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2 AUDIENCE 

Software, hardware, and product engineers that seek to understand the architecture of Intel® 

Processor Graphics Gen8. More specifically, the architecture characteristics relevant to running 

compute applications on Intel® Processor Graphics.   

This Gen8 whitepaper updates much of the material found in “The Compute Architecture of 

Intel® Processor Graphics Gen7.5” so that it can stand on its own.  But where necessary, 

specific architecture changes for Gen8 are noted.  

3 INTRODUCTION 

Intel’s on-die integrated Processor Graphics Architecture offers outstanding real time 3D 

rendering and media performance.  However, its underlying compute architecture also offers 

general purpose compute capabilities that approach teraFLOPS performance.  The architecture 

of Intel® Processor Graphics delivers a full complement of high-throughput floating-point and 

integer compute capabilities, a layered high bandwidth memory hierarchy, and deep integration 

with on-die CPUs and other on-die system-on-a-chip (SoC) devices.  Moreover, it is a modular 

architecture that achieves scalability for a family of products that range from cellphones to 

tablets and laptops, to high end desktops and servers.  

3.1 WHAT IS INTEL® PROCESSOR GRAPHICS? 
Intel® Processor Graphics refers to the technology that provides graphics, compute, media, 

and display capabilities for many of Intel’s SoC products.  Within Intel, architects colloquially 

refer to Intel® Processor Graphics architecture as simply “Gen”, short for Generation.  A specific 

generation of the Intel® Processor Graphics architecture may be referred to as “Gen6” for 

generation 6, or “Gen7” for generation 7, etc.  The branded products Intel® HD Graphics 4600, 

Intel® Iris™ Graphics 5100, and Intel® Iris™ Pro Graphics 5200 are all derived from instances 

of Intel® Processor Graphics Gen7.5 architecture.  Intel® HD Graphics 5300 is the first released 

product derived from an instance of Intel® Processor Graphics Gen8 architecture. This 

whitepaper focuses on just the compute architecture within Intel® Processor Graphics 

Gen8.  For shorthand, in this paper we may use the term Gen8 compute architecture to refer 

to just those compute components.  The whitepaper also briefly discusses the instantiation of 

Intel® Processor Graphics Gen8 within the recently released Intel® Core™ M Processor for low 

power form factors. Additional processor products that include Intel Processor Graphics Gen8 

may be released in the near future. 
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Figure 1: Silicon die layout for a low power Intel® Core™ M Processor for tablets and 2-in-1 devices.  This SoC 
contains 2 CPU cores, outlined in orange dashed boxes.  Outlined in the blue dashed box, is Intel® HD Graphics 
5300.   It is a one slice instantiation of Intel® Processor Graphics Gen8 architecture. 

4 SOC ARCHITECTURE 

This section describes the SoC architecture within which Intel® Processor Graphics is a 

component. 

  

Figure 2: An Intel® Core™ M Processor SoC and its ring interconnect architecture. 

4.1 SOC ARCHITECTURE  
The Intel® Core M family of microprocessors are complex SoCs integrating multiple CPU Cores, 

Intel® Processor Graphics, and potentially other fixed functions all on a single shared silicon 

die.  The architecture implements multiple unique clock domains, which have been partitioned 
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as a per-CPU Core clock domain, a Processor Graphics clock domain, and a ring interconnect 

clock domain.  The SoC architecture is designed to be extensible for a range of products, and 

yet still enable efficient wire routing between components within the SoC. 

4.2 RING INTERCONNECT 
The on-die bus between CPU cores, caches, and Intel® Processor Graphics is a ring based 

topology with dedicated local interfaces for each connected “agent”.  This SoC ring 

interconnect is a bi-directional ring that has a 32-byte wide data bus, with separate lines for 

request, snoop, and acknowledge.  Every on-die CPU core is regarded as a unique agent.  

Similarly, Intel® Processor Graphics is also treated as a unique agent on the interconnect ring.  

A system agent is also connected to the ring, which bundles the DRAM memory management 

unit, display controller, and other off chip I/O controllers such as PCI Express.  Importantly, all 

off chip system memory transactions  to/from CPU cores and to/from Intel® Processor Graphics 

are facilitated by this interconnect, thru the system agent, and through the unified DRAM 

memory controller. 

4.3 SHARED LLC 
Some SoC products include a shared Last Level Cache (LLC) which is also connected to the 

ring.  In such SoCs, each on-die core is allocated a slice of cache, and that cache slice is 

connected as a unique agent on the ring.  However, all of the slices work together as a single 

cache, albeit a shared and distributed cache.  An address hashing scheme routes data requests 

to the cache slice assigned for its address.  This distributed LLC is also shared with Intel® 

Processor Graphics.  For both CPU Cores and for Intel® Processor Graphics, LLC seeks to 

reduce apparent latency to system DRAM and to provide higher effective bandwidth. 

4.4 OPTIONAL EDRAM 
Some SoC products may include embedded DRAM (EDRAM), bundled into the SoC’s chip 

packaging.  For example, the Intel® Processor Graphics Gen7.5-based Intel® Iris™ Pro 5200 

products bundled a 128 megabyte EDRAM.  The EDRAM operates in its own clock domain and 

can be clocked up to 1.6 GHz. The EDRAM has separate buses for read and write, and each 

are capable of 32 byte/EDRAM-cycle.  EDRAM supports many applications including low 

latency display surface refresh.  For the compute architecture of Intel® Processor Graphics 

Gen7.5, EDRAM further supports the memory hierarchy by serving as a large “victim cache” 

behind LLC.  Compute data first populates LLC.  Cacheline victims that are evicted from LLC, 

will spill into the EDRAM.  The compute architecture of Intel® Processor Graphics can then read 

from and write to EDRAM directly. 

Look for more details about Intel Processor Graphics Gen8-based products with EDRAM in 

future product announcements. 
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5 THE COMPUTE ARCHITECTURE OF INTEL® PROCESSOR 

GRAPHICS GEN8 

5.1 KEY CHANGES IN INTEL® PROCESSOR GRAPHICS GEN8 
Intel® Processor Graphics Gen8 includes many refinements throughout the micro architecture 

and supporting software.   It also includes several major new features and changes over Intel® 

Processor Graphics Gen7.5.  To briefly summarize, these changes include: 

 Gen8’s micro-architecture throughput for 32-bit integer computation has doubled.  

 Gen8 has added native 16-bit floating-point support to the Execution Units. 

 For some Gen8-based products, the write bandwidth from GTI has doubled. 

 Coherent shared virtual memory between CPU cores and Intel® Processor Graphics 

Gen8 has been implemented, enabling seamless sharing of pointer rich data structures. 

 For many Gen8-based products, 8 execution units are now instantiated per subslice. 

This can improve compute throughput as data port and sampler are now shared by 

fewer execution units. (Gen 7.5 was 10 execution units per subslice.) 

 For many Gen8-based products, 3 subslices are now instantiated per slice. This enables 

new product configurations, and instantiates more samplers per slice, and more 

concurrent memory interfaces to L3 and SLM. (Gen 7.5 was 2 subslices per slice.) 

 Gen8 has increased the L3 data cache capacity and improved local bandwidth between 

EUs and L3 data cache. 

5.2 MODULAR DESIGN FOR PRODUCT SCALABILITY 
The Gen8 compute architecture is designed for scalability across a wide range of target 

products.  The architecture’s modularity enables exact product targeting to a particular market 

segment or product power envelope.  The architecture begins with compute components called 

execution units.  Execution units are clustered into groups called subslices.  Subslices are 

further clustered into slices.  Together, execution units, subslices, and slices are the modular 

building blocks that are composed to create many product variants based upon Intel® 

Processor Graphics Gen8 compute architecture.  Some examples variants are shown in Figure 

6 and in Figure 7. The following sections describe the architecture components in detail, and 

show holistically how they may be composed into full products. 

5.3 EXECUTION UNIT (EUS) ARCHITECTURE 
The foundational building block of Gen8 compute architecture is the execution unit, commonly 

abbreviated as just EU. The architecture of an EU is combination of Simultaneous Multi-

Threading (SMT) and fine grained Interleaved Multi-Threading (IMT).   These are compute 

processors that drive multiple issue Single Instruction Multiple Data Arithmetic Logic Units 

(SIMD, ALUs) pipelined across multiple threads, for high-throughput floating-point and integer 

compute.  The fine grain threaded nature of the EUs ensures continuous streams of ready to 

execute instructions, while also enabling latency hiding of longer operations such as memory 

scatter/gather, sampler requests, or other system communication.  
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Figure 3: The Execution Unit (EU). Each Gen8 EU has seven threads.  Each thread has 128 SIMD-8 32-bit registers 
(GRF) and supporting architecture specific registers (ARF).  The EU can co-issue to four instruction processing units 

including two FPUs, a branch unit, and a message send unit. 

Product architects may fine tune the number of threads and number of registers per EU to 

match scalability and specific product design requirements. For Gen8-based products, each EU 

thread has 128 general purpose registers.  Each register stores 32 bytes, accessible as a SIMD 

8-element vector of 32-bit data elements. Thus each Gen8 thread has 4 Kbytes of general 

purpose register file (GRF).  In the Gen8 architecture, each EU has seven threads for a total of 

28 Kbytes of GRF per EU.  Flexible addressing modes permit registers to be addressed 

together to build effectively wider registers, or even to represent strided rectangular block data 

structures.  Per thread architectural state is maintained in a separate dedicated architecture 

register file (ARF). 

5.3.1 Simultaneous Multi-Threading and Multiple Issue Execution 

Depending on the software workload, the hardware threads within an EU may all be executing 

the same compute kernel code, or each EU thread could be executing code from a completely 

different compute kernel.  The execution state of each thread, including its own instruction 

pointers, are held in thread-specific ARF registers.  

On every cycle, an EU can co-issue up to four different instructions, which must be sourced 

from four different threads. The EU’s thread arbiter dispatches these instructions to one of four 

functional units for execution.  Although the issue slots for the functional units pose some 

instruction co-issue constraints, the four instructions will be independent, since they are 

dispatched from four different threads.  It is theoretically possible for just two non-stalling 

threads to fully saturate the floating-point compute throughput of the machine.  More typically all 
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seven threads are loaded to deliver more ready-to-run instructions from which the thread arbiter 

may choose, and promote the EU’s instruction level parallelism. 

5.3.2 SIMD FPUs 

Within each EU, the primary computation units are a pair of SIMD floating-point units (FPUs). 

Although called FPUs, they support both floating-point and integer computation.  These units 

can SIMD execute up to four 32-bit floating-point (or integer) operations, or SIMD execute up to 

eight 16-bit integer or 16-bit floating-point operations.  The 16-bit float (half-float) support is new 

for Gen8 compute architecture.  Each SIMD FPU can complete simultaneous add and multiply 

(MAD) floating-point instructions every cycle. Thus each EU is capable of 16 32-bit floating-point 

operations per cycle: (add + mul) x 2 FPUs x SIMD-4.  Also new for Gen8, both FPUs now 

support native 32-bit integer operations. Compared to Gen7.5, Gen8 effectively doubles integer 

computation throughput within each EU. Finally, one of the FPUs provides extended math 

capability to support high-throughput transcendental math functions and double precision 64-bit 

floating-point.     

Within each EU, Gen8 compute architecture offers significant local bandwidth between GRF 

registers and the FPUs.   For example, MAD instructions with three source operands and one 

destination operand are capable of driving 96 bytes/cycle read bandwidth, and 32 bytes/cycle 

write bandwidth locally within every EU.   Aggregated across the whole architecture, this 

bandwidth can scale linearly with the number of EUs.  For Gen8 products with multiple slices of 

EUs and higher clock rates, the aggregated theoretical peak bandwidth that is local between 

FPUs and GRF can approach multiple terabytes of read bandwidth. 

5.3.3 Branch and Send Units 

Within the EUs, branch instructions are dispatched to a dedicated branch unit to facilitate SIMD 

divergence and eventual convergence.  Finally, memory operations, sampler operations, and 

other longer-latency system communications are all dispatched via “send” instructions that are 

executed by the message passing send unit.   

5.3.4 EU ISA and Flexible Width SIMD 

The EU Instruction Set Architecture (ISA) and associated general purpose register file are all 

designed to support a flexible SIMD width.  Thus for 32-bit data types, the Gen8 FPUs can be 

viewed as physically 4-wide.  But the FPUs may be targeted with SIMD instructions and 

registers that are logically 1-wide, 2-wide, 4-wide, 8-wide, 16-wide, or 32-wide.   

For example, a single operand to a SIMD-16 wide instruction pairs two adjacent SIMD-8 wide 

registers, logically addressing the pair as a single SIMD-16 wide register containing a 

contiguous 64 bytes.  This logically SIMD-16 wide instruction is transparently broken down by 

the microarchitecture into physically SIMD-4 wide FPU operations, which are iteratively 

executed. From the viewpoint of a single thread, wider SIMD instructions do take more cycles to 

complete execution.  But because the EUs and EU functional units are fully pipelined across 

multiple threads, SIMD-8, SIMD-16, and SIMD-32 instructions are all capable of maximizing 

compute throughput in a fully loaded system. 

The instruction SIMD width choice is left to the compiler or low level programmer. Differing 

SIMD width instructions can be issued back to back with no performance penalty. This flexible 

design allows compiler heuristics and programmers to choose specific SIMD widths that 
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precisely optimize the register allocation footprint for individual programs, balanced against the 

amount of work assigned to each thread. 

5.3.5 SIMD Code Generation for SPMD Programming Models 

Compilers for Single Program Multiple Data (SPMD) programming models such as 

Renderscript, OpenCL™1, Microsoft® DirectX®2 Compute Shader, OpenGL Compute, and 

C++AMP, generate SIMD code to map multiple kernel instances3 to be executed 

simultaneously within a given hardware thread.  The exact number of kernel instances per 

thread is a heuristic driven compiler choice.  We refer to this compiler choice as the dominant 

SIMD-width of the kernel.  In OpenCL and DirectX Compute Shader, SIMD-8, SIMD-16, SIMD-

32 are the most common SIMD-width targets. 

On Gen8 compute architecture, most SPMD programming models employ this style code 

generation and EU processor execution.  Effectively, each SPMD kernel instance appears to 

execute serially and independently within its own SIMD lane.  In actuality, each thread executes 

a SIMD-Width number of kernel instances concurrently.   Thus for a SIMD-16 compile of a 

compute kernel, it is possible for SIMD-16 x 7 threads = 112 kernel instances to be executing 

concurrently on a single EU.  Similarly, for a SIMD-32 compile of a compute kernel, 32 x 7 

threads = 224 kernel instances could be executing concurrently on a single EU.    

For a given SIMD-width, if all kernel instances within a thread are executing the same 

instruction, then the SIMD lanes can be maximally utilized.  If one or more of the kernel 

instances chooses a divergent branch, then the thread will execute the two paths of the branch 

separately in serial.  The EUs branch unit keeps track of such branch divergence and branch 

nesting.  The branch unit also generates a “live-ness” mask to indicate which kernel instances 

within the current SIMD-width need to execute (or not execute) the branch. 

 

5.4 SUBSLICE ARCHITECTURE 
In Gen8 compute architecture, arrays of EUs are instantiated in a group called a subslice.  For 

scalability, product architects have choice as to the exact number of EUs per subslice.  For most 

Gen8-based products, each subslice contains 8 EUs.  Each subslice contains its own local 

thread dispatcher unit and its own supporting instruction caches.  Given these 8 EUs with 7 

threads each, a single subslice has dedicated hardware resources and register files for a total of 

56 simultaneous threads.  Each subslice also includes a sampler unit and a data port memory 

management unit.  Compared against the Gen7.5 design which had 10 EUs per subslice, this 

Gen8 design reduces the number EUs sharing each subslice’s sampler and data port. From the 

viewpoint of each EU, this has the effect of improving effective bandwidth local to the subslice. 

                                                 
1 OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. 
2 Microsoft and DirectX are either registered trademarks or trademarks of Microsoft Corporation in the 
United Stated and/or other countries. 
3 We use the generic term kernel instance as equivalent to OpenCL work-item, or DirectX Compute 
Shader thread. 
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Figure 4: The Intel® Processor Graphics Gen8 subslice, containing 8 EUs each.  The subslice also instantiates 
sampler and data port units per subslice. 

5.4.1 Sampler 

The sampler is a read-only memory fetch unit that may be used for sampling of tiled (or not 

tiled) texture and image surfaces.  The sampler includes a level-1 sampler cache (L1) and a 

level-2 sampler cache (L2).  Between the two caches is dedicated logic to support dynamic 

decompression of block compression texture formats such as DirectX BC1-BC7, DXT, and 

OpenGL compressed texture formats.  The sampler also includes fixed function logic that 

enables address conversion on image (u,v) coordinates, and address clamping modes such as 

mirror, wrap, border, and clamp.  Finally the sampler supports a variety of sampling filtering 

modes such as point, bilinear, tri-linear, and anisotropic.  

5.4.2 Data Port 

Each subslice also contains a memory load/store unit called the data port.  The data port 

supports efficient read/write operations for a variety of general purpose buffer accesses, flexible 

SIMD scatter/gather operations, as well as shared local memory access.  To maximize memory 

bandwidth, the unit dynamically coalesces scattered memory operations into fewer operations 

over non-duplicated 64-byte cache line requests.  For example, a SIMD-16 gather operation 

against 16 unique offset addresses for 16 32-bit floating-point values, might be coalesced to a 

single 64-byte read operation if all the addresses fall within a single cacheline.   



The Compute Architecture of Intel® Processor Graphics Gen8                                   10 

 

5.5 SLICE ARCHITECTURE 

 

Figure 5: The Intel® Processor Graphics Gen8 slice, containing three subslices for a total of 24 EUs.  The slice adds 
supporting L3 cache, shared local memory, atomics, barriers, and other fixed function units. 

Subslices are clustered into slices.  For most Gen8-based products, 3 subslices are aggregated 

into 1 slice.  Thus a single slice aggregates a total of 24 EUs4.  Aside from grouping subslices, 

the slice integrates additional logic for thread dispatch routing, a banked level-3 cache, a 

smaller but highly banked shared local memory structure, and fixed function logic for atomics 

and barriers.  Additional fixed function units support media and graphics capability, but are not 

discussed here. 

5.5.1 Level-3 Data Cache 

For Gen8-based products, the level-3 (L3) data cache capacity has been increased from 

Gen7.5 to a range of 384 Kbytes to 576Kbytes total per slice.  Each application context has 

flexibility as to how much of the L3 memory structure is allocated: 1) as application data cache, 

2) as system buffers for fixed-function pipelines, and 3) as shared local memory.   For example, 

3D rendering contexts often allocate more L3 as system buffers to support their fixed-function 

pipelines, instead of as shared local memory.    For compute application contexts on Gen8 

compute architecture, the typical allocation is 384 Kbytes per slice as application data cache. 

(For Gen7.5 compute architecture, the amount was 256 Kbytes per slice.) 

                                                 
4 Note some Gen8-based products may enable fewer than 24 EUs in a slice. 
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As with previous generations, Gen8 products with multiple subslices will instantiate multiple L3 

cache partitions.  These cache partitions aggregate together and act as a single larger capacity 

monolithic cache. Cachelines are 64 bytes and are uniformly distributed across the entire 

aggregate cache.  Every sampler and every data port are given their own separate memory 

interface to the L3.  The interface between each data port and the L3 data cache enables both 

read and write of 64 bytes per cycle.  Thus a slice containing three subslices, each with a 

unique data port, will have an aggregate bandwidth of 192 bytes per cycle.  For accesses that 

miss the L3 cache, the L3 fill logic can read and write system memory data at 64 bytes per 

cycle. 

All data into and out of the samplers and data ports flows through the L3 data cache in units of 

64-byte wide cachelines.  This includes read and write actions on general purpose buffers.  It 

also includes sampler read transactions that miss the level-1 (L1) and level-2 (L2) sampler 

caches.  L3 cache bandwidth efficiency is highest for read/write accesses that are cacheline 

aligned and adjacent within a cacheline.  Compute kernel instructions that miss the subslice 

instruction caches flow through the L3 cache.  

5.5.2 Shared Local Memory 

Shared local memory5 is a structure within the L3 complex that supports programmer 

managed data for sharing amongst EU hardware threads within the same subslice.   The 

read/write bus interface between each subslice and shared local memory is again 64-bytes 

wide.   Latency wise, access to shared local memory is similar to accessing the L3 data cache.  

However, the shared local memory itself is more highly banked than the L3 data cache. The 

shared local memory banking can yield full shared local memory bandwidth for access patterns 

that may not be 64-byte aligned or that may not be contiguously adjacent in memory.  For 

Gen8-based products, 64 Kbytes of shared local memory is dedicated and available per 

subslice.   Note that shared local memory is not coherent with other memory structures. 

SPMD programming model constructs such as OpenCL’s local memory space or DirectX 

Compute Shader’s shared memory space are shared across a single work-group (thread-

group).  For software kernel instances that use shared local memory, driver runtimes typically 

map all instances within a given OpenCL work-group (or a DirectX11 threadgroup) to EU 

threads within a single subslice.  Thus all kernel instances within a work-group will share access 

to the same 64 Kbyte shared local memory partition.  Because of this property, an application’s 

accesses to shared local memory should scale with the number of subslices.  

At first glance, it may seem like Gen8 instantiates an equivalent share local memory capacity 

per subslice as did Gen7.5: 64 Kbytes per subslice.   However, recall that Gen8 has 8 EUs per 

subslice, whereas Gen7.5 had 10.  The Gen8 EUs/subslice ratio means that fewer EUs will be 

simultaneously sharing the 64 Kbytes, resulting in modestly improved local bandwidth between 

EUs and their subslice’s shared local memory. 

5.5.3 Barriers and Atomics 

Each slice within Gen8 compute architecture bundles dedicated logic to support implementation 

of barriers across groups of threads.  This barrier logic is available as a hardware alternative to 

                                                 
5 We use the term shared local memory to indicate the hardware memory structure that supports the 
software address space which OpenCL refers to as work-group local memory, and which DirectX 
Compute Shader refers to as thread-group shared memory. 
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pure compiler based barrier implementation approaches.  The Gen8 logic can support barriers 

simultaneously in up to 16 active thread-groups per subslice. 

Each slice also provides a rich suite of atomic read-modify-write memory operations.  These 

operations support both operations to L3 cached global memory or to shared local memory.  

Gen8-based products support 32-bit atomic operations. 

5.5.4 64-Byte Data Width 

A foundational element of Gen8 compute architecture is the 64-byte data width.  Recall that 

the EU register file is composed of 128 32-byte registers (SIMD-8 x 32-bit).  But recall also that 

operands to SIMD-16 instructions typically pair two such registers, treating the pair as a single 

64-byte SIMD-16 register.  Observe: 

 A SIMD-16 instruction can source 64-byte wide operands from 64-byte wide registers. 

 The data for such 64-byte wide registers are read and written from L3 over a 64-byte 

wide data bus. 

 Within the L3 data cache, each cacheline is again 64-bytes wide.   

 Finally the L3 cache’s bus interface to the SoC shared LLC is also 64-bytes wide. 

5.6 PRODUCT ARCHITECTURE 
Finally, SoC product architects can create product families or a specific product within a family 

by instantiating a single slice, or groups of slices.  Members of a product family might differ 

primarily in the number of slices.  These slices are combined with additional front end logic to 

manage command submission, as well as fixed function logic to support 3D, rendering, and 

media pipelines.  Additionally the entire Gen8 compute architecture interfaces to the rest of the 

SoC components via a dedicated unit called the Graphics Technology Interface (GTI). 

  

Figure 6: A potential product design that instantiates the compute architecture of Intel® Processor Graphics Gen8. It 
is composed of a single slice with three subslices, for a total of 24 EUs.  The Intel® Core M Processor with Intel® HD 

Graphics 5300 instantiates such a design. 
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Figure 7: Another potential product design that instantiates the compute architecture of Intel® Processor Graphics 
Gen8.  This design is composed of two slices, of three subslices each for a total of 48 EUs. 

5.6.1 Command Streamer and Global Thread Dispatcher 

As its name implies, the command streamer efficiently parses command streams submitted 

from driver stacks and routes individual commands to their representative units.  For compute 

workloads, the global thread dispatcher is responsible for load balancing thread distribution 

across the entire device.  The global thread dispatcher works in concert with local thread 

dispatchers in each subslice.   

The global thread dispatcher operates in two modes.  For compute workloads that do not 

depend upon hardware barriers nor upon shared local memory, global thread dispatcher may 

choose to distribute the workload over all available subslices to maximize throughput and 

utilization. Given the unit’s global visibility, it is able to load balance across all the execution 

resources.  For compute workloads that do depend upon hardware barriers or shared local 

memory, the global thread dispatcher will assign thread-group sized portions of the workload to 

specific subslices.  Such an assignment ensures localized access to the barrier logic and 

shared local memory storage dedicated to each subslice.  

5.6.2 Graphics Technology Interface (GTI) 

The graphics technology interface, or simply GTI, is the gateway between Gen8 compute 

architecture with the rest of the SoC.  The rest of the SoC includes memory hierarchy elements 

such as the shared LLC memory, the system DRAM, and possibly embedded DRAM.  GTI 
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facilitates communication with the CPU cores, and possibly with other fixed function devices 

such as camera imaging pipelines.  GTI also implements global memory atomics that may be 

shared between Intel® Processor Graphics Gen8 and CPU cores.  Finally GTI implements 

power management controls for Intel® Processor Graphics Gen8 and interfaces between the 

GTI clock domain and the (usually different) SoC clock domains. 

The bus between each slice that is interfaced to GTI is capable of 64-bytes per cycle read and 

64-bytes per cycle write.  Internally, GTI has memory request queues to maintain memory order 

and manage differing latencies on individual memory requests.  For instances of Intel® 

Processor Graphics Gen8, the bus between GTI and LLC has two possible configurations.   Like 

Gen7.5, one Gen8 configuration is capable of 64-bytes per cycle read and 32-bytes per cycle 

write.  A second configuration (new for Gen8) is capable of 64-bytes per cycle read and 64-

bytes per cycle write.   Like other aspects of the architecture, this bus width is also scalable, and 

SoC designers may configure it for specific products.  

5.7 MEMORY  

5.7.1 Unified Memory Architecture 

Intel® Processor Graphics architecture has long pioneered sharing DRAM physical memory 

with the CPU. This unified memory architecture offers a number of system design, power 

efficiency, and programmability advantages over PCI Express hosted discrete memory systems.   

The obvious advantage is that shared physical memory enables zero copy buffer transfers 

between CPUs and Gen8 compute architecture. By zero copy, we mean that no buffer copy is 

necessary since the physical memory is shared.    Moreover, the architecture further augments 

the performance of such memory sharing with a shared LLC cache.  The net effect of this 

architecture benefits performance, conserves memory footprint, and indirectly conserves system 

power not spent needlessly copying data.  Shared physical memory and zero copy buffer 

transfers are programmable though the buffer allocation mechanisms in APIs such as OpenCL 

1.0+ and DirectX11.2+. 

5.7.2 Shared Memory Coherency  

A new feature for Gen8 compute architecture is global memory coherency between Intel® 

Processor Graphics and the CPU cores.     SoC products with Intel® Processor Graphics Gen8 

integrate new hardware components to support the recently updated Intel® Virtualization 

Technology for Directed I/O (VT-d) specification.   This specification extends the Intel® 

Virtualization Technology, which generally addresses virtual machine to physical machine 

usage models and enables virtual machine monitor implementation.   In particular, the recent 

VT-d specification extensions define new page table entry formats, cache protocols, and 

hardware snooping mechanisms for shared memory between CPU cores and devices such as 

Intel® Processor Graphics.    

These new mechanisms can be used to maintain memory coherency and consistency for fine 

grained sharing throughout the memory hierarchy between CPU cores and devices.  Moreover, 

the same virtual addresses can be shared seamlessly across devices.   Such memory sharing is 

application programmable through emerging heterogeneous compute APIs such as the shared 

virtual memory (SVM) features specified in OpenCL 2.0.  The net effect is that pointer-rich data-

structures can be shared directly between application code running on CPU cores with 
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application code running on Intel® Processor Graphics, without programmer data structure 

marshalling or cumbersome software translation techniques. 

Within Intel® Processor Graphics, the data port unit, the L3 data cache, and GTI have all been 

upgraded to support a new globally coherent memory type.   Reads or writes originating from 

Intel® Processor Graphics to memory typed as globally coherent drive VT-d specified snooping 

protocols to ensure data integrity with any CPU core cached versions of that memory. Similarly 

for GPU cached memory, for any reads or writes that originate from the CPU cores.  As shown 

in Figure 8, the sampler’s L1 and L2 caches as well as the shared local memory structures are 

not coherent. 

 
 

Figure 8: A view of the SoC chip level memory hierarchy and its theoretical peak bandwidths for the compute 
architecture of Intel® Processor Graphics Gen8.   

 

5.8 ARCHITECTURE CONFIGURATIONS, SPEEDS, AND FEEDS 
The following table presents the theoretical peak throughput of the compute architecture of 

Intel® Processor Graphics, aggregated across the entire graphics product architecture.  Values 

are stated as “per clock”, as final product clock rates were not available at time of this writing.    
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 Intel ® HD  
Graphics 5300 

 

Derivation, notes 

Configurations: 

Execution Units (EUs) 24 EUs  
 

8 EUs x 3 subslices x 1 slices 

Hardware Threads 168 threads 24 EUs x 7 threads 

Concurrent kernel instances (e.g. 

OpenCL work-items or DirectX Compute 
Shader “threads”) 

5376 instances 168 threads * SIMD-32 compile 

Level-3 data cache (L3$) size 384 Kbytes 1 slice 
x 384 Kbytes /slice 

Max Shared Local Memory size 192 Kbytes 3 subslices  
x 64 Kbytes /subslice 

Last Level Cache (LLC$) size 2-8 Mbytes  depending on product configuration 

Package embedded DRAM size n/a  

 
Peak Compute Throughput 

32b float FLOPS 384 FLOP/cycle 
 

24 EUs  
x (2 x SIMD-4 FPU)  
x (MUL + ADD)  

64b double float FLOPS 96 FLOP/cycle 24 EUs  
x SIMD-4  FPU 
x (MUL + ADD)  
x ½ throughput 

32b integer IOPS 192 IOP/cycle 24 EUs  
x (2 x SIMD-4 FPU)  
x (ADD) 

 

 

6 EXAMPLE COMPUTE APPLICATIONS 

The following images provide a few visual examples of the kinds of compute applications and 

algorithms that have been accelerated on Intel® Processor Graphics.  

         
Before     After                 Before                  After 

Figure 9: Intel® Processor Graphics acceleration in Adobe Photoshop, via OpenCL. In the left pair of images, Adobe 
Photoshop‘s “Smart Sharpen” feature uses Intel® Processor Graphics to efficiently analyze images to maximize 

clarity and minimize visual noise and halos. In the right pair of images, Adobe Photoshop‘s “Intelligent upsampling” 
feature use Intel® Processor Graphics to accelerate upsampling operations that preserve detail and sharpness 

without introducing visual noise.  Images courtesy of Anita Banerjee and Ilya Albrekht. 
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Figure 10: Interactive Real-time volumetric rendered 3D smoke effect implemented using DirectX11 Compute Shader 
on Intel® Processor Graphics.  Image courtesy Doug McNabb. 

 

                         

             Raw video frame & virtual lights                 Computed surface normals                          Video frame with relighting 

Figure 11: Interactive dynamic relighting of a real-time video feed.  A localized surface polynomial approximation 
solver are implemented in OpenCL and applied to real-time depth captures.  Derived surface normals and lighting 

computations can then synthetically re-light the scene based on virtual light sources.     Images courtesy of 
Konstantin Rodyushkin.  See an interactive example video. 

 

 

Figure 12: Crowd simulation-based transition effect between two photos (or videos). Particles carry colors of the 

source image and then change the colors while moving to form the destination image. Dynamic particle collision 
detection and response are calculated with UNC’s RVO2 library ported to OpenCL 2.0 and running on Intel® 

Processor Graphics. Intel Processor Graphics and OpenCL 2.0’s Shared Virtual Memory enable passing the original 
pointer-rich data structures of the RVO2 library directly to Intel® Processor Graphics “as is”. Neither data structure 

redesign nor fragile software data marshaling is necessary.  Images courtesy of Sergey Lyalin and UNC.              
More info: http://gamma.cs.unc.edu/RVO2/.  

https://videoportal.intel.com/media/Perceptual+Computing%3A+Bouncing+Light+Balls/0_9ugm8fqb
http://gamma.cs.unc.edu/RVO2/
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Figure 13: OpenCV Face detection algorithm, accelerated via OpenCL and optimized for Intel® Processor Graphics. 
Image courtesy Aaron Kunze. 
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includes subject matter disclosed herein. 

 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR 
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EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO 

LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR 

USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR 

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY 

RIGHT.  

 

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal 

injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, 
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APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, 

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.  

 

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the 

absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition 

and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information 

here is subject to change without notice. Do not finalize a design with this information.  

 

The products described in this document may contain design defects or errors known as errata which may cause the product to 

deviate from published specifications. Current characterized errata are available on request.  

 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  

 

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by 

calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm 

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. 

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, 

operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information 

and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product 

when combined with other products. 

Intel, the Intel logo, Iris™, Core™ are trademarks of Intel Corporation in the U.S. and/or other countries. 

*Other names and brands may be claimed as the property of others. 

Intel® Graphics 4600, Iris™ Graphics, and Iris™ Pro Graphics are available on select systems.  Consult your system manufacturer. 

visit http://www.intel.com/content/www/us/en/architecture-and-technology/microarchitecture/latest-microarchitecture.html  

http://www.intel.com/design/literature.htm
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