2, domain/2

IF/Prolog V5.3 53 Constraints Package

all_distinct/1 Predicate Constraints for finite domains

Generate constraint for distinct list elements

all_distinct(?List)

The predicate all_distinct/1 generates a constraint whereby any pair of elements in List
are different integers or are instantiated with different integers. The predicate considers only
the consistency between any pair of variables, but does not check the global consistency be-
tween all variables. For reasons of efficiency, intervals and free variables in List are converted
into a sequence. Free variables are limited to the range -10000 through +10000.

i If an interval is not sufficiently limited, the memory requirements for the
corresponding sequence can be extremely large.

The predicate will fail if an element of List is neither a variable nor an integer.

Arguments

List List of domain variables

Exceptions

instantiation_error
The argument List must not be a variable, but a variable was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

Example

[user] ?- [A, B] in 1..2, indomain(A), all_distinct([A, B]).

A = 1

B = 2 ;

A = 2

B = 1 ;

no

[user] ?- [A, B, C] in 1..2, all_distinct([A, B, C]),

| domain(A, DA), domain(B, DB), domain(C, DC).

A = __1

B = __2

Constraints Package 54 IF/Prolog V5.3

Constraints for finite domains Predicate all_distinct/1

C = __3

DA = [1,2]

DB = [1,2]

DC = [1,2] ;

no

[user] ?- [A, B, C] in 1..2, all_distinct([A, B, C]), label([A, B, C]).

no

See also

?\=/2

IF/Prolog V5.3 55 Constraints Package

atleast/3, atmost/3 Predicate Constraints for finite domains

Constrain minimum or maximum number of identical values

atleast(+Limit, ?List, +Value)

atmost(+Limit, ?List, +Value)

The predicate atleast/3 generates a constraint between two integers and the elements of
the List. The constraint is satisfiable if at least Limit elements of the List can have the same
Value. If List is a free variable, it is instantiated with a list of Limit elements having the
same Value.

The predicate atmost/3 generates a constraint between two integers and the elements of the
List. The constraint can be satisfied if no more than Limit elements of the List have the
same Value. If List is a free variable, it is instantiated with the empty list, independent of
the values for Limit and Value.

Arguments

Limit Domain integer
List List of domain variables
Value Domain integer

Exceptions

instantiation_error
The argument Limit or Value must not be a variable, but a variable was specified.

type_error(domain_integer)
The argument Limit or Value must be a domain integer, but is a term of another
type.

type_error(list)
The argument List must be a variable or a list, but is a term of another type.

Example

You can also define the predicate atmost/3 yourself using cardinality/3:

my_atmost(Maximum, List, Value) :-

collect(List, Value, Conditions),

cardinality(*, Maximum, Conditions), !.

collect([], _, []).

collect([V|R], Value, [V ?= Value|Conditions]) :-

collect(R, Value, Conditions).

Constraints Package 56 IF/Prolog V5.3

Constraints for finite domains Predicate atleast/3, atmost/3

In the following, Travellers is a list of domain variables which defines when a number
of people might start a journey. Departure is the departure time of the train and Seats
indicates how many people may travel on the train:

train_usage(Travellers, Departure, Seats) :-

atmost(Seats, Travellers, Departure).

The predicate atleast/3 can generate values for domain variables that are not of type
interval:

[user] ?- [A,B,C] in 0..10, atleast(2,[A,B,C],7), B ?\= 7.

A = 7

B = __2

C = 7 ;

Compatibility

V5.1A The predicate atleast/3 is new.

See also

all distinct/1, cardinality/3, exactly/3

IF/Prolog V5.3 57 Constraints Package

cardinality/3 Predicate Constraints for finite domains

Cardinality constraint

cardinality(?LowerLimit, ?UpperLimit, +ConditionList)

The predicate cardinality/3 allows you to combine two or more primitive constraints
conjunctively (AND) or disjunctively (OR). This produces a non-primitive constraint which
applies to a set of constraints. The constraint is satisfied if at least LowerLimit and at most
UpperLimit conditions in the ConditionList are satisfied.

Specifying an asterisk ∗ as LowerLimit indicates that the minimum is equal to 0, i.e. none
of the conditions need be satisfied.

Specifying an asterisk ∗ as UpperLimit indicates that the maximum must be equal to the
number of conditions in the ConditionList, i.e. all the conditions must be satisfied.

Conjunction (AND) of the constraints in the ConditionList can be expressed by setting
LowerLimit and UpperLimit equal to the number of constraints:

conjunction(ConditionList) :-

list_length(ConditionList, Number),

cardinality(Number, Number, ConditionList).

Exclusive disjunction (at most one of the constraint may be satisfied) of the constraints in
the ConditionList can be expressed by setting LowerLimit equal to 0 and setting UpperLimit
equal to 1:

disjunction(ConditionList) :-

cardinality(0, 1, ConditionList).

Negation (NOT) of the constraints in the ConditionList can be expressed by setting Lower-
Limit and UpperLimit equal to 0:

negation(ConditionList) :-

cardinality(0, 0, ConditionList).

Arguments

LowerLimit Domain variable or the atom ∗
UpperLimit Domain variable or the atom ∗
ConditionList A list of arithmetic constraints

Constraints Package 58 IF/Prolog V5.3

Constraints for finite domains Predicate cardinality/3

Exceptions

instantiation_error
The argument ConditionList must not be a variable, but a variable was specified.

type_error(list)
The argument ConditionList must be a regular list, but is a term of another type
or not regular.

domain_error(linear_constraint)
An element of ConditionList must be a linear constraint. However, it contains
non-linear operations.

Example

The predicate atleast_greatereq/3 generates a combined constraint where at least
Minimum list elements must be greater than or equal to the specified Value:

atleast_greatereq(Minimum, List, Value) :-

collect(List, Value, Conditions),

cardinality(Minimum, *, Conditions).

collect([], _, []).

collect([V|R], Value, [V ?>= Value|Condition]) :-

collect(R, Value, Condition).

[user] ?- atleast_greatereq(2, [4, 1, 2, 3], 2).

yes

[user] ?- atleast_greatereq(2, [1, 2], 2).

no

[user] ?- cardinality(1, 1, [X ?= 2, Y ?\= 3, Z ?\= 4]),

| (

| X = 2;

| Y = 3, Z = 4;

| Z = 0

|).

X = 2

Y = 3

Z = 4 ;

X = 2

IF/Prolog V5.3 59 Constraints Package

cardinality/3 Predicate Constraints for finite domains

Y = 3

Z = 4 ;

X = __1

Y = 3

Z = 0 ;

no

See also

atmost/3, exactly/3

Constraints Package 60 IF/Prolog V5.3

Constraints for finite domains Predicate cumulative/4

Cumulative constraint

cumulative(?Start, ?Duration, ?Resource, +Limit)

The predicate cumulative/4 generates constraints between points of intervals. These inter-
vals are formed from the elements of the lists Start and Duration. A point p lies within the
interval i if the following applies:

Start[i] ≤ p < Start[i] + Duration[i]

Each interval is assigned a resource value Resource[i]. The resource values of all intervals for
a point p are totaled. cumulative/4 generates a constraint which ensures that this total is
less than or equal to the resource limit Limit in each point. The constraint is satisfied if the
maximum resource usage Limit is not exceeded in any point.

You should limit the values in the lists Start and Duration appropriately before activating
cumulative/4. The predicate cumulative/4 itself constrains the values in the list Duration
to be greater than or equal to 0, and in the list Resource to be between 0 and Limit. The
lists Start, Duration and Resource must have the same length.

Hints

cumulative/4 is well suited for use in scheduling tasks. Start then corresponds to the
start times of the tasks, Duration to the relevant periods of time involved, and Resource
specifies how many resource units a particular task requires.

Arguments

Start List of domain variables or domain integers
Duration List of domain variables or domain integers
Resource List of variables or domain integers
Limit Domain integer

Exceptions

instantiation_error
The argument Start, Duration, Resource or Limit must not be a variable, but a
variable was specified.

type_error(list)
The argument Start, Duration or Resource must be a regular list, but is a term of
another type or not regular.

domain_error(lists_with_identical_length)
The arguments Start, Duration and Resource are not all lists of the same length.

IF/Prolog V5.3 61 Constraints Package

cumulative/4 Predicate Constraints for finite domains

type_error(domain_variable)
An element of Start or Duration must be a domain variable or a domain integer,
but is a term of another type.

domain_error(domain_variable)
An element of Start or Duration must be a domain variable or a domain integer,
but is a normal variable.

type_error(variable)
An element of Resource must be a variable or a domain integer, but is a term of
another type.

type_error(domain_integer)
The argument Limit must be a domain integer, but is a term of another type.

Example

[user] ?- cumulative([1,1,2], [2,1,1], [2,1,1], 3).

yes

[user] ?- [S1,S2,S3] in 1:2,

| cumulative([S1,S2,S3], [2,1,1], [2,1,1], 2).

S1 = 2

S2 = 1

S3 = 1 ;

no

[user] ?- [S, D, R] in 1..2,

| cumulative([1,1,S], [2,1,D], [2,1,R], 3),

| domain(D,DL).

S = 2

D = __2

R = 1

DL = [1,2]

yes

[user] ?- [S, D, R] in 1..2,

| cumulative([1,1,S], [2,D,1], [R, 1,1], 3),

| label([S, D, R]),

| write(job(start=S, duration=D, resource=R)), nl,

| fail.

Constraints Package 62 IF/Prolog V5.3

Constraints for finite domains Predicate cumulative/4

job(start = 1,duration = 1,resource = 1)

job(start = 1,duration = 2,resource = 1)

job(start = 2,duration = 1,resource = 1)

job(start = 2,duration = 1,resource = 2)

job(start = 2,duration = 2,resource = 1)

no

Compatibility

V5.1A The list length of the arguments is no more limited to 127.

See also

is domain/1, disjunctive/2

IF/Prolog V5.3 63 Constraints Package

deleteff/3, deleteffc/3, deleteff0/3 Predicate Constraints for finite domains

Select variable

deleteff(-Variable, @List, ?Rest)
deleteffc(-Variable, @List, ?Rest)
deleteff0(-Variable, @List, ?Rest)

The predicates deleteff/3, deleteff0/3 and deleteffc/3 support the so-called first fail
principle. The predicates unify the Variable with a domain variable in List using different
heuristics:

• deleteff/3 unifies Variable with the domain variable in List whose domain has the
fewest elements. If several domain variables fall under this criterion, the first complying
domain variable is used.

• deleteffc/3 unifies Variable with the domain variable in List whose domain has
the fewest elements. If several domain variables fall under this criterion, the domain
variable which occurs in more constraints is used.

• deleteff0/3 unifies Variable with the domain variable in List whose domain has the
lowest minimum. If the same minimum applies to a number of domain variables, the
domain variable which occurs in more constraints is used.

The argument Rest is unified with List without Variable. If domain integers precede the
selected Variable in List, they are not included in Rest.

Arguments

Variable Variable
List List of domain variables
Rest List of domain variables

Exceptions

instantiation_error
The argument List must not be a variable, but a variable was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

type_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a term
of another type.

domain_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a normal
variable.

Constraints Package 64 IF/Prolog V5.3

Constraints for finite domains Predicate deleteff/3, deleteffc/3, deleteff0/3

Example

[user] ?- A in 3..10, B in [6, 8, 12], C in -2..8, D in [-1, 1, 3],

| L = [A, B, C, D],

| all_distinct(L),

| element(C, [8, 1, -1, 12, 5, 3], D),

| deleteff(Vff, L, Rff),

| deleteff0(VfO, L, RfO),

| deleteffc(Vffc, L, Rffc).

A = __1

B = __2

C = __3

D = __4

L = [__1,__2,__3,__4]

Vff = __2

Rff = [__1,__3,__4]

VfO = __4

RfO = [__1,__2,__3]

Vffc = __3

Rffc = [__1,__2,__4]

yes

See also

label/1/2

IF/Prolog V5.3 65 Constraints Package

diffn/1 Predicate Constraints for finite domains

Non-overlapping rectangles

diffn(+RectangleList)

The predicate diffn/1 constrains n-dimensional rectangles to be non-overlapping. Each
rectangle is defined by its coordinate of origin and length in n dimensions. Thus, a rectangle
is a tuple of domain variables or domain integers

Rectangle ::= [O1, ..., On, L1, ..., Ln]

The argument RectangleList is a list of such tuples.

The constraint is satisfiable, if in some dimension there is a possibility for each rectangle to be
either before or after other rectangles. It is satisfied, if there is no possibility of overlapping.

The reasoning for this constraint is based on boundary checking. If the satisfiability can not
be decided, the constraint remains suspended, and is reactivated when a boundary of some
variable is changed.

Hints

The constraint can be used for multi-dimensional placement tasks that occur in schedul-
ing, cutting and geometrical placement problems.

Arguments

RectangleList List of Rectangles
Rectangle List of domain variables

Exceptions

instantiation_error
The argument RectangleList must not be a variable, but a variable was specified.

type_error(list)
The argument RectangleList or each Rectangle must be a list, but is a term of
another type.

domain_error(lists_with_identical_length)
The arguments in RectangleList are not all lists of the same length.

domain_error(list_of_origins_and_lengths)
Each Rectangle must be a list of origins and lengths, i.e. the length of each Rect-
angle list must be even.

type_error(domain_variable)
An element of Rectangle must be a domain variable or a domain integer, but is a
term of another type.

Constraints Package 66 IF/Prolog V5.3

Constraints for finite domains Predicate diffn/1

domain_error(domain_variable)
An element of Rectangle must be a domain variable or a domain integer, but is a
normal variable.

Example

Place three segments in such a way that they do not overlap:

[user] ?- listing(origins).

% *** user: origins / 1 ***

origins(Origins) :-

Origins = [O1,O2,O3],

Origins in 1 .. 100,

D1 = 3,

D2 = 5,

D3 = 2,

diffn([[O1,D1],[O2,D2],[O3,D3]]),

label(Origins) .

[user] ?- origins(Origins).

Origins = [1,4,9]

yes

Place three rectangles in such a way that they do not overlap:

[user] ?- listing(rectangles).

% *** user: rectangles / 1 ***

rectangles(Rectangles) :-

Rectangles = [[X1,Y1,4,2],[X2,Y2,7,3],[X3,Y3,9,5]],

[X1,X2,X3] in 1 .. 100,

[Y1,Y2,Y3] in 1 .. 100,

diffn([[X1,Y1,4,2],[X2,Y2,7,3],[X3,Y3,9,5]]),

label([X1,Y1,X2,Y2,X3,Y3]) .

[user] ?- rectangles(Rectangles).

Rectangles = [[1,1,4,2],[1,3,7,3],[1,6,9,5]]

yes

IF/Prolog V5.3 67 Constraints Package

diffn/1 Predicate Constraints for finite domains

Compatibility

V5.1A The predicate diffn/1 is new.

See also

in/2, diffn/3/4, all distinct/1, cumulative/4, disjunctive/2

Constraints Package 68 IF/Prolog V5.3

Constraints for finite domains Predicate diffn/3

Non-overlapping rectangles

diffn(+RectangleList, +MinVolume, +MaxVolume)

The predicate diffn/3 is an extension of diffn/1 constraint.

The argument RectangleList is a list of m tuples:
RectangleList ::= [Rectangle1, ..., Rectanglem]

Rectanglei ::= [O1, ..., On, L1, ..., Ln]

The argument MinVolume is an atom unused or a list of domain integers, specifying the
minimum volume of each rectangle:

MinVolume ::- [Min1, ..., Minm]

If the atom unused is given, then the maximum volume is not limited.

The argument MaxVolume is an atom unused or a list of domain integers, specifying the
maximum volume of each rectangle:

MaxVolume ::- [Max1, ..., Maxm]

If the atom unused is given, then the maximum volume is not limited.

The constraint is satisfiable if the underlying diffn/1 constraint is satisfiable and addition-
ally, if the volume of each rectangle is in the given domain.

Hints

The volume constraints can be used in geometrical placement problems, where there
are explicit limits for the objects.

Arguments

RectangleList List of Rectangles
Rectangle List of domain variables
MinVolume Atom unused or list of domain integers
MaxVolume Atom unused or list of domain integers

Exceptions

instantiation_error
The argument RectangleList must not be a variable, but a variable was specified.

type_error(list)
The argument RectangleList or each Rectangle must be a list, but is a term of
another type.

domain_error(lists_with_identical_length)
The arguments in RectangleList are not all lists of the same length.

IF/Prolog V5.3 69 Constraints Package

diffn/3 Predicate Constraints for finite domains

domain_error(list_of_origins_and_lengths)
Each Rectangle must be a list of origins and lengths, i.e. the length of each Rect-
angle list must be even.

type_error(domain_variable)
An element of Rectangle must be a domain variable or a domain integer, but is a
term of another type.

domain_error(domain_variable)
An element of Rectangle must be a domain variable or a domain integer, but is a
normal variable.

domain_error(list_of_volumes)
The length of the argument MinVolume or MaxVolume must be equal to the
number of rectangles.

type_error(domain_integer)
An element of MinVolume or MaxVolume must be a domain integer, but is a term
of another type.

Example

Place three rectangles, whose minimum and maximum surface is limited, in such a way
that they do not overlap.

[user] ?- listing(surfaces).

% *** user: surfaces / 1 ***

surfaces(Sol) :-

Sol = [[X1,Y1,L1,H1],[X2,Y2,L2,H2],[X3,Y3,L3,H3]],

[X1,X2,X3] in 1 .. 100,

[Y1,Y2,Y3] in 1 .. 100,

[L1,L2,L3] in 1 .. 100,

[H1,H2,H3] in 1 .. 100,

diffn([[X1,Y1,L1,H1],[X2,Y2,L2,H2],[X3,Y3,L3,H3]],

[12,23,14],[15,30,19]),

label([X1,Y1,L1,H1,X2,Y2,L2,H2,X3,Y3,L3,H3]) .

yes

[user] ?- surfaces(Sol).

Sol = [[1,1,1,12],[1,13,1,23],[1,36,1,14]]

yes

Constraints Package 70 IF/Prolog V5.3

Constraints for finite domains Predicate diffn/3

Compatibility

V5.1A The predicate diffn/3 is new.

See also

in/2, diffn/1/4, all distinct/1, cumulative/4, disjunctive/2

IF/Prolog V5.3 71 Constraints Package

diffn/4 Predicate Constraints for finite domains

Non-overlapping rectangles

diffn(+RectangleList, +MinVolume, +MaxVolume, +End)

The predicate diffn/4 is an extension of diffn/1 and diffn/3 constraints.

The argument RectangleList is a list of m tuples:
RectangleList ::= [Rectangle1, ..., Rectanglem]

Rectanglei ::= [O1, ..., On, L1, ..., Ln]

The argument MinVolume is an atom unused or a list of domain integers, specifying the
minimum volume of each rectangle:

MinVolume ::- [Min1, ..., Minm]

The argument MaxVolume is an atom unused or a list of domain integers, specifying the
maximum volume of each rectangle:

MaxVolume ::- [Max1, ..., Maxm]

The argument End is an atom unused or a list of domain integers or domain variables:
End ::- [End1, ..., Endn]

The end values specify the domain in which the maximum of the ends of the rectangles must
lie. If the atom unused is given, then the ends are not limited.

The constraint is satisfiable if the underlying diffn/3 constraint is satisfiable and addition-
ally, if the end of each rectangle in each dimension is in the given domain.

Hints

The end constraint can be used in placement and scheduling problems, where there is
an explicit limit on the placement space or a limit for the general completion of the
scheduled tasks.

Arguments

RectangleList List of Rectangles
Rectangle List of domain variables
MinVolume Atom unused or list of domain integers
MaxVolume Atom unused or list of domain integers
End Atom unused or list of domain variables or domain integers

Exceptions

instantiation_error
The argument RectangleList must not be a variable, but a variable was specified.

Constraints Package 72 IF/Prolog V5.3

Constraints for finite domains Predicate diffn/4

type_error(list)
The argument RectangleList or each Rectangle must be a list, but is a term of
another type.

domain_error(lists_with_identical_length)
The arguments in RectangleList are not all lists of the same length.

domain_error(list_of_origins_and_lengths)
Each Rectangle must be a list of origins and lengths, i.e. the length of each Rect-
angle list must be even.

type_error(domain_variable)
An element of Rectangle must be a domain variable or a domain integer, but is a
term of another type.

domain_error(domain_variable)
An element of Rectangle must be a domain variable or a domain integer, but is a
normal variable.

domain_error(list_of_volumes)
The length of the argument MinVolume or MaxVolume must be equal to the
number of rectangles.

type_error(domain_integer)
An element of MinVolume or MaxVolume must be a domain integer, but is a term
of another type.

type_error(domain_variable)
An element of End must be a domain variable or a domain integer, but is a term
of another type.

domain_error(domain_variable)
An element of End must be a domain variable or a domain integer, but is a normal
variable.

Example

Place three rectangles in such a way that they do not overlap, and limit the general end
in each dimension:

[user] ?- listing(ends).

% *** user: ends / 2 ***

ends(Rect,End) :-

Rect = [[X1,Y1],[X2,Y2],[X3,Y3]],

End = [EndX,EndY],

[X1,X2,X3] in 1 .. 100,

[Y1,Y2,Y3] in 1 .. 100,

[EndX,EndY] in 1 .. 100,

diffn([[X1,Y1,4,2],[X2,Y2,7,3],[X3,Y3,9,5]],

IF/Prolog V5.3 73 Constraints Package

diffn/4 Predicate Constraints for finite domains

unused,unused,[EndX,EndY]),

label([X1,Y1,X2,Y2,X3,Y3]) .

yes

[user] ?- ends(Rect, End).

Rect = [[1,1],[1,3],[1,6]]

End = [10,11]

yes

Compatibility

V5.1A The predicate diffn/4 is new.

See also

in/2, diffn/1/3, all distinct/1, cumulative/4, disjunctive/2

Constraints Package 74 IF/Prolog V5.3

Constraints for finite domains Predicate disjunctive/2

Disjunctive constraint

disjunctive(?Start, ?Duration)

The predicate disjunctive/2 generates constraints between points of intervals. These in-
tervals are formed from the elements of the lists Start and Duration. A point p lies within
the interval i if the following applies:

Start[i] ≤ p < Start[i] + Duration[i]

disjunctive/2 generates a constraint which ensures that each point lies in at most one
interval, i.e. the intervals are disjunct. The constraint is satisfied if no point belongs to more
than one interval.

You should limit the values in the lists Start and Duration appropriately before activating
disjunctive/2. In addition, the predicate disjunctive/2 constrains the values in the list
Duration to be greater than or equal to 0. The lists Start and Duration must have the same
length.

Hints

disjunctive/2 is well suited for use in scheduling tasks. Start then corresponds to the
start times of the tasks, Duration to the relevant periods of time involved.

Arguments

Start List of domain variables or domain integers
Duration List of domain variables or domain integers

Exceptions

instantiation_error
The argument Start or Duration must not be a variable, but a variable was speci-
fied.

type_error(list)
The argument Start or Duration must be a regular list, but is a term of another
type or not regular.

domain_error(lists_with_identical_length)
The arguments Start and Duration are not all lists of the same length.

type_error(domain_variable)
An element of Start or Duration must be a domain variable or a domain integer,
but is a term of another type.

domain_error(domain_variable)
An element of Start or Duration must be a domain variable or a domain integer,
but is a normal variable.

IF/Prolog V5.3 75 Constraints Package

disjunctive/2 Predicate Constraints for finite domains

Example

[user] ?- disjunctive([0, 1, 4, 7, 8], [1, 2, 3, 1, 2]).

yes

[user] ?- [S1, S2] in 1..7, D1 = 2, D2 = 4,

| disjunctive([S1, S2], [D1, D2]),

| S1 + D1 ?=< 7, S2 + D2 ?=< 7,

| indomain(S1).

S1 = 1

S2 = 3

D1 = 2

D2 = 4 ;

S1 = 5

S2 = 1

D1 = 2

D2 = 4 ;

no

[user] ?- S = [S1, S2, S3], D = [D1, D2, D3],

| S1 = 1, S2 ?> 0, S3 = 4,

| D1 ?> 0, D2 = 2, D3 ?> 0,

| End = 5,

| S1 + D1 ?=< End, S2 + D2 ?=< End, S3 + D3 ?=< End,

| disjunctive(S, D),

| label(D).

S = [1,2,4]

S1 = 1

S2 = 2

S3 = 4

D = [1,2,1]

D1 = 1

D2 = 2

D3 = 1

End = 5 ;

no

Constraints Package 76 IF/Prolog V5.3

Constraints for finite domains Predicate disjunctive/2

Compatibility

V5.1A The list length of the arguments is no more limited to 127.

See also

cumulative/4, is domain/1

IF/Prolog V5.3 77 Constraints Package

distance/4 Predicate Constraints for finite domains

Absolute distance between variables

distance(+X , +Y , +Comp, +Dist)

The predicate distance/4 constrains the absolute distance between two domain variables.
The constraint is similar to arithmetic constraints, but is based on the absolute distance
between the domain variables.

The argument Comp is an atom that specifies the distance relation:

Comp The distance between X and Y must be ...
?= exactly Dist
?\= different than Dist
?< smaller than Dist
?=< smaller than or equal to Dist
?> greater than Dist
?>= greater than or equal to Dist

The reasoning for this constraint is based on boundary checking. For variables of enumera-
tion and sequence type, it can remove values from the middle of the domain. For variables
of interval type, only boundaries can be immediately modified. If the satisfiability can not
be decided, the constraint remains suspended, and is reactivated when a boundary of either
variable is changed.

The constrain helps to avoid disjunction especially in cases when distance must be equal to
or greater than a give value (see example below).

Arguments

X Domain variable
Y Domain variable
Comp Comparison
Dist Domain integer

Exceptions

type_error(domain_variable)
The argument X or Y must be a domain variable or a domain integer, but is a
term of another type.

domain_error(domain_variable)
The argument X or Y must be a domain variable or a domain integer, but is a
normal variable.

Constraints Package 78 IF/Prolog V5.3

Constraints for finite domains Predicate distance/4

domain_error(comparison)
The argument Comp must be a comparison operator.

type_error(domain_integer)
The argument Dist must be a domain integer, but is a term of another type.

Example

We want the distance of two variables to be exactly 5:

?- [X, Y] in 0..20, (X - Y ?= 5; Y - X ?= 5), X = 15.

X = 15

Y = 10 ;

X = 15

Y = 20 ;

no

The above disjunction can be expressed more elegantly with distance/4:

?- [X, Y] in 0..20, distance(X, Y, ?=, 5),

X = 15, domain(Y, DY).

X = 15

Y = __2

DY = [10,20]

yes

?- [A, B] in 1..30, [X, Y] in 1..10,

2 * X ?= A, 3 * Y ?= B,

distance(A, B, ?>, 26).

A = 2

B = 30

X = 1

Y = 10

yes

?- [A, B] in 2:5, distance(A, B, ?>, 1), label([A,B]).

A = 2

B = 4 ;

IF/Prolog V5.3 79 Constraints Package

distance/4 Predicate Constraints for finite domains

A = 2

B = 5 ;

A = 3

B = 5 ;

A = 4

B = 2 ;

A = 5

B = 2 ;

A = 5

B = 3 ;

no

Compatibility

V5.1A The predicate distance/4 is new.

See also

in/2, ?\=/2, indomain/1/2, notin/3

Constraints Package 80 IF/Prolog V5.3

Constraints for finite domains Predicate domain/2

Query domain

domain(+Variable, ?List)

The predicate domain/2 unifies List with the values that lie in the domain of Variable. If
Variable is a domain integer, List is unified with a list containing only the element Variable.

i If Variable is not sufficiently constrained, the list can become extremely
long.

Arguments

Variable Domain variable
List List of domain integers

Exceptions

type_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
term of another type.

domain_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
normal variable.

Example

[user] ?- X in [3, 5, 7, 9], domain(X, L1),

| X ?\= 7, domain(X, L2),

| X = 9, domain(X, L3).

X = 9

L1 = [3,5,7,9]

L2 = [3,5,9]

L3 = [9]

yes

[user] ?- X ?> 5,

| domain_minimum(X, Min), domain_maximum(X, Max),

| % domain(X, L) would create a list with S elements!

| domain_size(X, S).

X = __1

IF/Prolog V5.3 81 Constraints Package

domain/2 Predicate Constraints for finite domains

Min = 6

Max = 134217727

S = 134217722

yes

See also

indomain/1/2, domain size/2

Constraints Package 82 IF/Prolog V5.3

Constraints for finite domains Predicate domain_if/2/3

Conditional execution of a goal

domain_if(@Condition, +ThenGoal) [@ +Module]

domain_if(@Condition, +ThenGoal, +ElseGoal) [@ +Module]

The predicates domain_if/2/3 are used to call a goal conditionally. If the arithmetic con-
straint Condition is satisfied, ThenGoal is called. If the constraint is not satisfiable, either
true (domain_if/2) or ElseGoal (domain_if/3) is called. The execution of the predicate is
delayed as long as the satisfiability of Condition has not been determined.

Arguments

Condition Arithmetic constraint
ThenGoal Goal
ElseGoal Goal

Exceptions

instantiation_error
The argument Condition must not be a variable, but a variable was specified.

domain_error(linear_constraint)
The argument Condition must be a linear constraint. However, it contains non-
linear operations.

instantiation_error
The argument ThenGoal or ElseGoal must not be a variable, but a variable was
specified.

type_error(callable)
The argument ThenGoal or ElseGoal must have the syntactical structure of a
Prolog goal.

existence_error(procedure)
In executing ThenGoal or ElseGoal, a predicate was to be activated which is not
defined and the Prolog flag unknown has the value error.

type_error(atom)
The argument ThenGoal or ElseGoal or a subgoal has been qualified by means of
@/2 or :/2 with a term that is not an atom.

existence_error(module)
The argument ThenGoal or ElseGoal or a subgoal is qualified by means of @/2 or
:/2 with an atom that does not name an existing module.

IF/Prolog V5.3 83 Constraints Package

domain_if/2/3 Predicate Constraints for finite domains

Hints

The predicate differs from ->/2 by delaying the execution of ThenGoal or ElseGoal
until the satisfiability of Condition has been determined. The other difference is that
domain if/2 succeeds, if Condition is not satisfied.

The predicates domain_if/2/3 are metapredicates and call their goals in the calling
module or in the specified Module.

The predicates activated in the goal must be visible in the calling module or in the
specified Module, unless the :/2 qualification is used for such a predicate to indicate
explicitly the module in which this predicate is visible.

The predicates activated in the goal are normally executed in the context of the module
in which they are defined. This does not apply to metapredicates, which are executed in
the context of calling module or the specified Module, unless the @/2 qualification is used
for a metapredicate to indicate explicitly the module context in which this predicate is
to be executed.

Example

[user] ?- domain_if((X?\= 3), % Condition

| (write(’X not equal 3’), nl), % ThenGoal

| (write(’X equal 3’), nl)), % ElseGoal

| write(’Test: ’), nl, (X = 2; X = 3).

Test:

X not equal 3

X = 2 ;

X equal 3

X = 3 ;

no

See also

?=/2, ?\=/2, ?</2, ?=</2, ?>/2, ?>=/2

Constraints Package 84 IF/Prolog V5.3

Constraints for finite domains Predicatedomain_maximum/2, domain_minimum/2

Query domain limits

domain_maximum(+Variable, ?Maximum)
domain_minimum(+Variable, ?Minimum)

The predicate domain_maximum/2 unifies Maximum with the largest value in the domain for
Variable. The predicate domain_minimum/2 unifies Minimum with the smallest value in the
domain for Variable. If Variable is a domain integer, Maximum resp. Minimum is unified
with it.

Arguments

Variable Domain variable
Maximum Domain integer
Minimum Domain integer

Exceptions

type_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
term of another type.

domain_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
normal variable.

Example

[user] ?- X in 13..19, X ?> 15,

| domain_minimum(X, Minimum), domain_maximum(X, Maximum).

X = __1

Minimum = 16

Maximum = 19

yes

See also

domain/2, lmaxdomain/2, lmindomain/2

IF/Prolog V5.3 85 Constraints Package

domain_size/2 Predicate Constraints for finite domains

Query domain size

domain_size(+Variable, ?Cardinality)

The predicate domain_size/2 unifies Cardinality with the number of values in the domain
of Variable. If Variable is a domain integer, Cardinality is unified with 1.

Arguments

Variable Domain variable
Cardinality Integer

Exceptions

type_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
term of another type.

domain_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
normal variable.

Example

[user] ?- X in [3, 5, 7, 8, 10], domain_size(X, Card).

X = __1

Card = 5

yes

[user] ?- X in [3, 5, 7, 8, 9], domain_size(X, L1),

| X ?\= 7, domain_size(X, L2),

| X = 9, domain_size(X, L3).

X = 9

L1 = 5

L2 = 4

L3 = 1

yes

Constraints Package 86 IF/Prolog V5.3

Constraints for finite domains Predicate domain_size/2

See also

domain/2

IF/Prolog V5.3 87 Constraints Package

element/3 Predicate Constraints for finite domains

Generate constraint for list elements

element(?Index, @List, ?Value)

The predicate element/3 generates a constraint between the positions and the values of list
elements. The constraint is satisfied when Value is equal to the element at position Index
in the List. The first list element has the Index 1.

If Index is less than 1 or greater than the number of list elements, the constraint cannot be
satisfied. If Index is an integer, Value is unified with the list element at position Index. If
Value is an integer, Index is restricted to those list positions at which the list element is
equal to Value.

Arguments

Index Domain variable
List List of domain integers
Value Domain variable

Exceptions

instantiation_error
The argument List or a subterm must not be a variable, but a variable was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

type_error(domain_integer)
An element of List must be a domain integer, but is a term of another type.

Example

[user] ?- element(X, [2,4,2,5], Y), Y ?< 4, X ?> 1.

X = 3

Y = 2

yes

[user] ?- element(X, [2,4,2,5], Y), Y = 5.

X = 4

Y = 5

Constraints Package 88 IF/Prolog V5.3

Constraints for finite domains Predicate element/3

yes

[user] ?- element(X, [2,4,2,5], Y),X ?> 2, Y ?> 3.

X = 4

Y = 5

yes

[user] ?- element(X, [3,1,4,5,2], C), X ?=< 2, domain(C, D).

X = __1

C = __2

D = [1,3]

yes

[user] ?- element(X, [3,1,4,5,2], C), C ?>= 3, domain(X, D).

X = __1

C = __2

D = [1,3,4]

yes

[user] ?- element(X, [3,1,4,5,2], C), X ?\= 3, domain(C, D).

X = __1

C = __2

D = [1,2,3,5]

yes

[user] ?- element(X, [3,1,4,5,2], C), C ?\= 1, domain(X, D).

X = __1

C = __2

D = [1,3,4,5]

yes

See also

domain/2

IF/Prolog V5.3 89 Constraints Package

exactly/3 Predicate Constraints for finite domains

Generate number of identical values in a list

exactly(+Number, ?List, +Value)

The predicate exactly/3 generates a constraint between two domain integers and the ele-
ments of a list. The constraint is satisfied when exactly Number list elements have the same
Value.

If List is a variable, it is unified with a list which has exactly Number elements with the
same Value.

Arguments

Number Domain integer
List List of domain variables
Value Domain integer

Exceptions

instantiation_error
The argument Number or Value must not be a variable, but a variable was speci-
fied.

type_error(domain_integer)
The argument Number or Value must be a domain integer, but is a term of another
type.

Example

You can implement exactly/3 yourself using the predicate cardinality/3:

[user] ?- [user].

> my_exactly(Number, List, Value) :-

| collect(List, Value, Conditions),

| cardinality(Number, Number, Conditions), !.

> collect([], _, []).

> collect([V|R], Value, [V ?= Value|Conditions]) :-

| collect(R, Value, Conditions).

> end_of_file.

*** consult ’user’: loaded in 0.01 sec.

yes

[user] ?- exactly(4, L, 15).

Constraints Package 90 IF/Prolog V5.3

Constraints for finite domains Predicate exactly/3

L = [15,15,15,15]

yes

See also

all distinct/1, atmost/3, cardinality/3

IF/Prolog V5.3 91 Constraints Package

in/2 Predicate Constraints for finite domains

Delimit domain

?Variable in @Domain
?VariableList in @Domain

The predicate in/2 generates a constraint between a Variable or elements of a VariableList
and the specified domain. The constraint is satisfied when all arguments lie within the
specified domain. If Variable or an element of VariableList is uninstantiated, it is limited to
the specified domain. If Variable or an element of VariableList is instantiated, the constraint
is satisfied if the value of the variable lies within the specified domain.

The finite domain can be specified in three different ways:

• as an interval (Min:Max)

• as an enumeration of integers (sorted list List)

• as a sequence of integers (Min..Max)

If a Variable already had a domain, the intersection resulting from the old and the specified
domains becomes the new domain. The resulting intersection is always at least as specific
as the old and the specified domain:

• An intersection between an interval and an enumeration is an enumeration

• An intersection between an interval and a sequence is a sequence

• An intersection between an enumeration and a sequence is a sequence

If the intersection consists of only one value, Variable or each element of VariableList is
unified with it. If no value remains, the predicate in/2 fails.

The atom in is defined as an infix operator with precedence 750 and associativity xfx.

Arguments

Variable Term
VariableList List of terms
Domain Finite domain
Min Domain integer
Max Domain integer
List Sorted list of domain integers

Constraints Package 92 IF/Prolog V5.3

Constraints for finite domains Predicate in/2

Exceptions

instantiation_error
The argument Domain or a subterm must not be a variable, but a variable was
specified.

type_error(domain)
The argument Domain must be a permitted domain. but is a term of an another
type.

type_error(domain_integer)
The argument Min or Max must be a domain integer, but is a term of another
type.

type_error(domain_integer)
An element of List must be a domain integer, but is a term of another type.

domain_error(sorted_list)
The argument List is not sorted in ascending order.

Example

[user] ?- A in -10..5, B in -3..6,

| C in [-16, -6, -2, 0, 1, 4, 8],

| domain(A, DA), domain(B, DB), domain(C, DC).

A = __1

B = __2

C = __3

DA = [-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5]

DB = [-3,-2,-1,0,1,2,3,4,5,6]

DC = [-16,-6,-2,0,1,4,8]

yes

[user] ?- A in -10:5, A in -3..6,

| A in [-16, -6, -2, 0, 1, 4, 8],

| domain(A, DA).

A = __1

DA = [-2,0,1,4]

yes

[user] ?- A in 3..8, A in 6:10, A in [3, 5, 7].

A = 7

IF/Prolog V5.3 93 Constraints Package

in/2 Predicate Constraints for finite domains

yes

[user] ?- Min = 4, Max = 20, [6, 9, 17] in Min:Max.

Min = 4

Max = 20

yes

See also

domain/2, is in domain/2

Constraints Package 94 IF/Prolog V5.3

Constraints for finite domains Predicate indomain/1/2

Generate value

indomain(?Variable)

indomain(?Variable, +Heuristic)

The predicates indomain/1/2 generate for Variable a value which satisfies the currently
applicable constraints.

The argument Heuristic specifies the order in which values are generated by backtracking:

minimum The values are assigned in ascending order
maximum The values are assigned in descending order
center A middle value is generated first, and the subsequent values are alternately

greater and smaller than the first
random A random value is generated first, and the subsequent values are alternately

greater and smaller than the first
domain integer Value

A value smaller than or equal to Value is generated first, and the subsequent
values are alternately greater and smaller than the first

If Variable is a domain variable, consistent instantiations are generated in given order by
means of backtracking.
If Variable is a domain integer, the predicate succeeds deterministically, if Heuristic is an
atom or if Heuristic is a domain integer Value equal to Variable.

The predicate isdomain/1 is equivalent to isdomain/2 with Heuristic = minimum.

Arguments

Variable Domain variable
Heuristic Atom: minimum | maximum | center | random

Domain integer

Exceptions

type_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
term of another type.

domain_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
normal variable.

IF/Prolog V5.3 95 Constraints Package

indomain/1/2 Predicate Constraints for finite domains

instantiation_error
The argument Heuristic or a subterm must not be a variable, but a variable was
specified.

domain_error(heuristic)
An element of Heuristic is not within the range for heuristics.

Example

[user] ?- X in [4, 8, 11], X ?\= 8, indomain(X).

X = 4 ;

X = 11 ;

no

[user] ?- X in [4, 8, 11], X ?\= 8, indomain(X, maximum).

X = 11 ;

X = 4 ;

no

[user] ?- X in 5..9, X ?\= 8, indomain(X, center).

X = 7 ;

X = 6 ;

X = 9 ;

X = 5 ;

no

Compatibility

V5.1A The predicate indomain/2 is new.

See also

label/1/2

Constraints Package 96 IF/Prolog V5.3

Constraints for finite domains Predicate is_consecutive/1

Test variable type

is_consecutive(+Term)

The predicate is_consecutive/1 succeeds if Term is a domain variable of the sequence
type; otherwise, it fails.

Arguments

Term Term

Example

[user] ?- V in 3..7, is_consecutive(V).

V = __1

yes

[user] ?- V in 3:7, is_consecutive(V).

no

[user] ?- V in [3, 6, 8], V in 2..9, is_consecutive(V).

V = __1

yes

See also

in/2, is domain/1, is interval/1, is enumeration/1

IF/Prolog V5.3 97 Constraints Package

is_domain/1 Predicate Constraints for finite domains

Test variable type

is_domain(+Term)

The predicate is_domain/1 succeeds if Term is a domain variable; otherwise, it fails.

Arguments

Term Term

Example

[user] ?- V in 3..7, is_domain(V).

V = __1

yes

[user] ?- is_domain(W).

no

See also

in/2, is consecutive/1, is interval/1, is enumeration/1

Constraints Package 98 IF/Prolog V5.3

Constraints for finite domains Predicate is_enumeration/1

Test variable type

is_enumeration(+Term)

The predicate is_enumeration/1 succeeds if Term is a domain variable of the enumeration
type; otherwise, it fails.

Arguments

Term Term

Example

[user] ?- V in [3, 6, 8], is_enumeration(V).

V = __1

yes

[user] ?- V in 3..7, is_enumeration(V).

no

[user] ?- V in [3, 6, 8], V in 2..9, is_enumeration(V).

no

See also

in/2, is consecutive/1, is domain/1, is interval/1

IF/Prolog V5.3 99 Constraints Package

is_in_domain/2 Predicate Constraints for finite domains

Test domain affiliation

is_in_domain(+Variable, +Value)

The predicate is_in_domain/2 checks whether Value lies within the domain of Variable.

The predicate succeeds if Variable is a domain variable and Value lies within its domain, or
if Variable is a domain integer equal to Value.

Arguments

Variable Domain variable
Value Domain integer

Exceptions

instantiation_error
The argument Value must not be a variable, but a variable was specified.

type_error(domain_integer)
The argument Value must be a domain integer, but is a term of another type.

type_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
term of another type.

domain_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
normal variable.

Example

[user] ?- X in [1, 3, 5], is_in_domain(X, 5).

X = __1

yes

[user] ?- X in [1, 3, 5], X ?= 5.

X = 5

yes

Constraints Package 100 IF/Prolog V5.3

Constraints for finite domains Predicate is_in_domain/2

See also

domain/2, ?=/2, indomain/2

IF/Prolog V5.3 101 Constraints Package

is_interval/1 Predicate Constraints for finite domains

Test variable type

is_interval(+Term)

The predicate is_interval/1 succeeds if Term is a domain variable of the interval type;
otherwise, it fails.

Arguments

Term Term

Example

[user] ?- V in 3:7, is_interval(V).

V = __1

yes

[user] ?- V in 3..7, is_interval(V).

no

See also

in/2, is consecutive/1, is domain/1, is enumeration/1

Constraints Package 102 IF/Prolog V5.3

Constraints for finite domains Predicate label/1

Generate values

label(?List)

The predicate label/1 generates consistent instantiations for the domain variables in the
List in ascending order by means of backtracking.

Arguments

List List of domain variables

Exceptions

instantiation_error
The argument List must not be a variable, but a variable was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

type_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a term
of another type.

domain_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a normal
variable.

Example

You can define the predicate label/1 yourself:

[user] ?- [user].

> my_label([]).

> my_label([V|R]) :- indomain(V), my_label(R).

> end_of_file.

*** consult ’user’: loaded in 0.01 sec.

[user] ?- L = [A, B, C], A in 3..5, B = 2, C in [8, 12],

| label(L),

| write(L), nl, fail.

[3,2,8]

[3,2,12]

[4,2,8]

IF/Prolog V5.3 103 Constraints Package

label/1 Predicate Constraints for finite domains

[4,2,12]

[5,2,8]

[5,2,12]

no

See also

indomain/1/2, label/2, label tb/3, deleteff/3, deleteff0/3, deleteffc/3

Constraints Package 104 IF/Prolog V5.3

Constraints for finite domains Predicate label/2

Generate values

label(?List, +Heuristic)

The predicate label/2 generates consistent instantiations for the domain variables in the
List by means of backtracking.

Heuristic is a list with at most two elements. It allows you to determine the order in which
variables are instantiated and how values are generated.

The following atoms determine, in which order the variables in List are chosen:

card The variable with the smallest domain is to be instantiated.
constraint The variable with the most active constraints is to be instantiated.

The following atoms determine, in which order the values of a domain are chosen:

maximum The values are to be generated in descending order.
minimum The values are to be generated in ascending order.
center A center value is to be generated first, and the subsequent values are to be

alternately greater and smaller than the first.
random A random value is to be generated first, and the subsequent values are to be

alternately greater and smaller than the first.

Arguments

List List of domain variables
Heuristic List of atoms

Exceptions

instantiation_error
The argument List must not be a variable, but a variable was specified.

instantiation_error
The argument Heuristic or a subterm must not be a variable, but a variable was
specified.

type_error(list)
The argument List or Heuristic must be a regular list, but is a term of another
type or not regular.

type_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a term
of another type.

IF/Prolog V5.3 105 Constraints Package

label/2 Predicate Constraints for finite domains

domain_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a normal
variable.

type_error(atom)
An element of Heuristic must be an atom, but is a term of another type.

domain_error(heuristic)
An element of Heuristic is not within the range for heuristics.

Example

[user] ?- L = [A, B, C],

| A in 3..5, B = 2, C in [5, 12], A ?\= C,

| label(L, [maximum, card]),

| write(L), nl, fail.

[5,2,12]

[4,2,12]

[3,2,12]

[4,2,5]

[3,2,5]

no

See also

indomain/1/2, label/1, label tb/3, deleteff/3, deleteff0/3, deleteffc/3

Constraints Package 106 IF/Prolog V5.3

Constraints for finite domains Predicate label_tb/3

Generate values

label_tb(?List, +Time, +Heuristic)

The predicate label_tb/3 generates consistent instantiations for the domain variables in
the List by means of backtracking.

Time specifies a time limit in CPU seconds. If this time limit is exceeded, the search is
aborted and the predicate fails.

Please refer to predicate label/2 for the description of the argument Heuristic.

Arguments

List List of domain variables
Time Number or evaluable expression
Heuristic List of atoms

Exceptions

instantiation_error
The argument List or Time must not be a variable, but a variable was specified.

instantiation_error
The argument Heuristic or a subterm must not be a variable, but a variable was
specified.

type_error(list)
The argument List or Heuristic must be a regular list, but is a term of another
type or not regular.

type_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a term
of another type.

domain_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a normal
variable.

type_error(atom)
An element of Heuristic must be an atom, but is a term of another type.

domain_error(heuristic)
An element of Heuristic is not within the range for heuristics.

type_error(number)
The argument Time must be a number or an arithmetic expression, but is a term
of another type.

Furthermore, if an arithmetic expression is specified for the argument Time, all the
exceptions for is/2 can occur.

IF/Prolog V5.3 107 Constraints Package

label_tb/3 Predicate Constraints for finite domains

Example

[user] ?- A in [3, 5, 7], B in 8..10,

| label_tb([A, B], 1, [minimum]),

| write([A, B]), nl, fail.

[3,8]

[3,9]

[3,10]

[5,8]

[5,9]

[5,10]

[7,8]

[7,9]

[7,10]

no

[user] ?- A in [3, 5, 7], B in 8..10,

| label_tb([A, B], 1e-8, [minimum]),

| write([A, B]), nl, fail.

[3,8]

[3,9]

[3,10]

[5,8]

[5,9]

[5,10]

no

See also

indomain/1/2, label/1/2, deleteff/3, deleteff0/3, deleteffc/3

Constraints Package 108 IF/Prolog V5.3

Constraints for finite domains Predicate lmaxdomain/2, lmindomain/2

Query domain limits

lmaxdomain(@List, ?Maximum)
lmindomain(@List, ?Minimum)

The predicate lmaxdomain/2 unifies Maximum with the greatest maximum of domains for
the variables in List.

The predicate lmindomain/2 unifies Minimum with the smallest minimum of domains for
the variables in List.

If List is an empty list, the predicates fail.

Arguments

List List of domain variables
Minimum Domain integer
Maximum Domain integer

Exceptions

instantiation_error
The argument List must not be a variable, but a variable was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

type_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a term
of another type.

domain_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a normal
variable.

Example

[user] ?- A in [3, 5, 7], B in 8..10, C in -2..3, D in 0:3,

| L = [A, B, C, D],

| lmaxdomain(L, Max),

| lmindomain(L, Min).

A = __1

B = __2

C = __3

IF/Prolog V5.3 109 Constraints Package

lmaxdomain/2, lmindomain/2 Predicate Constraints for finite domains

D = __4

L = [__1,__2,__3,__4]

Max = 10

Min = -2

yes

See also

domain maximum/2, domain minimum/2, lmaxmin/2, lminmax/2

Constraints Package 110 IF/Prolog V5.3

Constraints for finite domains Predicate lmaxmin/2, lminmax/2

Query domain limits

lmaxmin(@List, ?MaxMin)
lminmax(@List, ?MinMax)

The predicate lmaxmin/2 unifies MaxMin with the greatest minimum of domains for the
variables in List.

The predicate lminmax/2 unifies MinMax with the smallest maximum of domains for the
variables in List.

If List is an empty list, the predicates fail.

Arguments

List List of domain variables
MaxMin Domain integer
MinMax Domain integer

Exceptions

instantiation_error
The argument List must not be a variable, but a variable was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

type_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a term
of another type.

domain_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a normal
variable.

Example

[user] ?- A in [3, 5, 7], B in 8..10, C in -2..3, D in 0:3,

| L = [A, B, C, D],

| lminmax(L, MinMax),

| lmaxmin(L, MaxMin).

A = __1

B = __2

C = __3

IF/Prolog V5.3 111 Constraints Package

lmaxmin/2, lminmax/2 Predicate Constraints for finite domains

D = __4

L = [__1,__2,__3,__4]

MinMax = 3

MaxMin = 8

yes

See also

domain maximum/2, domain minimum/2, lmaxdomain/2, lmindomain/2

Constraints Package 112 IF/Prolog V5.3

Constraints for finite domains Predicate maximum/2, minimum/2

Constraint for maximum and minimum values of a list

maximum(+List, ?Maximum)
minimum(+List, ?Minimum)

The predicate maximum/2 generates a constraint where Maximum lies between the greatest
minimum and the greatest maximum of the domains of the list elements.

The predicate minimum/2 generates a constraint where Minimum lies between the smallest
minimum and the smallest maximum of the domains of the list elements.

If an element in the List is neither a domain variable nor an integer, the predicates fail.

Arguments

List List of domain variables
Maximum Domain variable
Minimum Domain variable

Exceptions

instantiation_error
The argument List must not be a variable, but a variable was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

Example

[user] ?- X ?>= 0, Y ?< 0, maximum([X, Y], Z).

X = __3

Y = __2

Z = __3

yes

[user] ?- A in 1:3, B in 5:7, maximum([A, B], 6).

A = __1

B = 6

yes

IF/Prolog V5.3 113 Constraints Package

maximum/2, minimum/2 Predicate Constraints for finite domains

[user] ?- A in 4..8, B in 10..15,

| maximum([A, B], C), domain(C, DC).

A = __1

B = __3

C = __3

DC = [10,11,12,13,14,15]

yes

[user] ?- [X0, Y0] in 1:3, [X1, Y1] in 2:4,

| minimum([X0, X1], X), maximum([Y0, Y1], Y),

| Y ?< X.

X0 = 3

Y0 = __2

X1 = __3

Y1 = 2

X = 3

Y = 2

yes

[user] ?- A in 4..8, B in 2..6, C in [-2, 2, 6, 10],

| maximum([A, B, C], Max), domain(Max, DMax),

| minimum([A, B, C], Min), domain(Min, DMin).

A = __1

B = __2

C = __3

Max = __5

DMax = [4,5,6,7,8,9,10]

Min = __7

DMin = [-2,-1,0,1,2,3,4,5,6]

yes

See also

domain maximum/2, domain minimum/2, lmaxdomain/2, lmindomain/2

Constraints Package 114 IF/Prolog V5.3

Constraints for finite domains Predicate minimize_bb/2/5

Optimize result value

minimize_bb(+Goal, ?Optimum) [@ +Module]

minimize_bb(+Goal, ?Optimum, +Lower, +Upper, +Percent) [@ +Mod-
ule]

The predicates minimize_bb/2/5 search for a minimum value for Optimum. A successful
proof of Goal must instantiate Optimum with an integer. Before calling the predicate, at
least the maximum of Optimum must be appropriately constrained. IF/Prolog attempts to
prove Goal using the branch-and-bound method in such a way as to further minimize the
value of Optimum. With this method, an attempt is made to find an alternative solution
from the point at which the lower limit for Optimum was most recently incremented.

The predicate minimize_bb/5 constrains the range of Optimum between Lower and Upper.
Percent is used to define the maximum percentage by which the minimum found may exceed
the actual minimum. This is achieved by constraining the next solution to be at least Percent
% better than the current optimum.

Arguments

Goal Goal
Optimum Domain variable
Lower Domain integer
Upper Domain integer
Percent Integer between 0 and 100

Exceptions

instantiation_error
The argument Goal must not be a variable, but a variable was specified.

type_error(callable)
The argument Goal must have the syntactical structure of a Prolog goal.

existence_error(procedure)
In executing Goal, a predicate was to be activated which is not defined and the
Prolog flag unknown has the value error.

type_error(atom)
The argument Goal or a subgoal has been qualified by means of @/2 or :/2 with
a term that is not an atom.

existence_error(module)
The argument Goal or a subgoal is qualified by means of @/2 or :/2 with an atom
that does not name an existing module.

IF/Prolog V5.3 115 Constraints Package

minimize_bb/2/5 Predicate Constraints for finite domains

instantiation_error
The argument Lower, Upper or Percent must not be a variable, but a variable was
specified.

type_error(domain_variable)
The argument Optimum must be a domain variable or a domain integer, but is a
term of another type.

domain_error(domain_variable)
The argument Optimum must be a domain variable or a domain integer, but is a
normal variable.

type_error(domain_integer)
The argument Lower or Upper must be a domain integer, but is a term of another
type.

type_error(integer)
The argument Percent must be an integer, but is a term of another type.

domain_error(percentage)
The argument Percent is not in the range 0..100.

Hints

The predicates minimize_bb/2/5 are metapredicates and call their goals in the calling
module or in the specified Module.

The predicates activated in the goal must be visible in the calling module or in the
specified Module, unless the :/2 qualification is used for such a predicate to indicate
explicitly the module in which this predicate is visible.

The predicates activated in the goal are normally executed in the context of the module
in which they are defined. This does not apply to metapredicates, which are executed in
the context of calling module or the specified Module, unless the @/2 qualification is used
for a metapredicate to indicate explicitly the module context in which this predicate is
to be executed.

Example

[user] ?- X in 20:50,

| minimize_bb(indomain(X, maximum), X).

X = 20

yes

See also

minimize maximum/2/5, label/1/2, label tb/3, indomain/1/2

Constraints Package 116 IF/Prolog V5.3

Constraints for finite domains Predicate minimize_maximum/2/5

Optimize

minimize_maximum(+Goal, ?List) [@ +Module]

minimize_maximum(+Goal, ?List, +Lower, +Upper, +Percent) [@
+Module]

The predicates minimize_maximum/2/5 minimize the maximum value of the elements of
List which satisfies Goal. A successful proof of Goal must instantiate the elements of List
with integers. IF/Prolog attempts to prove the Goal using the branch-and-bound method
in such a way as to further minimize the maximum value for the list elements. Once one
solution has been found, the Goal is reactivated with the additional constraint that the next
solution must be better than the previous one. This process is repeated until no better
solution can be found.

The predicate minimize_maximum/5 constrains the range of the list elements between Lower
and Upper. Percent is used to define the maximum percentage by which the minimum found
may exceed the actual minimum. This is achieved by constraining the next solution to be
at least Percent % better than the current optimum.

Arguments

Goal Goal
List List of domain variables
Lower Domain integer
Upper Domain integer
Percent Integer between 0 and 100

Exceptions

instantiation_error
The argument Goal must not be a variable, but a variable was specified.

type_error(callable)
The argument Goal must have the syntactical structure of a Prolog goal.

existence_error(procedure)
In executing Goal, a predicate was to be activated which is not defined and the
Prolog flag unknown has the value error.

type_error(atom)
The argument Goal or a subgoal has been qualified by means of @/2 or :/2 with
a term that is not an atom.

existence_error(module)
The argument Goal or a subgoal is qualified by means of @/2 or :/2 with an atom
that does not name an existing module.

IF/Prolog V5.3 117 Constraints Package

minimize_maximum/2/5 Predicate Constraints for finite domains

instantiation_error
The argument List, Lower, Upper or Percent must not be a variable, but a variable
was specified.

type_error(list)
The argument List must be a regular list, but is a term of another type or not
regular.

type_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a term
of another type.

domain_error(domain_variable)
An element of List must be a domain variable or a domain integer, but is a normal
variable.

type_error(domain_integer)
The argument Lower or Upper must be a domain integer, but is a term of another
type.

type_error(integer)
The argument Percent must be an integer, but is a term of another type.

domain_error(percentage)
The argument Percent is not in the range 0..100.

Hints

The predicates minimize_maximum/2/5 are metapredicates and call their goals in the
calling module or in the specified Module.

The predicates activated in the goal must be visible in the calling module or in the
specified Module, unless the :/2 qualification is used for such a predicate to indicate
explicitly the module in which this predicate is visible.

The predicates activated in the goal are normally executed in the context of the module
in which they are defined. This does not apply to metapredicates, which are executed in
the context of calling module or the specified Module, unless the @/2 qualification is used
for a metapredicate to indicate explicitly the module context in which this predicate is
to be executed.

Example

[user] ?- [X, Y, Z] in 0:10, X + Y ?= 10, X + Z ?= 12,

| minimize_maximum(label([X, Y, Z]), [X, Y, Z]).

X = 6

Y = 4

Z = 6

Constraints Package 118 IF/Prolog V5.3

Constraints for finite domains Predicate minimize_maximum/2/5

yes

[user] ?- X in 20:100,

| minimize_maximum(indomain(X, maximum), [X]).

X = 20

yes

[user] ?- X in 20:100,

| minimize_maximum(indomain(X, maximum), [X], 20, 60, 33).

X = 24

yes

See also

minimize bb/2/5, label/1/2, label tb/3, indomain/1/2

IF/Prolog V5.3 119 Constraints Package

monitor_domain/3 Predicate Constraints for finite domains

Monitor variable domain

monitor_domain(+Variable, +Modification, ?Goal) [@ +Module]

The predicate monitor_domain/3 attaches a goal to the domain variable Variable to be
called when the domain of the variable changes.

The argument Modification specifies the art of the modification:

bind The variable has been instantiated

boundary A boundary (lower or upper limit) of the variable domain has been changed

modify The variable domain has been changed

When the specified modification takes place, the goal Goal is implicitly called.

Arguments

Variable Domain variable
Modification Atom: bind | boundary | modify
Goal Goal

Exceptions

type_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
term of another type.

domain_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
normal variable.

instantiation_error
The argument Modification must not be a variable, but a variable was specified.

instantiation_error
The argument Goal must not be a variable, but a variable was specified.

type_error(callable)
The argument Goal must have the syntactical structure of a Prolog goal.

existence_error(procedure)
In executing Goal, a predicate was to be activated which is not defined and the
Prolog flag unknown has the value error.

type_error(atom)
The argument Goal or a subgoal has been qualified by means of @/2 or :/2 with
a term that is not an atom.

existence_error(module)
The argument Goal or a subgoal is qualified by means of @/2 or :/2 with an atom
that does not name an existing module.

Constraints Package 120 IF/Prolog V5.3

Constraints for finite domains Predicate monitor_domain/3

Hints

The predicate monitor_domain/3 is a metapredicate and calls its goal in the calling
module or in the specified Module.

The predicates activated in the goal must be visible in the calling module or in the
specified Module, unless the :/2 qualification is used for such a predicate to indicate
explicitly the module in which this predicate is visible.

The predicates activated in the goal are normally executed in the context of the module
in which they are defined. This does not apply to metapredicates, which are executed in
the context of calling module or the specified Module, unless the @/2 qualification is used
for a metapredicate to indicate explicitly the module context in which this predicate is
to be executed.

Example

[user] ?- A in 1:10,

monitor_domain(A, boundary, domain(A,DA)),

A ?> 3.

A = __1

DA = [4,5,6,7,8,9,10]

yes

[user] ?- A in [1,3,5,7],

monitor_domain(A, modify, domain(A,DA)),

A ?\= 3.

A = __1

DA = [1,5,7]

yes

[user] ?- A in 10..20,

monitor_domain(A, bind, domain(A,DA)),

A ?> 19.

A = 20

DA = [20]

yes

IF/Prolog V5.3 121 Constraints Package

monitor_domain/3 Predicate Constraints for finite domains

Compatibility

V5.1A The predicate monitor_domain/3 is new.

See also

domain/2

Constraints Package 122 IF/Prolog V5.3

Constraints for finite domains Predicate notin/3

Remove interval from domain

notin(+Variable, +From, +To)

The predicate notin/3 removes all values between From and To from the domain of Variable.
If the domain becomes empty, the predicate fails. If the domain contains only one value,
Variable is instantiated to this value.

The satisfiability of the constraint can be immediately decided for variables of enumeration
and sequence type. For variables of interval type, satisfiability can be decided either
immediately or later, when more information becomes available.

Arguments

Variable Domain variable
From Domain integer
To Domain integer

Exceptions

type_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
term of another type.

domain_error(domain_variable)
The argument Variable must be a domain variable or a domain integer, but is a
normal variable.

type_error(domain_integer)
The argument From or To must be a domain integer, but is a term of another type.

Example

[user] ?- X in [3, 5, 7, 9], notin(X, 6, 10), domain(X, L1).

X = __1

L1 = [3,5]

yes

[user] ?- X in 1..10, notin(X, 3, 5), domain(X, L1).

X = __1

L1 = [1,2,6,7,8,9,10]

IF/Prolog V5.3 123 Constraints Package

notin/3 Predicate Constraints for finite domains

yes

[user] ?- A in 1:10, notin(A,1,4), notin(A,6,20).

A = 5

yes

Compatibility

V5.1A The predicate notin/3 is new.

See also

in/2, ?\=/2, indomain/1/2

Constraints Package 124 IF/Prolog V5.3

Constraints for finite domains Predicate relation/2

Establish relations

relation(?VariableList, +Table)

The predicate relation/2 defines multiple relations over finite sets by enumeration of tuples.

Each relation is specified as a list of domain integers in Table. The elements of VariableList
are restricted to the value combinations specified in the tuple list Table. The list VariableList
and each tuple in Table must have the same number of elements.

Arguments

VariableList List of domain variables
Table List of lists of domain integers

Exceptions

instantiation_error
The argument VariableList, Table or an element of Table must not be a variable,
but a variable was specified.

type_error(list)
The argument VariableList, Table or an element of Table must be a regular list,
but is a term of another type or not regular.

type_error(domain_integer)
An element of Table must be a domain integer, but is a term of another type.

Hints

The predicate can be used to describe relations that are difficult or impossible to define
arithmetically.

Example

[user] ?- relation([X1, X2, X3], [[0, 0, 1], [1, 1, 0]]),

| (X1 = 0; X3 = 0; (X1 = 0, X3 = 0)).

X1 = 0

X2 = 0

X3 = 1 ;

X1 = 1

X2 = 1

IF/Prolog V5.3 125 Constraints Package

relation/2 Predicate Constraints for finite domains

X3 = 0 ;

no

% Explicit representation of relations

% [Q,R,X,Y] in [0,1,2,3]

% X ?= Q*Y+R

% 0 ?=< R ?< Y

?- relation([Q,R,X,Y],

| [

| [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,1,1,2],

| [0,1,1,3], [0,2,2,3], [1,0,1,1], [1,0,2,2],

| [1,0,3,3], [1,1,3,2], [2,0,2,1], [3,0,3,1]

|]).

The compatibility of devices, which are represented by numbers, can be expressed using
the following predicate:

compatible(Device1, Device2) :-

relation([Device1, Device2],

[

[135500, 135501],

[135500, 135502],

[135500, 135503],

[135502, 135503],

[135501, 135500]

]).

Compatibility

V5.1A The list length of the arguments is no more limited to 127.

Constraints Package 126 IF/Prolog V5.3

Chapter 5

Boolean constraints

Boolean constraints are conditions for a variable with the domain 0 and 1. The Boolean
domain is thus a small subdomain of the finite domain. Consequently Boolean constraints
are defined as a subclass of finite constraints.

The numbers correspond to the truth values: 1 corresponds to the value TRUE, 0 to the value
FALSE. Boolean constraints are formulated by combining two Boolean expressions with a
Boolean operator.

If you wish to work with Boolean constraints, you must import the module const_domain

in which built-in predicates for Boolean constraints are stored in addition to those for finite
constraints.

Use the import directive to import the module into your database:

[user] ?- [user]. ←↩

> :- import(const_domain). ←↩

> end_of_file. ←↩

*** consult ’user’: loaded in 0.02 sec.

yes

i You can only work with constraints only if you have configured the ra-
tional number support and the constraint package at installation.

127

Predicates Boolean constraints

5.1 Syntax of Boolean constraints

The operands of Boolean constraints are Boolean expressions. A Boolean expression is either
a variable in the range 0 through 1 or any Boolean operation using these variables. The
syntax of a Boolean constraint looks like this:

BoolConstraint ::= BoolExpression BoolOperator BoolExpression

BoolExpression ::=

V ariable
0 | 1
BoolExpression \/ BoolExpression
BoolExpression /\ BoolExpression
BoolExpression # BoolExpression
BoolExpression => BoolExpression
BoolExpression <=> BoolExpression
˜BoolExpression
(BoolExpression)

BoolOperator ::=

{
=>
<=>

}

A Boolean constraint is thus a combination of two Boolean expressions. Each Boolean
expression may contain any number of variables.

5.2 Built-in operators and predicates

This section provides a tabular overview of the built-in predicates followed by descriptions
of the predicates in alphabetical order.

The following built-in predicates are assigned to the module const_domain; consequently
you can call them only if you have imported this module.

The built-in operators have been extended to include the Boolean operators which allow you
to combine two Boolean expressions in a constraint. The operators generate a constraint
which is satisfiable when the Boolean expressions on both sides satisfy the specified relation.

Operator Precedence Type Meaning

\/ 500 yfx Logical OR (disjunction)
/\ 500 yfx Logical AND (conjunction)
500 xfx Logical XOR (antivalence)

=> 800 xfx Implication
<=> 800 xfx Equivalence

˜ 400 xfx Negation

Constraints Package 128 IF/Prolog V5.3

Boolean constraints Predicate <=>/2

Boolean equivalence

?BoolExpression1 <=> ?BoolExpression2

The predicate <=>/2 generates a constraint between Boolean expressions. The constraint
is satisfied when both expressions have the same truth value. The constraint is based on the
following Boolean axioms:

true ↔ true

false ↔ false

The atom <=> is defined as an infix operator with precedence 800 and associativity xfx.

Arguments

BoolExpression1 Boolean expression
BoolExpression2 Boolean expression

Exceptions

type_error(boolean)
The argument BoolExpression1 or BoolExpression2 must be a Boolean expression,
but is a term of another type.

Example

[user] ?- A /\ B <=> 1.

A = 1

B = 1

yes

[user] ?- A /\ B <=> A \/ B, indomain(A).

A = 0

B = 0 ;

A = 1

B = 1 ;

no

[user] ?- (((X => Y) => Z) <=> (X => (Y => Z))) <=> 0,

IF/Prolog V5.3 129 Constraints Package

<=>/2 Predicate Boolean constraints

label([X,Y,Z]).

X = 0

Y = 0

Z = 0 ;

X = 0

Y = 1

Z = 0 ;

no

See also

=>/2

Constraints Package 130 IF/Prolog V5.3

Boolean constraints Predicate =>/2

Boolean implication

?BoolExpression1 => ?BoolExpression2

The predicate =>/2 generates a constraint between Boolean expressions. The constraint is
satisfied if the second expression is implied by the first expression, i.e. if BoolExpression1 is
false or if BoolExpression2 is true. The constraint is based on the following Boolean axioms:

true → true

false → ∗

The atom => is defined as an infix operator with precedence 800 and associativity xfx.

Arguments

BoolExpression1 Boolean expression
BoolExpression2 Boolean expression

Exceptions

type_error(boolean)
The argument BoolExpression1 or BoolExpression2 must be a Boolean expression,
but is a term of another type.

Example

% A simple puzzle: visit from family P.

% Mr. and Mrs. P. have three children: Julia, Sonja and Anita.

% 1. If Mr. P comes, then he’ll bring his wife with him.

% 2. At least one of the daughters Sonja and Anita will come.

% 3. Either both Mrs. P and Julia come, but not both of them.

% 4. Either both Julia and Sonja come, or neither of them.

% 5. If Anita comes, then Sonja and Mr. P will also come.

[user] ?- Mr_P_comes => Mrs_P_comes,

Anita_comes \/ Sonja_comes <=> 1,

Mrs_P_comes # Julia_comes <=> 1,

Julia_comes <=> Sonja_comes,

Anita_comes => Sonja_comes /\ Mr_P_comes,

label([Mr_P_comes, Mrs_P_comes, Julia_comes,

Sonja_comes, Anita_comes]).

Mr_P_comes = 0

IF/Prolog V5.3 131 Constraints Package

=>/2 Predicate Boolean constraints

Mrs_P_comes = 0

Anita_comes = 0

Sonja_comes = 1

Julia_comes = 1

yes

See also

<=>/2

Constraints Package 132 IF/Prolog V5.3

Bibliography

[1] IF/Prolog V5.3 Reference Manual

[2] IF/Prolog V5.3 User’s Guide

[3] IF/Prolog V5.3 OSF/Motif Interface

[4] IF/Prolog V5.3 Informix Interface

[5] IF/Prolog V5.3 Constraints Package

[6] IF/Prolog V5.3 Quick Reference

[7] IF/Prolog V5.3 Windows Interfaces

[8] IF/Prolog V5.3 Java Interface

[9] IF/Prolog V5.3 BDD Package

[10] X/Open CAE (Common Applications Environment) Specification. System Interfaces
and Headers, Issue 4. Prentice Hall 1994.

[11] International Standard, ISO/IEC IS 13211-1. International Organization for Standard-
ization, 1995

[12] William F. Clocksin, Chris S. Mellish: Programming in PROLOG. Standard Edition
Berlin et al.: Springer 1995.

[13] Ivan Bratko: PROLOG. Programming for Artificial Intelligence Second Edition,
Addison-Wesley 1990.

[14] Leon Sterling, Ehud Shapiro: The Art of PROLOG. Advanced Programming Tech-
niques. Cambridge Massachusetts: MIT Press, 1986

[15] Pascal van Hentenryck: Constraint Satisfaction in Logic Programming Cambridge Mas-
sachusetts: MIT Press, 1989

133

Index

/\
Boolean operator, 128
conjunction, 128

<=>
Boolean operator, 128
equivalence, 128

=>
Boolean operator, 128
implication, 128

\/
Boolean operator, 128
disjunction, 128

˜
Boolean operator, 128
negation, 128

#
antivalence, 128
Boolean operator, 128

antivalence
#, 128

arithmetic
finite constraint, 44

arithmetic constraints, 49, 52
combine, 58
conjunction, 58
disjunction, 58
finite constraints, 49
negation, 58

arithmetic operator, 49
arithmetic relational operators, 52

big integer, 8
operations, 9

binary
constraint, 8

Boolean
domain, 7

Boolean constraint, 127

operator, 128
Boolean equivalence, 129
Boolean expression, 128
Boolean implication, 131
Boolean operator, 128

/\, 128
<=>, 128
=>, 128
\/, 128
,̃ 128

#, 128
branch-and-bound

search method, 115, 117

cardinality
of a finite domain, 86

class
domain, 7

combine
primitive finite constraints, 58

conjunction
/\, 128
of finite constraints, 58

consistency condition
passive, 17

const delay
module, 18

const domain
module, 43, 127

const linear
module, 29

constant
rational, 30

constraint, 7
binary, 8
Boolean, 127
coroutines, 17
finite, 43

134

Index

global, 8
linear, 29
of variable

query, 12
test variable, 12
unary, 8

conversion, 9
coroutine, 8

delay goal, 24, 26
coroutines

conjunctive freeze/2, 20
constraint, 17
delay goal, 20
dif/2, 22
disjunctive freeze/2, 24
freeze/2, 26
term unequality, 22

cumulative
finite constraint, 61

decompose
rational number, 15

define
relations, 125

delay goal
coroutine, 24, 26
coroutines, 20
finite constraints, 83
linear constraints, 38

delimit
finite domain, 92, 123

discrete problems, 43
disjunction
\/, 128
of finite constraints, 58

disjunctive
finite constraint, 75

distance
domain variables, 78

distinct list elements
finite constraint, 54

division
of rational numbers, 10

domain
big integer, 9
Boolean, 7

class, 7
finite, 7
linear, 7
small integer, 9

domain (syn) → value range, 7
domain integer

finite constraint, 44
domain term, 44
domain terms

compare, 49
domain variable

finite constraint, 43
generate a value, 95
select, 64

domain variables
generate values, 103, 105, 107

enumeration
finite constraint, 44

equivalence
<=>, 128

expression
Boolean, 128

finite
domain, 7

finite constraint, 43
arithmetic, 44
cumulative, 61
definition, 44
delimit domain, 92
disjunctive, 75
distance between variables, 78
domain integer, 44
domain variable, 43
enumeration, 44
establish a relation, 125
for list elements, 56, 88, 90
interval, 44
non-overlapping rectangles, 66, 69, 72
query domain, 81
remove interval, 123
select a variable, 64
sequence, 44
symbolic, 43

finite constraints, 49

IF/Prolog V5.3 135 Constraints Package

Index

cardinality, 58
combine primitive, 58
conjunction, 58
delay goal, 83
disjunction, 58
distinct list elements, 54
identical list elements, 56
negation, 58
relational operators, 49

finite domain, 43
ascertain maximum, 85
ascertain minimum, 85
delimit, 92, 123
generate a value, 95
generate values, 103, 105, 107
greatest maximum, 109
greatest minimum, 111
maximum value, 113
minimum value, 113
monitor variable domain, 120
query, 81
query cardinality, 86
smallest maximum, 111
smallest minimum, 109
test affiliation of a value, 100
test variable type, 97–99, 102

generate
constraint for list elements, 88
exact number of identical list elements,

90
relations, 125
value for domain variable, 95
values for domain variables, 103, 105,

107
global

constraint, 8
greatest maximum

finite domain, 109
greatest minimum

finite domain, 111

identical list elements
generate, 56

implication
=>, 128

integer
operations, 9
test, 11

interval
finite constraint, 44

linear
domain, 7

linear arithmetic constraint, 33
linear constraint, 29

definition, 29
different list elements, 35
negative list elements, 36
positive list elements, 37

linear constraints
delay goal, 38
operators, 32
optimization, 40

linear equations and inequations, 33
linear operators, 32
linear relational operator, 33
linear term, 29
linear terms

establish a relation, 32
list

optimization, 117
search for maximum value, 113
search for minimum value, 113

list elements
exact number of identical values, 90
generate a constraint, 88

maximum
of a finite domain, 85

maximum value
finite domain, 113

minimum
of a finite domain, 85

minimum value
finite domain, 113

module
const delay, 18
const domain, 43, 127
const linear, 29

negation
,̃ 128

Constraints Package 136 IF/Prolog V5.3

Index

of finite constraints, 58
non-discrete problems, 29
normal form

rational number, 9
notational conventions, 3
number

big integer, 9

operations
for big integer, 9

operator
arithmetic constraints, 49
Boolean, 128
linear, 32
rdiv, 10

optimization
linear constraints, 40
list, 117
value, 115

problems
discrete, 43
non-discrete, 29

propagation, 7

query
constraint classes of a variable, 12
finite domain, 81

rational constant, 30
rational number, 8

decompose, 15
denominator, 15
numerator, 15
test, 14
division, 10
normalize, 9
reduce, 11
test, 11

rational numbers
operator, 10

rdiv
rational operator, 10

rectangles
overlapping, 66, 69, 72

reduce
rational number, 11

relation
during term comparison, 10

relational operator
finite constraint, 49

relations
establish

finite constraint, 125

search
maximum value of a list, 113
minimum value of a list, 113

search method
branch-and-bound, 115, 117

select
domain variable, 64
first fail, 64

sequence
finite constraint, 44

smallest maximum
finite domain, 111

smallest minimum
finite domain, 109

symbolic
finite constraint, 43

syntax
Boolean constraint, 128
finite constraint, 44
linear constraint, 29
notational conventions, 3

term
for domains, 44
linear, 29

term comparison
relations, 10

test
for rational number, 14
for integer, 11
for rational number, 11
variable for constraints, 12
variable type, 97–99, 102

unary
constraint, 8

value
generate, 95

IF/Prolog V5.3 137 Constraints Package

Index

generate for domain variables, 103, 105,
107

optimization, 115
test for domain affiliation, 100

value range (syn) → domain, 7
variable

monitor domain, 120
query constraint classes, 12
select, 64
test for constraints, 12

variable type
test, 97–99, 102

Constraints Package 138 IF/Prolog V5.3

	Contents
	Constraints
	Big integers and rational numbers
	Arithmetic operations
	Operator for rational division

	General built-in predicates
	Test for constraint variable
	Test numbers

	Coroutines
	Built-in predicates

	Linear constraints
	Linear terms
	Built-in predicates and operators
	Linear operators
	Constraints for list elements
	Delaying proof of a goal
	Optimization

	Constraints for finite domains
	Domain variables
	Arithmetic constraints
	Built-in operators and predicates
	Arithmetic Constraints
	Symbolic constraints
	Selection predicates
	Non-logical predicates
	Delaying proof of a goal
	Optimization

	Boolean constraints
	Syntax of Boolean constraints
	Built-in operators and predicates

	Bibliography
	Index

