

NATIONAL BUREAU OF STANDARDS

UNIVERSITY OF ARIZONA LIBRARY Documents Collection AUG 19 1968

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services:

THE INSTITUTE FOR BASIC STANDARDS . . . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area:

-Applied Mathematics-Electricity-Metrology-Mechanics-Heat-Atomic Physics-Physical Chemistry-Radiation Physics-Laboratory Astrophysics²-Radio Standards Laboratory,² which includes Radio Standards Physics and Radio Standards Engineering-Office of Standard Reference Data.

THE INSTITUTE FOR MATERIALS RESEARCH ... conducts materials research and provides associated materials services including mainly reference materials and data on the properties of materials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce. This Institute is organized primarily by technical fields:

—Analytical Chemistry—Metallurgy—Reactor Radiations—Polymers—Inorganic Materials—Cryogenics²—Office of Standard Reference Materials.

THE INSTITUTE FOR APPLIED TECHNOLOGY... provides technical services to promote the use of available technology and to facilitate technological innovation in industry and government. The principal elements of this Institute are:

-Building Research-Electronic Instrumentation-Technical Analysis-Center for Computer Sciences and Technology-Textile and Apparel Technology Center-Office of Weights and Measures -Office of Engineering Standards Services-Office of Invention and Innovation-Office of Vehicle Systems Research-Clearinghouse for Federal Scientific and Technical Information³-Materials Evaluation Laboratory-NBS/GSA Testing Laboratory.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C., 20234.

² Located at Boulder, Colorado, 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

UNITED STATES DEPARTMENT OF COMMERCE

C. R. Smith, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director

Standard X-ray Diffraction

Powder Patterns

H. E. Swanson, H. F. McMurdie, M. C. Morris, and E. H. Evans

National Bureau of Standards Monograph 25-Section 6

Issued June 1968

Library of Congress Catalog Card Number: 53-61386

Contents

Introduction	Page
Introduction	
Reference intensity values	
Standard x-ray powder patterns:	
Ammonium Cobalt(II) Trichloride,	-
$NH_4 COC I_3 \dots I_4 COC I_5 \dots I_4 COC I_6 \dots I_6 \dots$	5
Ammonium Nickel(11) Trichloride,	~
$NH_4 NiCl_3 \dots$	6
Bis (o-dodecacarborane),	_
$C_4 B_2 O H_2 C_4 C_4 B_2 O H_2 C_4 C_4 C_4 C_4 C_4 C_4 C_4 C_4 C_4 C_4$	7
Cadmium Sulfate Hydrate,	_
$3CdSO_4 \cdot 8H_2O$	8
Cadmium Sulfate Monohydrate,	
$CdSO_4 \cdot H_2O$	10
Cesium Cobalt(II) Trichloride,	
CsCoCl _a	11
Cesium Nickel(II) Trichloride,	
$CsNiCl_3$	12
Cesium Strontium Trichloride,	
$CsSrCl_3$	13
Chromium Iridium 3:1, Cr ₃ Ir	14
Chromium Rhodium 3:1, Cr ₃ Rh	15
Gold Niobium 1:3, AuNb ₃	16
Gold Titanium 1:3, AuTi ₃	17
Gold Vanadium 1:3, AuV ₃	18
Iridium Niobium 1:3, IrNb ₃	19
Iridium Titanium 1:3, IrTi ₃	20
Iridium Vanadium 1:3, IrV ₃	21
Lithium Niobate, LiNbO ₃	22
Lithium Sodium Sulfate,	
$LiNaSO_4$	24
Lithium Sulfate, Li ₂ SO ₄	26
Molybdenum Osmium 3:1, Mo ₃ Os	28
2-Naphthylamine, N-phenyl-,	
$C_{1 \oplus} H_{1 \oplus} N$	29
Niobium Osmium 3:1, Nb ₃ Os	30
Niobium Platinum 3:1, Nb ₃ Pt	31
Palladium Vanadium 1:3, PdV.	32
Platinum Titanium 1:3, PtTi	33
Platinum Vanadium 1:3, PtV.	34
Potassium Cobalt(II) Sulfate,	
$K_{2} Co_{2} (SO_{4})_{3} \dots$	35
Potassium Cobalt(II) Trifluoride.	
KCoF.	37
Potassium Copper(II) Trifluoride.	•••
	38
Potassium Iron(II) Trifluoride.	50
KFeF	39
Potassium Magnesium Sulfate	55
(langheinite)* K _c Mg _c (SO).	40
Potassium Magnesium Trifluoride	
KMaF	42
Potassium Manganese(TT) Sulfate	12
(manganolangheinite)	
K_{0} Mn _p (SO ₄) $_{0}$ $_{0}$ $_{0}$	43
······································	-*0

Potassium Manganese(II)	Page
Trifluoride, KMnF	45
Potassium Nickel (II) Sulfate.	45
$K_0 Ni_0 (SO_0)$	46
Potassium Sodium Sulfate	40
K Na SO	48
$R_{67}Ra_{1,33}DO_{4}$	40
KNASO	50
RNdSO ₄	50
(aphthitalita) K Na(SO)	50
(aphenicalice), $R_3 Na(50_4)_2 \dots$	52
V Zn (SO)	51
$R_2 \Delta R_2 (50_4)_3 \dots 1.2$ PhV	54
Rhodium vanadium 1:5, Rhv_3	50
Rubidium Cobait(II) Trichioride,	57
$RDCOCL_3$ $N_i = l_i = 1/TT$) $M_{ij} = l_j = l_j = 1/TT$	57
Rublatum Nickel(11) filchiofide,	5.0
$RDN1CI_3$ C_1 C_2	28
Sodium Calcium Suffate	50
(glauberite), $Na_2Ca(SO_4)_2$	59
Sodium Cobalt(II) Sulfate	~ 1
Tetrahydrate, $Na_2 CO(SO_2)_2 \cdot 4H_2 O \ldots$	6T
Sodium Magnesium Sulfate	
Tetrahydrate, bloedite,	6.0
$Na_2 Mg (SO_4)_2 \cdot 4H_2 O \dots$	63
Sodium Manganese(II) Trifluoride,	
NaMnF ₃	65
Sodium Mercury(II) Trichloride	
Dihydrate, NaHgCl ₃ · 2H ₂ O	66
Sodium Nickel(II) Sulfate	
Tetrahydrate, $Na_2 Ni (SO_4)_2 \cdot 4H_2 O \dots$	68
Sodium Oxalate, Na ₂ C ₂ O ₄	70
Sodium Zinc Sulfate Tetrahydrate,	-
$Na_2Zn(SO_4)_2 \cdot 4H_2O$	72
Sodium Zinc Trifluoride, NaZnF ₃	74
Strontium Indium Hydroxide,	
$\operatorname{Sr}_{3}\operatorname{In}_{2}(\operatorname{OH})_{12}$	76
Strontium Scandium Oxide	
Hexahydrate, $Sr_3Sc_2O_6 \cdot 6H_2O_6$	78
Ytterbium Oxide, Yb ₂ O ₃	80
Calculated powder patterns (cubic):	
Aluminum Nickel, AlNi	82
Gold Magnesium, AuMg	83
Mercury Magnesium, HgMg	84
Osmium Titanium, OsTi	85
Ruthenium Titanium, RuTi	86
Silver Gadolinium, AgGd	87
Cumulative index to Circular 539,	
Volumes 1, 2, 3, 4, 5, 6, 7, 8, 9,	
10, and Monograph 25, Sections 1,	
2, 3, 4, 5, and 6	89
Cumulative mineral index	97

*A mineral name in parentheses indicates a synthetic sample.

Errata

Monograph 25, Section 6

Circular 539

Vol. 2, p. 32; The space group should be Pbma, from the reference: Byström, Arkiv Kemi Mineral. Geol. 25A, 1-26 (1947).

Vol. 9, p. 3: The corrected *hkl* values are: 214(d = 1.404), 131(d = 1.1382), 042(d = 1.0175), and 2·1·10(d = 0.9976).

Monograph 25

Sec. 1, p. 35; The space group should be P2₁3, from the reference Bokii and Tsinober, Tr. Inst. Kristallogr. Akad. Nauk SSSR 9, 239-250 (1954).

Sec. 3, p. 5; Insert a new line of data:

242,341 1.7427 <2

Sec. 3, p. 45; Line 21 of the table should have the indices 201, 222.

Sec. 5, p. 19; The title should be $CsCdCl_3$. Also, the line at d = 1.4200 should have the index 1.1.12.

Sec. 5, p. 20; The title should be CsCdCl₃.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Information on ten volumes in this series listed as follows is available from Mr. Howard E. Swanson, Room A221, Materials Building, National Bureau of Standards, Washington, D. C., 20234:

NBS Circular 539, Volume 1, Standard X-ray Diffraction Powder Patterns (Data for 54 substances). NBS Circular 539, Volume 2, Standard X-ray Diffraction Powder Patterns (Data for 30 substances). NBS Circular 539, Volume 3, Standard X-ray Diffraction Powder Patterns (Data for 42 substances). NBS Circular 539, Volume 4, Standard X-ray Diffraction Powder Patterns (Data for 42 substances). NBS Circular 539, Volume 5, Standard X-ray Diffraction Powder Patterns (Data for 45 substances). NBS Circular 539, Volume 6, Standard X-ray Diffraction Powder Patterns (Data for 45 substances). NBS Circular 539, Volume 6, Standard X-ray Diffraction Powder Patterns (Data for 44 substances). NBS Circular 539, Volume 7, Standard X-ray Diffraction Powder Patterns (Data for 53 substances). NBS Circular 539, Volume 8, Standard X-ray Diffraction Powder Patterns (Data for 61 substances). NBS Circular 539, Volume 8, Standard X-ray Diffraction Powder Patterns (Data for 61 substances). NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 61 substances). NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 61 substances). NBS Circular 539, Volume 10, Standard X-ray Diffraction Powder Patterns (Data for 43 substances).

The following five volumes in this series are available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D. C., 20402, as follows:

NBS Monograph 25, Section 1, Standard X-ray Diffraction Powder Patterns (Data for 46 substances) 40 cents.

NBS Monograph 25, Section 2, Standard X-ray Diffraction Powder Patterns (Data for 37 substances) 35 cents.

NBS Monograph 25, Section 3, Standard X-ray Diffraction Powder Patterns (Data for 51 substances) 40 cents.

NBS Monograph 25, Section 4, Standard X-ray Diffraction Powder Patterns (Data for 103 substances) 55 cents.

NBS Monograph 25, Section 5, Standard X-ray Diffraction Powder Patterns (Data for 60 substances) 55 cents.

Send orders with remittance for the above five Monographs to Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402. Remittance from foreign countries should include an additional one-fourth of the purchase price for postage.

Those wishing to be notified of future issues should send mailing address to the Government Printing Office.

Section 6.—Data for 60 substances

Howard E. Swanson, Howard F. McMurdie,¹ Marlene C. Morris,¹ and Eloise H. Evans¹

Standard x-ray diffraction powder patterns are presented for 60 substances. Fifty-four of these patterns represent experimental data and 6 are calculated. The experimental x-ray powder diffraction patterns are made with a Geiger counter x-ray diffractometer, using samples of high purity. All d-values were assigned Miller indices determined by comparison with theoretical interplanar spacings and from consideration of space group extinctions. The densities and lattice constants were calculated, and the refractive indices were measured whenever possible. The calculated x-ray powder diffraction patterns were obtained from published crystal structure data. The reported peak height intensities for calculated patterns were converted from integrated intensities. Reference intensity values based upon the strongest line of corundum (113) in a 50 weight percent mixture are given for 98 materials.

Keywords: standard, x-ray diffraction, powder-patterns, crystal, structure, measurements, lattice, constants, reference-intensities

INTRODUCTION

The X-ray Powder Diffraction File (1967)² is a compilation of diffraction patterns, gathered from many sources and produced under the auspices of the Joint Committee on Chemical Analysis by Powder Diffraction Standards.³ The File is used for the identification of unknown crystalline materials by matching d-spacings and intensity measurements. Under the partial sponsorship of the Joint Committee, a program at the National Bureau of Standards contributes new data for this File. Our work also aids in the evaluation and revision of published x-ray data and in the development of diffraction techniques. This report presents data for 60 compounds, 54 experimental and 6 calculated patterns. This compilation is the sixteenth of the series of "Standard X-ray Diffraction Powder Patterns."4

Experimental Powder Patterns

Powder Diffraction File Cards. Under this heading are given the Powder Diffraction File card numbers and the literature reference for each card. Cards listed through the 1966 index to the Powder Diffraction File are included.

Additional published patterns. Literature references for patterns that have not been published as Powder Diffraction File cards are listed.

NBS sample. Many of the samples used to make NBS patterns were special preparations of high purity obtained from a variety of sources or prepared in small quantities in our laboratory. Treating the sample by appropriate annealing, recrystallizing, or heating in hydrothermal bombs improved the definition of most of the patterns.

Unless otherwise noted, the spectrographic analyses were done at NBS after preparation of the sample was completed. The limit of detection for the alkali elements was 0.05 weight percent for the spectrographic analyses. A check of phase purity was usually provided by the x-ray pattern itself, when it was indexed by comparison with theoretical d-values. A microscopic inspection for phase purity was also made on the nonopaque materials during the refractive index determination. The latter was done by grain-immersion methods in white light, with oils standardized in sodium light, in the range 1.40 to 2.1.

The names of the sample colors were selected from the ISCC-NBS Centroid Color Charts (1965).

Structural data. The assignment of *hkl's* and the refinement of lattice constants were obtained by using a computer program developed by Evans, Appleman and Handwerker (1963). Cell refinement was based only upon 2θ -values which could be indexed without ambiguity. The number of significant figures reported for d-values varies slightly with the symmetry and crystallinity of each sample. Lattice constant errors are based on least-squares refinement of the variance-covariance matrix derived from the unweighted $\Delta\theta$ residuals.

¹Research Associate at the National Bureau of Standards sponsored by the Joint Committee on Powder Diffraction Standards.

 $^{^2 \}text{Dates}$ in brackets indicate the literature references at the end of each section of this paper.

³This committee is sponsored jointly by the American Society for Testing and Materials, the American Crystalographic Association, The (British) Institute of Physics, and The National Association of Corrosion Engineers. Financial support is also provided by the National Bureau of Standards.

⁴See previous page for listing of other published volumes.

Published unit cell data in kX units and data given in angstrom units prior to 1947 were converted to angstrom units using the factor 1.00202 as recommended by an international conference of crystallographers reported in J. Sci. Instr. (1947).

The space groups are listed with both the Schoenflies and short Hermann-Mauguin symbols as well as the space group numbers given in the International Tables for X-ray Crystallography (1952).

Orthorhombic cell dimensions are presented according to the Dana convention b>a>c (Dana System of Mineralogy, 1944).

The densities calculated from the NBS lattice constants are expressed in grams per cubic centimeter and are computed from the Avogadro number (6.02252×10^{23}) and from atomic weights based on carbon 12 (Chem. Eng. News, 1961).

Intensity measurements. At least three patterns for intensity measurements were prepared to check reproducibility. Samples that gave satisfactory intensity patterns usually had an average particlesize smaller than 10 $_{\mu}$ (Alexander et al., 1948). In order to avoid the orientation effects which occur when samples are packed or pressed, a sample holder was made that had an extended rectangular cavity opened on its top face and at one end. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see fig. 1). The powdered sample was then drifted into the end opening while the holder was held in a vertical position. With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample surface could be exposed to the x-ray beam (as shown in fig. 2). To

powders that did not flow readily, or were prone to orient excessively, approximately 50 volume percent of finely ground silica-gel was added as a diluent. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentages of the intensity of the strongest line.

Interplanar spacings. Specimens for the interplanar spacing patterns were prepared by packing into a shallow holder a sample containing approximately 5 wt. percent tungsten powder that served as an internal standard. When tungsten lines were found to interfere, 25 percent silver was used in place of tungsten. If the internal standard correction varied along the length of the pattern, linear interpolations were used for the regions between the peaks of the standard. For low values of 2θ , the pattern peak was measured in the center, at a place averaging about 75 percent of the peak height. For higher values of 2θ , where α_1 and α_2 peaks were resolved, the α_1 peak was measured in the same way. The internal standard correction appropriate to each region was then applied to the measurement of 2θ . The new internal standard lattice constants used were 3.16504 A for tungsten and 4.08625 Å for silver at 25°C, as determined by Swanson, Morris, and Evans (1966). These changes increase d-values by a factor of 1.00004 when compared to the d-values obtained with the older standard samples. All of the NBS patterns, unless otherwise noted, are made on a diffractometer at 25°C using filtered copper radiation (Ka₁), having the wavelength 1.5405 Å. A curved lithium fluoride crystal monochromator was used in the preparation of some patterns.

Figure 1

Figure 2

Since some substances are not readily available for experimental work, calculated powder patterns were made. These were based on published crystal structure data, using a FORTRAN program developed by Smith (1963).

Lorentz-polarization corrections are included. No corrections were made for temperature factors or absorption factors. Scattering factor values without ionization were taken from table 3.3.1A of the International Tables (1962a) for the following elements: beryllium, boron, calcium, cobalt, hydrogen, magnesium, nitrogen, oxygen, phosphorus, selenium, silver, and sulfur. All other scattering factor values used were taken from table 3.3.1B, International Tables (1962b).

Intensity calculations were based upon copper wavelength, 1.5405 Å. The integrated intensities printed out from the computer program were converted to peak height values by means of a graph from Swanson, Morris, Stinchfield, and Evans (1962). The peak height intensities are tabulated as percentages of the peak intensity of the strongest line. Peak height intensities from 0.1 to 0.9 were recorded as < 1; data with peak height intensities < 0.1 were omitted. When adjacent 2θ values were nearly equal, resolution of individual peaks in the powder pattern would be unlikely. In that case, only one angle and its d-spacing are listed, with multiple *hkl's* and with the sum of the intensities of the peaks involved.

Literature references for calculated patterns are compiled at the end of that section.

The authors are indebted to J. H. deGroot for the preparation of many samples used, and to S. J. Carmel for his assistance on the work particularly in performing intensity measurements.

REFERENCES

- Alexander, L., Klug, H.P., and Kummer, E. (1948). Statistical factors affecting the intensity of x-rays diffracted by crystalline powders, J. Appl. Phys. 19, No. 8, 742-753.
 Dana's System of Mineralogy (1944). I, 6 (John Wiley & Sons, Now York 7th ed.)
- New York, 7th ed.).
- Evans, H. T. Jr., Appleman, D. E., and Handwerker, D. S. (1963). The least-squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method, (abs.) Am. Crystal. Assoc. Annual Meeting, Cambridge, Mass. Program 42-43. Index to the X-ray Powder Diffraction File (1965). American
- Society for Testing and Materials, 1916 Race Street, Philadelphia, Pa. 19103.
- International Tables for X-ray Crystallography, I (1952). (The Kynoch Press, Birmingham, England). Ibid. (1962a). III 202-209. Ibid. (1962b). III 210-212.
- International Union of Pure and Applied Chemistry, (1961). Chem. Eng. News Nov. 20, 43.
- ISCC-NBS Centroid Color Charts, Standard Sample No. 2106, obtained from the Office of Standard Reference Materials, Room B328, Chemistry Building, National Bureau of Standards, Washington, D. C. 20234. \$3.00 per set. Smith, D. K. (1963). A FORTRAN program for calculating x-
- of California, Lawrence Radiation Laboratory, Livermore, California.
- Swanson, H. E., Morris, M. C., and Evans, E. H. (1966). Standard X-ray Diffraction Powder Patterns, Natl. Bur. Std. U.S. Monograph 25, Sec. 4, 3.
- Swanson, H. E., Morris, M. C., Stinchfield, R. P., and Evans, E. H. (1962). Standard X-ray Diffraction Powder Patterns, Natl. Bur. Std. U.S. Monograph 25, Sec. 1, 3.
- The conversion factor for kX units to angstrom units (1947). J. Sci. Instr. 24, 27,

REFERENCE INTENSITY VALUES

The format of the first Powder Diffraction Cards issued by the Joint Committee had a space for a reference intensity in which NaCl was used. However this original attempt to establish absolute values started by the Dow Chemical Co. was not continued.

In 1961 de Wolff in Holland proposed that a variation of this idea be reconsidered as a help in evaluating mixtures. We expressed a desire to cooperate in the development of this project. After several reference materials were examined in both Delft and NBS labs, $aA1_2O_3$ was chosen as an internal standard to be mixed 1:1 by weight. Corundum was picked partly because of its chemical stability and freedom from shape orientation in sample preparation and partly because of its availability in approximately one micron particle size (Linde "A", Union Carbide Corp., East Chicago, Ind.).

The 1:1 mixture is mounted in our regular inten-

sity sample holder (illust. p. 2) and it is necessary to run only the portion of the x-ray pattern that includes the strongest line of each compound; corundum (113), d= 2.085 Å, was used. The direct ratio of the heights of the two lines is then reported as $I/I_{corundum}$. In a few instances the strongest line of one of the materials may fall on a line of the other. In this case the second strongest line is measured, and based upon previous knowledge of the relative peak heights, a correction is made thus enabling one to reconstruct the value for the strongest line.

In this report we are listing 38 I/I corundum values for some samples we have worked with in the past. Data reported from July 1965 has the $I/I_{\rm corundum}$ value included in the text for each compound. We expect to continue measuring this value for new data submitted to the Powder Diffraction File.

$I\!/I$ corundum Values for Some Previously Reported Powder Patterns

Ammonium Bromide, NH4 Br (cubic)Ammonium Chloride, NH4 Cl (cubic)Ammonium Iodide, NH4 I (cubic)Ammonium Nitrate, NH4 NO3 (orthorhombic)Ammonium Sulfate, (NH4)2 SO4 (orthorhomibc)	6.0 5.8 6.1 1.5 1.8
Barium Carbonate, BaCO ₃ (orthorhombic)	4.2
Barium Sulfate, BaSO ₄ (orthorhombic)	2.6
Cadmium, Cd (hexagonal)	2.0
Cadmium Carbonate, CdCO ₃ (trigonal)	4.7
Cadmium Chloride, CdCl ₂ (trigonal)	4.2
Cadmium Oxide, CdO (cubic)	8.6
Calcium Fluoride, CaF ₂ (cubic)	2.4
Cesium Bromide, CsBr (cubic)	8.7
Chromium Oxide, Cr ₂ O ₃ (trigonal)	1.8
Copper Chloride, CuCl (cubic)	2.0
Copper Carbonate, basic, Cu ₂ (OH) ₂ CO ₃ (monoclinic)	0.6
Copper Oxide, CuO (monoclinic)	1.9
Iron Oxide, alpha, Fe ₂ O ₃ (trigonal)	2.6
Lead Bromide, PbBr ₂ (orthorhombic)	2.1
Lead Fluoride, alpha, PbF ₂ (orthorhombic)	4.2
Lead Iodide, PbI ₂ (trigonal)	4.2
Lead Oxide, yellow, PbO (orthorhombic)	6.6
Lead Sulfate, PbSO ₄ (orthorhombic)	3.5
Lithium Fluoride, LiF (cubic)	1.3
Magnesium Oxide, MgO (cubic)	2.4
Magnesium Fluoride, MgF ₃ (tetragonal)	0.4
Molybdenum Oxide, MoO ₃ (orthorhombic)	3.0
Potassium Bromide, KBr (cubic)	5.5
Potassium Chloride, KCl (cubic)	3.9
Potassium Iodide, KI (cubic)	4.2
Potassium Nitrate, KNO ₃ (orthorhombic)	1.4
Silver Bromide, AgBr (cubic)	5.6
Silver Oxide, Ag ₂ O (cubic)	5.6
Sodium Chloride, NaCl (cubic)	3.8
Sodium Sulfate, Na ₂ SO ₄ (orthorhombic)	1.5
Strontium Nitrate, SrNO ₃ (cubic)	3.2
Strontium Sulfate, SrSO ₄ (orthorhombic)	1.8
Zinc Oxide, ZnO (hexagonal)	4.5

Sample

The sample was prepared at NBS by partial evaporation at 90° C of a water solution of $(NH_4)_2SO_4$ and $CdSO_4$, in a 2:1 weight ratio. The resulting double salt was washed with water and alcohol.

Major impurities

0.001-0.01% each: Ca, Mg, and Mn

Color

Colorless

Optical data

Isotropic, N=1.603

Structure

Cubic, P2₁3 (198) Z=4, langbeinite type, [Gattow and Zemann, 1958].

Lattice constants

	a(Å)
Jona and Pepinsky [1956]	10.35 ±.005
Gattow and Zemann [1958]	10.350 ±.003
NBS, sample at 25 °C	10.3511 ±.0001

Density

(calculated) $3.288 \text{ g/cm}^3 \text{ at } 25^\circ \text{ C}$.

Reference intensity

 $I/I_{corundum} = 3.8$

Polymorphism

Inverts below -186° C to a ferroelectric form [Jona and Pepinsky, 1956].

References

- Gattow, G.and J.Zemann(1958). Über Doppelsulfate vom Langbeinit-Typ, A₂⁺ B₂²⁺ (SO₄)₃, Z. Anorg. Allgem. Chem. 293, 233-240. Jona, F. and R. Pepinsky (1956). Ferroe-
- lectricity in the langbeinite system, Phy. Rev. 103, 1126.

Internal standard W, a = 3.16516 Å						
CuK	$CuKa_1 \lambda = 1.54056 A; temp. 25 °C$					
d (Å)	Ι	hkl	2θ(°)			
5.973	50	111	14.82			
4.628	63	210	19.16			
4.225	11	211	21.01			
3.449	20	221	25.81			
3.271	100	310	27.24			
3.121	11	311	28.58			
2.870	9	320	31.14			
2.765	65	321	32.35			
2.587	1	400	34.65			
2.511	9	410	35.73			
2.441	1	411	36.79			
2.375	5	331	37.85			
2.259	6	421	39.88			
2.207	1	332	40.86			
2.113	20	422	42.76			
2.071	10	430	43.68			
2.030	20	510	44.59			
1.993	13	511	45.48			
1.922	18	520	47.26			
1.890	1	521	48.10			
1.831	1	440	49.77			
1.801	10	522	50.64			
1.774	6	530	51.46			
1.750	1	531	52.22			
1.703	1	610	53.80			
1.6788	17	611	54.62			
1.6364	7	620	56.16			
1.6166	8	621	56.91			
1.5974	6	541	57.66			
1.5786	2	533	58.41			
1.5606	1	622	59.15			
1.5433	3	630	59.88			
1.5260	7	631	60.63			
1.4938	2	444	62.08			
1.4784	5	632	62.80			
1.4640	5	710	63.49			
1.4497	3	711	64.19			
1.4360	1	640	64.88			
1.4219	5	720	65.60			
1.4086	3	721	66.30			

Sample source			
The cample was made at	NBS by	heating	
NiCl. and NH Cl together	at 300°	for 72	
hours in a sealed glass t	ube. Th	PENICIA	
had been obtained by deby	drating	NiClas	
2H _a O in a stream of dry H	Clat 1	50°C.	
NH. NiCl. is hydroscopic.			5
			4
			3
Major impurities			2
0.001-0.01% each: Fe			2
0.01 -0.1 % each: Cu			2
			2
Color			2
Pale orange yellow.			2
			1
Option) data			
Uniquial (1) N = 1.720 N	-1 00 01	a a a b ma	1
Uniaxiai $(+)$ N ₀ =1.720, N _e	=1.09 PJ	Leochro-	1
digular to g	orperon	perpen-	1
			1
_			1
Structure			
Isostructural with RbCc	Cl_3 and	l other	1
similar ABX $_3$ compounds.			1
			1
Space group			
$D_{6h}^4 - P_{6a} / mmc$ (194) Z=2. E	By compar	ison of	
the powder pattern with t	hat of F	$RbCoCl_3$.	
Tatting constant	+0		
Lattice constan	15		
	0	o	
	a(A)	c(A)	
			1
NBS, sample at 25° C	6.9216	5.915	1
	±.0004	±.001	1
			1
			1
			1 -

Density (calculated) 2.478 g/cm³ at 25° C.

Reference intensity I/I_{corundum =} 3.7

Internal standard W, a = 3.16504 Å				
Cuk	$a_1 \lambda = 1$.5405 Å; temp. 25	°C	
d (Å)	Ι	hkl	20(°)	
5,98	100	100	14.80	
4.211	6	101	21.08	
3.459	9	110	25.73	
2.998	2	200	29.77	
2.957	6	002	30.20	
2.675	43	201	33.47	
2.266	8	210	39.74	
2.249	11	112	40.05	
2.104	17	202	42.94	
1.998	2	300	45.34	
1.894	1	301	47,98	
1.799	5	212	50.70	
1.731	10	220	52.84	
1.663	7	310	55.19	
1.656	7	302	55.44	
1,601	1	311	57.51	
1.4931	3	222	62.11	
1.4790	2	004	62,77	
1.4527	2	401	64.04	
1.4495	3	312	64.20	
1.4353	3	104	64.91	
1.3753	2	320	68.12	
1.3366	1	402	70,38	
1.3081	1	410	72.15	
1.2774	1	411	74.17	
1 1961	2	412	80.18	
1,1933	2	403	80.40	
1,1752	1	501	81.90	
1,1239	2	224	86.52	
1.1124	2	421	87.64	
1 0763	1	510	91,39	
1 0745		332	91.59	
	1	422	93.46	
1.03/0	L +	746		

Sample source

The sample was obtained from Rohm and Haas Chemical Division of the Redstone Arsenal, Huntsville, Alabama. Treating the sample by the usual methods failed to improve the quality of the pattern.

Color

Colorless

Optical data

Biaxial (-), N_{α} =1.646, N_{β} =1.681, N_{γ} =1.683 2V is small.

Structure

Determined by Hall et al. [1965].

Space group

 $C_{2h}^{5} - P2_{1}/n$ (14), Z=2 [Hall et al., 1965]

Lattice constants

	a(Å)	b (Å)	c(Å)	β(°)
Hall et al. [1965]-	7.014 ±.001	9.862 ±.001	12.360 ±.002	90°31 ' ±2′
NBS, sample at 25°C	7.016 ±.002	9.867 ±.003	12.376 ±.004	90°29′ ±2′

Density

(calculated) 1.110 g/cm³ at 25° C.

Reference intensity

1/I_{corundum =} 1.5 (based upon double peak
012,111)

References

Hall,L.H.,A.Perloff,F.A.Mauer, and S.Block, (1965). Crystal and molecular structure of C₄ B₂₀ H₂₂, Bis (o-dodecacarborane), J. Chem. Phys. <u>43</u>, No. 11, 3911-3917.

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C						
d (Å)	Ι	hkl	2⊕(°)			
7.71 6.12 6.08 5.72 5.23 5.19	71 } 90 { 36 }100 {	011 Io1 101 110 012 111	11.47 14.46 14.56 15.49 16.93 17.08			
4.94 4.58 3.85 3.810 3.509	8 13 2 1 1	020 021 022,121 013 200	17.95 19.36 23.08 23.33 25.36			
3.177 2.981 2.925 2.900 2.861	1 1 2 2 1	031 130 212 032,131 220	28.06 29.95 30.54 30.80 31.24			
2.788 2.730 2.622 2.571 2.449	1 1 3 1	221 114 024 033,213 124	32.08 32.78 34.17 34.86 36.66			
2.418 2.398 2.356 2.340 2.310	1 2 1 2	041,Ī33 230,015 231,223 223,Ī05 204	37.15 37.48 38.16 38.43 38.95			
2.286 2.278 2.253 2.239 2.212	2 2 1 <1 1	141,141 115,310 034 232,311 025	39.38 39.52 39.98 40.24 40.76			
2.176 2.151 2.141 2.117 2.085	1 <1 <1 <1 <1 <1	142 134 134, <u>3</u> 12 043,125 <u>3</u> 21	41.47 41.96 42.17 42.68 43.37			
2.042 2.029	<1 <1	303 143,303	44.31 44.63			

Sample source			- <u> </u>		
The sample was obtained from Johnson	Internal standard Ag, a = 4.08625 Å				
Mathev & Co.Ltd. High humidity is neces-	$(1)K_{\pm} \rightarrow -1.5405$ Åy town 25 °C				
sarv to prevent formation of the monohy-	Cu	$Cuka_1 = 1.3403$ A; temp. 25 C			
drate.	d (Å)	Ι	hkl	2θ(°)	
	7.26	10	200	12.02	
Major impurities	1.30	100	200	12.02	
None over 0.001%.	6.00	100	111	12.00	
	5.34	70	020	14 00	
Color	5.94	11	020	14.09	
Colorless	5.02		021	1/.05	
	1 691	10	002	18 90	
Optical data	4.091	16	220	19 19	
Biaxial (-) $2V_{1}$ arge N = 1.552 No = 1.561.	4.021	10	220	19.19	
Nv = 1.569.	4.525	40	<u> </u>	20.50	
	4.329	41	$\frac{1}{2}$	20.30	
Structure	4.201	40	221,311	20.73	
Determined by Lincon [1026]	610 1		202	21 07	
Determined by Lipson [1936].	4.213	15	202	21.07	
	4.057	10	112	21.09	
Space group	4.021	35	221	22.09	
$C_{2h} - C2/c(15), Z = 4, Egartner et al. [1932].$	3.745	65	202	23.74	
	3.682	9	022	24.15	
Additional patterns	2 (72)		400	24.22	
LPDF card 12-0458[Inst. Physics.Cardiff].	3.672		400	24.22	
2.PDF card 13-0525 [Shrier].	3.590	88	131	24.78	
	3.505	37	131	25.39	
	3.40/		312	25.67	
Density	3.434	19	222	25.92	
(calculated) 3.090 g/cm ³ at 25 C.	2 1 6 0	26	222	20.12	
The former and the second s	3.169	36	222	28.13	
Reference intensity	3.125	23	420	28.54	
$1/1_{\text{corundum}} = 1.0$	3.090	53	$\frac{402}{401}$	28.87	
	3.066	13	421	29.10	
References	3.000	45	331	29.75	
Egartner, L., F.Halla and E.Schwarz (1932).	2 074	1.2	040	20.02	
Das Raumgitter des Cadmiumsulfats.CdSO.	2.9/4	L 2	040	30.02	
$8/3H_2O_2$, Krist, $83.422-425_2$	2.919	4	132	30.60	
Lipson.H. (1936). The crystal structure of	2.894	45	113	30.87	
3CdSO, •8H-O, Proc.Roy.Soc. (London) Ser.A	2.851	5	510	31.35	
156 , 462–470.	2.827	1 10 1	511	31.62	

-continued

	a(Å)	b(Å)	с(Å)	β (°)
Egartner,* et al. [1932] Lipson* [1936] NBS, sample at 25 °C	14.98 14.78 14.808 ±.001	11.65 11.87 11.902 ±.001	9.44 9.44 9.468 ±.001	98° 97.31° 97°22′ ±1′

Lattice constants

*Values as published

d (Å)	Ι	hkl	20(°)	d (Å)	Ι	hkl	20(°)
2.757	26	240	32.45	1 7178	6	<u>4</u> 44	53.28
2.743	24	422	32.62	1 6958	Ğ	461 642	54 03
2.729	23	313,402	32.79	1 6874	7	821	54.32
2.696	5	223	33.20	1 6774	2	151	54 67
2.680	3	241.332	33.41	1.6774	5	762	54.07
2.000	Ĵ	212/002		1.6695	2	402	54.95
2.641	8	511	33.92	1.6642	13	335,135	55.14
2.614	16	241	34.27	1.6578	14	714,171	55.37
2.585	3	512	34.67	1.6404	1	802	56.01
2.514	10	042	35.69	1,6281	4	911.354	56.47
2.480	6	422	36.19	1.6168	9	823,910	56.90
2 465	2	133	36.41		_	270	55.04
2.405	2	600	26 60	1,6055	5	370	57.34
2.447	10	242	36.09	1.5968	6	172	57.68
2.429	10	242	30.97	1.5948	7	604,371	57.76
2.385	23	133	37.69	1.5883	2	245,045	58.02
2.349	23	150,004	38.29	1.5838	1	534,444	58.20
2.329	15	242	38.63	1 5766	1	751	58.49
2.325	16	204	38.70	1 5642	2		59 00
2.313	20	512,440	38.91	1.5042	2	225 644	59.00
2.289	14	151.333	39.32	1.5489	<u> </u>	335,644,+	59.04
2.263	26	620, 621	39.80	1.5452		804	59.80
2.203	20	0207021	33.00	1.5382	13	553,625,+	60.10
2.234	23	531, <u>1</u> 14	40.33	1.5210	9	733	60.85
2.202	3	441,532	40.95	1.5178	7	<u>9</u> 31,913,+	60.99
2.194	4	314	41.11	1.5109	5	406	61.30
2.185	4	024	41.29	1 5008	1	662.372.+	61.76
2.165	7	224	41.69	1.4964	1	824,173	61.96
2 140	14	622 350	12 19				
2.140	15	542 152	42.10	1.4918	2	<u>2</u> 06	62.17
2.120	10	24J,1JZ	42.00	1.4818	2	155	62,64
2.099	23	423	43.05	1.4777	2	173 _	62.83
2.084	3	152	43.38	1.4681	2	10.0.0,571	63.29
2.065	3	710,602	43.80	1.4644	4	4 26 , 753	63.47
1.985	63	712,533,+	45.67	1 4543	5	373	63.96
1.947	4	623	46.60	1 4505		752 516	64.15
1.935	7	4 43, 5 14	46.91	1 4472		226	64.31
1.889	16	641.261.+	48.12	1 4473	2	<u>Ā</u> (<u>7</u>)	64.40
1.871	2	404.115	48.62	1.4437	2	404,330	64.49
	_			1.4399	2	571	04.00
1.860	6	153 ,7 31	48.92	1.4363	2	10.2.1.842	64.86
1.843	4	044,551	49.41	1 4324	1 1	136	65.06
1.835	7	800 ,7 13	49.63	1 1201	1 1	572 662	65.16
1,828	8	062	49.85	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	316 022	65 32
1.813	13	315,115	50.29	1.4182	2	914.082	65.79
1 701	14	442 505	E0.04		_	_	
1.791	⊥4 ~	443,225	50.94	1.4146	2	10•2•2	65.98
1.763	3	821	51.80	1.4054	3	644,373	66.47
1./53	6	820,262	52.13	1.4026	5	282,606	66.62
1.747	⊥3	244	52.33	1.3899	2	246,932	67.31
1.734	2	461	52.76	1.3790	1	572,480	67.91

ſ

Sample source

The sample was crystallized at NBS from an aqueous solution at 95° C. The start-					Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C			
ing material (3CaSO₄ •8H₂O) was obtained from Johnson, Matthey & Co.,Ltd. CdSO •H₂O is also obtained from CdSO or					d (Å)	I	hkl	20(°)
3CdSO₄ •	8H20 wit	h prolo	nged ex	posure to	6.46	3	<u>ī</u> 01	13.69
air of	about 50)% relati	ve humid	lity.	5.066	12	110,011	17.49
				-	4.881	65	ī 11	18.16
Major imp	uritios				4.075	3	101	21.79
wajor imp	urities	10/			3.729	24	020	23.84
none o	ver 0.00	1%.						
					3.574	100	111	24.89
Color					3.448	8	200,002	25.82
Colorle	ess.				3.388	6	211,112	26.28
					3.279	17	120,021	27.17
Ontion I dat	ha				3.226	46	121,202	27.63
Optical ua	ua ↓() N	1 500 No	-1 624	N -1 642				
	$\alpha = 1$	$1.302, M_{\rm B}$	-1.024,	MY-1.042,	3.128	13	210,012	28.51
20 15 1		ige.			2.961	4	212	30.16
					2.753	3		32.50
Space grou	ıp				2.663	6	221,122	33.63
Са́ь-Р2	/n (14),	, Z=4 [Pe	erloff, I	L968].	2.531	36	220,301,+	35.44
					0.504	-	011 110	25.02
					2.504	5	211,112	35.83
					2.440	9	222	36.81
					2.397	28	311,113	37.49
					2.319	13	131	38.79
					2.166	2	221,122	41.67
	Latt	tice consta	ints		2 150		202	41.00
F	r	r ·	r		2.150		303	41.99
		b (Å)	c(Å)	B(°)	2.122		131	42.50
		0 (11)	0(11)		2.091		123	43.23
		• · · · · · · · · · · · · · · · · · · ·	+		2.066		313	43.79
Perioti	7 64	7 40	7 60	115°20'	2.038	5	202	44.42
[1968]	7.64	7.46	7.02	115 30	2 015	2	220 022	11.01
NBS,					2.015	2	230,032	44.94
sample	7 (22	7 450	7 6 2 2	1150261	1.964	4	212	40.17
at 25 C-	7.032	+ 002	+ 001	+1 '	1 002	3	<u>301,103</u>	40.72
	±.002	1.002	1.001	<u> </u>	1.902	4 7	402,204	47.79
					1.079	,	JII,IIJ	40.40
Density					1 863	7	040 323	48 84
(calcula	ated) 3.8	39 g/cm ³	' at 25°C	•	1.842	5	<u>412</u> , 214	49.44
					1.814	2	$\frac{1}{411}$, 132, +	50.24
Reference	intensity				1.787	5	222	51.07
I/I	_ <u>=</u> 2.2				1.772	7	331.133	51.53
cordinad							,	
					1.722	10	400,123,+	53.13
					1.693	9	$\frac{1}{4}22, \frac{1}{2}24, +$	54.12
					1.676	4	014	54.72
					1.639	12	240,042	56.07
					1.625	4	333	56.58
References	1					_	·	
Perloff	A 11969	1 Driv	ate comm	unication	1.612	3	404	57.10
· er rorr,	··• [1900	,]• <u> </u>	ace comm	anitea et On	1.575	3	414,232	58.54
					1.563	4	420,024	59.06
					1.530	3	331,133	60.45
					1.510	3	4 32 ,2 34	61.35

Г

3.16504 Å

2θ(°)

14.15 20.46 24.66 28.57 29.57

32.26 32.97 38.10 38.92 41.08

41.62 43.47 46.12 47.47 48.98

50.66 52.90 53.47 54.24 55.17

59.20 59.78 60.46 61.34 61.75

65.14

67.20 67.54 68.94 70.89

71.91 73.11 77.37

78.20 79.81

82.70

83.48 83.83 86.38 88.73

89.07 94.32

95.61

98.45 99.25

600

423 431

Sample source The sample was prepared	Inter	Internal standard W, a = 3.16504 \AA CuKa, λ = 1.5405 \AA ; temp. 25 °C				
about 500 °C in a sealed	l glass t	ube.	d (Å)	$\frac{u_1 + 1}{I}$	hkl	T
Major impurities			6.25	9	100	+
0.01 0.1 07 on che K No. E	when and e	4	4.337	55	101	
0.01 -0.1 % each. N, Na, F	(), and b		3.607	60	110	
01 -10% each: Ni.			3.122	9	200	
			3.018	21	002	
Color			2.773	100	201	
Unground - dark blue.			2.714	24	102	
Ground - very light blue	2.		2.360	1	210	
			2.312	1	112	
Optical data			2.195	23	211	
Uniaxial (+) $N_0 = 1.696$, N	$e^{1.772}$		2.160	- 1	202	
-	-		2,168	31	202	
Structure			2.080	14	300	
Isostructural with RbCoC	l ₃ [Seife	rt,1960]	1.900	2	103	
and other similar ABX ₃ c	ompounds	•	1.858	16	212	
Space group						
$D_{gh}^4 - P_{6_3}/mmc$ (194) Z=2	by anal	ogy with	1.800	20	220	
$RbCoCl_3$.	-		1.729	<1	310	
C C			1.712	<1	302	
			1.690	12 8	311	
			1.559	1	400	
Lattice constan	nts		1.546	9	222	
			1.530		213	
		0	1.510	10	401	
		C(A)	1.501	'	512	
Seifert (1960)	7,194	6.033	1.431	1	320	
NBS, sample at 25 °C	7.203	6.032	1.392	9	321,114	
	±.001	±.002	1.3857	4	402	
			1.3609	5	410	
			1.3282	<1	411	
Density			1.3118	1	313	
(calculated) 3.654 g/cm ³	at 25° C.		1.2933	1	322	
			1.2321	1	403	
Reference intensity			1.2213	<1	501,304	
$1/1_{\text{corundum}} = 3.8$			1.2006	<1	330	
			1.1659	1	323	
			1.1570	10	421,224	
			1.1530	<1	502	
			1.1254	1	205	
			1.1016	1	511	
			1.0982	3	422	
References			1.0505	2	512	

Seifert,H.J.(1960), Über die Systeme Alkalimetallchlorid/kobalt(II) - chlorid. Z. Anorg. Allgem. Chem. 307, 137-144.

1.0397

1.01711.0111

4

3 3

Sample s	source
----------	--------

The sample was prepared at NBS by heating co-precipitated CsCl and NiCl₂ at about 500 °C in a sealed glass tube. The material was hygroscopic.

Major impurities

0.01 -0.1 % each: Al, Rb, Si, and Sn.

0.1 -1.0 % each: K and Na.

Color

Unground - medium reddish brown. Ground - medium orange.

Optical data

Uniaxial (+), $N_{o} = 1.711$, $N_{e} = 1.812$.

Structure

Isostructural with RbCoCl₃ [Seifert, 1960] Also isostructural with other similar ABX₃ compounds.

Space group

 $D_{6h}^{4} - P6_{3} / mmc$ (194), Z=2 [Tishchenko, 1955].

Lattice constants

	a(Å)	c(Å)
Tishchenko [1955] Asmussen and Soling	7.18	5.93
[1956]	7.1695	11.87
NBS, sample at 25°C	7.1700	5.941
	±.0003	±.001

Density

(calculated) $3.741 \text{ g/cm}^3 \text{ at } 25^\circ \text{ C}$.

Reference intensity

 $I/I_{corundum} = 4.0$

References

- Allamangy, P. (1960). Synthèses de fluorures de deux métaux par réactions entre le gaz HF et des chlorures cristallisés, Bull. Soc. Chim. France **1960**, 1099.
- Asmussen, P. and H. Soling, (1956).Magneto chemische Untersuchungen an Nickel (II) Verbindungen vom Typus Me(I)-Hal,Ni(II)-Hala, Z. Anorg. Allgem. Chem. 283,1.
- Tishchenko,G.N. (1955). Electron diffraction investigation of the structure of CsNiCl₃, Tr.Inst.Kristallogr., Akad.Nauk SSSR 1955,93.

Internal standard Ag, a = 4.08625 Å CuKa, λ = 1.5405 Å; temp. 25 °C					
d (Å)	I	hkl	28(°)		
6.22	9	100	14.23		
4.291	58	101	20.68		
3.584	66	110	24.82		
3.103	8	200	28.75		
2.969	19	002	30.07		
2.752	100	201	32.51		
2.680	18	102	33.41		
2.347	<1	210	38.31		
2.287	1	112	39.36		
2.183	12	211	41.32		
2.147 2.070 1.955 1.8867 1.8415	29 11 5 13	202 300 301 103 212	42.05 43.68 46.40 48.19 49.45		
1.7924	20	220	50.90		
1.7222	<2	310	53.13		
1.6982	2	302	53.95		
1.6692	9	203	54.96		
1.6543	6	311	55.50		
1.5525	1	400	59.49		
1.5347	5	222	60.25		
1.5134	3	213	61.19		
1.5021	8	401	61.70		
1.4903	4	312	62.24		
1.4244	<2	320	65.47		
1.3857	4	321	67.54		
1.3755	5	402	68.11		
1.3551	3	410	69.28		
1.3214	<3	411	71.31		
1.2992	<3	313	72.72		
1.2847	<3	322	73.67		
1.2218	3	403	78.16		
1.2066	<3	304	79.34		
1.1953	<3	330	80.24		
1.1512	4	421	83.99		
1.1438	4	224	84.66		
1.0958	<3	511	89.32		
1.0915	3	422	89.77		
1.0441	<3	512	95.08		
1.0347	<3	600	96.22		
1.0093	3	423	99.48		

Additional patterns

PDF card 16-0109 [Allamangy, 1960].

Sample source	r			
The sample was prepared at NBC by molt	Internal standard W, a = 3.16504 Å CuK a_1 λ = 1.5405 Å; temp. 25 °C			
ing a mixture of molar amounts of CaCl				
and SrCl at about 900 °C The material				
was hydroscopic.	1 (2)		1.2.7	
	a (A)		nri	28(°)
Major impurities	3,96	100	101,110	22.42
0.001-0.01% each: Ba.Ca.Fe.Li.Mg.Ni.and Si	3,237	27	111	27.53
	2,813	38	002	31.78
0.01 -0.1 % each: Al. Na. and Rb	2.796	52	200	31.98
	2,287	51	211.112	39.37
0.1 - 1.0 % each: K				
<i>/</i> 0	1,984	28	202	45.68
Galar	1.978	23	220	45.83
Color	1.779	8	103	51.32
Colorless	1.769	11	301,310	51.62
	1.618	8	222	56.86
Optical data		_		
Almost isotropic $N \approx 1.572$ The grantely	1.501	10	213	61.75
showed polygynthetic twinning	1,497	12	312.321	61.93
Snowed polysyncheelie twinning.	1 407	3	004	66.36
_	1 398	5	400	66.88
Structure	1 357	<2	401.410+	69.16
Tetragonal distorted perovskite. Iso-	1.557		101/1101	
structural with $CsPbCl_3$.	1 3253	4	114	71.07
	1 3219	7	303	71.28
Space group	1 3180	, 8	411.330	71.52
$C_{1}^{1} = P4mm$ (99) 7-1 by analogy with the	1 2566	2	204	75.61
CsPbCl, powder pattern	1 2519	<2	402.420	75.94
obrooty powder pactern.	1.2313	~~	402,120	,
	1 2213	<2	421	78.20
	1 1957	3	323	80.21
Lattice constants	1 1940	2	332	80.35
	1 1464	<2	224	84 42
	1 1/29	3	422	84.74
a(A) $c(A)$	1.1425		722	04.74
	1 1035	<2	105	88.53
NBS, sample at 25°C 5.593 5.628	1 1011	<2	314.413	88.78
	1 0970	3	431 510	89.20
	1.09/0		431,310	05.20

Density (calculated) 3.083 g/cm³ at 25° C.

Reference intensity I/I_{corundum} = 3.4

Sample source					
Sample was prepared by R. M. W	Internal standard W, $a = 3.16504 \text{ A}$				
at NBS by arc-melting.	Cuk	CuK $\alpha_1 \ \lambda = 1.5405 \text{ Å}; \text{ temp. 25 °C}$			
Major impurities		d (Å)	I	hkl	20(°)
0.001-0.01% each:Au, Cu, Pd, and	v.	3.309	78	110	26.92
0.01 -0.1 07 each: En Ph Pt and	Ph	2.3404	54	200	38.43
0.01 - 0.1 % cach.re, rb, rc, and	KII.	2.0937	37	210	43.17
		1.9106	100	211	47.55
Color		1.6554	10	220	55.46
Metallic dark grey. Opaque.					
		1.4805	12	310	62.70
Structure		1.2978	5	320	72.81
A = 15 "8-W"type [Knapton, 1958-9]		1.2506	44	321	76.03
	•	1.1700	9	400	82.35
_		1.1031	7	411	88.58
Space group					
O_{h}^{*} - Pm3n (223), Z=2 [Knapton, 195]	8-9].	1.0466	11	420	94.77
		1.0216	4	421	97.87
Lattice constants		0.9979	11	332	101.04
		.9556	4	422	107.42
	a(Å)	.9180	9	510	114.08
		.8693	4	520	124.77
Knapton, [1958-9]	4.682	.8546	14	521	128.65
NBS, sample at 25°C	4.6810	.8275	7	440	137.14
-	±.0001	.8028	6	530	147.25

Density (calculated) 11.273 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.1$

References

Knapton, A. G. (1958-9). An X-ray survey of certain transition - metal systems for sigma phases, J. Inst. Metals 87, 28-32.

Sample source

The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was annealed at 1200 $^{\circ}$ C for three days.

Major impurities

0.001-0.01% each: Au, Cu, Ni, Pb, and Sn.

0.01 -0.1 % each: Fe, Ir, Pt, and V.

Color

Metallic dark grey and opaque.

Structure

Al5 type"8-W"[Greenfield and Beck, 1956].

Space group

 O_h^3 -Pm3n (223), Z=2 [ibid.].

Lattice constants

	a(Å)
Greenfield and Beck, [1956] NBS, sample at 25 °C	4.656 4.6731 ±.0001

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C					
d (Å)	Ι	hkl	2θ(°)		
3.304	23	110	26.96		
2.337	57	200	38.49		
2.090	82	210	43.25		
1.909	100	211	47.60		
1.652	4	220	55.60		
1.4775	4	310	62.84		
1.3491	3	222	69.63		
1.2960	17	320	72.93		
1.2489	38	321	76.16		
1.1683	13	400	82.49		
1.1016	<1	411	88.73		
1.0450	10	420	94.97		
1.0197	10	421	98.11		
0.9963	9	332	101.27		
.9538	<1	422	107.72		
.9166	<1	510	114.36		
.8677	11	520	125.16		
.8532	14	521	129.05		
.8261	10	440	137.62		
.8015	<1	530	147.88		

Additional patterns

1.Greenfield and Beck [1956].

Density

(calculated) 8.425 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.4$

References

Greenfield, P. and P.A.Beck (1956). Intermediate phases in binary systems of certain transition elements, Trans. AIME 206, 265-276.

Sample source The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was an- nealed at 800 °C for one hour.	
Major impurities 0.001-0.01% each:Cu,Ir,Mo,Os,Pd,Rh,Si,V. 0.01 -0.1 % each:Cr and Fe. 0.1 -1.0 % each:Pt.	3 2 2 2 1
Color Metallic dark grey and opaque. Structure Al5 type "β-W" [Wood and Matthias,1956].	1 1 1 1
Space group O_{h}^{3} -Pm3n (223), Z=2 [ibid.]	1 1 1 1

Lattice constants

		a(Å)
Wood and Matthias NBS, sample at 25	[1956] °C	5.21 5.2024 ±0.0001

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C					
d (Å)	I	hkl	20(°)		
<i>a</i> (A) 3.678 2.601 2.327 2.125 1.840 1.6455 1.5021 1.4429 1.3908 1.3005 1.2262 1.1632	1 18 50 73 100 4 5 2 12 40 12 3 9	hkl 110 200 210 211 220 310 222 320 - 321 400 411 420 421	26(°) 24.18 34.45 38.66 42.51 49.49 55.82 61.70 64.53 67.26 72.64 77.83 82.93		
1.1355 1.1093 1.0620 1.0202 0.9661	9 7 1 2 7	421 332 422 510 520	85.43 87.95 92.98 98.05 105.74		
.9197 .8921 .8670 .8552 .8438	6 <1 5 3 12	440 530 600 610 611	113.75 119.40 125.36 128.48 131.80		

Additional patterns

1.PDF card 11-19 [Wood and Matthias, 1956].

References

Wood, E. A. and B. T. Matthias (1956). The crystal structure of Nb₃Au and V₃Au,Acta Cryst. **9**, 534.

Density

(calculated) 11.219 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.2$.

Sample source
The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was an- nealed at 800 °C for one hour.
Major impurities 0.001-0.01% each:Al,Cu,In,Ni,Rh, and Si.
0.01 -0.1 % each: Fe, Pd, and Pt.
0.1 -1.0 % each: v
Color Metallic dark grey and opaque.
Structure Al5 type "β-W" [Duwez and Jordan, 1952]
Space group O_{h}^{3} -Pm3n (223), Z=2 [ibid.]

Lattice constants

	a(Å)
Duwez and Jordan [1952] NBS, sample at 25 °C	5.096 5.0974 ±0.0001

Internal standard Ag, $a = 4.08625$ Å CuKa, $\lambda = 1.5405$ Å; temp. 25 °C			
d (Å)	I	hkl	20(°)
3.604	90	110	24.68
2.549	47	200	35.18
2.281	26	210	39.48
2.082	100	211	43.43
1.802	12	220	50.62
1.6117	16	310	57.10
1.4710	<1	222	63.15
1.4135	4	320	66.04
1.3625	43	321	68.85
1.2746	8	400	74.36
1.2015	8	411	79.74
1.1397	11	420	85.04
1.1123	4	421	87.65
1.0870	9	332	90.24
1.0406	3	422	95.50
0.9997	9	510	100.80
.9465	3	520	108.93
.9307	11	521	111.71
.9011	6	440	117.47
.8742	5	530	123.54
.8496	8	600	130.09
.8380	1	610	133.60
.8269	16	611	137.35
.8058	2	620	145.81
.7865	4	541	156.69

Additional patterns

1.PDF card 7-352 [Duwez and Jordan, 1952].

References

Duwez,P. and C.B. Jordan (1952). The crystal structure of Ti₃Au and Ti₃Pt, Acta Cryst. 5, 213-214.

Density

(calculated) 8.542 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 3.1$

Sample source	
The sample was	s prepared at NBS by R. M.
Waterstrat by	arc-melting and it was an-
nealed at 800	°C for one hour.

Major impurities

0.001-0.01% each:Ag, Cu, Ni, Si, Sn, Ti.

0.01 -0.1 % each:Cr, Fe, and Pt.

0.1 -1.0 % each:Pd.

Color

Metallic dark grey and opaque.

Structure

Al5 type "B-W" [Wood and Matthias, 1956].

Space group

O_k³-Pm3n (223), Z=2 [ibid.]

Lattice constants

5(1)	
Wood and Matthias [1956] 4.88 ±0.01	
Köster and Nordskog [1960] 4.88	
NBS, sample at 25 °C 4.883	13
±0.000)1

Density

(calculated) 9.987 g/cm³ at 25° C.

Reference intensity

I/I corundum = 2.1

Internal standard W, a = 3.16504 Å				
CuK $\alpha_1 \lambda = 1.5405$ A; temp. 25 °C				
d (Å)	Ι	hkl	20(°)	
3.4515	85	110	25.79	
2.4402	53	200	36.80	
2.1831	31	210	41.32	
1.9930	100	211	45.47	
1.7260	10	220	53.01	
1 5405				
1.5435	11	310	59.87	
1.3535	4	320	69.37	
1.3046	33	321	72.37	
1.2204	12	400	78.27	
1.1506	6	411	84.05	
1 0916	0	400	00.76	
1.0910	0	420	09.70	
1.0407	2 C	421	92.02	
1.0407	2	332	95.48	
0.9966	3	422	101.23	
.95/5	ъ	510	107.12	
.9065	5	520	116.35	
.8912	9	521	119.60	
.8629	5	440	126.41	
.8371	3	530	133.90	
.8136	5	600	142.42	
.7918	8	611	153.20	
	Ű			

Additional patterns

1.PDF card 11-20 [Wood and Matthias, 1956].

References

Köster, W. and H.Nordskog (1960). Das Zweistoffsystem Gold-Vanadium, Z. Metallk. 51, 501-502.

Wood, E. A. and B. T. Matthias (1956). The crystal structures of Nb₃Au and V₃Au, Acta Cryst. 9, 534.

Sample source
The sample was prepared by R. M. Water-
strat at NBS by arc-melting and it was
annealed at 2000 °C for three hours.
Major impurities
0.001-0.01% each:Al,Cr,Cu,Pd,Rd,Si and V.
0.01 - 0.1 % each: Fe and Pt.
Calar
Color
Metallic dark grey and opaque.
Structure
Als "R-W"type [Geller Matthias and Gold-
Als p-w cype [Gerrer, Matchias and Gord-
stein, 1955]. Solid solution range round
from 21.5 to 28.5 At. % Ir [Giesson and
Grant,1964].

Space group

O^{*}_L-Pm3n (223),Z=2 [Geller, Matthias and Goldstein,1955].

Lattice constants

	a(Å)
Geller et al. [1955] Knapton [1958-9] Giesson and Grant [1964] NBS, sample at 25°C	5.131 5.139 5.138 5.1333 ±.0001

Density

(calculated) 11.561 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.8.$

Internal standard W, a = 3.16504 Å			
$CuK\alpha_1 \lambda = 1.5405 \text{ Å}; \text{ temp. 25 °C}$			
d (Å)	I	hkl	2θ(°)
3.632	18	110	24.49
2.566	46	200	34.93
2.296	68	210	39.20
2.096	100	211	43.11
1.8147	4	220	50.23
1.6236	5	310	56.64
1.4820	2	222	62.63
1.4238	13	320	65.50
1.3716	49	321	68.33
1.2832	13	400	73.78
1.2097	3	411	79.10
1.1478	3	420	84.31
1.1198	11	421	86.92
1.0943	10	332	89.48
1.0478	<1	422	94.63
1.0067	3	510	99.83
0.9532	12	520	107.82
.9370	17	521	110.57
.9075	9	440	116.16
.8804	2	530	122.07
.8556	8	600	128.39
.8439	4	610	131.76
.8327	21	611	135.33
.8117	<1	620	143.23
.7921	2	541	153.03

References

- Geller, S., B. T. Matthias and R.Goldstein (1955). Some new intermetallic compounds with the "8-Wolfram" structure, J. Am. Chem. Soc. 77,1502-4.
- Knapton, A. G. (1958-9). An X-ray survey of certain transition - metal systems for sigma phases, J. Inst. Metals 87, 28-32.
- Giessen, B.C., and N.J.Grant (1964). Constitution diagrams Nb-Rh and Nb-Ir. Technical Report No. WADD TR 60-132, Part III, 223-279.

Sample course				
The sample was prepared at NBS by R. M.	Inter	rnal stand	lard Ag, a = 4.086	25 Å
waterstrat by arc-melting.	CuK $a_1 $ λ = 1.5405 Å; temp. 25 °C			5 °C
Major impurities 0.001-0.01% each:Al. Cr. Cu. Pd. Si. V.	d (Å)	Ι	hkl	20(°)
	3.542	87	110	25.12
0.01 - 0.1 % each:Au, Fe, Mo, Pt, and Rh.	2.504	47	200	35.83
	2.240	27	210	40.22
Color	2.046	100	211	44.24
Metallic dark grey and opaque.	1.7713	10	220	51.55
Characterize	1.5840	13	310	58.19
Structure	1.3891	4	320	67.35
Als type "B-W" [Geller, 1956].	1.3387	35	321	70.25
	1.2524	6	- 400	75.91
Space group	1.1806	6	411	81.45
O ³ _Pm3n (223), Z=2 [Geller, 1956].				
	1.1200	8	420	86.90
	1.0931	1	421	89.60
	1.0680	8	332	92.31
	1.0222	3	422	97.79
Lattice constants	0.9822	8	510	103.29
· · · · · · · · · · · · · · · · · · ·	.9301	2	520	111.82
a(A)	.9143	8	521	114.79
	.8854	8	440	120.91
Nevitt, [1958] 5.0101	.8590	5	530	127.46
1 + 0004	.8348	4	600	134.63

5.009

5.0087

±.0001

Density

(calculated) 8.877 g/cm^3 at 25° C.

Matthias et al., [1961]-----

NBS, sample at 25 °C-----

Reference intensity

I/I corundum =2.1

Additional patterns

1. PDF card 10-298 [Nevitt, 1958].

References

.8126

,7919

12

1

Geller, S.(1956). A set of effective coordination number (12)radii for the β-Wolfram structure elements, Acta Cryst. 9, 885-889.

611

620

142.85

153.13

- Matthias,B.T.,V.B.Compton and E. Corenzwit (1961). Some new superconducting compounds, J.Phys. Chem. Solids 19,Nos.1-2, 130-133.
- Nevitt, M.V. (1958). Atomic size effects in Cr₃O-type structure, Trans. AIME 212, 350.

Sample source

The sample was prepared by R. M. Waterstrat at NBS by arc-melting.

Major impurities

0.001-0.01% each:Ag,Au,Cr,Cu,Rh,Si,Sn,Ti.

0.01 -0.1 % each:Fe,Pd,and Pt.

0.1 -1.0 % each:

Color

Metallic dark grey. Opaque.

Structure

```
A15 type "β-W" [Nevitt, 1958].
```

Space group

 O_{h}^{3} -Pm3n (223), Z=2 [ibid.]

Lattice constants

	a(Å)
Nevitt, [1958] Matthias et al., [1961] NBS, sample at 25 °C	4.7854 4.795 4.7876 ±.0001

Internal standard W, a = 3.16504 Å			
$CuK\alpha_1 \lambda = 1.5405 \text{ Å}; \text{ temp. } 25 \text{ °C}$			
d (Å)	Ι	hkl	2θ(°)
3.386	78	110	26.30
2.395	50	200	37.52
2.142	31	210	42.16
1.956	100	211	46.39
1.6929	12	220	54.13
1.5143	15	310	61.15
1.3819	1	222	67.75
1.3277	5	320	70.92
1.2793	44	321	74.04
1.1971	8	400	80.10
1.1285	8	411	86.09
1.0705	11	420	92.03
1.0448	4	421	94.99
1.0208	10	332	97.97
0.9772	4	422	104.04
.9390	10	510	110.23
.8890	4	520	120.09
.8741	20	521	123.58
.8463	9	440	131.04
.8210	6	530	139.49
.7979	14	600	149.73
.7871	2	610	156.24

Additional patterns

1. PDF card 10-295 [Nevitt, 1958].

References

- Matthias,B.T., V.B.Compton and E.Corenzwit (1961). Some new superconducting compounds, J.Phys. Chem. Solids.19,Nos.1-2, 130-133.
- Nevitt, M. V. (1958). Atomic size effects in Cr₃O-type structures, Trans.AIME 212, 350-355.

Density

(calculated) 10.441g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.5.$

Sample source The LiNbO ₃ was obtained Metals Division, Summit,	from CI N.J. Th	BA, Rare e sample	Inte Cul
was recrystallized at NB It was pulled from a me	S by W.S lt and	. Brower. then an-	d (Å)
nealed in oxygen at 1100	C IOI	io nours.	3.754
Major impurities			2.739
0.001-0.01% each: Ba. Na.	Mo		2.576
0.001 0.01% cach. 24, 14,			2.311
Color			2.249
COIDTIESS			2.124
			1.8/6
Optical data			1.720
Uniaxial (-). $N > 2.00$.			1 638
			1.050
Structure			1.615
Determined by Bailey [19	52].		1,515
			1.487
Space group			1.441
C_{3}^{6} , -R3 (161), Z=6, [ib	id.].		1.3682
			1.3238
			1.2872
			1.2504
			1.2403
			1.2321
Lattice constan	its		1 2178
			1,2080
	a(Å)	c(Ă)	1.1775
			1.1652
Zachariasen [1928]	5.12*	13.84*	1.1553
Bailey [1952]	5.147	13.856	
Lapickij and Simanov			1.1294
[1955]	5.150*	13.816*	1.1246

*	from	kХ

Density

(calculated) 4.627 g/cm³ at 25° C.

NBS, sample at 25° C---- 5.1494

23° C----- 5.14829 13.8631

±.00002

±.0001

±.0004

13.8620

±.0005

Reference intensity

 $I/I_{corundum} = 8.0$

Abrahams et al.[1966] at

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C						
d (Å)	Ι	hkl	2θ(°)			
3.754	100	012	23.68			
2.739	38	104	32.67			
2.576	21	110	34.79			
2.311	3	006	38.93			
2.249	9	113	40.05			
2.124	10	202	42.51			
1.876	15	024	48.47			
1.720	21	116	53.21			
1.674	1	211	54.80			
1.638	12	122	56.11			
1.615	6	018	56.96			
1.515	11	214	61.10			
1.487	9	300	62.41			
1.441	1	125	64.63			
1.3682	4	208	68.52			
1.3238	4	1.0.10	71.16			
1.2872	2	220	73.51			
1.2504	3	306	76.05			
1.2403	1	223	76.78			
1.2321	1	131	77.39			
1.2178	4	312	78.47			
1.2080	5	128	79.23			
1.1775	1	0•2•10	81.71			
1.1652	2	134	82.76			
1.1553	1	0•0•12	83.63			
1.1294	<1	315	86.00			
1.1246	3	226	86.46			
1.1008	2	042	88.81			
1.0708	4	2•1•10	92.00			
1.0615	1	404	93.04			
1.0539	3	1.1.12	93.92			
1.0123	2	232	99.09			
1.0069	3	318	99.81			
0.9879	1	229	102.46			
.9814	3	324	103.42			
.9734	2	410	104.62			
.9667	1	0•1•14	105.65			
.9523	<1	413	107.97			
.9376	2	048	110.47			
.9228	2	1•3•10	113.17			

Inter	Internal standard W, a = 3.16504 Å					
CuK	$a_1 \lambda = 1$.5405 Å; temp. 25	°C			
d (Å)	Ι	hkl	20(°)			
.9121	1	3.0.12	115.23			
.9050	2	2.0.14	116.66			
.8968	4	416	118.38			
.8846	1	502	121.08			
.8811	2	238	121.91			
.8688	2	4.0.10	124.88			
.8637	2	054	126.19			
.8598	3	2.2.12	127 24			
.8583	2	330	127.65			
.8537	2	1•2•14	128.92			
.8504	2	1.0.16	129.86			
.8412	1	241	132.60			
.8366	1	422	134.06			
.8231	2	3•2•10	138.71			
.8190	2	244	140.28			
.8075	2	1.3.13,0.2.16	145.05			
.8063	1	425	145.64			
.8045	1	336	146.46			
,7956	2	152	150.99			
.7930	2	508	152.48			
.7804	4	514	161.52			

Additional patterns

1.PDF	card	9-186.	[Lapickij	and	Simanov,
195	5].		_		

References

- Abrahams, S.C., J.M. Reddy, and J.L. Bernstein (1966). Ferroelectric lithium niobate. 3.Single crystal x-ray diffraction study at 24° C, J.Phys. Chem. Solids 27, 997-1012.
- Bailey, P., Thesis, Bristol (1952). Quoted by Megaw, H.D. (1954). Ferroelectricity and crystal structure. II, Acta Cryst.7, 187-194.
- Lapickij, A. V. and Ju. P. Simanov (1955). Lithium metaniobate and metatantalate,Z. Fiz. Khim. SSSR 29, 1201-1203.

Zachariasen, W.H. (1928). The crystal structure of the sesquioxides and compounds of the type ABO₃, Skrifter Norske Videnskaps-Akad. Oslo I. Mat.-Naturv.Kl. 1928 No.4.

Sample source

The sample was prepared by melting equal molecular amounts of $\text{Li}_2 \text{SO}_4$ and $\text{Na}_2 \text{SO}_4$ together and annealing at 500 °C overnight.

Major impurities

0.001-0.01% each: Fe,Mg,Ni

0.1 -1.0 % each: Al

Color

Colorless

Optical data

Uniaxial (+), N₀=1.491, N_e=1.495.

Structure

Determined by Morosin and Smith [1967].

Space group

 $C_{3,v}^4$ -P31c (159), Z=6 [Hilmy, 1953].

	a(Å)	c(Å)
Cavalca and Nardelli		
(1952)	7.613	9.80
	±.004	±.03
Hilmy (1953)	7.64	9.76
Morosin and Smith (1967)-	7.6270	9.8579
	±.0007	±.0010
NBS, sample at 25 °C	7.6355	9.861
	+.0002	±.001

Lattice constants

Density

(calculated) 2.521 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.5$

Internal standard Ag, $a = 4.08625 \text{ Å}$ CuK $\alpha_1 \lambda = 1.5405 \text{ Å}$; temp. 25 °C						
d (Å)	Ι	hk l	2 0 (°)			
6.62	2	100	13.37			
5.494	5	101	16.12			
4.932	1	002	17.97			
3.912	74	102	22.48			
3.814	100	110	23.30			
3.307 3.136 3.020 2.944 2.744	4 39 39 78	200 201 112 103 202	26.94 28.44 29.55 30.33 32.60			
2.499 2.465 2.437 2.332 2.310	1 8 5 5	210 004 211 203 104	35.90 36.41 37.06 38.58 38.95			
2.228	12	212	40.45			
2.205	6	300	40.90			
2.151	17	301	41.97			
2.071	1	114	43.67			
2.012	8	302	45.02			
1.989	1	213	45.57			
1.976	15	204	45.89			
1.909	18	220	47.58			
1.891	7	105	48.07			
1.834	6	310	49.66			
1.804	1	311	50.56			
1.780	4	222	51.27			
1.756	4	214	52.04			
1.720	4	312	53.22			
1.694	3	205	54.08			
1.653	3	400	55.53			
1.644	5	006,304	55.87			
1.630	<1	401	56.39			
1.602	3	313	57.48			
1.568	3	402	58.83			
1.549	4	215	59.64			
1.5098	7	116,224	61.35			
1.4999	<1	321	61.80			
1.4769	<1	403	62.87			
1.4721	9	206,314	63.10			

Lithium Sodium	Sulfate,	$LiNaSO_4$	(trigonal) –	continued

Interna	Internal standard Ag, $a = 4.08625 \text{ \AA}$						
CuKa 1	$\lambda = 1.54$	05 Å; temp. 25 °C	, 				
d (Å)	I	hkl	20(°)				
1.4499	5	322	64.18				
1.4430	11	410	64.52				
1.3846	5	412	67.60				
1.3781	6	107,323	67.96				
1.3735	7	216,404	68.22				
1.3427	2	315	70.01				
1.3222	1	500	71.26				
1.3176	1	306	71.55				
1.2960	2	207	72.93				
1.2925	1	324	73.16				
1.2775	1	502	74.16				
1.2722	5	330	74.52				
1.2494	2	420	76.12				
1.2454	3	226,414	76.41				
1.2323	3	008,332	77.37				
1.2274	1	217,503	77.74				
1.2245	1	316	77.99				
1.2113	4	108,422	78.97				
1.2023	1	325	79.68				
1.1869	1	307	80.93				
1.1790	<1	511	81.58				
1.1656	3	406,504	82.72				
1.1548	2	208,512	83.67				
1.1306	1	334	85.89				
1.1171	4	317,513	87.18				
1.1146 1.1052 1.1025 1.0985 1.0953	1 1 <1 1	326,424 218 600 505 601	87.43 88.36 88.64 89.04 89.35				
1.0845	1	416	90.51				
1.0808	1	109,431	90.90				
1.0720	1	407	91.86				

Additional patterns

1.Hilmy [1953].

References

- Cavalca, L. and M.Nardelli (1952). Sistema ternario: Na₂SO₄-Li₂SO₄-H₂O a 27.0° ed a 45.6°,Gazz.Chim.Ital.82,394-405.
- Hilmy, M.E. (1953). Structural crystallographic relation between sodium sulfate and potassium sulfate and some other synthetic sulfate minerals, Am.Mineralogist 38, 118-135.
- Morosin, B. and D.L. Smith (1967). The crystal structure of lithium sodium sulfate, Acta Cryst. 22, 906-910.

Sample sou	ırce								
The sam		prepared	hy heat	ting Fish-	Internal standard W, a = 3.16504 Å				
	ont li	prepared	for 24	bourg at					
er reag	ent nts	504 ·H20	101 24	nours at	Cu	$\mathbf{K}a_1 \ \lambda = 1$	5405 A; temp. 2	5 °C	
600 C.						T ·····	r	1	
					d (Å)	I	hkl	20(°)	
Major imp	urities								
0.1 1	0 07 00 04				4.225	11	011	21.01	
0.1 -1	.0 % eaci	I: NA			4.193	9	110	21.17	
					4.048	1	201	21.94	
Calan					4.030	100	002	22 04	
Color					3 999	100	111	22.04	
Colorle	SS				5.999	100		22.21	
						47	200	00 67	
Ontical dat	Э				3.919	4/	200	22.67	
Optical dat	<i>(</i>)	1 460 1		N 1 475	3.490	22		25.50	
Blaxial	- (-),Ν _α =	=1.468, N	$\beta^{=1.4/2}$,N _Y =1.4/5,	3.382	10	202	26.33	
2V is 1	arge.			·	3.177	28	112	28.06	
					3.163	41	201	28.19	
Structure									
Determi	- and has D	lbwight	[1022]		3.139	12	211	28.41	
Decermi	пец ру А	TDITGUE	[1932].		3 074	5	210	29.02	
					2 792	10	210	32 03	
Space grou	p				2.752		212	32.03	
	r /- (14)	F A			2.691	5	112	33.27	
$C_{2h} - PZ_{1}$	/a (14).	2=4.			2.665	3	211	33.60	
							_		
					2.628	8	203	34.09	
					2.479	22	020	36.21	
	T - 44				2.402	10	311	37.40	
	Lan	ace consta	ints		2.361	6	013.120	38.08	
					2,319	9	213	38 79	
	a (Å)	b (Å)	C(Å)	RIOI	2.313	5	220	30.75	
	u(A)	U(A)			2 211		101	40 77	
					2.211	2		40.77	
Albright	_			,	2.111	3	022,113	42.81	
[1932]	8.27*	4.96*	8.46*	107°54′	2.094	4	220	43.16	
NBS,					2.025	2	402	44.71	
sample					2.015	2	004	44.94	
at 25°C-	8.2414	4.9533	8.474	107°58.8′					
	$\pm.0004$	±.0003	±.001	±0.3'	1.997	1	222	45.38	
	• • • • •				1.952	12	203	46.47	
*~		*	*		1.947	9	114	46.62	
"from KX					1 912	ī	$\frac{1}{2}$	47.52	
					1 900	1	711	47.52	
Dongity					1.900		411	4/.04	
Density		30	05° C		1 004		700		
(calcula	ted) 2.2	19 g/cm°	at 25 C	•	1.884	4	403	48.26	
-					1.875	5	412	48.52	
Reference	intensity				1.866	2	014	48.75	
I/I	= 1.7				1.839	1	321	49.53	
corundur	n				1.823	3	410,023	50.00	
							·		
References					1,816	2	213	50,19	
Albright.	J.G.(193	2). The d	crystal	structure	1 803		312 223	50 59	
of lith	ium sulf	ate. 7.K	rist. 84	,150-158.	1 700		2-2,222	50.00	
Forland /	r and	T Kroch	-Moe (1	957) The			522	50.99	
rurranu,	r_{0} of t^{1}	a high $+$		re modi-	1./81	5	401	51.24	
structu	re or th	e nign te	emperatu	ire mour-	1.778	2	314	51.35	
fication	n of 11	tnium su. -	irate, A	icca chem.	1				
Scand.1	1,565-56	1.			1.744	1	222	52.43	
Hanawalt,	J.D., H	.W. Rinn	, and L.	K. Frevel	1.709	1	114	53.59	
(1938).	Chemic	al analy	sis by >	-ray dif-	1.697	1	123	53.98	
fraction	n, Ind.	Eng. Ch	em. Anal	. Ed. 10,	1.686		205	54.37	
457-513	•	2			1 667	5	200	55 05	
					1		ر ے ر	1 22.02	

d (Å)	I	hkl	20(°)		d (Å)	Ι	hkl	20(°)
1.617	1	031	56.88		1.2147	1	_ 605	78.71
1.616	1	_ 130	56.94		1.2009	1	622,141	79.79
1.603	3	131,204	57.44		1.1947	1	611	80.29
1.595	2	215,115	57.74		1.1917	<1	414	80.53
1.582		421,402	58.29		1.1876	2	516	80.87
1.565	2	4 22,131	58.96		1.1861	1	Ī42,225	80.99
1.553	1	313,511	59.45		1.1801	3	615,315	81.49
1.533	3	315,015,+	60.32		1.1652	1	317,206	82.76
1.529	4	231,032	60.52		1.1620	1	531,407	83.04
1.525	3	322,214	60.66		1.1605	1	Ī17, 4 26	83.17
1.510	1	324	61.33		1,1547	1	142	83.68
1.507	1	412	61.48		1,1535	1	035.241	83.79
1.499	1	4 23	61.83		1,1498	1	234	84.12
1.4947	4	510	62.04		1.1421	<1	432	84.82
1.4910	4	4 05	62.21		1.1383	1	713	85.17
1,4830	. 3	232	62 58		1 1290	1	241 711	96.04
1.4677	1	132,124	63 31		1.1290	1	541,711	96 27
1.4638	1	231	63.50		1 1169		342	87 20
1.4463	1	421	64.36		1 1064		- J42 	88 24
1.4256	2	Ī 33	65.41		1.1027	1	621	88.62
1 4160	2	Ē14	(5.0)			_	=	
1 4116	2	206	65.91		1.1012	<1	534	88.77
1 4067	2	200	66.14		1.0982	<1	616	89.07
1 3974	2	233 511	66.90		1.0922		531,710	89.69
1 3921	2	403 332	67 19		1.0906	1	625,405	89.86
1.3521	2	403,332	07.19		1.0853	1	343	90.42
1.3735	1	602	68.22		1.0818	1	523	90.80
1.3653	1	323,521	68.69		1.0685	1	144	92.25
1.3570	<1	601,216	69.17		1.0657	1	715,415	92.57
1.3503	1	603	69.56		1.0631	1	722,244	92.86
1.3432	2	006	69.98		1.0574	1	723 , 208	93.51
1.3344	<1	523	70.51		1.0545	1	226	93.85
1.3096	1	611	72.05		1.0485	<1	631	94.55
1.3067	2	600	72.24		1.0456	<1	243,235,+	94.89
1.2937	1	604	73.08		1.0414	1	711	95.40
1.2913	<1	234	73.24		1.0355	1	4 08,532,+	96.12
1.2836	1	512	73.75		1,0277	<1	802.436	97.09
1.2796	2	4 32	74.02		1.0239	1	144	97.57
1.2771	2	125,034,+	74.19		1.0183	<1	118,634	98.30
1.2693	<1	524,416	74.72		1.0128	<1	804	99.02
1.2624	1	430	75.20		1.0088	<1	716,527	99.53
1.2553	<1	521	75.70		1 0071	<1	8 13	99.78
1.2479	1	334	76.23	1	0.9889	<1	542	102.32
1.2307	1	601	77.49		9873	1	541 018	102 55
1.2229	1	140,134	78.08		9855	<1	474	102.81
1.2183	1	ī 41	78.43		.9822	1	712,345,+	103.30

Polymorphism

Above 575° $\text{Li}_2 \text{SO}_4$ is cubic. [Forland and l.PDF card 1-0443 [Hanawalt et al., 1938] Krogh-Moe, 1957]

Additional patterns

Sample source					
The sample was propared at NPC by P M	Internal standard W, $a = 3.16504 \text{ Å}$				
Weterstret by and melting at NBS by R. M.					
materstrat by arc-merting and it was an-	Cul	$x_{a_1} \wedge = 1.5405 \text{ A}; \text{ temp. } 25 \ ^{\circ}\text{C}$			
healed at 2000 C for two days.		1	1	<u> </u>	
	d (Å)	I	hkl	2θ(°)	
Major impurities	2 512	14	110	25.22	
0.001-0.01% each: Al, Au, Co, Cr, Cu, Nb,	3.513		200	25.33	
Si, Sn, V, and Zr.	2.483	50	200	36.14	
0.01 - 0.1 $%$ each: Fe, Ir, and Rh.	2.222	81	210	40.56	
	2.028	100	211	44.64	
	1.758	3	220	51.98	
Color					
Metallic dark grey and opaque.	1.5712	4	310	58.71	
	1.4342	3	222	64.97	
Structure	1.3778	17	320	67.98	
Structure	1.3277	49	321	70.92	
Al5 type "3-W" [Raub, 1954].	1.2420	15	400	76.66	
Space group	1.1711	2	411	82,25	
$\Omega_{1}^{2} = Pm3n$ (223) $Z=2$ [ibid]	1,1110	12	420	87.78	
$O_{\rm fi} = 1 \text{mon} (225)^2 D = 2 [1010.]$	1 0844	14	421	90 52	
	1 0595	11	330	93.32	
	1 0140		332	93.27	
	1.0142	1 ¹	422	98.63	
	0.9745	3	510	104.45	
Lattice constants	.9226	14	520	113.21	
	.9072	18	521	116.22	
0	.8783	11	440	122.55	
a(A)	8522	<1	530	129 34	
	.0522	1	530	127.34	
Raub, [1954] 4.973*	8282	11	600	136.87	
NBS, sample at 25 °C 4.9689	8169		610	141 10	
±.0001	.0109	- 4 	611	141.10	
	.0001	22	011	145./1	
*from kX	./000	<t< td=""><td>620</td><td>121.30</td></t<>	620	121.30	

*from kX

Density

(calculated) 12.940 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.5$

References

Raub E. (1954).Die Legierungen der Platinmetalle mit Molybdän, Z. Metallk. 45,23.

Sample source

The sample was supplied by F.J.Linnig at NBS.

Color

Colorless.

Optical data

Biaxial (-) N_{α} =1.636, N_{β} =1.82, N_{γ} =1.92 2v= 65° [McCrone, 1951]

Structure

Orthorhombic [ibid.].

Space group

Not determined. Z=8 [ibid.].

Lattice constants

	a(Å)	b(Å)	c(Å)
McCrone [1951] NBS, sample	17.45	18.25	7.52
at 25°C	17.303 ±.002	18.183 ±.004	7.518 ±.002

Density

(calculated) 1.232 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.1$

Additional patterns

1.PDF card 5-0254 [McCrone,1951].

References

McCrone, W.C.(1951). N-Phenyl-2-naphthylamine, Anal. Chem. 23, 1884.

Internal standard W, a = 3.16504 Å CuK $\alpha_1 \lambda$ = 1.5405 Å; temp. 25 °C					
d (Å)	Ι	hkl	2∂(°)		
12.49	<3	110	7.07		
9.07	39	020	9.74		
8.66	7	200	10.20		
6.894	<3	101	12.83		
6.449	12	111	13.72		
6.267	9	220	14.12		
5.497	28	310,121	16.11		
4.815	100	221	18.41		
4.572	7	301	19.40		
4.544	11	131,040	19.52		
4.327	58	400	20.51		
4.143	72	231	21.43		
3.907	15	420	22.74		
3.797	24	141	23.41		
3.669	30	102,411	24.24		
3.556	5	150	25.02		
3.475	11	022	25.61		
3.459	10	500	25.73		
3.401	4	510	26.18		
3.218	15	151	27.70		
3.193	14	032	27.92		
3.140	16	501,132	28.40		
3.098	20	511	28.79		
2.971	9	521	30.05		
2.883	9	600	30.99		
2.855	4	142	31.30		
2.790	<3	531	32.05		
2.581	<3	621	34.73		
2.431	<3	171	36.94		
2.382	<3	352	37.74		
2.359 2.277 2.272 2.139 2.090	<3 <3 <3 <3 <3 <3	062,461 262 080,612+ 072 660	38.12 39.54 39.64 42.22 43.26		
2.006 1.952 1.944 1.921 1.881	<3 <3 <3 <3 <3 <3	253,190 840,091 481,353 163 613,920+	45.15 46.47 46.69 47.28 48.34		
1.859 1.843 1.825 1.794 1.733	<3 <3 <3 <3 <3 <3 <3	850,114 382,581 921 034,173 842,2•10•1	48.95 49.41 49.94 50.84 52.79		

Sample source The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was an-	Internal standard Ag, a = 4.08625 Å CuKa, $\lambda = 1.5405$ Å; temp. 25 °C			
nealed at 1600 $^\circ$ C for five days.				
	d (Å)	I	hkl	2θ(°)
Major impurities		ļ		
0.001-0.01% each: Ag,Au,Cu,Ir,Pd,Si,Sn,V	3.632	23	110	24.49
	2.568	50	200	34.91
0.01 - 0.1 % each: Cr, and Pt.	2.297	78	210	39.18
	2.097	100	211	43.09
Color	1.816	4	220	50.20
Metallic dark grey and opague				
Metallie dark grey and opaque	1.625	6	310	56.60
	1.4826	2	222	62.60
Structure	1.4240	13	320	65.49
Al5 type "8-W" [Geller et al., 1955].	1.3721	40	321	68.30
	1.2836	12	400	73.75
Space group				
O_{h}^{3} -Pm3n (223), Z=2 [ibid.].	1.2104	2	411	79.04
· -	1.1483	10	420	84.25

Lattice constants

	a(Å)
Geller, et al., [1955]	5.121
	±.002
NBS, sample at 25 °C	5.1348
_	±.0001

Density

(calculated) 11.502 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 4.7$

.30 .75 .04 .25 1.1206 9 421 86.84 7 1.0950 89.41 332 1.0479 1 422 94.62 1.0270 <1 430 97.18 99.80 1.0070 510 3 0.9534 9 520 107.78 .9374 13 521 110.50 .9077 7 440 116.11 .8807 2 530 122.00 .8679 <1 531 125.12 .8559 7 600 128.31 .8442 3 610 131.69 .8330 15 135.25 611 .8119 1 620 143.13 .7923 1 541 152.91

References

Geller,S., B.T. Matthias, and R. Goldstein (1955). Some new intermetallic compounds with the "β-Wolfram" structure, J. Am. Chem. Soc. 77, 1502-1504.
The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was annealed at 1600 °C for five days.

Major impurities

0.001-0.01% each: Al, Cu, Ir, Pd, and Si.

0.01 -0.1 % each: Au, Cr, Fe, Os, Rh, and V.

Color

Metallic dark grey and opaque.

Structure

Al5 type "8-W" [Geller et al., 1955].

Space group

 $O_h^3 - Pm3n$ (223), Z=2 [ibid.]

Lattice constants

	a(Å)
Geller et al., [1955] Greenfield and Beck [1956] NBS, sample at 25 °C	5.153 5.11 5.1524 ±0.0001

Internal standard W, a = 3.16504 Å $CuK\alpha_1 \lambda = 1.5405 \text{ Å}; \text{ temp. } 25 \degree C$ d (Å) Ι hkl 20(°) 110 24.42 14 3.642 42 200 34.81 2.575 210 39.07 64 2.304 42.99 100 211 2.102 50.00 5 220 1.823 1.629 6 310 56.42 1.488 3 222 62.35 320 65.24 1.4289 16 68.05 1.3765 55 321 400 73.42 1.2886 16 1.2144 4 411 78.73 1.1522 16 420 83.90 14 421 86.48 1.1244 13 89.06 332 1.0983 422 94.16 1.0518 2 1.0105 510 99.32 6 0.9568 16 520 107.22 .9408 23 521 109.91 .9110 14 440 115.26 121.26 .8838 3 530 .8588 13 600 127.50 .8470 7 610 130.84 31 611 134.30 .8358 620 142.01 .8146 1 541 151.33 .7950 3

Density

(calculated) 11.503 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 4.9$

Additional patterns

1. PDF card 8-371[Greenfield and Beck, 1956]

- Geller,S.,B. T. Matthias, and R. Goldstein (1955). Some new intermetallic compounds with the "β-Wolfram" structure, J. Am. Chem. Soc. 77, 1502-1504.
- Greenfield, P. and P.A.Beck (1956). Intermediate phases in binary systems of certain transition elements, Trans. AIME 206, 265-276.

Sample source		Lato		dord $W_{0} = 2.16$	504 %
The sample was prepared by R.	M. Water-	Inte	rnai stai	$\frac{1}{2}$	504 A
strat at NBS by arc-melting an	d it was	Cu	$K\alpha_1 \lambda = 1$	1.5405 Å; temp. 2	25 °C
annealed at 1100 $^\circ ext{C}$ for two wee	ks.		- T	T	
		d (Å)		hkl	2
Major impurities			<u> </u>	l	
0.001-0.01% each: Ni,Rh and Ru.		3.414	17	110	2
		2.4124	45	200	3
0.01 -0.1 % each: Cr,Fe,Mo,Pt,Si	, and Ti.	2.1582	76	210	4
		1.9697	100	211	4
Color		1.7066	4	220	5
Metallic dark grey and opague			-		
		1.5255	4	310	6
Structure		1.3926	2	222	6
A=15 type"B=W" isomorphous with	CoV, and	1.3384	14	320	7
NiV ₂ [Köster and Haehl, 1958].		1.2895	45	321	7:
		1.2065	15	400	7
Space group					
$O_{3}^{3} = Pm3n$ (223). $7 = 2$ [ibid.]		1.1373	3	411	8
		1.0790	13	420	9
		1.0528	12	421	94
		1.0288	12	332	90
		0.9848	2	422	10:
		. 9463	5	510	10
		. 8960	14	520	111
Lattice constants		.8809	19	521	12
		.8530	14	440	120
	a(Å)	.8276	3	530	131
					1
Köster and Haehl [1958]	4.81	.8042	12	600	140
NBS, sample at 25°C	4,8254	.7933	4	610	152
,	±.0001	.7828	25	611	159

Density

(calculated) 7.662 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.2$

Additional patterns

1. Köster and Haehl [1958]

References

Köster, W. and W.-D.Haehl (1958). Das Zweistoffsystem Palladium-Vanadin, Z.Metallk. 49, 647-649.

2θ(°)

26.08 37.24 41.82 46.04

53.66

60.65 67.16 70.27 73.36 79.35

85.26 91.10 94.05 96.96 102.92

108.97 118.55 121.94 129.12 137.09

146.55 152.32 159.46

The sample was prepared by R. M. Waterstrat at NBS by arc-melting.

Major impurities

0.001-0.01% each:Al, Cr, Cu and Si.

0.01 -0.1 % each:Fe and Pd.

Color

Metallic dark grey and opaque.

Structure

A15 type "B-W" [Duwez and Jordan, 1952].

Space group

O_h³-Pm3n (223), Z=2 [ibid.]

Lattice constants

	a(Å)
Duwez and Jordan [1952] Nishimura and Hiramatsu [1957] NBS, sample at 25 °C	5.031 5.024 5.0327 ±0.0001

Internal standard W, a = 3.16504 \AA					
Cuk	$\zeta \alpha_1 \ \lambda = 1$.5405 Å; temp. 25	°C		
d (Å)	Ι	hkl	2∂(°)		
3.559	90	110	25.04		
2.516	46	200	35.65		
2.250	27	210	40.03		
2.055	100	211	44.02		
1.7791	11	220	51.31		
1.5910	15	310	57.91		
1.4531	<1	222	64.02		
1.3955	4	320	67.00		
1.3449	42	321	69.88		
1.2581	7	400	75.50		
1.1861	8	411	80.99		
1.1253	10	420	86.39		
1.0981	3	421	89.09		
1.0729	9	332	91.76		
1.0272	2	422	97.15		
0.9871	7	510	102.58		
.9346	3	520	111.01		
.9188	12	521	113.93		
.8895	5	440	119.97		
.8631	5	530	126.37		
.8389	7	600	133.33		
.8274	<1	610	137.15		
.8164	16	611	141.27		
.7957	2	620	150.92		

References

Duwez,P.,and C.B.Jordan (1952).The crystal structure of Ti₃Au and Ti₃Pt,Acta Cryst. 5,213-214.

Nishimura,H. and T.Hiramatsu (1957).On the corrosion resistance of titanium alloys (2nd report) The equilibrium diagram of the titanium - platinum system, Nippon Kinzoku Gakkaishi **21**,469-474.

Density

(calculated) 8.826 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.7.$

Additional patterns

1. PDF card 7-353 [Duwez and Jordan, 1952].

Sample source The sample was prepared at NBS by R. M. Waterstrat by arc-melting and it was an-	Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C			
nealed at 800 $^\circ C$ for one hour.	d (Å)	Ι	hkl	2∂(°)
Major impurities 0.001-0.01% each:Ag,Au,Cr,Cu,Ir,Si,and Sn.	3.407	60 46	110 200	26.13 37.30
0.01 -0.1 % each:Fe, Pd, and Ti.	2.154 1.967	29 100	210 211	41.90 46.11
Color	1.7027	10	220	53.79
Metallic dark grey and opaque.	1.5233 1.3359	13 5	310 320	60.75 70.42
<pre>Structure Al5 type"\$-W"[Greenfield and Beck,1956].</pre>	1.2875 1.2043 1.1354	8 8 10	321 400 411	73.49 79.52 85.44
Space group O_{h}^{3} -Pm3n (223), Z=2 [ibid.]	1.0771 1.0510 1.0271	4 4 13	420 421 332	91.31 94.26 97.17
Lattice constants	.9446	12	422 510	109.25

	a(Å)
Greenfield and Beck, [1956] Matthias et al., [1961] NBS, sample at 25 °C	4.808 4.814 4.8166 ±0.0001

_	 	 _

Density

(calculated) 10.340 g/cm³ at 25° C.

Reference intensity

 $1/I_{corundum} = 2.4$

Additional patterns

1. PDF card 8-434[Greenfield and Beck, 1956]

References

.8944

.8794

.8515

.8260

.8028

.7918

.7813

5

19

10

14

2

25

8

Greenfield, P. and P.A.Beck (1956). Intermediate phases in binary systems of certain transition elements, Trans. AIME 206, 265-276.

520

521

440

530

600

610

611

118.90

122.31

129.54

137.64

147.27

153.19

160.68

Matthias,B.T.,V.B.Compton and E. Corenzwit (1961). Some new superconducting compounds, J.Phys. Chem. Solids 19,Nos.1-2, 130-133.

Sample source	Inte	Internal standard W. a = 3,16504 Å				
The sample was prepared at NBS by melt-	Inte					
ing $K_2 SO_4$ and $CoSO_4$ together at approxi-	Cu	$Ka_1 \lambda = 1$	L.5405 A; temp. 25	5 °C		
mately 600° C.		T	1	1		
	d (Å)	Ι	hkl	2÷(°)		
Major impurities	5 74	14	111	15 42		
0.001 - 0.01% each: Al, and Na.	J. 14	14	210	10.42		
	4.442	14	210	19.97		
	4.057	10	211	21.89		
Color	3.312	6	221	26.90		
Deep purple	3.142	100	310	28.38		
Optical data	2,996	24	311	29.80		
Testeria N 1 (00	2.756	10	320	32.46		
Isotropic. N=1.608.	2.654	58	321	33.74		
	2.409	6	410	37.30		
Structure	2,278	3	331	39.52		
Isostructural with Ka Mga (SO,), langbein-						
ite. [Gattow and Zemann, 1958]	2 2 2 2 2	1	420	40.57		
	2 167	2	420	11 65		
_	2.10/		320	12.05		
Space group	2.110	4	332	42.00		
$T^4 - P2_1 3$ (198), Z=4 [ibid.]	2.027	1 1/	422	44.67		
	1.987	5	430	45.62		
	1.948	18	510	46.58		
	1,912	4	511	47.50		
	1.845	10	520	49.34		
	1.814	2	521	50.25		
	1 756	1	440	52 04		
Lattice constants	1.750		440	52.04		
	1.728	12	522	52.95		
a(Å)	1,703	3	530	53.78		
	1.678	1	531	54.64		
	1.656	1	600	55.45		
Gattow and Zemann (1958) 9.929	1 633	-	610	56 30		
±.004	1.033		010	50.50		
NBS, sample at 25 °C 9.9313	1 611	21	611	57 10		
±.0001	1 571	21	611	57.12		
	1.5/1	6	620	58.73		
	1.551	6	621	59.54		
Density	1.533	5	541	60.33		
(calculated) 3.283 g/cm³ at 25° C.	1.515	<1	533	61.13		
Reference intensity	1.498	2	622	61.88		
	1.481	6	630	62.69		
$1/1_{\text{corundum}} = 2 \cdot 0$	1.465	9	631	63.44		
	1.4334	4	444	65.01		
	1.4188	4	632	65.76		
	1 4046		710	66.51		
	1.4046	2	/10	100.51		
	1.3910		/11	67.25		
	1.3772	1	640	68.01		
	1.3642	2	720	68.75		
References	1.3515	6	721	69.49		
Gattow, G. and J.Zemann(1958). Uber Doppel-	1.3274	2	642	70.94		
sulfate vom Langbeinit-Typ, $A_2 B_2 (SO_4)_3$,	1.3155	2	722	71.68		
Z. Anorg.Allgem.Chem.293,233-40.	1.3040	2	730	72.41		
	1.2931	7	731	73.12		
	1.2716	1	650	74.56		

d (Å)	Ι	hkl	26(°)	d (Å)	Ι	hkl	20(°)
1.2614	3	651	75.27	.9181	2	10.4.1	114.06
1.2321	5	810	77.39	.9142	<1	10.3.3	114.81
1.2228	2	811	78.09	.9067	2	10•4•2	116.32
1.2134	1	733	78.81	。9028	1	962	117.11
1.2044	1	820	79.51	.8992	1	11.1.0	117.88
1.1954	9	821	80.23	.8954	1	11.1.1	118.68
1.1869	1	653	80.93	.8884	3	11.2.0	120.23
1.1703	4	822	82.32	.8847	2	11•2•1	121.06
1.1627	2	830	82.98	.8779	<1	880	122.66
1.1546	5	831	83.69	.8744	2	11.2.2	123.50
1.1468	5	751	84.39	.8710	1	11•3•0	124.34
1.1394	1	662	85.07	.8676	1	11.3.1	125.19
1,1318	3	832	85.77	8645	3	10.4.4	126.00
1.1246	4	752	86.46	.8611	2	964	126.88
1.1102	1	840	87.86	.8579	5	11.3.2	127.74
	_			.0375			-27871
1.1035	2	841	88.53	.8515	2	10•6∘0	129.53
1.0966	2	910	89.24	.8484	1	11•4•0	130.43
1.0904	3	911	89.90	.8454	2	11•4•1	131.33
1.0840	2	842	90.58	.8423	1	11•3•3	132.25
1.0773	2	920	91.28	.8393	1	10.6.2	133.20
1.0710	2	921	91,98	8364	1	11.4.2	134 12
1.0589	2	664	93.34	.8334	2	965	135.09
1.0528	7	922	94.05	.8276	1	12.0.0	137.09
1.0472	2	930	94.71	.8247	4	12.1.0	138.12
1.0412	5	931	95.43	.8220	3	12.1.1	139.12
1.0300	1	852	96.80	.8192	3	11•5•1	140.20
1.0243	1	932	97.52	.8163	2	12.2.0	141.31
1.0135	<1	844	98.93	.8136	2	12•2•1	142.43
1.0087	<1	940	99.57	.8109	2	11•5•2	143.58
1.0031	4	941	100.32	.8055	2	12•2•2	145.98
0.9984	1	933	100.98	.8029	3	12•3•0	147.23
.9933	1	10.0.0	101.69	.8002	3	12.3.1	148.53
.9883	3	10.1.0	102.40	.7977	2	11•5•3	149.85
.98 35	3	10.1.1	103.10	.7926	1	12.3.2	152.71
.9739	2	10•2•0	104.54	.7901	1	11.6.1	154.28
0600	2	10.2.1	105 00	7051	7		1-7 - 6 - 6
.9692	2	10•2•1	105.26	.7851	Ţ	12.4.0	157.66
.9647	2	950	105.96	./82/	3	12•4•1	159.56
.9602	2	10 0 0	106.67				•
.9555		10.2.2	107.44				
. 7775	2	T0 • 3 • 0	108.14				
₀9470	2	10•3•1	108.85				
.9344	2	10•3•2	111.04				
.9302	1	871	111.79				
.9263	<1	953	112.52				
.9223	1	10•4•0	113.26				

The sample prepared at NBS was a washed precipitate obtained from a mixture of KF and CoCl ₂ solutions.	
Major impurities	
0.001-0.01% each: Ca,Cs,Cu,Fe,Na,Pb,Rb, Si,and V. 0.01 -0.1 % each: Al,Mn,Ni,and Sr.	
Color Medium purplish pink.	
Optical data Isotropic N=1.468	
Structure Cubic perovskite [Rüdorff et al,1959]and [Okazaki et al, 1959].KCOF ₃ has been re- ported to have a doubled cell [Martin et al. 1956]; however, we found no evi- dence for this.	
Space group O ¹ →Pm3m(221) Z=1. [Rüdorff et al.,1959]	

Dannee constants	La	ttice	constants
------------------	----	-------	-----------

	a(Å)
Rüdorff et al. [1959] Okazaki et al. [1959]	4.062 4.069
Knox [1961] NBS, sample at 25°C	±.001 4.071 4.0708 ±.0001

Density

(calculated) 3.816 g/cm³ at 25° C.

Reference intensity

Sample source

 $I/I_{corundum} = 3.4$

Polymorphism

Below 78° K. KCoF₃ is distorted to a tetragol cell.[Okazaki and Suemune, 1961].

Additional patterns

1. PDF card 1-949, [Dow Chemical Co.]

Internal standard W, a = 3.16504 Å					
Cuk	CuK $\alpha_1 \lambda$ = 1.5405 Å; temp. 25 °C				
d (Å)	Ι	hk1	28(°)		
4.071	26	100	21.81		
2.879	100	110	31.04		
2.349	14	111	38.28		
2.0351	72	200	44.48		
1.8202	12	210	50.07		
1.6623	36	211	55.21		
1.4393	30	220	64.71		
1.3564	4	300	69.20		
1.2869	12	310	73.53		
1.2278	<1	311	77.71		
1.1750	8	222	81.92		
1.1290	<1	320	86.04		
1.0879	11	321	90.15		
1.0177	3	400	98.37		
0.9874	2	410	102.53		
.9596	5	411	106.77		
.9340	<1	331	111.11		
.9103	8	420	115.59		
.8884	2	421	120.23		
.8678	3	332	125.15		
.8309	5	422	135.93		
.8141	<1	500	142.20		
.7983	7	510	149.54		

- Knox, K. (1961). Perovskite-like fluorides I.Structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃, and KZnF₃. Crystal field effects in the series and in KCrF₃ and KCuF₃, Acta Cryst. 14, 583.
- Martin,R.L.,R.S.Nyholm and N.C. Stephenson (1956). Antiferromagnetism in complex fluorides with perovskite structures, Chem. Ind. London 1956, 83.
- Okazaki,A., and Y.Suemune (1961). The crystal structures of KMnF₃, KFeF₃, KNiF₃ and KCuF₃ above and below their Néel temperatures, J.Phys.Soc. Japan **16**, 671.
- Okazaki, A., Y. Suemune and T. Fuchikami (1959). The crystal structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃ and KCuF₃, J. Phys. Soc. Japan 14, 1823.
- Rüdorff, W., J. Kändler, G. Lincke and D. Babel (1959). Über Doppelfluoride von Nickel und Kobalt, Angew. Chem. 71, 672.

The sample was precipitated at NBS by adding $CuCl_2$ to an excess of KF in solution.

Major impurities

0.001-0.01% each: Ca,Co,Cs,Fe,Mg,Mn,Pb, Rb,Sn and Sr. 0.01 -0.1 % each: Al,Na,Si and V.

Color

Very pale blue.

Optical data

Crystals averaged 5μ in size and appeared almost isotropic; N= 1.516.

Structure

Tetragonal distorted perovskite type [Edward and Peacock, 1959]. KCuF₃ is reported to have a superstructure [Okazaki and Suemune, 1961], but Knox [1961] found no evidence detectable in a powder pattern and it was not seen in the present study. In the superstructure cell $a=\sqrt{2a_0}$ and c=2c₀, where a_0 and c_0 are the constants for the simple cell.

Space group

 $C_{4\ v}^{\,4} - P4mm$ (99) [Edward and Peacock, 1959] Z=1.

Internal standard W, a = 3.16504 Å					
CuK	CuK $a_1 \lambda = 1.5405 \text{ Å}; \text{ temp. 25 °C}$				
d (Å)	I	hkl	26(°)		
4.15 3.93 2.933 2.853 2.349	27 13 55 100 11	100 001 110 101 111	21.41 22.60 30.45 31.33 38.28		
2.073 1.963 1.854 1.832 1.775	65 29 6 5	200 002 210 201 102	43.63 46.20 49.10 49.73 51.45		
1.676 1.631 1.465 1.424 1.381	32 16 13 24 2	211 112 220 202 300	54.72 56.36 63.46 65.47 67.82		
1.372 1.347 1.3101 1.3028 1.2477	2 4 8 7 5	221 212 310,003 301 103	68.28 69.77 72.02 72.49 76.26		
1.1738 1.1066 1.1026 1.0896 1.0688 1.0357	8 5 5 3	222 203 321 312 213 400	82.02 88.22 88.63 89.97 92.22 96.09		

Lattice constants

	a(Â)	c(Å)
Edward and Peacock [1959]- Hoppe [1959] Okazaki et al. [1959] Knox [1961]	4.13 4.14 4.14 4.14	3.92 3.92 3.926 3.922
NBS, sample at 25°C	4.1429 ±.0004	3.9260 ±.0009

Density

(calculated) 3.934 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.8$

- Edward, A.J. and R.D. Peacock, (1959). The structures of potassium trifluorocuprate II and potassium trifluorochromate II, J. Chem. Soc. 1959, 4126-4127.
- Hoppe, R., (1959). Untersuchungen an tärnaren Fluoriden, Angew. Chem. 71, 457.
- Knox,K. (1961). Perovskite-like fluorides. I.Structures of KMnF₃, KFeF₃,KCoF₃,KNiF₃ and KZnF₃. Crystal field effects in the series and in KCrF₃ and KCuF₃. Acta Cryst. 14, 583-585.
- Okazaki,A. and Y. Suemune (1961).The crystal structure of KCuF₃, J. Phys. Soc. Japan. 16 176-183.
- Okazaki, A., Y. Suemune and T.Fuchikami (1959). The crystal structures of KMnF₃, KFeF₃,KCoF₃,KNiF₃ and KCuF₃, J.Phys.Soc. Japan 14 1823-1824.

The sample was precipitated at NBS by mixing solutions of FeCl₂ and KF. The material was washed, then heated to about 400 °C. in vacuum.

Major impurities

0.001-0.01% each: Al.

0.01 -0.1 % each: Na and Si.

Color

Light yellowish brown.

Optical data

Isotropic, N= 1.438.

Structure

Cubic perovskite [Okazaki and Suemune, 1961]. KFeF₃ has been reported to be only pseudo-cubic at room temperature [Martin et al., 1956]. It is reported as rhombohedral at 78 °K. [Okazaki et al., 1959]. We found no departure from cubic symmetry at 25 °C.

Space group

 O_{h}^{1} -Pm3m (221) Z=1.

Internal standard W, a = 3.16504 Å					
Cuk	$CuKa_1 \lambda = 1.5405 \text{ Å}; \text{ temp. 25 °C}$				
d (Å)	Ι	hkl	2∂(°)		
4.124	30	100	21.53		
2.915	100	110	30.64		
2.380	13	111	37.77		
2.061	67	200	43.89		
1.843	12	210	49.40		
1.6822	32	211	54.50		
1.4564	30	220	63.86		
1.3733	6	300	68.23		
1.3029	13	310	72.48		
1.2426	<1	311	76.61		
1.1894	6	222	80.72		
1.1431	1	320	84.73		
1.1015	9	321	88.74		
1.0303	4	400	96.77		
0.9995	1	410	100.82		
.9713	5	411	104.94		
.9454	<1	331	109.13		
.9215	6	420	113.42		
.8991	1	421	117.89		
.8784	2	332	122.54		
.8410	6	422	132.65		
.8241	<1	500	138.33		
.8081	8	510	144.80		

Lattice constants

	a(Å)
Okazaki et al. [1959] Martin et al. [1960] Hirakawa et al. [1960] Okazaki et al. [1961] Knox [1961] NBS, sample at 25°C	4.122 4.11 4.122 4.121 4.120 4.1205 ±.0001

Density

(calculated) 3.606 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 2.7.$

- Hirakawa, K., K. Hirakawa and T. Hashimoto (1960). Magnetic properties of potassium iron group fluorides KMF₃, J. Phys. Soc. Japan 15, 2063-8.
- Knox, K. (1961).Perovskite-like fluorides. I. Structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃ and KZnF₃. Crystal field effects in the series and in KCrF₃ and KCuF₃, Acta Cryst. 14, 583-585.
- Martin,R.L., R.S.Nyholm and N.C.Stephenson (1956). Antiferromagnetism in complex fluorides with perovskite structures, Chem. Ind. (London). 1956, 83-85.
- Okazaki,A.,Y.Suemune and T.Fuchikami(1959)
 The crystal structures of KMnF₃, KFeF₃,
 KCoF₃, KNiF₃ and KCuF₃. J. Phys. Soc.
 Japan 14, 1823-4.
- Okazaki,A., and Y.Suemune (1961). The crystal structures of KMnF₃, KFeF₃, KCoF₃, KNiF₃ and KCuF₃ above and below their Néel temperatures. J. Phys. Soc. Japan 16, 671-675.

Sample source	Into	rnal atar	dard $W = -2.145$	04 Å
The sample was prepared at NBS by melt-	Inter	mai stan	$\frac{1}{2}$	04 A
ing $K_2 SO_4$ and $MgSO_4$ together at about	Cuł	$\langle \alpha_1 \lambda = 1$.5405 Å; temp. 25	°C
1000 °C. The material was somewhat hy-	0			
groscopic.	d (Å)	Ι	hkl	20(°)
Major impurities	5.730	4	111	15.45
0.001-0.01% each: Cs. Rb. Si. and Sr.	4.051	25	211	21.92
	3.505	2	220	25.39
0.01 -0.1 % each: Ca, Fe, and Na.	3.308	4	221	26.93
	3.137	100	310	28.43
Color	2.992	15	311	29.84
Colorless.	2.864	2	222	31.20
	2.753	15	320	32.49
Ontical data	2.651	35	321	33.78
Isotropic; N=1.536.	2.481	2	400	36.18
	2.405	12	410	37.36
Structure	2.338	1	411	38.47
Determined by Zemann and Zemann [1957].	2.277	4	331	39.55
There are many other double sulfates of	2.220	2	420	40.60
the langbeinite-type [Gattow and Zemann	2.165	4	421	41.69
1928].	2.115	4	332	42.71
	2.025	7	422	44.71
m^4 D2 2 (199) Z=4 [Conceptor and Koch	1.984	2	430	45.70
$T - P_{2_1} 3$ (198), $Z = 4$ [Gossner and Koch,	1.946	9	510	46.63
1931].	1.909	1	511	47.58
	1,842	6	520	49.43
	1.811	2	521	50.33
	1.727	6	522	52.96
	1.702	2	530	53.81
	1.677	l	531	54.68
Lattice constants				
0	1.653	1	600	55.55
a(A)	1.631	3	610	56.35
	1.609	12	611	57.19
Gossner and Koch [1931] 9.98*	1.569	3	620	58.80
Gattow and Zemann [1958] 9.920	1.549	4	621	59.62
NBS, sample at 25 C 9.9211 + 0001	1.531	2	541	60.42
±.0001	1.513	1	533	61.19
t Curr - 1637	1.496	1	622	61.99
*ITOM KA	1.479	6	630	62.76
Density	1.463	3	631	63.53
(calculated) 2.823 g/cm ³ at 25° C.	1.432	1	444	65.06
	1.417	2	632	65.85
Reference intensity	1.403	ī	710	66.58
$I/I_{corundum} = 2.5.$	1.376	2	640	68.07
	1.363	ī	720	68.83
	1.350	4	721	69.56
	1.326	2	642	71.05
Additional patterns	1.314	1	722	71.77
1.PDF card 17-740 [Morey et al., 19641.	1.302	1	730	72.51
	1.292	3	731	73.20

d (Å)	I	hkl	2θ(°)	d (Å)	Ι	hkl	2∂(°)
1.271	2	650	74.62	.9172	1	10.4.1	114.24
1.2597	2	732	75.39	.9131	<1	10.3.3	115.03
1.2303	1 1	810	77.52	.9058	1	10.4.2	116.51
1,2213	1	811	78 20	.9019	<1	962	117.31
1 2121	1	733	78 91	.8981	1	11.1.0	118,10
1.2121		/35	/0.91		_		
1.2033	1	820	79.60	.8947	<1	11.1.1	118.84
1.1943	2	821	80.32	.8874	1	11.2.0	120.45
1.1859	1	653	81.01	.8838	1	11.2.1	121.28
1.1695	1	822	82.39	.8769	1	880	122.89
1.1609	<1	830	83.13	.8735	2	11.2.2	123.72
1,1532	2	831	83 81	. 8702	<1	11.3.0	124.55
1,1458	1	751	84 48	. 8668	1	11.3.1	125.40
1 1310	<1	832	85 85	.8635	<1	10.4.4	126.25
1 1 2 3 3	1	752	86.58	8603	<1	964	127.09
1 1094		840	97 94	8570	2	11.3.2	127.99
1.1094	-> ⊥	040	0/.94	.8570	2	11 5 2	127.33
1.1024	1	841	88.65	.8507	<1	10.6.0	129.75
1.0958	1	910	89.32	.8476	1	11.4.0	130.66
1.0890	2	911	90.03	.8445	1	$11 \cdot 4 \cdot 1$	131.60
1.0826	2	842	90.71	.8415	1	11.3.3	132.50
1.0760	1	920	91.43	.8355	1	11.4.2	134.41
1.0700	1	921	92.09	. 8326	1	965	135.38
1.0577]	664	93.48	.8239	1	12.1.0	138.43
1.0516	2	922	94 19	.8210	1	12.1.1	139.49
1.0458	1	930	94.87	.8183	1	11.5.1	140.54
1.0400	<1	931	95.57	.8155	1	12.2.0	141.63
1.0290	1	852	96.93	.8127	1	$12 \cdot 2 \cdot 1$	142.78
1.0232	1	932	97.67	.8101	1	$11 \cdot 5 \cdot 2$	143.92
1.0127	1	844	99.03	.8047	1	12.2.2	146.34
1.0073	1	940	99.76	.8021	1	12.3.0	147.61
1.0020	1	941	100.47	.7995	1	12.3.1	148.92
0.9971	1	933	101.15	.7969	lı	11.5.3	150.29
.9921	1	10.0.0	101.86	.7918	2	12.3.2	153.22
.9872	1	10.1.0	102.57	.7892	1	11.6.1	154.82
.9824	1	10.1.1	103.27	.7843	1	12.4.0	158.30
.9728	ī	10.2.0	104.71	.7818	1	12.4.1	160.24
0.000			105 41	7704		10.2.2	162.27
.9682		10.2.1	105.41	.//94	L	12.3.3	102.37
. 903 /		950	106.12				
.9591		951	106.86				
.9546			107.58	D		m Cham 203	233-240
.9503		10.3.0	108.30	Gossner B]. Allge .and I.H	am. chem. 293, Koch (1931).Übe	r das Kris-
.9458	I I	10.3.1	109.05	tallgitt	ter von	Langbeinit, No	rthupit und
9333	<1	10.3.2	111.23	Hanksit	, Z. Kri	lst. 80, 455-46	
,9291	1 1	871	111 99	Morev. G.	W., J.	J. Rowe and R.	O. Fournier
.9251	<1	953	112 73	(1964)	The svs	stem KaMas (SO1)	3 (langbein-
.9211	1	10.4.0	113.48	ite) - I	$K_2 Ca_2$ (SC), (calcium-la	ingbeinite),
	ı –		1	J. Inorg. Nucl. Chem. 26, 53-58.			

References

Zemann, A., and J. Zemann (1957). Die Kris-Gattow, G. and J.Zemann (1958). Über Doppel-sulfate vom Langbeinit-Typ, A⁺₂ B⁺₂ (SO₄)₃, Acta Cryst. 10, 409-413.

Sample source	
The sample was made at NBS by addi	ng HF
to a slurry of $K_2 CO_3$ and $MgCO_3$ and	evap-
orating to dryness. The pattern	was
sharpened by heating the sample t	o the
melting point.	

Major impurities

0.001-0.01% each: Al, Ca, Pt, Rb and Sr.

0.01 -0.1 % each: Na, Pb and Si.

Color

Colorless

Optical data

Isotropic N = 1.404

Structure

Cubic perovskite [van Arkel,1925]. $KMgF_3$ has been reported to be monoclinic and to have a doubled cell. [Ludekens and Welch, 1952] and [Náray-Szabó, 1947]. We found no evidence to confirm the double cell.

Space group

	a(Å)
van Arkel [1925]	4.01
Brisi [1952]	3,982
de Vries and Roy [1953]	3.98
Klasens et al. [1953]	4.00
Remy and Hansen [1956]	3.973
NBS, sample at 25°C	3.9889
	±.001

Lattice constants

Density

(calculated) 3.150 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 0.9$

Additional patterns

1.PDF card 3-1060 [Remy and Hansen, 1956]; 2.Brisi (1952).

Internal standard W, a = 3.16504 Å CuK $\alpha_1 \lambda$ = 1.5405 Å; temp. 25 °C				
$d(\mathring{A})$ I hkl $2\theta(\circ)$				
3.988	2	100	22.27	
2.819	94	110	31.71	
2.302	83	111	39.09	
1.9943	100	200	45.44	
1.7842	1	210	51.15	
1.6284	24	211	56.46	
1.4101	36	220	66.22	
1.3298	<1	300	70.79	
1.2614	6	310	75.27	
1.2028	8	311	79.64	
1.1516	8	222	83.96	
1.0661	8	321	92.52	
0.9972	2	400	101.14	
.9403	2	330	110.00	
.9150	2	331	114.66	
.8920	10	420	119.43	
.8505	1	332	129.83	
.8142	3	422	142.16	
.7823	4	510	159.89	

- Brisi,C.(1952).Sulla struttura cristallina dei composti KCdF₃ e KCaF₃, Ann.Chim. Rome 42,356.
- deVries, R. C. and R. Roy (1953). Fluoride models for oxide systems of dielectric interest, J. Am. Chem. Soc. 75, 2479.
- Klasens, H. A., P. Zalm and F. O. Huysman (1953). The manganese emission in ABF₃ compounds, Philips Res. Rept. 8,441.
- Ludekens, W. L. and A. J. E. Welch (1952). Reactions between metal oxides and fluorides; some new double- fluoride structures of type ABF₃, Acta Cryst. **5**, 841.
- Náray-Szabó, I. (1947). The perovskite structure family, Muegyet. Kozlemen. No. 1, 30.
- Remy, H. and F. Hansen (1956). Röntgenographische Untersuchung des Systems KF-MgF₂, Z.Anorg. Allgem. Chem, 283, 277.
- van Arkel, A. E. (1925). Kristalstructuur van magnesium fluoride en andere verbindingen van hetzelfde kristaltype, Physica, 5, 166.

O_h-Pm3m (221). Z=1.[van Arkel,1925].

Prepared at NBS by melting $K_2 SO_4$ and $MnSO_4$ together and annealing at about 500° for 15 hours.

Major impurities

0.001-0.01% each: Al, Ca, Fe, Mg, Mo, Rb, Sb, Sn

Color

Pale pink.

Optical data

Isotropic. N=1.576.

Space group

 $T^{4}-P2_{1}3$ (198), Z=4 [Bellanca, 1947].

Structure

Isostructural with $K_{e} Mg_{2} (SO_{4})_{3}$, langbeinite. [Gattow and Zemann, 1958].

Lattice constants

	a(Å)
Bellanca [1947]	10.034*
Gattow and Zemann [1958]	10.114 ±.004
NBS, sample at 25°C	10.1143
*from kX	±.0001
Density (calculated) 3.057 g/cm ³ at 25° C	•
Reference intensity I/I _{corundum} = 3.1	
Additional patterns	

1.PDF 18-1036, Kohler and Franke, Mineralogisches Institut, Freie Universität Berlin, Germany.

2.Bellanca, [1947].

References

Bellanca, A. (1947). Sulla simmetria della manganolangbeinite, Atti Accad. Nazl. Lincei Rend. Classe Sci. Fis. Mat. Nat. 2, 451-455.

Gattow,G. and J.Zemann (1958).Über Doppelsulfate vom Langbeinit-typ, A₂⁺ B₂²⁺ (SO₄)₃, Z. Anorg. Allgem. Chem. 293, 233-40.

Internal standard Ag, a = 4.08625 Å CuKa, λ = 1.5405 Å; temp. 25 °C				
d (Å)	I	hkl	2⊕(°)	
5.839	10	111	15.16	
4.521	8	210	19.62	
4.128	14	211	21.51	
3.372	4	221	26.41	
3.198	100	310	27.87	
3.047	17	311	29.29	
2.806	8	320	31.87	
2.702	50	321	33.12	
2.453	4	410	36.60	
2.385	<2	411	37.69	
2.320	2	331	38.78	
2.260	<2	420	39.85	
2.208	2	421	40.84	
2.156	3	332	41.86	
2.064	13	422	43.82	
2.024	2	430	44.74	
1.984	13	510	45.69	
1.947	3	511	46.62	
1.878	8	520	48.42	
1.846	2	521	49.31	
1.761	7	522	51.89	
1.734	3	530	52.74	
1.7092	<2	531	53.57	
1.6854	<2	600	54.39	
1.6625	2	610	55.20	
1.6401	15	611	56.02	
1.5994	5	620	57.58	
1.5793	4	621	58.38	
1.5606	4	541	59.15	
1.5421	<2	533	59.93	
1.5249	<2	622	60.68	
1.5076	4	630	61.46	
1.4912	4	631	62.20	
1.4596	2	444	63.70	
1.4451	2	632	64.42	
1.4302 1.4165 1.4029 1.3892 1.3765	2 <2 <2 2 2 4	710 711 640 720 721	65.17 65.88 66.60 67.35 68.05	

d (Å)	T	bhl	2.07.01	1	$d(\hat{A})$	7	hhl	2010
u (A)		πκι	<u> </u>				nri	20(°)
1.3517	2	642	69.48		.9643	<2	10.3.1	106.02
1.3397	2	722	70.19		.9515	<2	10.3.2	108.10
1.3277	<2	730	70.92		.9472	< 2	871	108.81
1.3168	2	731	71.60		.9432	<2	953	109.50
1.2949	<2	650	73.00		.9390	<2	10•4•0	110.23
1.2843	<2	732	73.70		.9351	<2	10.4.1	110.92
1.2646	<2	800	75.05		.9311	<2	10.3.3	111.63
1.2547	<2	810	75.74		.9234	<2	10.4.2	113.06
1.2453	<2	811	76.42		.9197	<2	962	113.76
1.2360	<2	733	77.10		.9158	<2	11.1.0	114.51
1.2265	<2	820	77.81		.9119	< 2	11.1.1	115.27
1.2177	<2	821	78.48		.9047	<2	11.2.0	116.72
1.2090	<2	653	79.15		.9011	<2	11.2.1	117.47
1.1920	2	822	80.51		.8940	<2	880	118.98
1.1835	<2	830	81.21		.8906	< 2	11.2.2	119.73
1.1757	3	831	81.86		.8872	<2	11.3.0	120.50
1.1682	<2	751	82.50		.8839	<2	11.3.1	121.26
1.1530	<2	832	83.83		.8802	<2	10•4•4	122.10
1.1455	<2	752	84.51		.8769	<2	964	122.90
1.1312	<2	840	85.83		.8739	2	11.3.2	123.63
1.1238	<2	841	86.53		.8673	<2	10.6.0	125.27
1.1170	<2	910	87.19		.8642	<2	11.4.0	126.08
1.1101	2	911	87.87		.8610	<2	11.4.1	126.92
1.1034	<2	842	88.54		.8579	<2	11.3.3	127.76
1.0973	<2	920	89.17		.8518	<2	11•4•2	129.46
1.0905	2	921	89.87		.8488	<2	965	130.30
1.0785	<2	664	91.15		.8428	<2	12.0.0	132.09
1.0720	3	922	91.86		.8399	<2	12.1.0	132.99
1.0660	2	930	92.53		.8371	<2	12•1•1	133.90
1.0603	< 2	93 I	93.18		.8343	<2	11.5.1	134.81
1.0490	<2	852	94.49		.8314	<2	12.2.0	135.78
1.0431	<2	932	95.19		.8286	<2	12•2•1	136.74
1.0323	<2	844	96.52		.8258	<2	11•5•2	137.72
1.0268	<2	940	97.20		.8203	<2	12•2•2	139.75
1.0218	2	941	97.85		.8177	<2	12•3•0	140.77
1,0164	- 2	022	99 E1	İ	.8150	<2	12.3.1	141.85
1 0116	<2	10.0.0	90.54		.8124	<2	11.5.3	142.91
1.0064	2	10.1.0	99.10		.8072	<2	12.3.2	145.19
1,0016	<2	10 1 0	100 53		.8047	<2	11.6.1	146.37
0.9917	<2	10.2.0	101.92		.7996	<2	12•4•0	148.86
9870	2	10•2•1	102.60		7071		10.4.1	150.10
9825	<2	950	103.25		7975	2 2	12 ° 4 ° 1 901	152.06
.9777	<2	951	103.97		.7898	<2	10°1-0	154 45
.9733	< 2	10 • 2 • 2	104.63		.7874	<2	±2°4•2 10•8°1	156 07
.9687	<2	10.3.0	105.33		7850	2	11.6.3	157.76
		1	1			-		

The sample was precipitated at NBS by adding $MnCl_2$ solution to an excess of KF in solution.

Major impurities

0.001-0.01% each: Si, Al, Ca, Co, Cu, Fe, Mg.

0.01 -0.1 % each: Na.

Color

Very pale pink.

Optical data

N \simeq 1.45. The sample was too fine-grained for accurate index measurements.

Structure

Cubic perovskite [Simanov, Batsanova, and Kovba, 1957].

Space group

 $O_h^2 - Pm3m$ (221), Z=1 [Knox, 1961].

Lattice constants

	a(Å)
Simanov et al.(1957) Hoppe et al.(1961) Knox (1961) Okazaki and Suemune (1961) NBS, sample at 25 °C	4.186 4.19 4.182 4.190 4.1890 ±.0001

Density

(calculated) 3.412 g/cm^3 at 25° C.

Reference intensity

 $I/I_{corundum} = 3.1.$

Polymorphism

Below about -90 $^{\circ}C, KMnF_3$ is a tetragonal distorted perovskite. [Okazaki & Suemune 1961].

Internal standard W, a = 3.16504 Å					
Cuk	$\zeta_{a_1} \lambda = 1$.5405 Å; temp. 25	°C		
d (Å)	Ι	hkl	2⊖(°)		
4.191	27	100	21.18		
2.962	100	110	30.14		
2.419	13	111	37.13		
2.096	64	200	43.13		
1.874	9	210	48.54		
1.711	30	211	53.52		
1.4813	24	220	62.66		
1.3966	3	300	66.94		
1.3246	11	310	71.11		
1.2630	1	311	75.16		
1.2091	6	222	79.14		
1.1619	1	320	83.05		
1.1196	8	321	86.94		
1.0472	3	400	94.71		
1.0159	2	410	98.61		
0.9873	4	411	102.55		
.9610	1	331	106.55		
.9366	6	420	110.64		
.9142	1	421	114.82		
.8931	3	332	119.18		
.8551	4	422	128.53		
.8377	1	500	133.68		
.8215	4	510	139.31		

- Hoppe, R., W. Liebe and W.Dähne (1961).Über Fluoromanganate der Alkalimetalle, Z. Anorg. Allgem. Chem. 307,276.
- Knox,K. (1961). Perovskite-like fluorides. I.Structures of KMnF₃,KFeF₃,KCoF₃,KNiF₃ and KZnF₃. Crystal field effects in the series and in KCrF₃ & KCuF₃.Acta Cryst. 14, 583.
- Okazaki,A. and Y.Suemune (1961). The Crystal structure of KMnF₃, KFeF₃, KCoF₃, KNiF₃ and KCuF₃ above and below their Néel temperatures, J. Phys. Soc. Japan 16, No. 4, 671-5.
- Simanov,Yu. P., L. P. Batsanova, and L.M. Kovba (1957).X-ray investigation of the binary fluorides of bivalent manganese. Russ. J.Inorg. Chem. 2,207.(Trans. from Zh. Neorgan. Khim. 2, 2410-5).

Sample source Prepared at NBS by heating a mixture of NiSO ₄ and K_2 SO ₄ at 750 °C. The sample was cooled slowly, ground and annealed	Into Cu	Internal standard W, a = 3.16504 Å CuKa ₁ λ = 1.5405 Å; temp. 25 °C			
at 550 °C for half an hour.	d (Å)	I	hkl	2θ(°)	
Major impurities 0.001-0.01% each:Al,Ca,Fe,Mg,Na,Rb,andSi.	5.69 4.407 4.020	14 11 10	111 210 211	15.55 20.13 22.09	
Color light greenish yellow	3.284 3.114	100	310	27.13 28.64	
Optical data Isotropic. N=1.620	2.968 2.845 2.732 2.631	16 1 9 57	311 222 320 321	30.08 31.42 32.75 34.04	
Structure Isostructural with K ₂ Mg ₂ (SO ₄) ₃ ,langbein- ite.[Gattow and Zemann, 1958].	2.388 2.322 2.259	6 1 3	410 411 331	37.63 38.74 39.87	
Space group T'-P213 (198), Z=4 [ibid.]	2.201 2.149 2.099	2 3 4	420 421 332	40.96 42.01 43.05	
Lattice constants	2.008 1.969 1.931 1.895 1.828	15 4 14 3 10	422 430 510 511 520	45.12 46.05 47.02 47.97 49.84	
Gattow and Zemann [1958] 9.838 ±.008 9.8426	1.798 1.714 1.688 1.664 1.641	2 9 3 1 1	521 522 530 531 600	50.74 53.41 54.28 55.14 55.98	
10001 ±.0001	1.618 1.5968 1.5565 1.5375 1.5190	4 17 5 5 5	610 611 620 621 541	56.84 57.68 59.32 60.13 60.94	
	1.5010 1.4841 1.4673 1.4513 1.4211	1 1 7 6 2	533 622 630 631 444	61.75 62.53 63.33 64.11 65.64	
Density	1.4063 1.3921 1.3780 1.3651 1.3518	3 3 1 2 3	632 710 711 640 720	66.42 67.19 67.97 68.70 69.47	
(calculated) 3.369 g/cm ³ at 25° C. Reference intensity $1/1_{corundum} =$ 2.1.	1.3396 1.3153 1.3037 1.2926 1.2815	4 2 2 1 4	721 642 722 730 731	70.20 71.69 72.43 73.15 73.89	

Internal standard W, a = 3.16504 Å								
d (Å)	Ι	hkl	28(°)					
1.2604	2	650	75.34					
1.2501	2	732	76.07					
1.2209	2	810	78.23					
1.2116	1	811	78.95					
1.2026	1	733	79.66					
1.1937	2	820	80.37					
1.1852	1	821	81.07					
1.1765	1	653	81.79					
1.1600	2	822	83.21					
1.1521	1	830	83.91					
1.1443	3	831	84.62					
1.1368	2	751	85.31					
1.1214	1	832	86.76					
1,1146	3	/52	87.43					
1.0938	2	841	89.53					
1.0873	1	910	90.21					
1.0805	2	911	90.94					
1.0740	1	842	91.64					
1.0677	1	920	92.34					
1.0614	2	921	93.05					
1.0493	1	664	94.45					
1.0433	3	922	95.17					
1.0376	1	930	95.86					
1.0319	1	931	96.56					
1.0208	2	852	97.87					
1.0154	2	932	98.68					
1.0048	1	844	100.10					
0.9995	1	940	100.82					
.9944	1	941	101.54					
.9894	1	933	102.25					
.9844	<1	10.0.0	102.97					
.9795	3	10.1.0	103.70					
.9747	2	10.1.1	104.42					
.9653	1	10.2.0	105.87					
.9607	2	10.2.1	106.60					
.9560	2	950	107.35					
.9515	1	951	108.09					
.9472	1	10.2.2	108.82					
.9428		10.3.0	109.57					
.9386	Ŧ	10.3.1	110.30					
.9259	1	10.3.2	112.58					
.9218	1	871	113.35					
.9178	1	953	114.11					
.9139	Ţ	10.4.0	114.88					
. ATOT	2	10.4.1	113.64					

Internal standard W, a = 3.16504 Å						
Cur	$CuK\alpha_1 \lambda = 1.5405 \text{ A}; \text{ temp. } 25 \text{ C}$					
d (Å)	Ι	hkl	2•(°)			
0.9062	1	10.3.3	116.42			
.8985	2	10.4.2	118.02			
.8950	1	962	118.78			
.8912	2	11.1.0	119.61			
.8876	1	11.1.1	120.41			
.8804	2	11.2.0	122.07			
.8769	1	11.2.1	122.90			
.8702	1	880	124.54			
.8667	2	11.2.2	125.43			
.8632	1	11.3.0	126.32			
.8600	2	11.3.1	127.17			
.8568	1	10.4.4	128.05			
.8536	1	964	128.93			
.8504	2	11.3.2	129.86			
.8441	1	10.6.0	131.71			
.8410	1	11.4.0	132.65			
.8380	2	11.4.1	133.62			
.8349	1	11.3.3	134.60			
.8290	1	11.4.2	136.60			
.8261	1	965	137.61			
.8203	1	12.0.0	139.76			
.8175	2	12.1.0	140.85			
.8146	2	12.1.1	142.00			
.8119	2	11.5.1	143.13			
.8091	1	12.2.0	144.34			
.8064	2	12.2.1	145.56			
.8037	1	11.5.2	146.81			
.7984	1	12.2.2	149.47			
.7958	3	12.3.0	150.88			
.7932	1	12.3.1	152.36			
.7907	2	11.5.3	153.91			
.7856	2	12.3.2	157.32			
.7831	2	11.6.1	159.22			

References

Gattow,G. and J.Zemann (1958).Über Doppelsulfate vom Langbeinit-Typ, A⁺_z B⁺_z (SO₄)₃, Z. Anorg. Allgem. Chem. 293, 233-240.

Sample source The sample was prepared at NBS by melt-

ing $K_2 SO_4$ and $Na_2 SO_4$ in stoichiometric proportions.

Major impurities

0.001-0.01% each: Al, and Ba.

0.1 -1.0 % each: Ca.

Color

Colorless.

Optical data

Uniaxial (+), $N_0 = 1.488$, $N_e = 1.499$.

Structure

There is a range of isomorphous phases from about $K_3 \operatorname{Na}(\operatorname{SO}_4)_2$ to $\operatorname{KNa}_3 (\operatorname{SO}_4)_2$ [Bredig,1942]. The structure of the series was determined by Gossner [1928].

Space group

 $D_{3d}^{3} - P\overline{3}ml$ (164), Z=2. [Gossner, 1928].

d (Å) Ι hkl 2⊖(°) 4.802 7 100 18.46 101 22.39 3.967 64 002 25.27 3.521 17 2.841 80 102 31.46 2.778 100 110 32.20 10 111 34.69 2.584 2.404 7 200 37.37 12 003 38.29 2.349 2.276 7 201 39.57 2.181 <1 112 41.37 103 2.110 4 42.83 1.985 202 45 45.66 1.817 < 1210 50.16 1.793 3 113 50.88 1.761 6 004,211 51.88 1.680 1 203 54.58 1.654 1 104 55.52 1.615 18 212 56.96 1.603 15 300 57.44 1.563 301 59.06 1 1.486 11 114 62.42 1.458 2 302 63.78 1.437 2 213 64.84 1.420 4 204 65.68 1.408 1 005 66.31 1.388 10 220 67.41 1.351 3 105 69.50 <1 1.334 310 70.56 <1 1.323 303 71.21 1.310 1 311 72.03 1.291 <1 222 73.28 1.2643 2 214 75.07 1.2566 <1 115 75.61 1.2469 6 312 76.30 1.2150 < 1205 78.68 80.28 1.1948 1 223 1.1852 4 304,401 81.07 <1 1.1742 006 81.99 1.1593 2 313 83.27 1.1405 4 106 84.96

Internal standard W, a = 3.16504 Å

 $CuKa_1 \lambda = 1.5405 \text{ Å}; \text{ temp. } 25 \text{ °C}$

Lattice constants

	a(Å)	c(Å)
NBS, sample at 25 °C	5.5515 ±.0003	7.0434 ±.0004

Density

(calculated) 2.489 g/cm³ at 25° C.

Potassium Sodium Sulfate, $K_{.67}Na_{1.33}SO_4$ (trigonal) – continued

Inter	Internal standard W, a = 3.16504 Å						
Cuk	$CuK\alpha_1 \land = 1.5405 \text{ A}; \text{ temp. } 25 ^{\circ}C$						
d (Å)	Ι	I hkl 20(°)					
1.1374 1.1132 1.1030 1.0897 1.0814	4 2 <1 4 <1	402 215 320 224,321 116	85.25 87.56 88.58 89.96 90.84				
1.0700 1.0628 1.0544 1.0524 1.0493	<1 <1 3 4 5	403 314 206 322 410	92.08 92.89 93.84 94.09 94.46				
1.0055 0.9985 .9926 .9861 .9682	<1 <1 <1 3 1	412 323 404 216 315	100.00 100.96 101.79 102.73 105.41				
.9348 .9276 .9252 .9012 .8799	<1 1 2 2	324 502 330 414,421 422	110.97 112.28 112.70 117.45 122.18				

References

Bredig, M.A. (1942). Isomorphism and allotropy in compounds of the type A₂XO₄, J. Phys. Chem. 46, 754-764.
Gossner, B. (1928). Ueber die Kristallstruk-

tur von Glaserit und Kaliumsulpat, Neues Jahrb. Mineral. B-Bd 57A, 89-116.

The sample was prepared at NBS by melting equimolar proportions of Na₂SO₄ and $K_2 \, SO_4$ then annealing overnight at $600\,^\circ C_{\bullet}$

Major impurities

0.001-0.01% each: Al, Be

0.1 -1.0 % each: Ca

Color

Colorless.

Optical data

Uniaxial (+), $N_0 = 1.490$, $N_e = 1.494$.

Structure

Described by Bellanca, (1943). An isomorphous series exists from $K_3 Na(SO_4)_2$ to $KNa_3 (SO_4)_2$.

Space group

 $D_{3d}^{a} - P\overline{3}ml$ (164), Z=2 [ibid.].

Lattice constants					
	a(Å)	c(Å)			
Hilmy (1953) Bellanca (1943)*	5.64 5.654	7.27			
NBS, sample at 25°C	5.6075	7.1781			

±.0001 ±.0002

*From kX. Natural mineral, composition uncertain.

Density

(calculated) 2.687 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.6$

Internal standard W, a = 3.16504 Å CuK $\alpha_1 = 1.5405$ Å; temp. 25 °C					
d (Å)	Ι	hkl	20(°)		
4.857	9	100	18.25		
4.026	49	101	22.06		
3.593	19	002	24.76		
2.889	71	102	30.93		
2.804	100	110	31.89		
2.614	6	111	34.28		
2.431	7	200	36.95		
2.393	13	003	37.55		
2.302	10	201	39.10		
2.147	3	103	42.05		
2.011	42	202	45.05		
1.835	2	210	49.64		
1.8198	4	113	50.08		
1.7944	4	004	50.84		
1.7784	1	211	51.33		
1.7039	2	203	53.75		
1.6831	2	104	54.47		
1.6340	11	212	56.25		
1.6184	11	300	56.84		
1.5791	2	301	58.39		
1.5116 1.4758 1.4562 1.4431 1.4018	7 1 4 8	114 302 213 204 220	61.27 62.92 63.87 64.52 66.66		
1.3767	2	105	68.04		
1.3409	1	303	70.12		
1.3238	1	311	71.16		
1.3059	2	222	72.29		
1.2833	2	214	73.77		
1.2611 1.2360 1.2138 1.2095 1.2019	4 1 1 2	312 205 400 223 304	75.29 77.10 78.78 79.11 79.71		
1.1737	1	313	82.03		
1.1616	1	106	83.07		
1.1501	2	402	84.09		
1.1310	2	215	85.85		
1.1050	2	224	88.38		

Internal standard W, a = 3.16504 Å CuKa, λ = 1.5405 Å; temp. 25 °C							
d (Å)	$d(\mathring{A})$ I hkl $2\theta(\circ)$						
1.0771	2	314	91.30				
1.0732	3	206	91.73				
1.0641	3	322	92.75				
1.0598	4	410	93.23				
1.0482	1	411	94.58				
1.0163 1.0102 1.0056 1.0024 0.9824	<1 1 2 1	412 323 404 216 315	98.56 99.37 99.98 100.42 103.27				
.9691 .9464 .9446 .9376 .9349	1 1 2 2	413 324 207 502 330	105.27 108.95 109.26 110.48 110.97				
.9271	1	405,331	112.37				
.9124	2	414	115.18				
.8950	1	217	118.76				
.8944	1	316	118.85				
.8891	2	422	120.06				
.8801	2	325	122.14				
.8545	2	118	128.68				
.8522	2	406	129.32				
.8475	<1	512	130.70				
.8416	1	208	132.46				
.8289	1	334	136.64				
.8171	1	424	141.02				
.8094	1	600	144.23				
.8061	1	218	145.70				

Additional patterns

```
1.PDF card 6-0461 [Winchell et al., 1951]*
2.PDF card 6-0429 [Winchell et al., 1951]*
3.Bredig [1942]*
```

* Composition indefinite.

- Bellanca, A., (1943). Sulla struttura della aftitalite, Periodico Mineral. (Rome) 14, 67-98.
- Bredig, M.A., (1942). Isomorphism and allotropy in compounds of the type $A_2 X O_4$, J. Phys.Chem.46, 754-764.
- Hilmy, M.E., (1953). Structural crystallographic relation between sodium sulfate and potassium sulfate and some other synthetic sulfate minerals, Am. Mineralogist 38,118-135.
- Winchell,H.and R.J.Benoit, (1951). Taylorite, mascagnite, aphthitalite,lecontite, and oxammite from guano, Am.Mineralogist 36,590-602.

Sample source

Sample source	Internal standard W $a = 3.16504$ Å				
The sample was prepared at NBS					
$1 \text{ Ing } \text{K}_2 \text{ SO}_4$ and $\text{Na}_2 \text{ SO}_4$ together	Cuł	$\langle \alpha_1 \lambda = 1$.5405 A; temp. 25	C	
product at 700 °C for 72 hours	The ma	d (Å)	Ŧ	hh1	20(0)
terial is also called glaserite	• Ine ma-		1	nri	20(0)
	•	7.32	2	001	12.08
Major impurities		4.921	9	100	18.01
0.001-0.01% each: Al, and Ba		4.088	28	101	21.72
		3.666	21	002	24.26
0.01 -0.1 % each: Ca		2.940	76	102	30.38
		2.839	100	110	31.48
Color		2.646	3	111	33.85
Colorless.		2.458	10	200	36.52
		2.443	16	003	36.76
Ontical data		2.330	14	201	38.61
Uniaxial $(+)$ N =1.494.N =1.499.		0.100		100	41.20
onitakiai (i) n ₀ i isine i isi		2.189	3	103	41.20
		2.042	44 E	202	44.55
Structure		1.852	C A	113	49.14
Determined by Gossner [1928]. I	here is a	1 723	- 4 - 2	203	52 79
range of isomorphous phases f	rom about	1./22	L	205	52.15
$K_3 Na(SO_4)_2$ to $KNa_3(SO_4)_2$ [Bredi	.g, 1942].	1.717	2	104	53.30
		1.657	11	212	55.41
Space group		1.638	9	300	56.09
$D^3 - P\overline{3}m$ (164) Z=1 [Gossner.	19281.	1.600	2	301	57.57
	,	1.540	6	114	60.01
		1 497	1	302	61.95
		1.479	2	213	62.78
		1.469	5	204	63.24
		1.4667	4	005	63.36
		1.4194	10	220	65.73
		1 4054		105	66 47
		1.4054	4	303	68 95
- <i></i>		1 3233	1	222	71.19
Lattice constants		1.3048	2	214	72.36
	, °	1.2778	5	312	74.14
	C(A)	1 2500	2	205	75 20
	7 2	1.2598		205	75.58
Gossner (1928) 5.65	7.3	1 22273	2	006 304	78.14
Hilmy $(1953) = 5.66$	7.33	1 1909	1	313	80.60
NBS cample at $25^{\circ}C_{} 5.602$	9 7 3331	1,1861	1 1	106	80.99
1 MBS, Sample at 25 C 5:070 ±.000	3 ±.0004	1.1001		200	
		1.1654	2	402	82.74
		1.1512	3	215	83.99
–		1.1225	2	116,224	86.66
Density		1.0941	2	206,314	89.50
(calculated) 2.697 g/cm ³ at 25 C	j.	1.0783	2	322	91.18
Reference intensity		1.0729	3	410	91.77
$1/1_{1} = 1.6$		1.0246	1	107	97.48
corunaum —		1.0211	3	216,404	97.93
		0.9637	1	207	106.12

Additional patterns

```
1.PDF card 1-0978 [Hanawalt et al.,1938].
2.PDF card 3-0723 [Bredig,1942].
3.PDF card 6-0429 [Winchell and Benoit].
4.PDF card 6-0461 [Winchell and Benoit].
5.Yanat'eva et al. [1963].
```

- Bredig, M.A. (1942). Isomorphism and allotropy in compounds of the type A₂ XO₄, J. Phys. Chem. 46,754-764.
- Gossner, B. (1928). Ueber die Kristallstruktur Von Glaserit und Kaliumsulfat, Neues Jahrb. Mineral. B-Bd 57A, 89-116.
- Hanawalt, J.D., H.W. Rinn, and L.K. Frevel (1938). Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-513.
- Hilmy, M. E. (1953). Structural crystallographic relation between sodium sulfate and potassium sulfate and some other synthetic sulfate minerals, Am. Mineraloqist 38,118-135.
- Winchell, H. and R.J. Benoit (1951). Taylorite, mascagnite, aphthitalite, lecontite, and oxammite from guano, Am. Mineralogist **36**,590-602.
- Yanat'eva,O.K.,V.T.Orlova, and V.G.Kuznetsov (1963). The glaserite phase in the K₂SO₄-Na₂SO₄-H₂O system, Russ.J.Inorg. Chem. 8, 910-915 (Trans. from Zh. Neorg. Khim. 8, 1756-1766.)

0.001-0.01% each: Ca,Cs,Fe,Mg,Rb, and Ti.

0.01 -0.1 % each: Al.

Color

Colorless.

Optical data

Isotropic N=1.592.

Structure

Isostructural with $K_2 Mg_2 (SO_4)_3$ (langbeinite) [Gattow and Zemann, 1958].

Space group

 $T^4 - P2_1 3$ (198), Z=4 [ibid.].

	a(Å)
Gattow and Zemann [1958]	9.925 ±.006
NBS, sample at 25°C	9.9247 ±.0001

Lattice constants

Density

(calculated) 3.376 g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.7$

References
Gattow, G. and J.Zemann (1958). Über Doppel-
sulfate vom Langbeinit-Typ, $A_{a}^{+}B_{a}^{3+}(SO_{4})_{3}$,
Z. Anorg. Allgem. Chem. 293, 233-240.

Internal standard Ag, a = 4.08625 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C				
d (Å)	Ι	hkl	2⊕(°)	
5.734	15	111	15.44	
4.433	14	210	20.01	
4.048	10	211	21.94	
3.307	14	221	26.94	
3.136	100	310	28.44	
2.992	14	311	29.84	
2.864	1	222	31.20	
2.752	8	320	32.51	
2.654	55	321	33.74	
2.407	3	410	37.33	
2.340	1	411	38.44	
2.277	2	331	39.54	
2.219	1	420	40.62	
2.165	2	421	41.68	
2.116	3	332	42.69	
2.025	15	422	44.71	
1.985	4	430	45.66	
1.947	13	510	46.62	
1.911	3	511	47.55	
1.843	8	520	49.42	
1.812	2	521	50.30	
1.754	1	440	52.09	
1.728	7	522	52.94	
1.702	3	530	53.82	
1.678	2	531	54.64	
1.654	1	600	55.51	
1.632	2	610	56.33	
1.609	12	611	57.19	
1.569	4	620	58.79	
1.550	4	621	59.59	
1.531 1.513 1.497 1.480 1.464	4 1 5 4	541 533 622 630 631	60.39 61.20 61.95 62.73 63.51	
1.433	2	444	65.02	
1.418	3	632	65.79	
1.404	2	710	66.57	
1.390	1	711	67.29	
1.377	1	640	68.03	
1.3635	1	720	68.79	
1.3508	2	721	69.53	
1.3266	1	642	70.99	
1.3149	1	722	71.72	
1.3034	1	730	72.45	

Potassium Zinc Sulfate, K	$_{2}$ Zn ₂ (SO ₄) ₃	(cubic) –	continued
---------------------------	--	-----------	-----------

r	T			7	r	·		
d (Å)	Ι	hkl	2θ(°)		d (Å)	Ι	hkl	2∂(°)
1.2925	2	731	73.16		.9175	2	10•4•1	114.18
1.2708	1	650	74.62		.9137	1	10.3.3	114.91
1.2607	2	732	75.32		.9061	1	10•4•2	116.43
1.2310	1	810	77.47		.9024	<1	962	117.21
1.2217	<1	811	78.17		.8986	<1	11.1.0	117.99
1.2126	1	733	78.87		.8949	2	11.1.1	118.79
1.2037	1	820	79.57		.8877	1	11.2.0	120.39
1.1951	1	821	80.26		.8842	1	11.2.1	121.19
1.1862	<1	653	80.98		.8771	<1	8 8 0	122.84
1.1696	1	822	82.38		.8738	1	11.2.2	123.65
1.1617	<1	830	83.06		.8705	<1	11•3•0	124.46
1.1538	2	831	83.76		.8671	<1	11•3•1	125.31
1.1461	2	751	84.45		.8638	1	10•4•4	126.17
1.1309	<1	832	85.86		.8606	1	964	127.02
1.1237	1	752	86.54		.8574	2	11.3.2	127.88
1.1028	<1	841	88.61		.8511	<1	10•6•0	129.66
1.0958	<1	910	89.32		.8479	1	11.4.0	130.59
1.0893	1	911	90.00		.8449	<1	11•4•1	131.48
1.0830	1	842	90.67		.8417	1	11.3.3	132.44
1.0767	<1	920	91.35		.8358	<1	11.4.2	134.31
						. –		
1.0703	<1	921	92.05		.8328	<1	965	135.32
1.0580	<1	664	93.44		.8270	<1	12.0.0	137.29
1.0520	2	922	94.14		.8241	<1	12.1.0	138.33
1.0461	2	930	94.83		.8214	1	12.1.1	139.36
1.0404	<1	931	95.52		.8186	1	11.5.1	140.43
1.0293	1	852	96.89		.8158	<1	12.2.0	141.51
1.0236	<1	932	97.61		.8131	1	12.2.1	142.63
1.0130	<1	844	98.99		.8104	<1	11.5.2	143.78
1.0079	1	940	99.67		.8050	<1	12.2.2	146.23
1.0026	1	941	100.39		.8023	1	12.3.0	147.48
				1				
0.9975	<1	933	101.10		.7998	1	12•3•1	148.76
.9926	<1	10.0.0	101.79		.7971	1	11•5•3	150.17
. 9876	2	10.1.0	102.51		.7920	<1	12•3•2	153.07
.9829	<1	10.1.1	103.19		.7896	1	11•6•1	154.58
.9734	<1	10.2.0	104.62		.7846	<1	12.4.0	158.05
。9684	1	10°2°1	105.38		.7821	1	12•4•1	159.99
.9640	1	950	106.08					
.9595	1	951	106.79	ι			·····	
.9550	1	10•2•2	107.52					
.9508	1	10•3•0	108.22					
.9462	<1	10•3•1	108.98					
.9336	1	10•3•2	111.18					
.9296	<1	871	111.91					
.9253	1	953	112.69					
.9215	<1	10.4.0	113.41					

Sample source	
The sample was prepared by R. M. Water- strat at NBS by arc-melting and it was annealed at 1100 °C for two weeks.	
Major impurities 0.001-0.01% each:Ag,Cu,Ir,Ni, Pb, and Si. 0.01 -0.1 % each:Cr, Fe, and Ti.	
Color Metallic dark grey and opaque.	-
Structure A-15 type"8-W"[Greenfield and Beck,1956]	נ נ
Space group O ³ _h -Pm3n, Z=2 [ibid.]	

Lattice constants

	a(Å)
Greenfield and Beck [1956] NBS, sample at 25 °C	4.767 4.7852 ±.0001

Internal standard W, a = 3.16504 Å CuK $\alpha_1 \wedge$ = 1.5405 Å; temp. 25 °C				
d (Å)	Ι	hkl	2θ(°)	
3.381 2.393 2.141 1.9540 1.6920	34 50 64 100 6	110 200 210 211 220	26.34 37.55 42.18 46.43 54.16	
1.5136 1.3819 1.3267 1.2790 1.1964	6 2 11 42 10	310 222 320 321 400	61.18 67.75 70.98 74.06 80.15	
1.1279 1.0700 1.0443 1.0203 0.9769	4 11 8 9 3	330 420 421 332 422	86.14 92.09 95.05 98.04 104.09	
.9385 .8886 .8736 .8458 .8207 .7975	4 10 13 10 3	510 520 521 440 530	110.32 120.18 123.69 131.20 139.62 149.95	
.7867	3	610	156.54	

Additional patterns

1. PDF card 8-339[Greenfield and Beck, 1956]

Density

(calculated) 7.751g/cm³ at 25° C.

Reference intensity

 $I/I_{corundum} = 1.8$

References

Greenfield, P. and P. A. Beck,(1956). Intermediate phases in binary systems of certain transition elements, Trans. AIME 206, 265-76.

The sample was prepared at NBS by heating co-precipitated RbCl and $CoCl_2$ in a sealed glass tube at 500 °C. The salt is moderately hygroscopic.

Major impurities

0.001-0.01% each:Ca,Cr,Cu,Fe and Sn.

0.01 -0.1 % each:Al,Na and Si.

0.1 -1.0 % each:Cs,K and Ni.

Color

Unground-strong blue; ground-pale blue.

Optical data

Uniaxial (+), $N_{p} = 1.740$, $N_{p} = 1.668$

Structure

Determined by Engberg and Soling(1963). Isostructural with $CsCoCl_3$ and other similar ABX_2 compounds.

Space group

 $D_{6h}^4 - P_{6g}/mmc$ (194), Z=2 [Engberg and Soling, 1963].

Lattice constants

	a(Å)	c(Å)
Engberg and Soling	6.999	5.996
[1963]	7.0013	6.002
NBS, sample at 25 °C	±.0004	±.001

Density

(calculated) 3.268 g/cm^3 at 25° C.

Reference intensity

 $I/I_{corundum} = 4.3$

Internal standard W, a = 3.16504 Å CuKa ₁ λ = 1.5405 Å; temp. 25 °C				
d (Å)	I	hkl	2≓(°)	
6.066	31	100	14.59	
4.269	27	101	20.79	
3.502	48	110	25.41	
3.031	15	200	29.44	
3.000	25	002	29.75	
2.707	100	201	33.06	
2.292	4	210	39.27	
2.134	31	202	42.32	
2.022	11	300	44.78	
1.901	8	103	47.81	
1.822	11	212	50.02	
1.7505	22	220	52.21	
1.6811	8	310	54.54	
1.6698	11	203	54.94	
1.6197	4	311	56.79	
1.5122	7	222	61.24	
1.5001	5	004	61.79	
1.4696	12	401,312	63.22	
1.3911	2	320	67.24	
1.3792	1	114	67.90	
1.3534	5	321,402	69.38	
1.3229	7	410	71.22	
1.2923	<1	411	73.17	
1.2879	1	313	73.46	
1.2620	2	322	75.23	
1.2079	4	403	79.24	
1.1670	2	330	82.60	
1.1392	4	224	85.08	
1.1254	6	421	86.38	
1.0702	2	422	92.06	
1.0104	3	600	99.34	

References

Engberg, Å. and H.Soling, (1963). The crystal structure of RbCoCl₃, Acta Cryst.16 A27.

The sample was prepared at NBS by heating co-precipitated RbCl and NiCl₂ in a sealed glass tube at 500 $^{\circ}$ C. The salt is moderately hygroscopic.

Major impurities

0.001-0.01% each:Al, Ba and Si.

0.01 -0.1 % each:Cs.

0.1 -1.0 % each:K and Na.

Color

Unground - Medium reddish brown. Ground - Brownish orange.

Optical data

Uniaxial positive N =1.693, N =1.796.Weak pleochroism with the stronger absorption perpendicular to \underline{c} .

Structure

Isostructural with $RbCoCl_3$ and similar ABX₃ compounds.

Space group

 $D_{6h}^{+} - PG_{3} / mmc$ (194), Z=2 by analogy with CsNiCl₃

Density

(calculated) $3.365 \text{ g/cm}^3 \text{ at } 25^\circ \text{ C}$.

Reference intensity

 $I/I_{corundum} = 3.3$

Internal standard W, a = 3.16504 Å			
Cur		.0400 M, temp. 20	
d (Å)	Ι	hkl	2⊖(°)
6.02	22	100	14.71
4.217	17	101	21.05
3.477	42	110	25.60
3.008	10	200	29.67
2.952	15	002	30.25
2.684	100	201	33.36
2.276	1	210	39.57
2.123	8	211	42.55
2.109	32	202	42.84
2.0073	9	300	45.13
1.8030	13	212	50.58
1.7384	26	220	52.60
1.6704	6	310	54.92
1.6472	13	203	55.76
1.6075	5	311	57.26
1.5051	7	400	61.56
1.4984	7	222	61.87
1.4588	12	401	63.74
1.3815	2	320	67.77
1.3452	3	321	69.86
1.3416	3	402	70.08
1.3139	7	410	71.78
1.1590	1	105,330	83.30
1.1174	6	421	87.15

Lattice constants

	a(Å)	c(Å)
Allamagny[1960] NBS, sample at 25 °C	6.95 6.9534 ±.0004	11.777 5.906 ±.001

No lines were found at NBS that would require the double "c" cell constant reported by Allamagny [1960].

Additional patterns

1. PDF card 16-110 [Allamagny, 1960].

References

Allamagny, P.(1960). Synthèses de fluorures de deux métaux par réactions entre le gaz HF et des chlorures cristallisés, Bull. Soc. Chim. France **1960**, 1099.

Semple course						
The sample was prepared at NBS by reac-	Internal standard W, a = 3.16504 Å					
tion of $CaCl_2$ and Na_2SO_4 in solution at 80 °C. Gypsum is formed as an interme-	Cu	$CuKa_1 \lambda = 1.5405 \text{ Å}; \text{ temp. } 25 \text{ °C}$				
diate product. The glauberite obtained when the reaction is continued for sev-	d (Å)	Ι	hkl	2θ(°)		
eral hours was washed with alcohol.	6.214	22	110	14.24		
	4.689	18	200	18.91		
Major impurities	4.381	47	111	20.25		
0.001-0.01% each: Al, Cu, Fe, Ni, and Si.	4.148	12	020	21.40		
	3.945	47	002	22.52		
0.01 -0.1 % each: Sr.						
,	3.792	17	202,112	23.44		
	3.175	74	221	28.08		
	3.126	100	311	28.53		
Color	3.110	80	220	28.68		
Colorless	3.008	35	112	29.67		
01011655.						
	2.926	15	310	30.53		
Optical data	2.861	49	022	31.24		
Biaxial (-), N_{α} =1.511, N_{β} =1.530, N_{γ} =1.532	2.808	65	222	31.84		
2V is small. Tabular-shaped crystals.	2.677	62	113,221	33.44		
	2.579	1	202	34.76		
Structure						
Determined by Cocco et al. [1965].	2.475	27	311	36.27		
± • •	2.466	12	402	36.40		
~	2.435	8	131	36.88		
Space group	2.346	19	<u>4</u> 00	38.33		
$C_{2h}^{\circ} - C_{2/c}$ (15), Z=4, [Pardillo,1934].	2.319	3	223	38,85		
	2.223	2	023	40.55		
	2.191	7	222	41.17		
	2.140	14	331	42.19		
	2.122	8	422	42.57		
	2.102	6	132	42.99		
Density						
(calculated) 2.782 g/cm ³ at 25° C.	2.074	16	040,330	43.61		
	2.036	19	<u>1</u> 14	44.46		
Reference intensity	2.006	38	041	45.15		
I/I = 0.8.	1.997	20	314	45.37		
' corundum -	1.975	62	Ī33,004	45.90		
	1.958	13	512	46.33		
	1.908	14	4 04	47.63		
	1.897	8	240,224	47.91		
	1.858	3	513	48.99		
	1.836	11	042,421	49.61		

Lattice constants

	a(Å)	b(Å)	c(Å)	5(°)
Pardillo [1935] Corazza and Sabelli [1965] Klebtsova and Borisob [1966] Araki and Zoltai [1967] NBS, sample at 25°C (synthetic)	10.01* 10.158 10.30 10.129 ±.002 10.134 ±.001	8.21* 8.333 8.32 8.306 ±.002 8.297 ±.001	8.43* 8.551 8.60 8.533 ±.002 8.532 ±.001	112°11′ 112°20′ 112° 112°11.4′ ±0.6′ 112°12.7′ ±0.5′

Sodium Calcium Sulfate (glauberite), $Na_2Ca(SO_4)_2$ (monoclinic) – continued

0	I		I	1	0			
d (A)	Ι	hkl	20(°)		d (A)	Ι	hkl	20(°)
1 830	a	510	49 77			_	4.5.1	
1.050	12	223	50 70		1.2311	3	424	77.46
1.755	21	122	51 29		1.2271	2	116	77.76
	21	133	51.30		1.2156	<1	626	78.64
1./4/	3		52.33		1.2057	4	730,317	79.41
1.688	4	602,514	54.28		1.1850	<1	533	81.08
1.671	6	134,332	54.89		1.1795	7	641	81.54
1.656	3	315	55.44		1.1754	<1	ī 55	81.89
1.6316	13	115	56.34		1,1625	2	4 27, 1 17	82,99
1.6231	14	531	56.66		1 1579	1	227 446	83 40
1.6150	11	204	56.97		1.1476	1	514	84.32
1.6111	10	422	57.12		1 1421	<1	172	84 82
1.5793	2	151	58.38		1 1 2 1 7	~1	126 245	04.02
1.5632	7	622,600	59.04		1.131/	3	136,245	85.78
1 5530	, 1	440 530	59 47		1.12//	3	335	86.16
1.5096			60 47		1.1155	1	913,337	87.34
1.5290	5	025	00.47		1.1125	1	172	87.63
1.5140	2	4 43, 4 25	61.16		1 1002	~1	155	00 07
1.5047	1	224	61.58		1.1002	1	100	00.07
1.4865	1	244	62.42		1.0951	1	444	09.39
1,4767	1	025,152	62.88		1.0887	2	027,354	90.06
1 4662	2	512 350	63 38		1.0675	2	316	92.36
1.4002	2	512,550	05.50	'	·	·	******	
1.4607	2	352,333	63.65		Additional p	atterns		
1.4421	10	335	64.57	1	PDF card	2- 0556	[Imperial Che	emical Ind-
1.4389	7	243	64.73		ustries,	Northw	ich, England];	
1.4310	5	Ī53,044	65.13	1	Corazza	and Sab	elli [1965];	
1.4265	7	Ĩ35	65.36		Rassonsk	aya and	Semendyaeva []	.961].
1.4142	4	2 06	66.00		References			
1.4048	1	423	66.50		Araki T	and TZ	oltai (1967)	Refinement
1.3975	<1	351	66.89		of the a	ructal	structure of a	alauberite
1 3830	<1	060	67.69		Dr che c.	rologia	+ 53 1070 1077	grauberree
1 3583	1	116 714	69.09		All, Mille.		L 52 , 12/2-12//	•
1.5505	-	110, 114	03.03		The cry	E. Cora etal e	zza, and C.Sabe	lll (1965)
1.3364	4	442,535	70.39			$\lambda = 7$	Krict 122 175	19/
1.3318	8	261	70.67		Cana ₂ (SU	412, L.	$r_{122}, 1/3$	-104.
1.3248	<1	516	71.10		frattomo	triai	sulla alaubam	ita Ntti
1 3161	3	006	71 64	1	liactome	PETCT	suita grauber	ILE, ALLI
1 2122	2	532	71.04	1	Accau, N	azı. Li	ncel Rend.Class	e Sci.fis.
1.3123	2	260	/1,00		Mat. Nat Klebtsova.	. 38, 2 R.F.	33-236. and S. V.Bori	sob (1966)
1.3014	6	Ī54,352	72.58	1	Crystall	ine str	ucture of alauh	erite 7h
1,2975	5	135	72.83	1	Strukt	501 Khim 7	. 892_4	CIICO AILO
1 2952	2	513 641+	72 00			/) UJZ=4.	
1 2014	2	720 EE0	72.90		Pardillo,F	. (1934). Nueva invest	igacion de
1 2704	2	152,552	73.90	l I	la estruc	ctura (cristalina de l	a glauber-
1.2/90	5	440	74.02		ita, Mem	. acad.	ciènc. arts 25	No. 1.
1.2752	3	/15	74.32		kassonskaya	a,1.S.a	na N.K. Semendy	aeva(1961)
1.2741	3	244	74.39		Phase tra	ansform	ations of sodiu	m and cal-
1.2641	<1	336	75.08		cium sul	phates	and their doub	ie salts,
1.2547	2	026	75.74	}	Russ.J.I	norg.Ch	em.6, 891-895.(Trans.from
1.2388	4	263	76.89	Zh.Neorgan.Khim. 6, 1745-1753.				

Sample sou		_	_	Internal standard W, $a = 3.16504$ Å				
The sam	prepare	d at NBS						
tallization from an aqueous solution of					Cu	$\mathbf{K}\mathbf{a}_1 \ \lambda = 1.$.5405 A; temp. 2	5 °C
its components at room temperature.					d (Å)	I	hkl	20(°)
Major imp	urities				\			+
0.001 - 0	.01% each	AL Fe	Mn.Si.ar	d Sr.	6.58	13	110	13.45
0.001 0	•••-/0 cach				5.453	16	200,001	16.24
0.01 -0	1 % each	Ca.Mg.	and Ni.		4.553	79	210,011	19.48
0.01 0	•• 70 ••••	,,,			4.440	14	111	19.98
					4.259	39	201	20.84
Color								0.1 5.1
Light p	urplish	pink.			4.128	2	020	21.51
					3.990	16		22.26
Optical dat	a				3.857	3	120	23.04
Biaxial	(-) N _a = 1	.512, NH	≅1.517,	$N_{Y}=1.520;$	3.786	16	211	23.48
2V is la	arge.	·····	·	•	3.552	2	201	25.05
	-				2 220	20	-310	26 76
Structure					3 200	100	220 021	27.10
Tagata	atural	with	Na. Ma/G	$(0,)_{2} \cdot 4H_{-} 0$	3 257	54	211 $\overline{1}21$	27.36
(bloodi	to) [Cia		101 (L		3.237	94	211,121	28.98
(proeqr	Le [GIG	110, 19.	.0].		2 963	12	221	30 13
					2.905		221	50.15
Space grou	ιp				2,731	12	400.320	32.76
$C_{2h}^{5} - P2_{1}$	/a (14),	z=2 [ib	oid].		2.726	14	002	32.83
					2.692	15	221	33,25
					2.667	11	130	33.57
					2.639	25	$\frac{1}{4}$ 01	33,94
					2.035	2.5	401	55.54
					2.622	7	112	34.17
					2.586	12	012,321	34,66
					2.512	1	411,212	35.71
	Tatt	ina namati			2.456	2	230.031	36.56
	Lati	ice consid	inis		2.436	4	1 31	36.86
	0		1		2.450	-	20-	
	a(Å)	b (Å)	C(Ă)	β(°)	2.428	4	112	36.99
					2.356	4	131	38.17
NBS.					2.319	4	321	38.80
sample					2.311	6	231	38.94
at 25°C	11.104	8.249	5.541	100°21.6'	2.302	8	312	39.10
	±.001	±.001	±.001	±.5'				
		L			2.296	10	122	39.21
					2.280	15	202	39.49
					2.277	16	420	39.55
Donatt					2.199	1	411,212	41.00
Density	atod) o	EF alom	3 at 25° (r	2.174	7	231	41.51
(carcula	aleu) 2.4	ss g/cm	ai 20 (J•				
Reference	intensity				2.162	5	122	41.74
I /I					2.130	6	402	42.40
1/1 corundu	ım = ⊥•4				2.113	8	510	42.76
					2.097	3	511	43.10
					2.063	3	$\overline{4}$ 12,040	43.84
					2.027	22	140	44.66
					1.996	3	421,222	45.41
					1.963	9	331	46.20
					1.958	7	312	46.33
					1,950	2	132	46.52

d (Å)	Ι	hkl	2 <i>θ</i> (°)
1.937 1.932 1.919 1.903 1.893	9 6 4 1 2	430,032 520,240 521 431,232 422	46.87 47.00 47.34 47.75 48.03
1.865 1.857 1.826 1.816 1.810	8 2 2 2 2 2	132 241 203 003 322	48.79 49.00 49.90 50.18 50.36
1.807 1.802 1.783 1.777 1.755	4 9 7 2	332 113 241,213 610,402 431,232	50.46 50.60 51.18 51.37 52.07
1.735 1.718 1.703 1.671 1.666	1 3 9 8	412,521 313 531 621 620	52.72 53.27 53.79 54.89 55.08
1.658 1.645 1.640 1.631 1.625	8 2 3 2	602 440,042 601 150,422 612,332,+	55.38 55.84 56.02 56.35 56.58
1.609 1.605 1.600 1.570 1.563	2 4 3 4 2	611 123 142 531 342	57.22 57.36 57.55 58.78 59.03
1.551 1.545 1.537 1.533 1.530	7 4 6 7 5	151,532 512 423 710,133 441,242	59.56 59.82 60.17 60.33 60.47
1.522 1.518 1.502 1.499 1.495	6 4 3 3	631,223 630 350 540 313	60.82 61.00 61.68 61.83 62.02
1.491 1.482	2 2	432 442	62.20 62.65

Giglio,M. (1958). Die Kristallstruktur von Na₂Zn(SO₄)₂ ·4H₂O(Zn-Blödit), Acta Cryst. 11, 789-794.

Sample source	Internal standard W $a = 3.16504$ Å				
Natural mineral from Soda Lake, Calif.	$\int_{0}^{\infty} m(e) \ln a r \sin(a) r w, a = 5.10504 \text{ A}$				
National Museum No. 93869.	Cul	$K\alpha_1 \lambda = 1$.5405 A; temp. 25	°C	
*also known as astrakhanite.	d (Å)	Ι	hkl	20(°)	
Major impurities	5.463	2	200	16.21	
0.001-0.017 each: Al K Mo Ni and Ti	4.555	94	210,011	19.47	
$0.001 0.01_0$ cach. AI, R, MO, NI, and II.	4.442	5	Ī11	19.97	
0.01 -0.1 7 each: Ca Co Fe Si and Sr	4.281	29	201	20.73	
$0.01 \ 0.1 \ _0$ cach. Ca, CO, Fe, SI, and SI.	4.126	10	020	21.52	
Color	3.981	9	111	22.31	
Colorless.	3.860	6	120	23.02	
	3.800	25	2 11	23.39	
	3.333	21	310	26.72	
Optical data	3.289	95	220.021	27.09	
Biaxial(-), N_{α} =1.484, N_{β} \approx 1.488, N_{γ} =1.492.			,		
2V is large.	3.252	100	Ī21,211	27.40	
	3.091	4	311	28.86	
Structure	3.055	3	121	29.21	
Determined by Rumaneyra and Malitekava	2.971	40	221	30.05	
[1959] Thore are a number of igostrug.	2.732		400.320	32.75	
tural hydrated double sulfates [Giglio	2.724	} 40	002	32.85	
19581					
1990];	2.687	1	221	33.32	
	2.667	14	130	33.57	
Space group	2.651		4 01	33.78	
$C_{2h}^{b} - P2_1/a$ (14), Z=2 [Lauro, 1940].	2.644	38	311,202	33.88	
	2.623	2	Ī12	34.16	
	2.586	22	012	34,65	
	2.518	3	212	35.62	
	2.454	4	230,031	36.58	
	2.420	2	112	37.11	
	2.314	11	231,321	38.89	
Density					
(calculated) 2.218 g/cm ³ at 25 $^{\circ}$ C.	2.297	12	ī22	39.18	
	2.276		420,401	39.56	
Reference intensity	2.271	<u>д та</u>	022,202	39.65	
$I/I_{convidum} = 1.0.$	2.194	6	330,411	41.10	

Lattice constants

	a(Å)	b(Å)	c(Å)	β (°)
Lauro [1940] Rumanova and Malitskaya [1959] NBS, sample at 25°C	11.06* 11.05 11.128 ±.001	8.17* 8.16 8.246 ±.001	5.50* 5.50 5.543 ±.001	100°39' 100°40' 100°51.9' ±0.8'

*from kX

		·····	
d (Å)	Ι	hkl	28(°)
2.170	15	231	41.58
2.157	5	122	41.84
2.141	8	402	42.17
2.113	9	510	42.75
2.103	1	511	42.96
2.080 2.062 2.025 1.992 1.988	3 4 30 } 7	322 040 140 421 222	43.46 43.88 44.71 45.49 45.58
1.959 1.951 1.937 1.933 1.921	15 5 } 16 14	331 132,312 430 032 141	46.30 46.50 46.86 46.97 47.27
1.907 1.901 1.876 1.858 1.834	<pre> 5 3 10 5 </pre>	431 422 141 511, 241 601	47.64 47.81 48.48 48.99 49.67
1.812 1.803 1.790 1.785 1.779	4 3 10 } 11	332 113 611 213 610	50.31 50.59 50.97 51.13 51.30
1.753	5	341,431	52.14
1.732	4	521	52.82
1.723	2	313	53.12
1.711	1	530	53.52
1.706	3	531	53.69
1.700	<1	113	53.87
1.685	1	123	54.39
1.676	10	621	54.73
1.665	12	620,602	55.11
1.661	10	023	55.26
1.644	1	042	55.88
1.631	3	150,413	56.35
1.6252	1	242,422	56.58
1.6200	1	332,323	56.78
1.6053	1	611	57.35
1.6012	6	123,213	57.51
1.5988	3	142	57.60
1.5671	5	531,342	58.88
1.5501	7	151	59.59
1.5419	5	423	59.94
1.5278	3	441	60.55
1.5181	10	630,223	60.98
1.4994	7	540	61.82

Additional patterns

1.	PDF	card	4-05	49	[Michigan	Alkali	Co.,Wy-
	ando	otte,	Mich	.].			
2	Draw	-hini.	a at	- 1	119611		

2.Druzhinin et al. [1961].

References

Druzhinin,I. G.,B. Imanakunov and V.G.Kuznetsov (1961).Physicochemical properties of nickel astrakhanite, Russ. J.Inorg. Chem. 6 1302-4.(Trans. from Zh. Neorgan. Khim. 6 2576-82).

Giglio,M. (1958). Die Kristallstruktur von Na₂Zn(SO₄)₂·4H₂O(Zn-Blödit), Acta Cryst. 11, 789-794.

Lauro,C. (1940). Ricerche Röntgenografiche sulla bloedite, Periodico Mineral. Rome 11, 89-98.

Rumanova,I. M. and G.I. Malitskaya (1959). Revision of the structure of astrakhanite by weighted phase projection methods, Soviet-Phys.Cryst. 4,481-95 (Trans. from Kristallografiya 4, 501-515).

The sample was precipitated at NBS by adding MnCl₂ to an excess of NaF in solution.

Major impurities

0.001-0.01% each: Co, Cs, Fe, K, and Mg.

0.01 -0.1 % each: Al, Ba, Ca, and Si.

Color

Very pale pink.

Optical data

Almost isotropic, N=1.425. Perfect cubes about 10μ in size.

Structure

Orthorhombic distorted perovskite [Simanov, Batsanova, and Kovba, 1957]. Assumed to be isostructural with CaZrO₃.

Space group

 D_2^{16} -Pnma (62), Z=4 by analogy with CaZrO₃

Internal standard W, a = 3.16504 Å						
$CuKa_1 \wedge = 1.5405 \text{ Å}; \text{ temp. 25 }^{\circ}C$						
d (Å)	Ι	hkl	20(°)			
4.00	96	101	22.23			
3.571	4	111	24.91			
2.876	28	200	31.07			
2.826	100	121	31.63			
2.776	20	002	32.22			
2.553	4	201	35.12			
2.500	9	102	35.89			
2.433	10	211	36.92			
2.405	19	031	37.36			
2.386	12	112	37.66			
2.282	1	022	39.45			
2.219	8	131	40.63			
2.152	8	221	41.94			
2.121	2	122	42.58			
1.997	60	202	45.37			
1.956	2	230	46.38			
1.938	3	212	46.85			
1.843	2	231	49.40			
1.823	2	132	49.97			
1.811	13	301	50.34			
1.788	28	141	51.03			
1.7666	8	311	51.70			
1.7612	8	103	51.87			

Lattice constants

	a(Å)	b(Å)	c(Å)
Simanov [1957]	11.520	8.000	11.136
NBS, sample 25°C-	5.7485	8.0045	5.5509*
	±.0004	±.0008	±.0004

* Smaller cell indexed all NBS powder lines

Density

(calculated) $3.508 \text{ g/cm}^3 \text{ at } 25^\circ \text{ C}$.

Reference intensity

 $I/I_{corundum} = 1.5$

Additional patterns

1.Simanov et al. [1957].

References

Simanov, Yu.P., L.P. Batsanova, and L.M. Kovba,						
(1957).X-ray investigation of the binary						
fluoride	s of b	ivalent mangan	ese, Russ.			
J. Inorg	. Chem.	2 , 207-215. (T	rans. from			
Zh. Neor	g. Khim	. 2 No.10, 2410	-2415).			
1.7193	<2	113	53.23			
1.6499	23	321	55.66			
1.6426	19	240	55.93			
1.6229	17	042	56.67			
1.6119	33	123	57.09			
1.5565	2	203	59.32			
1.5384	<2	051	60.09			
1.4981	2	331	61.88			
1.4696	2	133	63.22			
1.4669	2	32 2	63.35			
1.4371	4	400	64.82			
1.4133	15	242	66.05			
1.3911	2	401	67.24			
1.3873	2	004	67.45			
1.3566	3	332,251	69.19			
1.3525	3	420	69.43			
1.3481	3	152	69.69			
1.3431	7	341	69.99			
1.3303	<2	114	70.76			
1.3222	2	143	71.26			
1.3112	2	024	71.95			
1.2763	3	402	74.24			
1.2650	12	161,430	75.02			
1.2630	9	323	75.16			
1.2497	5	204	76.10			

422

78.61

1.2160

5

Sample source								
The sample was proposed at NDC her such				Inte	Internal standard W. a = 3.16504 Å			
tallization from an arreaded at NBS by Crys-								
tailization from an aqueous solution of				CuK $a_1 \lambda$ = 1.5405 A; temp. 25 °C				
equal molecular amounts of Nacl and				• •	1		1	
ngci2.				d (A)	I	hkl	2θ(°)	
				9.36	14	020	9.44	
Major impurities				8.39	100	110	10.54	
0.001-0.01% each	: Fe.			6.62	40	120	13.36	
				5,199	4	130	17.04	
0.01 -0.1 % each	: AI.			4.681	56	200,040	18.94	
a .								
Color				4.551	18	210	19.49	
Colorless.				4.193	14	220,140	21.17	
				3.943	24	011	22.53	
Option 1 data				3.749	59	230	23.71	
				3.633	19	111	24.48	
$Biaxial(+), N_{\alpha} = 1$.634, N _β	=1.652,	$N_{\gamma} = 1.680$,	ļ				
2V is large.				3.479	62	150	25.58	
				3.444	80	121	25.85	
Structure				3.387	51	031	26.29	
Determined by Malaia [1959]				3.315	9	240	26.87	
Decermined by Marcie [1959].				3.186	14	131	27.98	
Space group			3 121	6	060	29 59		
D ₂ ¹⁶ -Pnam (62), Z=4, [Ninković,1957].				3 095	2	310	20.00	
				3.005	42	201	20.92	
				3.056	4Z 51	201	29.10	
				3.010	51	211	29.59	
				2.903	44	320,160	30.13	
				2.906	56	221,141	30.74	
Lattice constants				2.797	4	330	31.97	
	T	 	······	2.745	38	231,051	32.59	
	a(Å)	b(Å)	c(Å)	2.634	11	151	34.00	
	(/	- (/	-1/	2.600	46	340,260	34.47	
Ninković [1957]	9.372	18.71	4.037	2 572	20	170	24.05	
	±.003	±.02	±.002	2.572	20	170	34.85	
NBS, sample at				2.559	10	241	35.03	
25 °C	9.3803	18.732	4.0301	2.449	40	311	36.66	
	±.0005	±.001	±.0004	2.401	6	350	37.42	
	·	-		2.386	5	321,161	3/.6/	
				2.344	6	400,080	38.37	
Density				2.324	27	270	38.71	
(calculated) 3.433 g/cm ³ at 25° C.				2.297	3	331	39.18	
				2.272	8	180	39.64	
Reference intensity				2.229	14	071	40.44	
$I/I_{$								
corundum -				2.208	16	360	40.83	
				2.195	39	430	41.08	

Additional patterns 1.Ninković [1957]. 2.169

2.095

2.062

171 440,280 351

41.61

43.14

43.86

9 4

46
đ (Å)	I	hkl	20(°)	d (Å)	I	hkl	20(°)
2.031	16	370,190	44.57	1.3979	7	660	66,87
2.027	16	401	44.67	1.3900	2	2.12.1	67.30
2.015	26	002	44.95	1.3832	4	292	67.68
1,988	13	450	45.60	1.3755	11	581.4.10.1	68.11
1,979	46	181	45.81	1.3723	15	462.382.+	68.29
				1.5/25		102/002/1	
1.959	13	112	46.30	1.3689	4	512	68,48
1.937	3	361	46.86	1.3576	6	1.10.2	69.13
1.928	9	122,431	47.10	1.3563	7	0•13•1	69.21
1.902	11	290	47.77	1.3402	2	013	70.16
1.874	24	460,380,+	48.53	1.3381	3	0•14•0	70.29
	•						
1.860	17	441,281	48.93	1.3274	5	472,720,+	70.94
1.850	24	042,091,+	49.22	1.3245	4	1•14•0	71.12
1.840	10	520	49.50	1.3169	6	591,2.10.2,+	71.59
1.815	2	371,191,+	50.22	1.3136	5	392,033	71.80
1.797	3	530	50.77	1.3039	2	3•13•0,4•11•1	72.42
1.774	9	232	51.46	1 2884	7	213, 1, 11, 2, +	73.43
1.763	6	470	51.81	1 2797	4	671.482.+	74.01
1.741	11	540.2.10.0	52.51	1 2647	4	233,053	75.04
1 722	3	242	53 14	1 2603	- -	721	75 35
1 700	19	461.381	53.90	1 2535	3	2.11.2 153	75.83
1.700	17	401/501	55.50	1.2333		2 11 2,155	/3:05
1.687	4	312	54.32	1.2448	2	243,3.13.1	76.45
1.675	26	1•11•0	54.76	1.2376	4	1.15.0,681	76.98
1.666	8	322,162	55.08	1.2347	5	602	77.19
1.616	4	471	56.94	1.2304	6	3•14•0	77.51
1.608	1	560,3·10·0	57.26	1.2278	6	4 • 13 • 0	77.71
1 500	10	242 262 1	57 06	1 2000	2	2-15-0	70.22
1.592	TO	J42,202,T	57.00	1.2069	2	2.12.0	79.52
1 549	11	551	59.13	1.2034	5	6.10.0 5.12.0	79.55
1 537	1	570	60 15	1 1002		770	PO 01
1 5 2 2	-	410 070	60.15	1.1902	4 7	601 2/2 1	80.01
1.725	0	412:212	00.78	1.1930		091,545,4	00.30
1.508	3	422,182	61.43	1.1844	2	582,4.10.2	81.13
1.4888	6	362	62.31	1.1833	1	1•15•1	81.22
1.4830	14	640	62.58	1.1725	5	800,353	82.13
1.4638	5	580,4.10.0	63.50	1.1707	3	0.16.0,810	82.29
1.4531	4	611,442	64.02	1.1629	1	1.13.2,780,+	82.96
1 4 4 5 5	~	6 5 0	64.50		_		00.00
1.4435	2	650	64.50	1.1599		3+15+0	83.22
1.4385	8	1+12+1	64.75	1.1559	4	183,2•15•1	83.57
1.4312	4	372,192	65.12	1.1522	3	830	83.90
1.4194	6	53T	65./3	1,1488	2	662,771	84.21
1.4016	5	3•11•1	66.67	1.1369	1	840,2•13•2,+	85.30

References

Malčič, S. S. (1959). Die Kristallstruktur des Natriumtrichloromercurat(II) - Dihydrats, Bull. Inst. Nucl. Sci. "Boris Kidrich" (Belgrade) [9], 115-122. Ninković, D.V. (1957). Die Elementarzelle und die Raumgruppe von Natrium Quecksilber (II) Chlorid-Dihydrat, Bull. Inst. Nucl. Sci. "Boris Kidrich" (Belgrade). 7, 81-82.

Sample son The sam talliza	u rc e ple was tion fr	prepare om an aq	d at NBS neous so	by crys- blution of	Internal standard W, a = 3.16504 Å CuKa ₁ λ = 1.5405 Å; temp. 25 °C			
its com	ponents	at room	temperat	ure.	d (Å)	Ι	hkl	20(°)
Major imp 0.001-0	urities .01% each	: Al,Ca,	Co,Fe,K,	Si,and Sr	6.53 5.430 4.523	9 9 62	110 001,200 011,210	13.54 16.31 19.61
0.01 -0	.1 % each	: Mg			4.433	13 25	<u>1</u> 11 201	20.01 20.89
Color Very light green.					4.099 3.976	2 14	020 111	21.66
Optical data Biaxial(-) N_{α} =1.518, N_{β} =1.520, N_{γ} =1.522, 2V is large.				Nγ=1.522,	3.834 3.773 3.538	3 13 3	$\frac{120}{211}$ 201	23.18 23.56 25.15
Structure Isostructural with Na ₂ Mg(SO ₄) ₂ ·4H ₂ O (bloedite) [Giglio, 1958].				3.309 3.270 3.243 3.236 3.066	27 100 } 55 7	310 021,220 211 121 311	26.92 27.25 27.48 27.54 29.10	
Space group C ² _{2 h} -P2 ₁ /a (14), Z=2 [ibid].				3.043 2.951 2.713 2.677 2.647	2 13 17 20 13	121 221 400,320 221 130	29.32 30.26 32.99 33.45 33.84	
	Latt	ice consta	ants		2.628 2.582 2.506	31 17 2	401 012 212	34.08 34.71 35.80
	a(Å)	b (Å)	c(Å)	β(°)	2.441 2.420	3 7	031,230 112	36.78 37.12
NBS, sample at 25°C	11.045 ±.001	8.193 ±.001	5.535 ±.001	100°29.9′ ±0.5′	2.342 2.306 2.298 2.290 2.271 2.266	3 7 1 13 } 21	131 321 312,231 122 202,401 022	38.41 39.03 39.16 39.31 39.65 39.75
Density (calculated) 2.487 g/cm ³ at 25 $^{\circ}$ C.				2.214 2.190 2.180	1 2 4	222 212 330	40.71 41.18 41.38	
Reference I/I _{corunduu}	intensity _{m =} 1.5				2.161 2.155 2.124 2.099 2.087 2.068	<pre>} 13 9 10 4 2</pre>	231 122 402 510 511 322	41.76 41.88 42.53 43.05 43.31 43.73
					2.049 2.012 1.987 1.950 1.927	4 17 6 17 16	040 140 222 331,312 032,430	44.16 45.01 45.61 46.52 47.13

· · · · · ·	1		T
d (Å)	I	hkl	20(°)
1.908	7	$ \begin{array}{r} \bar{1}41, \bar{5}21 \\ \bar{4}31 \\ \bar{4}22 \\ 141 \\ 132 \\ \end{array} $	47.61
1.893	<1		48.02
1.887	4		48.18
1.867	2		48.74
1.857	9		49.02
1.852	9	511	49.15
1.846	7	241	49.33
1.824	1	512,203	49.96
1.819	3	601	50.10
1.813	4	003	50.27
1.803 1.777 1.772 1.768 1.747	9 } 13 4 3	322 611 241,013 402,610 232,431	50.58 51.38 51.52 51.64 52.33
1.741	1	341	52.51
1.725	3	521	53.05
1.716	4	313	53.35
1.700	5	113,530	53.88
1.693	5	531	54.11
1.663 1.658 1.655 1.651 1.636	13 11 } 12 5	621 023 620,403 602,341 042,440	55.20 55.35 55.48 55.60 56.19
1.632	3	601	56.34
1.620	5	413,150,+	56.76
1.616	3	332,242,+	56.93
1.600	6	123,611	57.55
1.593	2	142	57.85
1.569 1.564 1.560 1.556 1.542	4 } 7 7 13	051,250 151 531 342 151,711	58.81 59.01 59.17 59.33 59.95
1.537	10	512	60.16
1.533	8	423,622	60.32
1.5285	7	251,133	60.52
1.5208	13	242,441	60.86
1.5167	6	223,233	61.04
1.5082	5	630	61.42
1.4927	8	350	62.13
1.4903	5	540,313	62.24
1.4841	9	432	62.53
1.4750	3	442	62.96

d (Å)	I	hk l	28(°)
1.4662 1.4507 1.4451 1.4385 1.4336	2 2 3 4 3	133 720 712 523 342	63.38 64.14 64.42 64.75 65.00
1.4152 1.4095 1.4037 1.4000 1.3955	2 3 3 3 3 3	433 152 711,052 631 613,403	65.95 66.25 66.56 66.76 67.00
1.3614 1.3602 1.3568 1.3486	1 } 6 6	243,214 004,641,+ 532,640 730	68.91 68.98 69.18 69.66
1.3386 1.3288 1.3246 1.3212	3 1 } 6	623,442 252,451 333,061,+ 161,423	70.26 70.85 71.11 71.32
1.3076 1.3053 1.2868 1.2756	} 2 2 3	550,161,+ 821,551 443 641	72.18 72.33 73.53 74.29

Additional patterns

1.PDF card 14-659 [Kuznetsov and Imanakunov].

2.Druzhinin et al.[1961].

- Druzhinin, I. G., B. Imanakunov, and V. G. Kuznetsov (1961). Physicochemical properties of nickel astrakhanite, Russ. J. Inorg. Chem. 6, 1302-1304. (Trans. from Zh. Neorg. Khim. 6, 2576-2582).
- Giglio,M. (1958). Die Kristallstruktur von NagZn(SO₄)g·4H₂O(Zn-Blödit), Acta Cryst. 11, 789-794.

Sample Source Internal standard W, a = 3.16504 Å NBS standard sample No. 40d. was used. Internal standard W, a = 3.16504 Å Assay indicated 99.9 % sodium oxalate. $CuKa_1 \lambda = 1.5405 \text{ Å}; temp. 25 °C$ Color $d(\mathring{A})$ I hkl $2\theta(°)$ Colorless. 5.202 24 200 17.03 Structure 5.202 24 200 17.03 Determined by Jeffrey and Parry, [1954]. 3.700 5 210 24.03
Color Colorless. d i hkl $2\theta(\circ)$ Structure Determined by Jeffrey and Parry, [1954]. 5.202 24 200 17.03 3.700 5 210 24.03 3.474 7 001 25.62
Color d (Å) I hkl 2θ(°) Colorless. 5.202 24 200 17.03 Structure 4.686 6 110 18.92 Determined by Jeffrey and Parry, [1954]. 3.700 5 210 24.03
Colorless.5.2022420017.03Structure4.686611018.92Determined by Jeffrey and Parry, [1954].3.474700125.62
Structure 4.686 6 110 18.92 Determined by Jeffrey and Parry, [1954]. 3.700 5 210 24.03 3.474 7 001 25.62
Structure 3.700 5 210 24.03 Determined by Jeffrey and Parry, [1954]. 3.474 7 001 25.62
Determined by Jeffrey and Parry, [1954]. 3.474 7 001 25.62
Space group
$C^{(1)}_{2,895} = P_2 / a (14), Z=2 [ibid.], 2.895 34 011,310 30.86$
Density 2.625 10 020 34.13
(calculated) 2.339 g/cm ³ at 25° C. 2.600 56 400 34.47
Reference intensity 2.485 8 211 36.12
I/I _ 1.1 2.330 44 410 38.60
2.276 2 311 39.57
2.139 7 $\overline{401}$ 42.22
Additional natterns
$\frac{1}{1000} \text{ parterns} = \frac{1}{1000} \frac{14}{1000} \frac{11}{1000} 1$
1.PDF Card 14-0758 [Hallaware et al., 1950] 2.067 2 121 43.75
1.979 2 $\overline{411}$ 45.80
1,966 7 221 46.13
D eferences $1,922$ 14 221 47.25
References $1,894 < 1$ 411 47.99
Hanawalt, J.D., H.W. Rinn, and L.K. Frevel 1.849 5 420 49.25
(1938). Chemical analysis by x-ray dif- 1.820 11 321 50.07
fraction, Ind. Eng. Chem. Anal. Ed. 10, 1.020 11 022 0000
457-512.
Jerrey, G.A., and G.S. Parry (1954). The 1.700 6 002 52.66
crystal structure of sodium oxalate, J. 1.728 9 511,130 52.94
Am. Chem. Soc. 76 , 5283-5286. 1.675 4 202 54.74
1.659 23 230. $\overline{4}21$ 55.31

-continued

Lattice constants

	a(Å)	b(Å)	c(Å)	β (°)
Jeffrey and Parry [1954] NBS, sample at 25 °C	10.35 ±.02 10.420 ± 001	5.26 ±.02 5.2552 + 0004	3.46 ±.02 3.4799 + 0003	92°54′ ±6′ 93°6.0′ +.5′
	2.001	0004		-13

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C						
d (Å)	I	hkl	20(°)			
1.646	6	610	55.79			
1.622	3	202	56.68			
1.617	2	112	56.88			
1.586	1	601	58.10			
1.563	6	031,330	59.04			
1.552 1.519 1.508 1.502 1.482	1 4 1 1	Ī31 601,611 231 521 402	59.52 60.94 61.42 61.71 62.65			
1.460	2	312	63.66			
1.453	3	521,430	64.02			
1.448	3	620	64.28			
1.439	2	331	64.70			
1.4304	4	710	65.16			
1.4267	3	122,412	65.35			
1.4131	3	331,222	66.06			
1.4101	2	402	66.22			
1.3478	1	711	69.71			
1.3152	1	621	71.70			
1.3034	2	140	72.45			
1.2908	<1	422	73.27			
1.2740	1	240	74.40			
1.2624	2	810,602,+	75.20			
1.2428	1	422	76.60			
1.2403	1	801	76.78			
1.2323	3	630	77.37			
1.2291	2	041,340	77.61			
1.2192	<1	132	78.36			
1.2111	1	232	78.99			
1.2074	1	811	79.28			
1.1941	2	721	80.34			
1.1905	2	241,232	80.63			
1.1763	1	332,631	81.81			
1.1728	<1	440	82.11			
1.1657	2	612,820,+	82.72			
1.1516	1	341	83.96			
1.1485	2	332	84.24			
1.1377	1	622	85.22			
1.1334	2	712,730	85.62			
1.1314	2	432,013,+	85.81			
1.1195	1	441	86.95			

Sample so	ource				Inter	rnal star	dard W = 3.16	504 Å
The sa	mple was	prepar	ed at NB	S by crys-	Gul			
tailiz	ation ir	om a sor m temper:	ution of ature	its com-	Cuk	$\alpha_1 \lambda = .$	1.5405 A; temp. 2	5 0
ponene	s at 100	m cemper	a cure.		d (Å)	Ι	hkl	2θ(°)
Major imp	urities							+
0.001-0).01% each	: Fe,Mg,	Ni, and S	Si.	6.57	16		13.46
0.01 (5.450	20	200,001	16.25
0.01 -0	J.1 % each	i: Al and	i Ca.		4.540	18	1 210,011	20 00
<u>.</u>					4.247	36	201	20.90
Color								
COTOLI	288				4.128	1	020	21.51
					3.994	18	111	22.24
Optical da	ta				3.857	2	120	23.04
Biaxia	$(-)N_{\alpha}=1$.507, N _B	=1.512,	$N_{\gamma} = 1.516$,	3.779	13	211	23.52
2V 18 1	large. 1	'abularly	shaped	crystals.	3.553	3	201	25.04
Structure					3.327	38	310	26.77
Teostr	actural	with	Na. Ma (S	SO) - 4H-0	3.289	100	220,021	27.09
(bloed	ite) [ci/	wich alio 19	581		3.263	40	f 211	27.31
(proed		g110, 19.	50].		3.248 5	48	1 1 21	27.44
600.00 mm					3.069	8	311	29.07
C ⁵ _{2 h} -P2 ₁	др /а (14),	Z=2 [ib	id.1		2 961	7	201	20.16
					2.728	10	320,400	32.80
					2.691	15	221	33.26
					2,669	10	130	33.55
					2.631	24	4 01, 2 02	34.04
					2.584	10	410,012	34.68
	Latt	ice consta	ints		2.509	1	321,411	35.76
	r			·····	2.456	2	230,031	36.55
	a(Å)	b (Å)	c(Å)	β(°)	2.426	4	112	37.02
					2.357	3	131	38.15
Giglio					2.319	3	321	38.80
[1958]	11.05	8.23	5.54	100°35	2.311	4	231	38.94
NDC	±0.02	±0.02	10.01	±05	2.294	10	Ī22	39.23
asmole					2.279	12	401,202	39.50
at					2.273	12	420,022	39.62
25°C	11.080	8.256	5.534	100°11.7	2,216	1	421.222	40.67
	±0.001	±0.001	±0.001	±0.6'	2.176	5	231	41.47
	k		ŀ	ļ	2.163	4	122	41.72
Donaita					2.123	7	402	42.54
calcula)	ated) 2.50	$3 g/cm^3$	at 25° C		2.114	8	331	42.74
		0,			2,109	7	510	42 85
Reference	intensity				2.092	3	511	43.21
I/I corundu	_{m =} 1.4				2.065	3	040	43.81
					2.029	6	140	44.62
					1.996	3	421,222	45.39
					1 962	۵	221	16 21
					1 903	2	210	46.21
					1.935	5	032	46.91
					1.930	5	240.041	47.04
					1.914	4	521	47.46
						-		

Sodium Zinc Sulfate Tetrahydrate, $Na_2Zn(SO_4)_2 \cdot 4H_2O$ (monoclinic)

Internal standard W, a = 3.16504 Å CuK $\alpha_1 \lambda$ = 1.5405 Å ; temp. 25 °C						
d (Å)	I	hkl	20(°)			
1.902	1	\$\overline{4}31, \overline{2}32\$ \$\overline{4}22\$ \$132\$ \$511\$ \$\overline{2}41\$	47.78			
1.889	3		48.13			
1.866	7		48.77			
1.862	5		48.87			
1.856	5		49.03			
1.824	3	601	49.97			
1.818	2	600	50.13			
1.811	3	322	50.33			
1.805	4	332	50.52			
1.800	4	113	50.67			
1.784	5	241	51.17			
1.779	7	213	51.32			
1.756	<1	431,232	52.05			
1.734	1	521	52.75			
1.714	3	313	53.40			
1.710	3	530	53.56			
1.704	2	522,113	53.74			
1.700	2	531	53.90			
1.668	7	621	55.01			
1.663	6	620,341+	55.18			
1.652	4	602,142+	55.58			
1.639	2	601	56.06			
1.632	3	150,422	56.32			
1.623	3	441,242	56.67			
1.608	3	611	57.26			
1.576	2	Ī51	58.53			
1.570	3	531	58.78			
1.552	4	151	59.50			

References

Giglio,M. (1958). Die Kristallstruktur von Na₂Zn(SO₄)₂ •4H₂O(Zn-Blödit), Acta Cryst. 11, 789-794.

Sample source The sample was p	prepared	at NBS	by adding	Internal standard W, a = 3.16504 Å CuKe λ = 1.5405 Å; temp. 25 °C			
a solution of	ZnCl ₂ to	o a con	centrated	Cui	$x_{\alpha_1} \wedge = 1$.5405 A; temp. 25	C
washed and annea	af. The aled at !	500 °C.	tale was	d (Å)	I	hkl	20(°)
				3,885	100	101.020	22.87
Major impurities			a.). G.:.	3 477	200	111	25.60
0.001-0.01% each:	Al,Mg,	Mn, Mo,	Si, Sr	2.4//	2	200	32 02
				2.793	23	121	22.02
0.01 -0.1 % each:	Ba, Ca,	, and Fe.	•	2.748	16	002	33.06
Color				2 483	1	201	36.14
Colorless				2.405	6	102	36.85
C01011E35:				2.457	0	211	38.00
				2.300	10	021	29.47
Optical data				2.338	10	031	30.47
Almost isotropic	c, №1.44	40.		2.326	6	112	38.6/
_				2.223	1	022	40.54
Structure				2.157	3	131	41.84
Orthorhombic, d:	istorted	perovs	kite [Rü-	2.094	2	221	43.16
dorff et al., 19	959] Is	ostructu	ral with	2.066	1	122	43.78
CaZnO _a and NaMnI	Fa .			1,944	50	202,040	46.69
U	0					•	
Space group				1.900	1	230	47.83
$D_{a,b}^{1,0} - Pnma$ (62)Z=4	Riidor	ff et al	19591	1.887	1	212	48.19
521 - Ind (02/2-4	. [Ruusi	tt et al	.,1999].	1.793	1	231	50.88
				1.762	10	301	51.85
				1.739	24	222,141	52.57
				1 718	6	311,103	53.27
				1 677		113	54 67
				1.0//		201	57 39
				1.604	14	321	57.30
				1.596	12	240	57.70
Latta	ice consta	ints		1.571	22	123	58.72
	a (Å)	b (Å)		1.517	1	203	61.04
	a(A)	O(A)	C(A)	1.494	<1	051	62.05
			+	1.457	1	331	63.83
Rüdorff et al.				1.431	1	133	65.13
(1959)	5.569	7.756	5.40	1.428	1	322	65.29
(1966)	5.56	7.74	5.40	1.3966	2	400	66.94
NBS, sample				1.3744	8	410.242	68.17
at 25°C	5.5873	7.775	5.4150	1 3534	2	004	69.38
	+ 0003	+ 001	±.0002	1 3144	2	420	71 75
				1.3049	4	341	72.35
				1 0704	2	212 024	74 10
—				1.2/84	2	313,024	74.10
Density		- 0		1.2414		402	/6./0
(calculated)4.104	l g∕cm³	at 25 °C.	•	1.2294	5	323,430,+	77.59
				1.2182	2	204	78.44
Reference intensity				1.1825	1	422	81.29
$1/1_{\text{corundum}} = 3.0.$				1.1755	<1	260	81.88
				1 1601	<1	062	82.42
				1 1661		351	82.68
				1 1607		224	82 98
				1.162/		444	02.90
				1 T.1230	<1	702	03.03

Sodium Zinc Trifluoride, NaZn	F ₃ (orthorhombic) — continued
-------------------------------	---

Internal standard W, a = 3.16504 Å CuKa, $\lambda = 1.5405$ Å: temp. 25 °C					
d (Å)	I	hkl	2θ(°)		
1.1342	1	440	85.55		
1.1198	<1	432	86.92		
1.1107	1	044	87.81		
1.0945	1	501	89.46		
1.0839 1.0784	1	511 343,262 423	90.57 91.16 92.91		
1.0532	1	521,115	94.00		
1.0461	2	442	94.84		
1.0437	2	361	95.13		
1.0347	2	163	96.22		
1.0322	2	244,270	96.53		
1.0256	2	125	97.36		
.9720	<1	404,080	104.82		
.9500	1	503	108.33		
.9429	2	424,181	109.55		
.9361	1	305,064	110.74		
.9228	1	523	113.16		
.9176 .9162 .9144 .9102 .9026	1 1 2 1	601 363 082 325,434 182,006	114.15 114.42 114.77 115.61 117.15		

Polymorphism

 $NaZnF_3$ is reported to occur in two polymorphic forms [Schmitz-DuMont and Bornefeld, 1956] with an inversion at 683 °C. The lower form is tetragonal, but was not observed at NBS.

- Rüdorff,W., J.Kandler,B.Lincke and D.Babel (1959). Über Doppelfluoride von Nickel und Kobalt, Angew. Chem. 71, 672.
- Schmitz-DuMont,O. and H.Bornefeld (1956). Die Systemreihe Alkalifluorid/Zinkfluorid, Z.Anorg. Allgem. Chem. 287,120-137.
- Tutov, A.G. and P.P. Syrnikov (1966). The synthesis and x-ray study of single crystals of NaZnF₃ type, Abstract, Acta Cryst. 21, A272.

Sample source The sample was prepared by Jun Ito.	Internal standard W, a = 3.16504 Å			
	Cul	$K\alpha_1 \lambda = 1$	1.5405 Å; temp. 2	5 °C
Major impurities NaOH was used in the preparation. Since	d (Å)	I	hkl	20(°)
it was not practical to wash the sample,	5.521	65	211	16.04
1-5% remained in the sample and appeared	4.784	85	220	18.53
as a separate carbonate phase in the	3.613	39	321	24.62
powder pactern.	3.379	65	400	26.35
	3.025	51	420	29.50
Color				
Yellowish white	2.759	100	422	32.42
	2.652	8	431	33.77
Structure	2.468	40	521	36.37
Isostructural with other hydrogarnets	2.390		440	37.60
[Ito and Frondel, 1967].	2.194	36	611	41.10
	2.139	18	620	42.22
Space group	1.993	8	631	45.47
O_{h}^{10} -Ia3d (230), Z=8.	1.875	18	640	48.51
[Flint et al., 1941].	1.840	15	721	49.49
	1.807	74	642	50.47
	1.717	10	732	53.30
Lattice constants	1.689	13	800	54.25
	1.617	4	653	56.91
$a(\mathring{A})$	1.593	9	822	57.83
-(1.531	2	752	60.41
Ito and Frondel, [1967] 13.53				1
NBS, sample at 25 °C 13.5222	1.5116	28	840	61.27
±.0001	1.4754	11	842	62.94
	1.4578	8	921	63.79
	1.4413	23	664	64.61
	1.4254	1	851	65.42
Density $(a = a = a = a = a = a = a = a = a = a =$	1.3946	6	932	67.05
(calculated) 3.742 g/cm ² at 25 C.	1.3801	5	844	67.85
	1.3660	1	941	68.65
Additional patterns	1.3389	3	10.1.1	70.24
l.Ito and Frondel [1967].	1.3262	10	10•2•0	71.01
	1.3132	1	943	71.81
	1.2896	8	10•3•1	73.35
	1.2557	13	10.4.0	75.67
References	1.2453	4	10•3•3	76.42
Flint, E.P., H.F. McMurdie, and L.S. Wells (1941), Hydrothermal and x-ray studies	1.2345	27	10•4•2	77.21
of the garnet-hydrogarnet series. J Res	1.2044	8	11.2.1	79.51
Nat. 26, 13-33.	1.1951	12	880	80.26
Ito.I. and C. Frondel (1967). New synthe-	1.1683	4	11.3.2	82.49
tic hydrogarnets, Am. Mineralogist 52.	1.1596	3	10.6.0	83.25
1105-1109.	1.1350	ĩ	965	85.47

Strontium Indium Hydroxide, $Sr_3In_2(OH)_{12}$ (cubic) – continued

Internal standard W, a = 3.16504 Å CuK α_1 λ = 1.5405 Å; temp. 25 °C					
đ (Å)	I	hkl	20(°)		
1.1268	10	12.0.0	86.25		
1.1115	3	12.2.0	87.73		
1.1041	4	11.5.2	88.47		
1.0966	24	12.2.2	89.24		
1.0757	2	11.6.1	91.46		
1.0690 1.0496 1.0431 1.0252 1.0078	2 4 3 6	12•4•0 11•6•3 10•8•2 13•2•1 12•6•0	92.20 94.42 95.19 97.41 99.69		
0.9969	11	12.6.2	101.18		
.9760	5	888	104.22		
.9709	1	13.4.3	105.00		
.9611	2	14.1.1	106.54		
.9561	5	14.2.0	107.34		
.9421	4	14•3•1	109.68		
.9375	6	12•8•0	110.49		
.9287	4	14•4•0	112.08		
.9200	19	14•4•2	113.70		
.9076	2	14•5•1	116.13		
.9035	1	12.8.4	116.98		
.8916	4	15.2.1	119.52		
.8766	2	15.3.2	122.96		
.8657	4	12.10.0	125.69		
.8621	2	14.7.1	126.61		
.8587	15	14.6.4	127.54		
.8485	4	15.5.2	130.39		
.8452	4	16.0.0	131.38		
.8323	3	16.2.2	135.47		
.8230	3	15.6.3	138.76		
.8200	8	16•4•0	139.89		
.8139	5	16•4•2	142.30		
.8110	4	15•7•2	143.51		
.8081	7	12•10•6	144.80		
.7996	2	15•6•5	148.84		
.7886	2	17•2•1	155.24		
.7859	4	16•6•2	157.08		

Sample source	Internal standard W, a = 3.16504 Å CuKa ₁ λ = 1.5405 Å; temp. 25 °C			
The sample was prepared by 5th 100.				
Major impurities	d (Å)	T	hbl	20(0)
0.01 -0.1 % each: Al, Ca, Fe	u (A)	1		20(1)
0.1 -1.0 % each: Si	5.470	100	211	16.19
	4.741	4 80	321	24.83
greater than 1%: Na* *NaOH was used in the preparation. Since	3.349	51	400	26.59
it was not practical to wash the sample,	2.994	100	420	29.81
1-5% remained in the sample and appeared	2 860	2	222	31 25
as a separate carbonate phase in the	2.735	41	422	32.71
powder pattern.	2.628	11	431	34.09
	2.447	72	521	36.70
	2.369	2	44 0	37.95
Color	2.174	65	611	41.50
Yellowish white	2.119	1	620	42.63
	2.069	3	541 631	45.71
Structure	1.975	10	444	46.94
Isostructural with other hydrogarnets [Ito and Frondel, 1967].	1.554	20		
	1.895	3	543	47.97
Space group	1.857	31	640 701	49.00
O_{h}^{10} -Ia3d (230), Z=8 [Flint et al., 1941].	1.823	23	642	50.98
	1.701	11	732	53.84
	1.675	11	8 00	54.77
	1.650	3	741	55.64
	1.602	2	653	57.49
Lattice constants	1.558	2	831	59.27
۰ م	1.51/	5	152	01.01
a(A)	1.498	7	84 0	61.87
	1.462	7	842	63.60
Ito and Frondel, [1967] 13.39	1.4450	5	921	64.42 65.26
NBS, sample at 25 C 15.4007 ±.0002	1.4285	2	851	66.07
		_		67.74
	1.3821	5	932 941	67.74 69.37
Density	1.3267	3	10.1.1	70.98
(calculated) 3.074 g/cm ³ at 25° C.	1.3137	1	10•2•0	71.79
	1.3015	3	943	72.57
	1.2778	6	10.3.1	74.14
	1.2442	8	10•4•0	76.50
	1.2339	3	10.3.3	77.25
	1.2234	2	954	78.83
	1 1041	E	11.2.1	80 34
	1.1846	3	880	81.12
	1.1576	4	11.3.2	83.42
Additional patterns	1.1244	2	965	86.48
1.1to and Frondel [1967].	1.1167	8	12.0.0	87.22

Strontium Scandium Oxide Hexahydrate	e, $Sr_3Sc_2O_6 \cdot 6H_2O$ (cubic) – continued
--------------------------------------	--

Internal standard W, a = 3.16504 Å							
CuK	CuK α_1 λ = 1.5405 Å; temp. 25 °C						
d (Å)	I	hkl	20(°)				
1.1094	1	11.4.3	87.94				
1.1015	1	12.2.0	88.74				
1.0940	1	11.5.2	89.51				
1.0869	5	12.2.2	90.25				
1.0659	2	11.6.1	92.54				
			1				
1.0401	5	11.6.3	95.56				
1.0278	3	12.5.1	97.08				
1.0159	2	13.2.1	98.61				
1.0102	1	12.4.4	99.36				
0.9988	14	12.6.0	100.92				
.9934	3	13.3.2	101.67				
.9879	2	12.6.2	102.47				
.9824	1	13.4.1	103.27				
.9672	1	888	105.57				
.9524	1	14.1.1	107.95				
		14 2 1	111 17				
.9337	3	14.3.1	111.17				
.9292	1	12.8.0	111.98				
.9204		14.4.0	113.63				
.9118	7	14.4.2	115.29				
.8994	3	14.5.1	11/.84				
8837	3	15.2.1	121.30				
.8686	1	15.3.2	124.93				
8579	2	12.10.0	127.75				
8510	2	14.6.4	129.68				
.0510	2	74.0.4					

- Flint, E.P., H.F. McMurdie, and L.S. Wells (1941). Hydrothermal and x-ray studies of the garnet-hydrogarnet series, J.Res. Nat. 26, 13-33.
- Ito,J. and C. Frondel (1967). New synthetic hydrogarnets, Am. Mineralogist 52, 1105-1109.

~

The sample was obtained from Prof. F. H Spedding, Iowa State College, Ames, Iowa	I. Inte	Internal standard W, a = 3.16504 Å CuK $\alpha_1 \lambda$ = 1.5405 Å; temp. 25 °C			
1300°C for 48 hours.	d (Å)	Ι	hkl	20(°)	
Major impurities	5,20	2	200	17.02	
0.001-0.01% each: Cu,Fe,Mg,Pb,Ti,V,and Z	r 4.25	10	211	20.87	
	3.010	100	222	29.65	
0.01 -0.1 % each: A1,Ca,Sb	2.788	2	321	32.08	
Color	2.608	33	400	34.35	
		_	(3.3)	26.50	
Colorless	2.460	5	411	36.50	
Structure	2.333		420	38.50	
Structure	2.225	4	332	40.51	
Mn ₂ O ₃ type [Pauling and Shappell 1930]	. 2.047	8	431	44.21	
Space group	2.047		401	11.24	
m^{7} Trade (206) R le (4244)	1.9049	2	521	47.70	
16-143 (200), Z=16 [1D1d.]	1.8446	34	440	49.36	
	1.7895	2	433	50.99	
	1.7390	1	600	52.58	
	1.6929	4	611	54.13	
		_			
	1.6499	1	620	55.66	
	1.6101	4	541	57.16	
	1.5/34	24	622	58.62	
T = 11/	1.5391	5	631	61.51	
Lattice constants	1.5005		444	01.51	
0	1.4758	2	543	62.92	
a(A)	1.4471	1	640	64.32	
	1.4192	2	721	65.74	
Goldschmidt et al. [1925] 10.41**	1.3946	1	642	67.05	
Brauer and Gradinger [1954] 5.219*	1.3254	2	732	71.06	
Templeton and Dauben [1954] 10.439	1.3045	4	800	72.38	
Staritzky [1956] 10.435	1.2843	3	811	73.70	
NBS, sample at 25°C 10.4342	1.2656	2	820	74.98	
±0.0001		2	653	76.28	
** 6	1.2296	1	822	//.5/	
""IIOM Fe=1.934	1,2130	4	831	78.84	
	1.1972	5	662	80.09	
	1.1814	1	752	81.38	
	1.1665	4	840	82.65	
	1.1525	1	833	83.88	
Density					
(calculated) 9.216 g/cm ³ at 25 $^{\circ}$ C.	1.1384		842	85.16	
	1.1251	2	921	86.41	
Reference intensity	1.1123		664	87.65	
$I/I_{conjuctum} = 6.9$	1.0999	2	851 022	88.90	
conditionality and a second seco	1 1.0/03	2	732	1 27.22	

	·			1 4 1 14 1 4 4 4 4 4 4
d (Å)	Ι	hkl	20(°)	Additional patterns 1. PDF card 6-0371. [Div. Applied Physics
1.0650	4	844	92.64	Polytechnic Inst. of Brooklyn, N.Y. 1955],
1.0541	1	941	93.89	Fert [1962].
1.0436	1	10.0.0	95.13	2.Staritzky [1956].
1.0332	1 1	10.1.1	96.41	
1 0232	2	10 2 0	97.66	
1.0252	2	10.2.0	37.00	
1.0136	1	943	98.91	
1.0042	2	10.2.2	100.18	
0.9949	1	10.3.1	101.47	
.9774	1	871	104.01	
.9688	2	10.4.0	105.32	
. 9606	1	10.3.3	106.62	
.9526	1 1	10.4.2	107.91	
.9447	1	954	109.24	
.9297	ī	11.2.1	111.89	
.9223	1	880	113.27	References
1	-			Bommer, H. (1939). Die Gitterkonstanten der
.9082	1	10.4.4	116.02	C-Formen der Oxyde der Seltenen Erd-
.9014	1	11.3.2	117.41	Metalle, Z. Anorg. Allgem.Chem. 241,273-
.8948	ī	10.6.0	118.82	280.
.8882	1	11.4.1	120.27	Brauer, G. and H.Gradinger (1954). Über het-
.8819	2	10.6.2	121.71	erotype Mischphasen bei Seltenerdoxyden,
				I., Z. Anorg. Allgem. Chem. 276,209-226.
.8757	<1	965	123.18	Fert, A. [1962]. Structure de guelgues oxydes
.8695	1	12.0.0	124.71	de terre rares, Bull.Soc.Franc. Mineral.
.8635	1	12.1.1	126.23	Crist. 85, 267-270.
.8577	1	12.2.0	127.80	Goldschmidt, V.M., T. Barth, and F. Ulrich
.8520	1	11.5.2	129.40	(1925). Geochemische Verteilungsgesetze,
				der Element IV- Zur Krystallstruktur der
.8463	2	12.2.2	131.06	Oxyde der Seltenen Erdmetalle, Skrifter
.8408	1	12.3.1	132.72	Norske Videnskaps-Akad, Oslo I.Mat. Nat-
.8301	1	11.6.1	136.23	urv. Kl. 1925, No.5., 1-24.
.8249	1	12.4.0	138.07	Pauling, L. and M.D. Shappell (1930). The
.8198	1	12.3.3	139.95	crystal structure of bixbyite and the C-
				modification of the sesquioxides, Z.
.8148	2	12.4.2	141.93	Krist. /5, 128-142.
.8098		11.6.3	144.02	Staritzky, E. (1956). Yttrium sesquioxide
.8050		10.8.2	146.21	$x_2 O_3$, Dysprosium sesquioxide Dy $_2 O_3$, Er-
.8002		12.5.1	148.54	blum sesquioxide Er_2O_3 , Ytterblum ses-
.7995	<1	T0.6.6	151.03	quioxide YD ₂ O ₃ , Anal Chem. 28, 2023. Templeton, D.H. and C.H. Dauben (1954). Lat-
.7910	1	13.2.1	153.70	tice parameters of some rare earth com-
.7865	l	12.4.4	156.66	pounds and a set of crystal radii. J.Am.
.7820	1	12.5.3	160.08	Chem. Soc. 76, 5237-5239.
	-			

Aluminum Nickel, AlNi (cubic)

Structure

Becker and Ebert [1923]. Isostructural with CsI and CsCl. Atoms are in special positions:

Al: 0 0 0 Ni: 1 1 1

Space group

 O_{h}^{1} -Pm3m (221). Z=1 [ibid.].

Lattice constants

	a(Å)
Becker and Ebert (1923)	2.83
Bradley and Taylor (1937)	2.887*
Guseva (1951)	2.886*

*from kX

The constant used was a=2.887

Density

(calculated) 5.913 g/cm³ at 25° C.

Calculated Pattern CuK $\alpha_1 \lambda$ = 1.5405 Å

d(Å)	$I\left(\begin{array}{c} Peak\\ height\end{array}\right)$	hkl	20 (°)
2.89	27	100	30.95
2.04	100	110	44.33
1.667	5	111	55.04
1.444	13	200	64.50
1.291	5	210	73.25
1.179	22	211	81.61
1.021	7	220	97.98
0,962	2	300	106.3
.913	10	310	115.1
.870	1	311	124.5
.833	3	222	135.1
.801	2	320	148.3

Additional patterns

1.PDF 2-1261 (Bradley and Taylor, 1937).

- Becker, K. and E.Ebert (1923).Röntgenspektroskopie an Metallverbindungen, Z.Physik 16,165-169.
- Bradley, A.T. and A.Taylor(1937). An x-ray analysis of the nickel-aluminium system, Proc. Roy. Soc.(London) Ser.A 159,56-72.
- Guseva, L. N. (1951). On the nature of the β -phase in the nickel-aluminum system, Akad. Nauk SSSR, Doklady 77 , 415-418.

```
Brauer and Haucke (1936). Isostructural with CsCl; atoms in special positions:
```

```
Au: 0 0 0
Mg: 눌 불 불
```

percents.

Space group

```
Oh-Pm3m (221). Z=1. (ibid.).
```

Lattice constants

				a(Å)
Brauer	and	Haucke	(1936)	3.266*

*from kX, for the composition at 48.7 atomic percent Mg.

Calculated Pattern CuK $\alpha_1 \lambda = 1.5405 \text{ Å}$

d(Å)	$I \left(\begin{array}{c} Peak \\ height \end{array} \right)$	hkl	20(°)
3.27	82	100	27.28
2.31	100	110	38.97
1.886	20	111	48.22
1.633	15	200	56.29
1.461	24	210	63.65
1.333	28	211	70.58
1.155	9	220	83.68
1.089	11	300	90.07
1.033	12	310	96.45
0.985	7	311	102.9
.943	4	222	109.6
.906	7	320	116.5
.873	20	321	123.9
.816	3	400	141.2
.792	15	410	153.0

References

Additional patterns

Density 10.55 g/cm³, calculated using the lattice constant $a_0 = 3.266$ Å, and 50-50 atomic

Brauer, G. and W. Haucke (1936). Kristallstruktur der intermetallischen Phasen MgAu und MgHg, Z.Physik. Chem. B33, 304-310.

1. PDF card 4-0796[Brauer and Haucke, 1936].

Brauer and Haucke (1936). Isostructural with CsCl; atoms in special positions:

```
Hg: 0 0 0
Mg: 1/2 1/2
```

Space group

```
O<sub>1</sub><sup>1</sup>-Pm3m (221). Z=1. (ibid.).
```

$\mathbf{CuK}a_{1} \lambda \approx 1.5405 \mathbf{A}$							
d(Å)	$I\binom{Peak}{height}$	hkl	20(°)				
3.45 2.44	80 100	100 110	25.81 36.82				
1.724 1.542	15 25	200 210	45.51 53.06 59.92				
1.408 1.219 1.150 1.091 1.040	28 8 11 11 6	211 220 300 310 311	66.33 78.35 84.13 89.86				
0.996 .957 .922 .862 .837	3 6 16 2 10	222 320 321 400 410	101.4 107.3 113.4 126.6 134.1				
.813 .791	11 6	411 331	142.7 153.5				

Calculated Pattern

Lattice constants

				a(Å)
Brauer	and	Haucke	(1936)	3.449*

*from kX, for the composition at 50.8 atomic percent Mg.

Density

9.102 g/cm³, calculated using the lattice constant $a_{\rm o}=$ 3.449 Å, and 50-50 atomic percents.

Additional patterns

1. PDF card 4-0775[Brauer and Haucke, 1936].

References

Brauer, G. and W. Haucke (1936). Kristallstruktur der intermetallischen Phasen MgAu und MgHg, Z.Physik. Chem. B33, 304-310.

Laves and Wallbaum [1939]. Isostructural with CsCl; atoms in special positions:

```
Os: 0 0 0
Ti: 불불불
```

```
Space group
Oh-Pm3m (221). Z=1. (ibid.).
```

Lattice	constants
---------	-----------

		a(Å)
Jordan	(1955)	3.07
Dwight	(1959)	3.07

Density

(calculated) 13.66 g/cm³

Additional patterns

1. PDF 18-944 [Dwight, private comm.]

Calcul	ated	Patter	n
$\mathbf{CuK}a_1$	λ =	1.5405	Å

	the second s		
d(Å)	$I\left(\begin{array}{c} Peak\\ height \end{array}\right)$	hkl	20(°)
3.07	50	100	29.1
2.17	100	110	41.6
1.77	12	111	51.5
1.54	14	200	60.2
1.37	14	210	68.2
1.25	26	211	75.8
1.09	8	220	90.4
1.02	7	300	97.6
0.971	12	310	105.0
.926	5	311	112.6
.886	4	222	120.7
.851	4	320	129.5
.820	21	321	139.7
_			

References

Dwight, A. E. (1959). CsCl-type equiatomic phases in binary alloys of transition elements, Trans. AIME 215, 283-286. Jordan, C. B. (1955). Crystal structure of

TiRu and TiOs, J. Metals 7, 832-833. Laves, F. and H. J. Wallbaum (1939). Zur

Kristallchemie von Titan-Legierungen, Naturwissenschaften 27, 674-675.

Laves and Wallbaum (1939). Isostructural with CsCl; atoms in special positions:

```
Ru: 0 0 0
Ti: 1 2 2 2
```

```
Space group
O_h^1-Pm3m (221). Z=1. (ibid.).
```

Lattice constants

		a(Å)
Jordan	(1955)	3.06
Dwight	(1959)	3.070

The constant used was $a_0 = 3.06$ ^Å.

Density

8.63 g/cm³ (calculated from $a_0 = 3.06$ Å).

Additional patterns

1. PDF 18-1144 [Dwight, private comm.]

Calculated Pattern CuK $\alpha_{\perp} \lambda = 1.5405 \text{ Å}$

d(Å)	$I\left(\begin{array}{c} Peak\\ height\end{array}\right)$	hkl	2 0(°)
3.06	19	100	29.2
2.16	100	110	41.7
1.77	4	111	51.7
1.53	14	200	60.4
1.37	5	210	68.5
1.25	24	211	76.1
1.08	7	220	90.8
1.02	2	300	98.1
0.968	11	310	105.5
.923	2	311	113.2
.883	3	222	121.4
.849	2	320	130.3
.818	20	321	140.7

- Dwight, A. E. (1959). CsCl-type equiatomic phases in binary alloys of transition elements, Trans. AIME 215, 283-286.
- Jordan, C. B. (1955). Crystal structure of TiRu and TiOs, J. Metals 7, 832-833.
- Laves, F. and H. J. Wallbaum (1939). Zur Kristallchemie von Titan-Legierungen, Naturwissenschaften 27, 674-675.

```
Dwight [1959]. Isostructural with CsCl; atoms in special positions:
```

```
Ag: 0 0 0
Gd: 불 불 불
```

```
Space group
O_{k}^{1}-Pm3m (221) Z=1. (ibid.).
```

Lattice constants

	a(Å)
Dwight (1959)	3.66
Iandelli (1960)	3.653
Baenziger and Moriarty (1961)	3.6476
Gschneidner (1965)	3.6491

The constant used was $a_0 = 3.6483$ Å, the average of the last two values.

Density

9.065 g/cm³ (calculated from $a_0 = 3.6483$ Å.)

	1		
d(Å)	I (Peak height)	hkl	20 (°)
3.648	3	100	24.38
2.580	100	110	34.74
2.106	<1	111	42.90
1.824	15	200	49.95
1.632	1	210	56.34
1.489	28	211	62.28
1.290	8	220	73.33
1.216	<1	300	78.60
1.154	11	310	83.77
1.100	<1	311	88.89
1.053	3	222	94.00
1.012	<1	320	99.14
0.9750	13	321	104.36
.9121	2	400	115.24
.8848	<1	410	121.03
.8599	9	411	127.20
.8370	<1	331	133.93
.8158	6	420	141.53
.7961	<1	421	150.70

Calculated Pattern CuK a_{\perp} λ = 1.5405 Å

- Baenziger, N.J. and J.L.Moriarty, Jr. (1961). Gadolinium and dysprosium intermetallic phases. II.Laves phases and other structure types, Acta Cryst. 14 948-950.
- Dwight, A. E. (1959). CsCl-type equiatomic phases in binary alloys of transition elements, Trans. AIME **215**, 283-286.
- Gschneidner,K.A. Jr.(1965). Crystal Structures of some equiatomic gadolinium compounds, Acta Cryst. 18, 1082-1083.
- Iandelli, A. (1960). Su alcuni composti intermetallici e semimetallici del Gadolinio, Atti Accad. Nazl. Lincei Rend. Classe Sci. Fis. Mat. Nat. 29, 62-69.

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, 3, 4, 5, and 6⁵

	Vol. or	
	sec.	Page
Aluminum, Al	1	11
Aluminum antimony, AlSb	4	72
Aluminum calcium sulfate hydrate (ettring-		
ite) Al_O_·6CaO·3SO_·31H_O	8	3
Aluminum chloride hexahydrate (chlor-		
aluminite). AlCl6H.O	7	3
Aluminum fluosilicate, topaz, Al,SiO ₄ (F,OH),	1m	4
Aluminum metaphosphate, Al(PO,),	2m	3
Aluminum nickel. AlNi	6m	82
Aluminum orthophosphate (berlinite), AlPO		
(trigonal)	10	3
Aluminum orthophosphate, AlPO, (ortho-		
rhombic)	10	4
Aluminum oxide. (corundum), alpha Al ₂ O ₃	9	3
Aluminum oxide monohydrate (böhmite), alpha		
Al_O_H_O	3	38
Aluminum oxide monohydrate, diaspore, beta		
Al_OH_O	3	41
Aluminum silicate (mullite) 3A1,0,.2SiO,	3m	3
Ammonium aluminum sulfate dodecahydrate		
(teschermigite), NH, Al(SO,), 12H,O	6	3
Ammonium azide, NH,N,	9	4
Ammonium bicarbonate (teschemacherite),		
(NH.)HCO,	9	5
Ammonium bromide, NH, Br	2	49
Ammonium bromoosmate, (NH,),OsBr,	. 3	71
Ammonium bromoplatinate, (NH,),PtBr,	9	6
Ammonium bromoselenate, (NH ₄), SeBr ₅	. 8	4
Ammonium bromotellurate, (NH ₄) ₂ TeBr ₆	. 8	5
Ammonium cadmium trichloride, NH,CdCl,	. 5m	6
Ammonium chloride (sal-ammoniac), NH ₄ Cl	. 1	59
Ammonium chloroiridate, (NH ₄), IrCl ₆	. 8	6
Ammonium chloroosmate, (NH ₄) ₂ OsCl ₄	. 1m	6
Ammonium chloropalladate, (NH ₄) ₂ PdCl ₅	. 8	7
Ammonium chloropalladite, (NH,),PdCl,	. 6	6
Ammonium chloroplatinate. (NH.), PtCl,	. 5	3
Ammonium chlorostannate (NH.), SnCl.	. 5	4
Ammonium chlorotellurate, (NH,), TeCl,	. 8	8
Ammonium chromium sulfate dodecahydrate,		
NH.Cr(SO.)12H.O	. 6	7
Ammonium cobalt (II) trichloride, NH ₄ CoCl ₃	6m	5
Ammonium dihydrogen phosphate, NH, H, PO,	4	64
Ammonium fluoberyllate, (NH ₄), BeF ₄ ,	. 3m	5
Ammonium fluoborate, NH, BF,	. 3m	6
Ammonium fluogermanate, (NH,),GeF,	. 6	8
Ammonium fluosilicate (cryptohalite),		
(NH,),SiF,	. 5	5
Ammonium gallium sulfate dodecahydrate,		
$NH_{Ga}(SO_{4}), 12H_{O}$. 6	9
Ammonium iodide, NH ₄ I	. 4	56

⁹Further work on this program is in progress, and it is anticipated that additional sections will be issued. Therefore, the accumulative index here is not necessarily the concluding index for the project.

m-Monograph 25.

A mineral name in () indicates a synthetic sample.

7	Vol. or	
	sec.	Page
Ammonium iron sulfate dodecahydrate,		
NH $Fe(SO) \cdot 12HO$	6	10
Ammonium manganese(II) trifluoride, NH.MnF,	5m	8
Ammonium manganese(II) all della NH. HgCl.	5m	9
Ammonium meteurg(11) themolice, 111-1-1-1-1-	8	9
Ammonium nickel (II) trichloride NH NiCl	6m	6
Ammonium nickei (II) memonio niter) NH NO	7	4
Ammonium intrate (ammonia-inter), $\operatorname{Mi}_4(\mathcal{O}_3)$.	•	•
Ammonium oxalate mononydrate (oxalinite),	7	5
$(\mathrm{NH}_4)_2\mathrm{C}_2\mathrm{O}_4\cdot\mathrm{H}_2\mathrm{O}$	1	5
Ammonium perchlorate, NH ₄ ClO ₄ (ortho-	-	6
rhombic)	1	0
Ammonium perrhenate, NH ₄ ReO ₄	9	1
Ammonium phosphomolybdate tetrahydrate,		
$(NH_4)_3PO_4(MoO_3)_{12} \cdot 4H_2O \dots \dots \dots$	8	10
Ammonium sulfate (mascagnite), (NH_),SO_		
(revised)	9	8
Ammonium zirconium fluoride, (NH ₄), ZrF ₇	. 6	14
Antimony, Sb	. 3	14
Antimony(III) fluoride, SbF,	. 2m	4
Antimony(III) jodide SbL	. 6	16
Antimony(III) oxide (senarmontite) Sb.O.		
(aubic)	3	31
(Cubic)	. 0	01
Antimony(III) Oxide, valentinite, SD_2O_3	10	6
(orthornombic)	. 10	0 Q
Antimony(IV) oxide (cervantite), SD_2O_4	. 10	10
Antimony(V) oxide, Sb_2O_5	. 10	10
Antimony scandium, SbSc	. 410	44
Antimony selenide, Sb ₂ Se ₃	. 3m	1
Antimony (III) sulfide (stibnite), Sb ₂ S ₄	. 5	6
Antimony telluride, Sb ₂ Te,	. 3m	8
Antimony terbium, SbTb	. 5m	61
Antimony thorium, SbTh	. 4m	44
Antimony thulium, SbTm	. 4m	45
Antimony ytterbium, SbYb	. 4m	45
Antimony yttrium, SbY	. 4m	46
Arsenic. As	. 3	6
Arsenic(III) iodide. AsI,	. 6	17
Arsenic trioxide (arsenolite), As,O, (cubic).	. 1	51
Arsenic trioxide claudetite, As.O. (mono-		
clinic)	. 3m	9
Barium Ba	. 4	7
Barium aluminum oxide, BaAl.O.	. 5m	11
Barium arsenate Ba (AsO)	. 2m	6
Barium horon oxide high form BaB.O.	4m	4
Barium boron oxide, BaBO	4m	6
Barium bromido monohydrate BaBr H O	3m	10
Barium promue mononyurate, BaBi ₂ ·11 ₂ O·1.1		10
Barium carbonate (witherite), Baco, (ortho-	2	54
rnombic) Proce (multiple of 1075 %	. 2	11
Barium carbonate, BaCO ₃ (cubic) at 1075 C	10	70
Barium fluoride, BaF ₂	1	10
Barium fluosilicate, BaSiF ₆	4.00	1
Barium molybdate, BaMoO ₄	7	7
Barium nitrate (nitrobarite), $Ba(NO_3)_2$		81
Barium perchlorate trihydrate, Ba(ClO ₄), 3H,	O 2m	7
Barium peroxide, BaO ₂	6	18
Barium selenide, BaSe	5m	61
Barium stannate, BaSnO,	3m	11
Barium sulfate (barite), BaSO,	3	65

Vol. or

	sec.
Barium sulfide, BaS	7
Barium titanate, BaTiO,	3
Barium tungstate. BaWO.	7
Barium zirconate BaZrO.	5
Beryllium aluminum oxide (chrysoberyl)	
Beal O	9
\mathbf{Porv} lium aluminum cilicato harvi	0
Derymum arummum sincare , beryr,	0
$\operatorname{Be}_{\mathfrak{g}}\operatorname{Al}_{\mathfrak{g}}(\operatorname{SIO}_{\mathfrak{g}})_{\mathfrak{h}}$ and $\operatorname{Be}_{\mathfrak{g}}\operatorname{Be}_{\mathfrak{g}}$	10
Beryllium chromium oxide, $BeCr_{2}O_{4}$	10
Berymum cobait, BeCo	200
Beryllium germanate, Be ₂ GeO ₄	10
Beryllium orthosilicate, phenacite, $BeSi_2O_4$	8
Beryllium oxide (bromellite), BeO	1
Beryllium palladium, BePd	5 m
Bis (o-dodecacarborane), $C_4 B_{20} H_{22} \dots \dots$	6m
Bismuth, Bi	3
Bismuth cerium, BiCe	4m
Bismuth dysprosium, BiDy	4m
Bismuth erbium, BiEr	4m
Bismuth fluoride, BiF,	1m
Bismuth holmium, BiHo	4m
Bismuth(III) iodide Bil.	6
Bismuth lanthanum BiLa	4m
Bismuth neodymium BiNd	4m
Bismuth arthophosphate BiPO (monoclinic)	3m
Bismuth orthophosphate , Bi O_4 (monocrific)	3m
B ismuth orthophosphate, bit O_4 (figural)	JIII
distribution of the state of th	2-
(tetragonar)	311
Bismuth orthovanadate, high form, BIVO	0
(monoclinic)	311
Bismuth oxybromide, BiOBr	8
Bismuth oxychloride (bismoclite), BiOCI	4
Bismuth oxylodide, BiOI	9
Bismuth praseodymium, BiPr	4m
Bismuth sulfide (bismuthinite). Bi_2S_3 (revised)	5m
Bismuth telluride, BiTe	4m
Bismuth telluride (tellurobismuthite), Bi ₂ Te ₃	3m
Bismuth trioxide (bismite), alpha Bi ₂ O ₂	3
Cadmium, Cd	3
Cadmium bromide, CdBr,	9
Cadmium carbonate (otavite). CdCO,	7
Cadmium cerium CdCe	5m
Cadmium chloride CdCl	9
Cadmium chromite CdCr O	5m
Cadmium exanide Cd(CN)	2m
Cadmium lanthanum CdLa	5m
Cadmium malybdate. CdMaO	6
Codmium avida CdO	0
Cadmium parablanta havabudrata	ک
Cadmium percinorate nexanyurate,	0
$Cu(CIO_{4}), bH, O$	311
Cadmium praseodymium, CdPr	5m
Cadmium selenide, CdSe (hexagonal)	7
Cadmium sulfate, CdSO ₄	3m
Cadmium sulfate hydrate, 3CdSO ₄ ·8H ₂ O	6m
Cadmium sulfate monohydrate, $CdSO_4$ ·H ₂ O	6m
Cadmium sulfide (greenockite), CdS	4
Cadmium telluride, CdTe	3m
Cadmium tungstate, CdWO ₄	2m
tri-Calcium aluminate, 3CaO-Al ₂ O ₃	5
Calcium aluminate, 12CaO 7A1,O,	9
Calcium aluminum germanate, Ca,Al,(GeO.),	10
Calcium bromide hexahydrate, CaBr, 6H,O	8

m-Monograph 25.

A mineral name in () indicates a synthetic sample.

	•	Vol. or	
Page		sec.	Page
8	Calcium carbonate (aragonite) CaCO (or-		0
.15	there which	2	53
40	(10010010)(2)		55
9	Calcium carbonate (calcite) CaCO ₃ (nexagonal)) 2	51
8	Calcium chromate, CaCrO ₄	7	13
	Calcium chromium germanate, Ca ₃ Cr ₂ (GeO ₄) ₃	10	16
10	Calcium chromium silicate (uvarovite),		
	Ca Cr (SiO)	10	17
13	Coloium fluorido (fluorita) CaE	1	69
10	Calcium fluoride (fluorenetite), Cal_2	1	00
12	Calcium Huoride phosphate (Huorapatite),	•	00
62	$\operatorname{Ca}_{\mathbf{s}} F(\operatorname{PO}_{4})_3 \dots	Зm	22
13	Calcium formate, $Ca(HCO_2)_2$	8	16
11	Calcium gallium germanate, Ca,Ga,(GeO,),	10	18
36	Calcium hydroxide (portlandite), Ca(OH),	1	58
62	Calcium iron germanate. Ca Ee (GeO)	10	19
7	Calcium intra germanate, $Ca_3 Pe_2(GeO_4)_3 \dots$	10	10
	Calcium from silicate (andrauite),	-	-
20	$Ca_{3}Fe_{2}Si_{3}O_{12}$	9	22
46	Calcium magnesium silicate (diopside),		
47	$CaMg(SiO_{1})_{2}$	5m	17
47	Calcium molybdate (powellite), CaMoO.	6	22
7	Calcium nitrato. Ca (NO)	7	14
40		1	17
40	Calcium oxide, CaO	1	43
20	Calcium selenide, CaSe	5m	64
48	Calcium sulfate (anhydrite), CaSO,	4	65
49	Calcium sulfide (oldbamite) CaS	7	15
11	Calcium telluride. CoTo	.1m	50
12			00
15	Calcium tungstate, scheelite, CawO ₄ ,	6	23
	Carbon, diamond, C	2	5
14	Cerium, antimony CeSb	4m	40
	Cerium arsenate CeAsO	4m	8
14	Corium arconido. CoAs	4m	51
1.4		1	01
11	Cerium(III) chloride, CeCI,	110	8
54	Cerium(III) fluoride, CeF ₃	8	17
16	Cerium magnesium, CeMg	5m	65
49	Cerium magnesium nitrate 24-hydrate.		
13	$C \in M_{\mathcal{R}}(NO) = 21HO$	10	20
50	Conjum nichjum titonjum ovide (occhunite)	10	20
16	Certum mobium titanium oxide (escuyinte),	0	
10	CeNhTiO ₆	3m	24
16	Cerium nitride, CeN	4m	51
10	Cerium(IV) oxide (cerianite), CeO,	1	56
17	Cerium phosphide CeP	4m	52
11	Corium(III) vanadate. CeVO	1m	9
63	Certain (11) variable $CeVO_4$ \dots \dots \dots	Em	CE
10	Cerium zinc. Cezin	JII	05
18	Cesium aluminum sulfate dodecahydrate,		
16	$CsAl(SO_4)_2 \cdot 12H_2O$	6	25
8	Cesium bromate, CsBrO,	8	18
63	Cesium bromide CsBr	3	49
21	Cosium hromoosmate(IV) Cs OsBr	2 m	10
27	Cestum bromoosinate($1V$), Cs_2OsDr_k	200	10
21	Cesium bromopiatinate, Cs_2PtBr_6	8	19
	Cesium bromoselenate, Cs ₂ SeBr ₆	8	20
19	Cesium bromotellurate, Cs, TeBr,	9	24
64	Cesium cadmium trichloride CsCdCl.		
12	(hexagonal)	5m	19
20	Cacium calcium trichlorida. CcCaCl	5m	21
20	Cestum calcium tricmonue, Oscaci,	300	21
0	Cesium chlorate, CsClO ₃	8	20
10	Cesium chloride, CsCl	2	44
15	Cesium chloroosmate(IV), Cs,OsCl,	2m	11
21	Cesium chloroplatinate Cs.PtCl	5	14
8	Casium chlorostannota Ce SnCl	5	16
10	Contain the matrix $C_{12} = C_{12} = $	0	10
10	Cesium chromate, Cs_2CrO_4	3M	25
20	Cesium chromium sulfate dodecahydrate,		
15	$CsCr(SO_{\bullet})_{2} \cdot 12H_{2}O$	8	21
15	Cesium cobalt (II) trichloride. CsCoCl	6m	11
	Cesium conner(II) trichloride CsCuCl	5m	22
	Cogium diabloroiodido. ColOl	0	50
	Cestum alcinorologiae, USICI,	3	50
	Cesium fluoantimonate, CSSbF,	4m	9
	Cesium fluoborate, CsBF,	8	22

	Vol. or			Vol. or	
	sec.	Page		sec.	Page
Cesium fluogermanate. Cs GeF	5	17	Dysprosium arsenide DyAs	4m	53
Cosium fluoplatinata. Co BtE	c	27	Dysprosium callium oxide Dy Ga (GaO)	2m	15
Cestum nuopialmate, CS ₂ PtF ₆	0	21	Dysprosium gamum Oxide, Dy Oa, Oao,	2111	10
Cesium fluoride, CsF	3m	26	Dysprosium nitride, DyN	4m	53
Cesium fluosilicate, Cs,SiF,	5	19	Dysprosium sesquioxide, Dy,O,	9	30
Cesium gallium sulfate dodecahydrate			Dysprosium telluride DyTe	4m	54
	0		Buopergium venedoto DeVO	4m	15
$CSGa(SO_4)_2 \cdot 12\Pi_2 O \dots $	8	23	Dysprosium vanadate, DyvO ₄	-111	15
Cesium iodide, CsI	4	47	Erbium antimony, ErSb	-1m	41
Cesium iron sulfate dodecahydrate.			Erbium arsenate, ErAsO,	3m	31
$C \in E_P(SO_1) \setminus 12H_O$	6	28	Frhium arsenide FrAs	4m	54
$C_{3} = C_{3} = C_{3$	0	20	Ellin allim mide De Ce (CeO)	1	10
Cesium lead(II) trichioride, CSPbCi ₃			Erbium gainum oxide, Er, Ga, (GaO ₂),	1111	12
(tetragonal)	5m	24	Erbium manganite, ErMnO,	2m	16
Cesium nickel (II) trichloride. CsNiCl.	6m	12	Erbium nitride, ErN	4m	55
Cosium nitrate CoNO	0	25	Erbium phosphato ErPO	Q	31
$Cestum mulate, CSNO_3 \dots		20		0	05
Cesium perchlorate, CSCIO ₄ , (orthornombic)	Im	10	Erbium sesquioxide, Er_2O_3	8	20
Cesium strontium trichloride, CsSrCl ₃	6 m	13	Erbium telluride, ErTe	4m	55
Cesium sulfate Cs SO	7	17	Erbium vanadate. ErVO	5 m	29
Cocium vanadium sulfate dodecahydrate			Furonium arsonato FuAsO	3m	32
Cesium vanadium suffate dodecanyulate,			Europium dischalt, Euriso,	1m	12
$CsV(SO_{\star}), 12H, O$	1 m	11	Europium(III) chioride, EuCl,	110	13
Chromium, Cr	5	20	Europium gallium oxide, Eu,Ga,(GaO ₄),	2m	17
Chromium(III) fluoride trihydrate CrE. 3H O	5m	25	Europium nitride, EuN	4 m	56
Chromium iridium 2:1 Cr. Ir	6m	14	Europium avide EuO	4 m	56
	om	14		1	10
Chromium orthophosphate, alpha, CrPO ₄	2m	12	Europium oxychloride, EuOCI	Im	13
Chromium orthophosphate, beta, CrPO,	9	26	Europium(III) vanadate, EuVO,	4 m	16
Chromium(III) oxide Cr O	5	22	Gadolinium antimony. GdSb	4m	42
Chaomium shudium $2\cdot 1$ ChaDh	Ст	15	Cadelinium encenate. CdAcO	4m	17
Chromium modium 3:1, Cr, Rit	011	15	Gauominum arsenate, Guaso,	400	11
Chromium silicide, Cr ₃ Si	6	29	Gadolinium arsenide, GdAs	4m	57
Cobalt, Co (cubic)	4m	10	Gadolinium fluoride, GdF,	1m	14
Cobalt aluminum oxide CoAl O	9	27	Gadolinium gallium oxide Gd Ga (GaO)	2m	18
Cabalt antimany avida CaSh O	5	21	Gadelinium indium. CdIn	Em	67
Cobait antimony oxide, $Cosp_2O_6$	SIII	26	Gadolinium Indium, Guin	om	01
Cobalt arsenide (skutterudite), CoAs,	10	21	Gadolinium nitride, GdN	4m	57
Cobalt(II) carbonate (spherocobaltite).			Gadolinium oxide, Gd ₂ O,	1m	16
CoCO	10	24	Gadolinium oxychloride GdOCl	1m	17
Cobalt diarconido. CoAs. (revised)	10	10	Gadelinium unpedete. CdVO	5m	20
Cobait diarsenide, CoAs, (revised)	4m	10	Gadolinium vanadate, GovO ₄	om	30
Cobalt fluosilicate hexahydrate,			Gallium, Ga	2	9
$CoSiF_{\bullet} \cdot 6H_{\bullet}O$	3m	27	Gallium arsenide, GaAs	. 3m	33
Cobalt gallate CoGa O	10	27	Gallium antimonida GaSh	6	30
Cobalt gamate, Co CoO	10	21	Gallian antimonide, Gabb	4	25
Cobait germanate, Co ₂ GeO ₄	10	21	Gallium oxide, alpha, Ga_2O_3	4	25
Cobalt iodide, Col,	4m	52	Gallium phosphate («quartz type), GaPO ₄	8	27
Cobalt iron arsenide (safflorite), CoFeAs,	10	28	Germanium Ge	. 1	18
Cobalt mercury thiogyanate ColHg(CNS)	2 m	13	Cormonium dioxido. GoO (hoxagonal)	-	
Cohalt increary timber and the college (Crib) al	2.11	10	Germanium utoxide, GeO, (nexagonar)		
Cobalt(II) oxide, CoU	9	28	(low form)	1	51
Cobalt(II, III) oxide, Co.O	9	29	Germanium dioxide, GeO, (tetragonal)		
Cobalt perchlorate hexahydrate.			(high form)	8	28
$C_0(C O_1)$, 6H O	3 m	26	(Ingli Totin)	1m	50
C_{1}	311	20	Germanium iodide, Gei ₂	4111	56
Cobalt silicate, $Co_2 SiO_4$ (orthorhombic)	4m	11	Germanium(IV) iodide, Gel	. 5	25
Cobalt sulfate, beta, CoSO,	2m	14	Gold. Au	. 1	33
Cobalt titanate. CoTiO.	4m	13	Cold antimony 1:2 (aurostibite) AuSh	7	18
Cobalt tungstate CollO	4m	12	Cold antimony 1.2 (autostrone), $Maso_2 \dots$		20
	410	13	Gold dysprosium, AuDy	. 510	00
Copper, Cu	1	15	Gold(I) cyanide, AuCN	. 10	33
Copper antimony oxide, CuSb ₂ O ₆	5 m	27	Gold holmium AuHo	. 5m	68
Copper(I) bromide. CuBr	4	36	Cold mornagium AuMa	6m	02
Copper carbonate basic agurite		00	Gord magnestum, Auwg	. 011	00
Copper Carbonate, Dasic, azunte,			Gold niobium 1:3, $AuNb_3$. 6m	16
$CU_{q}(OH)_{p}(CO_{q})_{p}$,	10	30	Gold tin, 1:1 AuSn	. 7	19
Copper carbonate, basic, (malachite),			Cold titanium 1:3 AuTi	6 m	17
CU (OH) CO	10	31		. 0	10
Coppor(I) ablarida (mantaliita). CuCl	10	25	Gold vanadium 1:3, Auv_3	. 610	18
Copper(I) chionide (mantokite), CuCI	10	30	Hafnium, Hf	. 3	18
Copper(1) logide (marchite), CuI	4	38	Holmium arsenate, HoAsO.	. 3m	34
Copper (I) oxide (cuprite), Cu ₂ O	2	23	Holmium ethylsulfate nonabydrate		
Copper(II) oxide (tenorite) CuO	1	40	molinitum ethyrounate nonanyunate,	۹	
Connor culfoto (choleo sucrito) CuCo	 1	77	$\operatorname{Hol}(C_{2}H_{5})SO_{4}J_{3}\cdot9H_{2}O\ldots\ldots\ldots\ldots\ldots\ldots\ldots$. 1m	18
Copper surface (charcocyanite), $CusO_4 \dots$	зm	29	Holmium nitride, HoN	. 4m	58
Copper(II) sulfide (covellite), CuS	4	13	Holmium selenide HoSe	. 4m	59
Dysprosium antimony, DySb	4m	41	Holmium cosquiovido. Ho		20
Dysprosium arsenate DyAsO	Rm	30	normium sesquioxide, n_2O_3	. 9	<i>ک</i> د
-Joprostum afochate, DJ1004	5111	50	Holmium vanadate, HoVO ₄	. 4m	18
			Indium, In	. 3	12
m-Monograph 25.			Indium antimony. InSb	. 4	73
• • • • • • • • • • •				-	

A mineral name in () indicates a synthetic sample.

Indium arsenide, InAs.....

3 m

35

Vol. or sec.

Manganese selenide, MnSe.....

Manganese sulfide (alabandite), alpha MnS...

1m

6m

6m 7

1m

4m

3m

6m

4 m

2m

1m

2m 5m

2m

2m

4m

1 m

5m

1

2

4m

1m

1m

3m

4m 4m

> 7 9

4

10

10

10

6

1

6

1

10

1m

7

7

5

5

1

9

4m

7

9

4m

5

9

4

10

5m

8

Page 23

22

 24

27

25

34

21 39

26

2220

25 20

36

22

23

62

27

37

10

35

24

28

29

41 25

62

28

34

33

36

37

38

30

37

70

32

83

39

30

30

31

41

43

84

35

63

32

36

63

45

37

41

11

	Vol. or		
	sec.	Page	
Indium oxide, In_2O_3	5	26	Lithium molybdate, Li ₂ MoO ₄ (trigonal)
Indium phosphate, InPO,	8	29	Lithium niobate, LiNbO ₃
Iodic acid, HIO,	5	28	Lithium sodium sulfate, LiNaSO ₄
Iodine, I ₂	3	16	Lithium nitrate, LiNO,
Iridium, Ir	4	9	Lithium oxide, Li ₂ O
Iridium dioxide, IrO ₂	4 m	19	Lithium perchlorate trihydrate, LiClO ₄ ·3H ₂ O
Iridium niobium 1:3, $IrNb_3$	6m	19	Lithium phosphate, low form (lithiophos-
Iridium titanium 1:3, $IrTi_3$	6m	20	phate), Li,PO ₄ (orthorhombic) revised
Indium vanadium 1:3, IrV_3	6m	21	Litnium phosphate, nigh form, Li ₃ PO ₄
Iron, alpha Fe	4	3	Lithium sulfate manshudrote $Li SO_{4}$
Iron arsenide, FeAs	lm	19	Lithium sumate monohydrate, $Ll_2SO_4 \cdot H_2O \dots$
Iron arsenide (loellingite), FeAs ₂	10	34	Linum trimetaphosphate trinydrate,
Iron bromide, FeBr,	4m 4m	59	$\text{Li}_{3} \mathbf{\Gamma}_{3} \mathbf{\cup}_{9} \cdot 3 \mathbf{\Pi}_{2} \mathbf{\cup} \dots \dots \mathbf{\cup} \mathbf{I}_{1} \mathbb{W} \mathbf{O} (\text{trigonal})$
Iron loaide, Fei ₂	410) Emo	60	Lithium tungstate, $\text{El}_2 WO_4$ (tingonal)
Iron (II,III) Oxide (magnetite), Fe_3O_4	SIII	31	Lutetium arsonate LuAso
Lenthenum entimeny LoSh	3 4m	29 40	Lutetium gallium oxide Lu Ga (GaO)
Lanthanum arconato, Laso,	9m	44	Lutetium manganite LuMnO
Lanthanum arsonido, $LaAsO_4$,	311 4m	30	Lutetium nitride LuN
Lanthanum borato, LaBO	1m	20	Lutetium oxide Lu.O.
Lanthanum chloride $LaCl$	1m	20	Lutetium vanadate. LuVO.
Lanthanum Chronide, LaCi,	7	20	Magnesium Mg.
Lanthanum magnesium LaM α	י 500	60	Magnesium aluminate (spinel), MgAl ₂ O,
Lanthanum magnesium nitrate 24-hydrate	JIII	05	Magnesium aluminum silicate (pyrope),
La Mg (NO) $,24H$ O	1m	22	$Mg_{3}Al_{2}(SiO_{4})_{3}$
Lanthanum niobium titanium oxide LaNbTiO	3m	37	Magnesium aluminum silicate (low cordi-
Lanthanum nitride LaN	4m	61	erite), Mg ₂ Al ₄ Si ₅ O ₁₈ (orthorhombic)
Lanthanum oxide. La.O.	3	33	Magnesium aluminum silicate (high cordi-
Lanthanum oxychloride. LaOCl	7	22	erite), Mg,Al ₄ Si ₅ O ₁₈ (hexagonal)
Lanthanum phosphide. LaP	5m	69	Magnesium ammonium phosphate hexahy-
Lanthanum selenide. LaSe	4m	61	drate (struvite), MgNH ₄ PO ₄ ·6H ₂ O
Lanthanum zinc, LaZn	5m	70	Magnesium boron oxide, Mg ₂ B ₂ O ₅ (triclinic)
Lead, Pb	1	34	Magnesium bromide, MgBr,
Lead boron oxide, PbB_4O_7	4m	19	Magnesium carbonate (magnesite), MgCO,
Lead bromide, PbBr ₂	2	47	Magnesium chromite (picrochromite),
Lead carbonate (cerrussite), PbCO ₃	2	56	$\operatorname{MgCr}_2 \cup_4$
Lead chloride (cotunnite), PbCl ₂	2	45	Magnesium gallate MaGa O
Lead formate, $Pb(HCO_2)_2$	8	30	Magnesium germanate Mg GeO (cubic)
Lead fluochloride (matlockite), PbFC1	1	76	Magnesium germanate, $Mg_2 GeO_4$ (cubic)
Lead fluoride, alpha PbF ₂ (orthorhombic)	5	31	rhombic)
Lead fluoride, beta PbF_2 (cubic)	5	33	Magnesium hydroxide (brucite) Mg(OH)
Lead(II) lodide, Pbl,	5	.34	Magnesium nydroxide (Maeric), Mg(OT) ₂
Lead molybdate (wullenite), PDMOU,	7	23	Magnesium selenide MgSe
chead monoxide (intharge), PbO (red) tetrag-	0	20	Magnesium silicate enstatite MgSiO.
Lead monovide (massion) PbO (vollow)	2	30	Magnesium silicate (forsterite), Mg.SiO.
(orthorhombic)	n	20	Magnesium silicate fluoride (norbergite).
Lead nitrate Pb(NO)	4 5	36	Mg_SiO.·MgF.
Lead(IL_III) oxide (minium) Ph O	8	30	Magnesium silicate fluoride (humite).
Lead oxybromide Ph O Br	5m	32	3Mg.SiO.·MgF.
Lead phosphate hydrate. Pb. (PO.)-OH	8	33	Magnesium sulfate heptahydrate (epsomite).
Lead selenide (clausthalite). PhSe	5	38	MgSO7H.O
Lead sulfate (anglesite), PbSO,	3	67	Magnesium sulfide, MgS
Lead sulfide (galena), PbS	2	18	Magnesium tin, Mg, Sn
Lead titanate, PbTiO,	5	39	Magnesium titanate (geikielite), MgTiO,
Lead tungstate (stolzite), PbWO ₄ (tetragonal)			Magnesium tungstate, MgWO
(revised)	5m	34	Manganese aluminate (galaxite), MnAl ₂ O ₄
Lithium arsenate, Li ₃ AsO ₄	2m	19	Manganese bromide, MnBr ₂
Lithium barium trifluoride, LiBaF,	5m	35	Manganese(II) carbonate (rhodochrosite),
Lithium bromide, LiBr	4	30	MnCO,
Lithium chloride, LiCl	1	62	Manganese ferrite (jacobsite), MnFe ₂ O ₄
Lithium fluoride, Li F	1	61	Manganese iodide, MnI ₂
Lithium iodate, LiIO,	7	26	Manganese(II) oxide (manganosite), MnO
			Manganese(III) oxide (partridgeite), Mn ₂ O ₃

m-Monograph 25.

A mineral name in () indicates a synthetic sample.

-

6m

	Vol. or			Vol. or
	sec.	Page		sec.
Manganese(II) tungstate (huebnerite), MnWO	2m	24	Plutonium phosphide, PuP	4m
Mercury magnesium, HgMg	6m	84	Plutonium telluride, PuTe	4m
Mercury(I) bromide, Hg,Br,	7	33	Potassium acid phthalate,	
Mercury(I) chloride (calomel), Hg ₂ Cl ₂	1	72	$C_{4}H_{4}(COOH)(COOK)$	4 m
Mercury(II) chloride, HgCl ₂	1	73	(alum), $KAl(SO_4)_2 \cdot 12H_2O$	6
Mercury(II) cyanide, $Hg(CN)_2$	6	35	Potassium borohydride, KBH,	9
Mercury(II) fluoride, HgF ₂	2m	25	Potassium bromate, KBrO,	7
Mercury(I) 10d1de, Hgl	4	49	Potassium bromide, KBr	1
$Mercury(II) 10d1de, HgI_2 \dots	1	74	Potassium bromopiatinate, K, PtBr,	8
Mercury(II) oxide (montroyalte) HgO (revised)	9 7	39	Potassium cadmium trichlorida KCdCl	0 5m
Mercury(II) selenide (tielnannite), hgse	1	35	Potassium chlorate KClO	2m
agonal)	4	17	Potassium chloride (sylvite) KCl	1
Mercury(II) sulfide (metacinnabar) Hos	4	1 (Potassium chloroplatinate K PtCl	5
(cubic)	4	21	Potassium chlorophenate K.BeCl	2m
Metaboric acid. HBO. (cubic)	4m	27	Potassium chlororuthenate(IV), K.RuCl.	10
Molybdenum. Mo.	1	20	Potassium chlorostannate, K.SnCl.	6
Molybdenum disulfide (molybdenite). MoS	5	47	Potassium chromium sulfate dodecahydrate.	Ū.
Molybdenum osmium 3:1. Mo.Os	6m	28	KCr(SO.). 12H.O	6
Molybdenum trioxide (molybdite), MoO,	3	30	Potassium cobalt (II) sulfate, $K_2Co_2(SO_4)_2$	6 m
2-Naphthylamine, n-phenyl-, C ₁₆ H ₁₃ N	6m	29	Potassium cobalt (II) trifluoride, KCoF,	6m
Neodymium antimony, NdSb	4m	43	Potassium cobaltinitrite, $K_3 Co(NO_2)_6$	9
Neodynium arsenate, NdAsO ₄	4 m	28	Potassium copper (II) trifluoride, KCuF,	6m
Neodymium arsenide, NdAs	4m	64	Potassium cyanate, KCNO	7
Neodymium borate, NdBO,	1m	32	Potassium cyanide, KCN	1
Neodymium chloride, NdCl ₃	1m	33	Potassium dihydrogen arsenate, KH ₂ AsO ₄	1 m
Neodymium ethylsulfate nonahydrate,			Potassium dihydrogen phosphate, KH ₂ PO ₄	3
$Nd[(C_2H_5)SO_4]_3 \cdot 9H_2O$	9	41	Potassium fluogermanate, K ₂ GeF ₆	6
Neodymium fluoride, NdF,	8	36	Potassium fluoplatinate, K ₂ PtF ₆	6
Neodymium gallium oxide, $Nd_3Ga_2(GaO_4)_3$	1m	34	Potassium fluoride, KF	1
Neodymium oxide, Nd_2O_3	4	26	Potassium fluosilicate (hieratite), K_2SiF_6	5
Neodymium oxychloride, NdOCI	8	37	Potassium fluotitanate, K ₂ TiF ₆	7
Neodymium selenide, NdSe	5m	71	Potassium heptafluozirconate, K_3ZrF_7	9
Neodymium vanadate, $NuVO_4$	411	30	Potassium hydroxide, KOH at 300 °C	4m
Nickel Ni	4111	64 10	Potassium hydroxy-chlororuthenate,	10
Nickel aluminate. NiAl O	1	13	$K_{4}Ru_{3}CI_{10}O\cdot H_{3}O$	10
Nickel argunia 1.2 (rammelshoraite) NiAs	10	42	Potassium iron (II) trifluorido KEOE	1 Cm
Nickel arsenic sulfide (gersdorffite), NiAss.	10 1m	42	Potassium lithium sulfate KLiSO	3m
Nickel(II) carbonate NiCO (trigonal)	1m	36	Potassium magnesium sulfate (langheinite)	om
Nickel ferrite (trevorite) NiFe O	10	44	K.Mg. (SO)	6 m
Nickel fluosilicate hexahydrate. NiSiF. 6H.O	8	38	Potassium magnesium trifluoride, KMgF,	6m
Nickel gallate. NiGa.O.	10	45	Potassium manganese (II) sulfate	
Nickel germanate. Ni.GeO.	9	43	(manganolangbeinite), K ₂ Mn ₂ (SO ₄) ₃	6m
Nickel(II) oxide (bunsenite). NiO	1	47	Potassium manganese (II) trifluoride, KMnF,	6m
Nickel sulfate, NiSO,	2m	26	Potassium nickel (II) sulfate, $K_2Ni_2(SO_4)_3$	6m
Nickel sulfate hexahydrate (retgersite),			Potassium nitrate (niter), KNO ₃	3
NiSO ₄ .6H ₂ O	7	36	Potassium nitroso chlororuthenate,	
Nickel sulfide, millerite, NiS	1m	37	K,RuCl,NO	2m
Nickel tungstate, NiWO,	2m	27	Potassium perchlorate, KClO,	6
Niobium osmium 3:1, Nb ₃ Os	6m	30	Potassium perchromate, K, CrO,	3m
Niobium platinum 3:1, Nb ₃ Pt	6m	31	Potassium periodate, KIO	7
Niobium silicide, NbSi ₂	8	39	Potassium permanganate, KMnO ₄	1
Osmium, Os	4	8	Potassium permenate, KReO ₄	8
Osmium titanium, OsTi	6m	85	$K = O(M_0O)$, $4H = O$	Q
Palladium, Pd	1	21	$\mathbf{R}_2 = \mathbf{O}_4 (\mathbf{M} \mathbf{O}_3)_{12} + \mathbf{H}_2 \mathbf{O} + \dots + \mathbf{O}_3$	0 6m
Palladium hydride, PdH _{0.706}	5m	72	Potassium sodium sulfate KNaSO	6m
Palladium oxide, PdO	4	27	Potassium sodium sulfate (anhthitalite)	0.11
Palladium vanadium 1:3, PdV,	6m	32	K Na(SO)	հա
Platinum, Pt	1	31	Potassium sulfate (arcanite), K.SO.	3
Platinum unadium 1:3, Pt11,	6m	33	Potassium thiocyanate. KCNS	8
Fraunum vanadium 1:3, PtV_3	om	34	Potassium zinc decavanadate 16 hydrate.	Ũ
Flutomum arsentue, PUAS	4m	65	$K_2Zn_1V_2O_2 \cdot 16H_2O$	3m
M			Potassium zinc fluoride. KZnF.	5
m—Monograph 25.			Determine a liste K R (200)	<u></u>

A mineral name in () indicates a synthetic sample.

Potassium zinc sulfate, $K_2 Zn_2(SO_4)_3$

	Vol. or			Vol. or	
	sec.	Page		sec.	Page
Praseodymium antimony, PrSb	4 m	43	Silver, Ag	1	23
Praseodymium arsenate, PrAsO ₄	4 m	32	Silver antimony sulfide, AgSbS, (cubic)	5m	48
Praseodymium arsenide, PrAs	4m	67	Silver antimony sulfide (miargyrite).		
Praseodymium chloride, PrCl,	1m	39	AgSbS (monoclinic).	5m	49
Praseodymium fluoride PrF	5	52	Silver antimony sulfide (nyrargyrite) Ag SbS	0	10
Praseodymium oxychloride ProCl	ğ	47	(trigonal)	5m	51
Prasoodymium sulfido PrS	4m	67	Ciluar ontimony tollumido Acchito		477
Proceedymium sunder, 115	- T IU E-m	40	Silver antimoliy terrunde, Agsore,	5111	41
Praseodymium vanadate, $PrVO_4$	5m	40	Silver arsenate, Ag, ASO,	5	56
Praseodymium zinc, PrZn	5m	72	Silver bromate, AgBrO,	5	57
Rhenium, Re	2	13	Silver bromide (bromyrite), AgBr	4	46
Rhodium, Rh	3	9	Silver carbonate, Ag ₂ CO ₃	1m	44
Rhodium vanadium 1:3, RhV ₃	6m	56	Silver chlorate, AgClO,	7	44
Rubidium aluminum sulfate dodecahydrate,			Silver chloride, (cerargyrite), AgCl	4	44
$RbAl(SO_{\star})_{2} \cdot 12H_{2}O$	6	44	Silver dysprosium, AgDy	5m	66
Rubidium amide. RbNH.	5m	73	Silver erhium AgEr	5m	67
Rubidium bromate RbBrO	8	45	Silver godelinium AgGd	Gm	07
Rubidium bromide BbBr	7	10	Silver balmium, Agua	0m Em	01
Rubidium bromotollurate. Dh. ToDr.	, ,	40	Silver noimium, Agno	511	68
Rubidium biomoteriurate, Rb, 16Br,	8	46	Silver iodide (iodyrite), Agl (hexagonal)	8	51
Rubicium cadmium trichloride, nigh form,			Silver iodide, gamma, AgI (cubic)	9	48
RbCdCl, (tetragonal)	5m	43	Silver molybdate, Ag,MoO,	7	45
Rubidium cadmium trichloride, low form,			Silver neodymium, AgNd	5m	71
RbCdCl, (orthorhombic)	5m	41	Silver nitrate, AgNO,	5	59
Rubidium chlorate, RbClO,	8	47	Silver nitrite AgNO	5	60
Rubidium chloride. RbCl	4	41	Silver oxide Ag O	. 1m	45
Rubidium chloroplatinate Rb PtCl	5	53	Silver United $A_{\alpha} O NO$	1 111	-10
Rubidium chlorostannate Rh SnCl	с С	46	Silver mariadata $A_{2}O_{n}NO_{3}$	4	10
Rubidium chlorostallurate, Rb ₂ ShCl ₆ ,	0	40	Silver periodate, AgiO	9	49
Rubidium chlorotenurate, RD ₂ reCl ₆	8	48	Silver perrhenate, AgReO ₄	8	53
Rubidium enromate, Rb, CrO,	3m	46	Silver phosphate, Ag ₃ PO ₄	5	62
Rubidium chromium sulfate dodecahydrate,			Silver samarium, AgSm	5m	73
$RbCr(SO_4)_2 \cdot 12H_2O$	6	47	Silver selenate, Ag, SeO,	2m	32
Rubidium cobalt (II) trichloride, $RbCoC1_3$	6m	57	Silver subfluoride, Ag, F	5m	53
Rubidium fluoplatinate, Rb, PtF,	6	48	Silver sulfate, Ag.SO.	7	46
Rubidum fluosilicate, Rb,SiF,	6	49	Silver sulfide (argentite), Ag.S	10	51
Rubidium iodide, RbI	4	43	Silver terbium AgTh	5m	74
Rubidium manganese(II) trifluoride RhMnF	5m	44	Silver thulium AgTm	5m	74
Ruhidium nickel (II) trichloride, RhNiCl	Gm	50	Silver uttrium AgV	Em	75
Publidium nitroto DNO (trigonal)	5m	30	Codium orid flueride NoIIE		10
Rubidium mulate, Rono, (mgonar)	DIII	45	Sodium acid Huoride, NaHF,	5	63
Rubicium perchiorate, RbClO	2m	30	Sodium boronydride, NaBH ₄	9	51
Rubidium periodate, RbIO ₄	2m	31	Sodium bromate, NaBrO ₃	5	65
Rubidium sulfate, Rb_2SO_4	8	48	Sodium bromide, NaBr	3	47
Ruthenium, Ru	4	5	Sodium calcium sulfate (glauberite),		
Ruthenium titanium, RuTi	6m	86	$Na_2Ca(SO_4)_2$	6m	59
Samarium arsenate, SmAsO	4m	33	Sodium carbonate monohydrate (thermonatrite),		
Samarium arsenide, SmAs	4m	68	Na ₂ CO ₂ ·H ₂ O	8	54
Samarium chloride SmCl	1m	40	Sodium chlorate NaClO.	3	51
Samarium fluoride SmF	1m	41	Sodium chloride (halite) NaCl	2	41
Samarium gallium oxido. Sm Ca (CaO)	1m	40	Sodium cohalt (II) sulfato totrahudrato	4	11
Samarium garium $0 \times 10^{\circ}$, $5 \times 10^{\circ}$, $6 \times 10^{\circ}$,	1111	44	No Co(CO) All O	0	~ 1
Samarium oxide, $\sin_2 O_3$ (cubic)	4m	34	$Na_2 CO(SO_4)_2 \cdot 4H_2O$	611	01
Samarium oxychioride, SmOC1	lm	43	Sodium cyanate, NaCNO	2m	33
Samarium vanadate, SmVO ₄	5m	47	Sodium cyanide, NaCN (cubic)	1	78
Scandium arsenate, ScAsO ₄	4m	35	Sodium cyanide, NaCN (orthorhombic) at 6 $^{\circ}$ C	1	79
Scandium arsenide, ScAs	4m	68	Sodium fluoride (villiaumite), NaF	1	63
Scandium oxide, Sc ₂ O ₁	3	27	Sodium hexametaphosphate hexahydrate,		
Scandium phosphate, ScPO,	8	50	Na.P.O. 6H.O.	5m	54
Selenium. Se	5	54	Sodium hydroxide NaOH at 300 ° C	4 m	60
Selenium dioxide (selenolite) SeO	1	53	Sodium iodate NalO	7	47
Silicon Si	1	00	Sodium iodide. Nol	1	11
Silicon diaxida alpha or law quarta SiO	2	0	Sourde, Nat	4	31
shicon dioxide, alpha or low quartz, SiO,	-		Sodium magnesium aluminum boron hydroxy		
(nexagonal)	3	24	silicate, dravite, $NaMg_3 Al_6B_3Si_6O_{27}(OH)_4$	3m	47
Silicon dioxide (alpha or low cristobalite),			Sodium magnesium sulfate tetrahydrate,		
SiO ₂ (tetragonal) (revised)	10	48	bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O	6m	63
Silicon dioxide (beta or high cristobalite),			Sodium manganese (II) trifluoride, NaMnF	6m	65
SiO, (cubic)	1	42	Sodium mercury (II) trichloride dihydrate	-	
			NaHgCl. 2H.O	6 m	66
m-Monograph 25.			Sodium molyhdate Na MoO	1m	16
• • • • • • • • •				T111	40

A mineral name in () indicates a synthetic sample.

	Vol. or	
	sec.	Page
Sodium nickel (II) sulfate tetrahydrate,		
$Na_2Ni(SO_4)_2 \cdot 4H_2O$	6m	68
Sodium nitrate (Soda-niter), $NaNO_3$	0	50 62
Sodium orthotungstate(IV) dihydrate	7	02
Na WO .2H.O	2m	33
Sodium oxalate. Na ₂ C ₂ O ₄	6m	70
Sodium perchlorate, NaClO, (orthorhombic)	7	49
Sodium periodate, NaIO,	7	48
Sodium sulfate (thenardite), Na_2SO_4	2	59
Sodium sulfite, Na ₂ SO ₃	.3	60
Sodium tetrametaphosphate tetrahydrate,		
alpha, $Na_4P_4O_{12}$, $4H_2O$ (monoclinic)	10	52
Sodium tetrametaphosphate tetranydrate, beta,	0 m	25
$Na_{A}P_{A}O_{1,2}\cdot 4H_{2}O(UTCHINC) \dots DO(UTCHINC)$	210 3m	30 40
Sodium trimetaphosphate monohydrate	JIII	43
Na.P.O.:H.O	3m	50
Sodium tungstate. Na. WO.	1m	47
Sodium zinc sulfate tetrahydrate.		
$Na_2Zn(SO_4)_2 \cdot 4H_2O$	6m	72
Sodium zinc trifluoride, NaZnF ₃	6m	74
Strontium arsenate, $Sr_3(AsO_4)_2$	2m	36
Strontium boron oxide, SrB_2O_4	3m	53
Strontium boron oxide, SrB_4O_7	4m	36
Strontium bromide hexahydrate, $SrBr_2 \cdot 6H_2O \dots$	4	60
Strontium carbonate (strontianite), SrCO ₃	3	56
Strontium chloride, SrCl ₂	4	40
Strontium chloride nexanydrate, $SrCl_2 \cdot 6H_2O$	4	58
Strontium fluoride, SrF_2	5	57
Strontium formate dihydrate $Sr(CHO_2)_2$	0	55
(orthorhombic)	8	56
Strontium indium hydroxide, Sr.In.(OH).	6m	76
Strontium iodide hexahydrate. SrI. 6H.O	8	58
Strontium molybdate, SrMoO	7	50
Strontium nitrate, Sr(NO ₃) ₂	1	80
Strontium oxide, SrO	5	68
Strontium peroxide, SrO ₂	6	52
Strontium scandium oxide hexahydrate,	_	
$Sr_3Sc_2O_6 \cdot 6H_2O \dots O_6O_6$	6m	78
Strontium sulfate (celestite), SrSO ₄	2	61
Strontium telluride SrTe	/ Am	54 60
Strontium titanate SrTiO		0 9 44
Strontium tungstate. SrWO	7	53
Strontium zirconate, SrZrO,	9	51
Sulfamic acid, NH,SO,	7	54
Sulfur, S (orthorhombic)	9	54
Tantalum, Ta	1	29
Tantalum Silicide, TaSi ₂	8	59
Tellurium, Te	1	26
Tellurium(IV) oxide (paratellurite), TeO,	-	• •
(tetragonal)	7	56
(totragonal)	10	55
Tellurium(IV) ovide tellurite TeO (ortho-	10	55
rhombic)	9	57
Terbium arsenate. TbAsO	3m	54
Terbium arsenide, TbAs	5m	75
Terbium nitride, TbN	4m	70
Terbium phosphide, TbP	5m	76
Terbium selenide, TbSe	5m	76
Terbium sulfide, TbS	5m	77

•	Vol. or	
	sec.	Page
Terbium telluride, TbTe	5m	77
Terbium vanadate, TbVO	5 m	56
That it is a summer summer dodecany drate, $T(A)(SO) = 12HO$	c	59
Thallium(I) arsonate TLASO	0 2m	33
Thallium(I) bromate TIBrO	8	60
Thallium bromide. TIBr	7	57
Thallium(I) chlorate, TlClO,	8	61
Thallium(I) chloride, TlCl	4	51
Thallium chloroplatinate, Tl ₂ PtCl ₆	5	70
Thallium chlorostannate, Tl,SnCl,	6	54
Thallium chromate, Tl,CrO,	3m	54
Thallium chromium sulfate dodecahydrate,		
$TICr(SO_4)_2 \cdot 12H_2O$	6	55
Thallium nuosificate, Ti ₂ SiF ₆	b	20
TIC: (SO) 12H O	6	57
Thallium(I) iodate TIIO	8	62
Thallium(I) iodide TIL (orthorhombic)	4	53
Thallium(I) nitrate. TlNO.	6	58
Thallium(III) oxide, Tl.O,	2	28
Thallium(I) percholorate, TlClO,	2m	38
Thallium(I) phosphate, Tl,PO,	7	58
Thallium(III) phosphate, TlPO ₄	7	59
Thallium(I) sulfate, Tl ₂ SO ₄	6	59
Thallium(I) thiocyanate, TlCNS	8	63
Thallium(I) tungstate, Tl,WO,	lm	48
Thorium arsenide, InAs	4m	-70
Thorium oxide (morialite), 110_2	3m	56
Thulium arsenide TmAs	3m 4m	71
Thulium nitride TmN	4m	71
Thulium sesquioxide. Tm.O.	9	58
Thulium telluride, TmTe	4m	72
Thulium vanadate, TmVO,	5m	57
Tin, alpha, Sn (cubic)	2	12
Tin, beta, Sn (tetragonal)	1	24
Tin arsenide, SnAs	4m	37
$Tin(II)$ fluoride, SnF_2	3m	51
$Tin(IV)$ iodide, SnI_4	5	71
Tin(II) oxide, SnO	4	28
$Tin(IV)$ oxide (cassiterite), SnO_2	1 7	54
Titanium Ti	()	1
Titanium dioxide (anatase) TiO (tetragonal)	1	46
Titanium dioxide brookite TiO (ortho-	1	10
rhombic)	3m	57
Titanium dioxide (rutile), TiO, (tetragonal)	1	44
Titanium(III) oxide, TiO _{1.515}	9	59
Titanium silicide, Ti, Si,	8	64
Titanium sulfide, TiS_2	4m	72
Tungsten, W	1	28
Tungsten sulfide (tungstenite), WS ₂	8	65
Uranium dioxide (uraninite), UO ₂	_2	33
Uranium oxide, UO	5m	78
Uranium selenide, USe	5m	78
	4111	13
Vanadium(V) α vide V α	1	61 66
Ytterhium arsenate YhAsO	0 4m	20 20
Ytterbium arsenide. YbAs	4m	73
Ytterbium gallium oxide, Yb.Ga.(GaO.)	1m	49
Ytterbium nitride, YbN	4m	74
Ytterbium oxide, Yb ₂ O ₃	6m	80
Ytterbium selenide, YbSe	5m	79
Ytterbium telluride, YbTe	5 m	79

m-Monograph 25.

A mineral name in () indicates a synthetic sample.

	Vol. or	
	sec.	Page
Ytterbium(III) vanadate, YbVO ₄	5m	58
Yttrium arsenate, YAsO ₄	2m	39
Yttrium arsenide, YAs	4m	74
Yttrium gallium oxide, Y,Ga,(GaO,),	1m	50
Yttrium oxide, Y ₂ O ₁	3	28
Yttrium oxychloride, YOCl	1m	51
Yttrium phosphate (xenotime), YPO,	8	67
Yttrium sulfide, YS	5 m	80
Yttrium telluride, YTe	4m	75
Yttrium vanadate, YVO,	5m	59
Zinc, Zn	1	16
Zinc aluminate (gahnite), ZnAl ₂ O ₄	2	38
Zinc antimony oxide, ZnSb ₂ O ₄	4m	39
Zinc borate, ZnB_2O_4	1	83
Zinc carbonate, smithsonite, ZnCO,	8	69
Zinc cyanide, Zn(CN),	5	73
Zinc fluoride, ZnF ₂	6	60
Zinc fluosilicate hexahydrate, $ZnSiF_6 \cdot 6H_2O$	8	70
Zinc germanate, Zn ₂ GeO ₄	10	56

m-Monograph 25.

A mineral name in () indicates a synthetic sample.

	Vol. or	
	sec.	Page
Zinc iodide, ZnI,	. 9	60
Zinc orthosilicate (willemite), Zn ₂ SiO ₄	. 7	62
Zinc oxide (zincite), ZnO	. 2	25
Zinc pyrosilicate hydrate, hemimorphite,		
$Zn_{4}(OH)_{2}Si_{2}O_{7} \cdot H_{2}O \dots \dots \dots \dots \dots \dots$. 2	62
Zinc selenide, ZnSe	. 3	23
Zinc sulfate (zinkosite), ZnSO,	. 7	64
Zinc sulfate heptahydrate (goslarite),		
ZnSO, ·7H,O	. 8	71
Zinc sulfide (wurtzite), alpha ZnS (hexag-		
onal)	. 2	14
Zinc sulfide (sphalerite), beta ZnS (cubic)	. 2	16
Zinc telluride, ZnTe	. 3m	58
Zinc tungstate (sanmartinite), ZnWO,	. 2m	40
Zirconium, alpha, Zr	. 2	11
Zirconium dihydride, ZrH,	. 5m	60
Zirconium iodate, $Zr(IO_1)_{4}$. 1m	51
Zirconium nitride, ZrN	. 5m	80
Zirconium oxide, ZrO	. 5m	81
Zirconium phosphide, ZrP	. 4m	75
Zirconium silicate, zircon, ZrSiO,	. 4	68
Zirconium sulfate tetrahydrate, $Zr(SO_4)_2 \cdot 4H_2C$) 7 7	66

CUMULATIVE MINERAL INDEX

	Vol. or				
	sec	Page		sec.	Page
Alabandite, MnS	4	11	Cerussite, PbCO,	2	56
Alum, $KAl(SO_4)_2 \cdot 12H_2O \dots \dots \dots \dots$	6	36	Cervantite, Sb,O,	10	8
Ammonia-niter, NH ₄ NO ₃	7	4	Chalcocyanite, CuSO,	3m	29
Anatase, TiO,	1	46	Chloraluminite, AlCl, 6H,O	7	3
Andradite, $Ca_3Fe_2Si_3O_{12}$	9	22	Chrysoberyl, BeAl ₂ O ₄	9	10
Anglesite, PbSO,	3	67	Cinnabar, HgS	4	17
Anhydrite, CaSO,	4	65	*Claudetite, As,O,	3m	9
Aphthitalite, $K_3Na(SO_4)_2$	6m	52	Clausthalite, PbSe	5	38
Aragonite, CaCO,	3	53	Cordierite, Mg, A1, Si, O,, (orthorhombic)	1m	28
Argentite, Ag ₂ S	10	51	Cordierite, Mg_A1_Si_O, (hexagonal)	1m	29
Arcanite, $K_2 SO_4$	3	62	Corundum, Al ₂ O ₃	9	3
Arsenolite, As ₂ O ₃	1	51	Cotunnite, PbCl,	2	45
Aurostibite, AuSb,	7	18	Covellite, CuS	4	13
* Azurite, Cu ₃ (OH),(CO ₃),	10	.30	Cristobalite, (alpha or low) SiO ₂ (revised)	10	48
Barite, BaSO ₄	3	65	Cristobalite, (beta or high) SiO ₂	1	42
Berlinite, AlPO,	10	3	Cryptohalite, (NH ₄),SiF ₅	5	5
*Beryl, $Be_3Al_2(SiO_3)_6$	9	13	Cuprite, Cu,O	2	23
Bismite, (alpha) Bi ₂ O ₃	3m	17	*Diamond, C	2	5
Bismoclite, BiOCl	4	54	*Diaspore, Al,O, H,O	3	41
Bismuthinite, Bi ₂ S ₃ (revised)	5m	13	Diopside, CaMg(SiO,),	5m	17
*Bloedite, Na,Mg(SO ₄), ·4H,O	6m	63	*Dravite, NaMg, Al, B, Si, O,7 (OH),	3m	47
Böhmite, Al,O,·H,O	3	38	*Enstatite, MgSiO,	6	32
Bromellite, BeO	1	36	Epsomite, MgSO ₄ .7H ₂ O	7	30
Bromyrite, AgBr	4	46	Eschynite, CeNbTiO ₆	3m	24
*Brookite, TiO ₂	3m	57	Ettringite, Al ₂ O ₃ ·6CaO·3SO ₃ ·31H ₂ O	8	3
Brucite, $Mg(OH)_2$	6	30	Fluorapatite, $Ca_s F(PO_4)_3$	3m	22
Bunsenite, NiO	1	47	Fluorite, CaF,	1	69
Calcite, CaCO,	2	51	Forsterite, Mg,SiO,	1	83
Calomel, Hg ₂ Cl ₂	1	72	Galaxite, MnAl ₂ O ₄	9	35
Cassiterite, SnO ₂	1	54	Galena, PbS	2	18
Celestite, SrSO ₄	2	61	Gahnite. ZnAl ₂ O ₄	2	38
Cerargyrite, AgCl	4	44	Geikielite, MgTiO,	5	43
Cerianite, CeO,	1	56	Gersdorffite, NiAsS	1m	35
			Glauberite, Na, Ca(SO ₄),	6m	59
* Natural mineral.			Goslarite, ZnSO ₄ ·7H ₂ O	8	71

m-Monograph 25.

Greenockite, CdS.....

4

15

CUMULATIVE MINERAL INDEX– Continued

	Vol. or			Vol. or	
	sec.	Page		sec.	Page
Halite, NaCl	2	41	Rammelsbergite. NiAs,	10	42
*Hemimorphite, Zn ₄ (OH),Si,O,·H,O	2	62	Retgersite, NiSO ₄ ·6H ₂ O	7	36
Hieratite, K,SiF,	5	50	Rhodochrosite, MnCO,	7	32
Huebnerite, MnWO ₄	2m	24	Rutile, TiO,	1	44
Humite, $3Mg_2SiO_4 \cdot MgF_2 \dots$	1m	30	Safflorite, CoFeAs,	10	28
Iodyrite, AgI	8	51	Sal-ammoniac, NH,Cl	1	59
Jacobsite, MnFe,O,	9	36	Sanmartinite. ZnWO.	2m	40
Langbeinite, K.Mg.(SO.),	6m	40	*Scheelite CaWO	6	23
Litharge, PbO (red)	2	30	Selenolite SeO	1	53
Lithiphosphate, Li,PO,	4m	21	Sellaite MgF	4	33
Loellingite. FeAs.	10	34	Senarmontite Sh.O.	3	31
Magnesite. MgCO.	7	28	Skutterudite CoAs	10	21
Magnetite, Fe.O.	5m	31	*Smithsonite ZnCO	20	69
Malachite Cu (OH) CO	10	31	Soda-niter NaNO	6	50
Manganolangheinite K Mn (SO)	6m	43	Snhalerite 7nS	2	16
Manganosite MnO	5	45	Spherocobaltite CoCO	10	24
Marshite Cul	4	28 7	Spinel MgAl O	20	27
Mascagnite (NH) SO (revised)	r Q	20	Spiner, Mgai_2O_4		30 C
Massicot $PbO(vellow)$	ອ າ	22	Stolutite, SD_2S_3	5 Em	24
Matlockite PhEC	2 1	34	Storzice, $FDWO_4$ (revised)	0111 C	54
Mathoinnabar Hag	1	10	Stronualitie, $SiCO_3$	ა ელ	00
Miongunita ArchC	4	21	Survive, $MgNn_4PO_4 \cdot 0n_2O \dots \dots \dots \dots \dots$	300	41
$\mathbf{Mialgyitte}, \mathbf{Agobo}_2 \dots	D 111	49	Sylvite, KCI	1	60
Miniar Die O	Im	37	Tellurite, 1eO ₂	9	57
$\operatorname{Minium}_{3}\operatorname{Pb}_{3}\operatorname{O}_{4}\ldots$	8	32	Tellurobismutnite, Bi, Te,	3m	16
Molybdenite, MoS ₂	5	47	Tenonte, CuO	1	49
Molybdite, MoO ₃	3	30	Teschemacherite, NH, HCO,	9	5
Montroydite, HgO (revised)	9	39	Teschermigite, $NH_4Al(SO_4)_2 \cdot 12H_2O \dots \dots$	6	3
Mullite, $3Al_2O_3 \cdot 2SiO_2 \dots \dots \dots \dots \dots \dots$	$3\mathrm{m}$	3	Thenardite, Na_2SO_4	2	59
Nantokite, CuCl	4	35	Thermonatrite, Na ₂ CO ₃ ·H ₂ O	8	54
Niter, KNO,	3	58	Thorianite, ThO ₂	1	57
Nitrobarite, $Ba(NO_3)_2$	1	81	Tiemannite, HgSe	7	35
Norbergite, $Mg_2SiO_4 \cdot MgF_2 \dots \dots \dots \dots$	10	39	*Topaz, $Al_2SiO_4(F,OH)_2$	1m	4
Oldhamite, CaS	7	15	Trevorite, NiFe₂O₄	10	44
Otavite, CdCO,	7	11	Tungstenite, WS ₂	8	65
Oxammite, $(NH_4)_2C_2O_4 \cdot H_2O \dots \dots$	7	5	Uraninite, UO,	2	33
*Paratellurite, TeO ₂	10	55	Uvarovite, $Ca_{3}Cr_{4}(SiO_{4})_{3}$	10	17
Paratellurite, TeO ₂	7	56	*Valentinite, Sb ₂ O ₃	10	6
Partridgeite, Mn,O,	9	37	Villiaumite, NaF	1	63
Periclase, MgO	1	37	Willemite, Zn ₂ SiO ₄	7	62
*Phenacite, Be,SiO ₄	8	11	Witherite, BaCO,	2	54
Picrochromite, MgCr ₂ O ₄	9	34	Wulfenite, PbMoO ₄	7	23
Portlandite, Ca(OH),	1	58	Wurtzite, ZnS	2	14
Powellite, CaMoO ₄	6	22	Xenotime, YPO,	8	67
Pyrite, FeS,	5	29	Zincite, ZnO	2	25
Pyrope, $Mg_3Al_2(SiO_4)_3$	4 m	24	Zinkosite, ZnSO,	7	64
*Quartz, SiO_2 (alpha or low)	3	24	*Zircon, ZrSiO ₄	4	68

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

• Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$5.00; foreign, \$6.00*.

• Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$2.25; foreign, \$2.75*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$2.75; foreign, \$3.50*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$1.50; foreign, \$2.25*.

*Difference in price is due to extra cost of foreign mailing.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Governmentgenerated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

> Clearinghouse U.S. Department of Commerce Springfield, Virginia 22151

Order NBS publications from: Superintendent of Documents Government Printing Office Washington, D.C. 20402

U.S. DEPARTMENT OF COMMERCE

WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE