
The Compute Architecture of

Intel® Processor Graphics Gen8

Version 1.0

External Revision History

Version,
Date

Comment

v1.0
9/10/2014

IDF-2014 release of “The Compute Architecture of Intel® Processor Graphics Gen8” – Stephen Junkins

The Compute Architecture of Intel® Processor Graphics Gen8 1

1 CONTENTS

2 Audience .. 2

3 Introduction .. 2

3.1 What is Intel® Processor Graphics? ... 2

4 SoC Architecture .. 3

4.1 SoC Architecture .. 3

4.2 Ring Interconnect ... 4

4.3 Shared LLC ... 4

4.4 Optional EDRAM.. 4

5 The Compute Architecture of Intel® Processor Graphics Gen8 ... 5

5.1 Key Changes in Intel® Processor Graphics Gen8 ... 5

5.2 Modular Design for Product Scalability ... 5

5.3 Execution Unit (EUs) Architecture .. 5

5.3.1 Simultaneous Multi-Threading and Multiple Issue Execution .. 6

5.3.2 SIMD FPUs ... 7

5.3.3 Branch and Send Units .. 7

5.3.4 EU ISA and Flexible Width SIMD ... 7

5.3.5 SIMD Code Generation for SPMD Programming Models .. 8

5.4 Subslice Architecture ... 8

5.4.1 Sampler... 9

5.4.2 Data Port ... 9

5.5 Slice Architecture ... 10

5.5.1 Level-3 Data Cache ... 10

5.5.2 Shared Local Memory .. 11

5.5.3 Barriers and Atomics ... 11

5.5.4 64-Byte Data Width ... 12

5.6 Product Architecture... 12

5.6.1 Command Streamer and Global Thread Dispatcher ... 13

5.6.2 Graphics Technology Interface (GTI) ... 13

5.7 Memory ... 14

5.7.1 Unified Memory Architecture .. 14

5.7.2 Shared Memory Coherency ... 14

5.8 Architecture Configurations, Speeds, and Feeds .. 15

6 Example Compute Applications .. 16

7 Acknowledgements .. 18

8 More Information .. 18

9 Notices ... 19

The Compute Architecture of Intel® Processor Graphics Gen8 2

2 AUDIENCE

Software, hardware, and product engineers that seek to understand the architecture of Intel®

Processor Graphics Gen8. More specifically, the architecture characteristics relevant to running

compute applications on Intel® Processor Graphics.

This Gen8 whitepaper updates much of the material found in “The Compute Architecture of

Intel® Processor Graphics Gen7.5” so that it can stand on its own. But where necessary,

specific architecture changes for Gen8 are noted.

3 INTRODUCTION

Intel’s on-die integrated Processor Graphics Architecture offers outstanding real time 3D

rendering and media performance. However, its underlying compute architecture also offers

general purpose compute capabilities that approach teraFLOPS performance. The architecture

of Intel® Processor Graphics delivers a full complement of high-throughput floating-point and

integer compute capabilities, a layered high bandwidth memory hierarchy, and deep integration

with on-die CPUs and other on-die system-on-a-chip (SoC) devices. Moreover, it is a modular

architecture that achieves scalability for a family of products that range from cellphones to

tablets and laptops, to high end desktops and servers.

3.1 WHAT IS INTEL® PROCESSOR GRAPHICS?
Intel® Processor Graphics refers to the technology that provides graphics, compute, media,

and display capabilities for many of Intel’s SoC products. Within Intel, architects colloquially

refer to Intel® Processor Graphics architecture as simply “Gen”, short for Generation. A specific

generation of the Intel® Processor Graphics architecture may be referred to as “Gen6” for

generation 6, or “Gen7” for generation 7, etc. The branded products Intel® HD Graphics 4600,

Intel® Iris™ Graphics 5100, and Intel® Iris™ Pro Graphics 5200 are all derived from instances

of Intel® Processor Graphics Gen7.5 architecture. Intel® HD Graphics 5300 is the first released

product derived from an instance of Intel® Processor Graphics Gen8 architecture. This

whitepaper focuses on just the compute architecture within Intel® Processor Graphics

Gen8. For shorthand, in this paper we may use the term Gen8 compute architecture to refer

to just those compute components. The whitepaper also briefly discusses the instantiation of

Intel® Processor Graphics Gen8 within the recently released Intel® Core™ M Processor for low

power form factors. Additional processor products that include Intel Processor Graphics Gen8

may be released in the near future.

The Compute Architecture of Intel® Processor Graphics Gen8 3

Figure 1: Silicon die layout for a low power Intel® Core™ M Processor for tablets and 2-in-1 devices. This SoC
contains 2 CPU cores, outlined in orange dashed boxes. Outlined in the blue dashed box, is Intel® HD Graphics
5300. It is a one slice instantiation of Intel® Processor Graphics Gen8 architecture.

4 SOC ARCHITECTURE

This section describes the SoC architecture within which Intel® Processor Graphics is a

component.

Figure 2: An Intel® Core™ M Processor SoC and its ring interconnect architecture.

4.1 SOC ARCHITECTURE
The Intel® Core M family of microprocessors are complex SoCs integrating multiple CPU Cores,

Intel® Processor Graphics, and potentially other fixed functions all on a single shared silicon

die. The architecture implements multiple unique clock domains, which have been partitioned

The Compute Architecture of Intel® Processor Graphics Gen8 4

as a per-CPU Core clock domain, a Processor Graphics clock domain, and a ring interconnect

clock domain. The SoC architecture is designed to be extensible for a range of products, and

yet still enable efficient wire routing between components within the SoC.

4.2 RING INTERCONNECT
The on-die bus between CPU cores, caches, and Intel® Processor Graphics is a ring based

topology with dedicated local interfaces for each connected “agent”. This SoC ring

interconnect is a bi-directional ring that has a 32-byte wide data bus, with separate lines for

request, snoop, and acknowledge. Every on-die CPU core is regarded as a unique agent.

Similarly, Intel® Processor Graphics is also treated as a unique agent on the interconnect ring.

A system agent is also connected to the ring, which bundles the DRAM memory management

unit, display controller, and other off chip I/O controllers such as PCI Express. Importantly, all

off chip system memory transactions to/from CPU cores and to/from Intel® Processor Graphics

are facilitated by this interconnect, thru the system agent, and through the unified DRAM

memory controller.

4.3 SHARED LLC
Some SoC products include a shared Last Level Cache (LLC) which is also connected to the

ring. In such SoCs, each on-die core is allocated a slice of cache, and that cache slice is

connected as a unique agent on the ring. However, all of the slices work together as a single

cache, albeit a shared and distributed cache. An address hashing scheme routes data requests

to the cache slice assigned for its address. This distributed LLC is also shared with Intel®

Processor Graphics. For both CPU Cores and for Intel® Processor Graphics, LLC seeks to

reduce apparent latency to system DRAM and to provide higher effective bandwidth.

4.4 OPTIONAL EDRAM
Some SoC products may include embedded DRAM (EDRAM), bundled into the SoC’s chip

packaging. For example, the Intel® Processor Graphics Gen7.5-based Intel® Iris™ Pro 5200

products bundled a 128 megabyte EDRAM. The EDRAM operates in its own clock domain and

can be clocked up to 1.6 GHz. The EDRAM has separate buses for read and write, and each

are capable of 32 byte/EDRAM-cycle. EDRAM supports many applications including low

latency display surface refresh. For the compute architecture of Intel® Processor Graphics

Gen7.5, EDRAM further supports the memory hierarchy by serving as a large “victim cache”

behind LLC. Compute data first populates LLC. Cacheline victims that are evicted from LLC,

will spill into the EDRAM. The compute architecture of Intel® Processor Graphics can then read

from and write to EDRAM directly.

Look for more details about Intel Processor Graphics Gen8-based products with EDRAM in

future product announcements.

The Compute Architecture of Intel® Processor Graphics Gen8 5

5 THE COMPUTE ARCHITECTURE OF INTEL® PROCESSOR

GRAPHICS GEN8

5.1 KEY CHANGES IN INTEL® PROCESSOR GRAPHICS GEN8
Intel® Processor Graphics Gen8 includes many refinements throughout the micro architecture

and supporting software. It also includes several major new features and changes over Intel®

Processor Graphics Gen7.5. To briefly summarize, these changes include:

 Gen8’s micro-architecture throughput for 32-bit integer computation has doubled.

 Gen8 has added native 16-bit floating-point support to the Execution Units.

 For some Gen8-based products, the write bandwidth from GTI has doubled.

 Coherent shared virtual memory between CPU cores and Intel® Processor Graphics

Gen8 has been implemented, enabling seamless sharing of pointer rich data structures.

 For many Gen8-based products, 8 execution units are now instantiated per subslice.

This can improve compute throughput as data port and sampler are now shared by

fewer execution units. (Gen 7.5 was 10 execution units per subslice.)

 For many Gen8-based products, 3 subslices are now instantiated per slice. This enables

new product configurations, and instantiates more samplers per slice, and more

concurrent memory interfaces to L3 and SLM. (Gen 7.5 was 2 subslices per slice.)

 Gen8 has increased the L3 data cache capacity and improved local bandwidth between

EUs and L3 data cache.

5.2 MODULAR DESIGN FOR PRODUCT SCALABILITY
The Gen8 compute architecture is designed for scalability across a wide range of target

products. The architecture’s modularity enables exact product targeting to a particular market

segment or product power envelope. The architecture begins with compute components called

execution units. Execution units are clustered into groups called subslices. Subslices are

further clustered into slices. Together, execution units, subslices, and slices are the modular

building blocks that are composed to create many product variants based upon Intel®

Processor Graphics Gen8 compute architecture. Some examples variants are shown in Figure

6 and in Figure 7. The following sections describe the architecture components in detail, and

show holistically how they may be composed into full products.

5.3 EXECUTION UNIT (EUS) ARCHITECTURE
The foundational building block of Gen8 compute architecture is the execution unit, commonly

abbreviated as just EU. The architecture of an EU is combination of Simultaneous Multi-

Threading (SMT) and fine grained Interleaved Multi-Threading (IMT). These are compute

processors that drive multiple issue Single Instruction Multiple Data Arithmetic Logic Units

(SIMD, ALUs) pipelined across multiple threads, for high-throughput floating-point and integer

compute. The fine grain threaded nature of the EUs ensures continuous streams of ready to

execute instructions, while also enabling latency hiding of longer operations such as memory

scatter/gather, sampler requests, or other system communication.

The Compute Architecture of Intel® Processor Graphics Gen8 6

Figure 3: The Execution Unit (EU). Each Gen8 EU has seven threads. Each thread has 128 SIMD-8 32-bit registers
(GRF) and supporting architecture specific registers (ARF). The EU can co-issue to four instruction processing units

including two FPUs, a branch unit, and a message send unit.

Product architects may fine tune the number of threads and number of registers per EU to

match scalability and specific product design requirements. For Gen8-based products, each EU

thread has 128 general purpose registers. Each register stores 32 bytes, accessible as a SIMD

8-element vector of 32-bit data elements. Thus each Gen8 thread has 4 Kbytes of general

purpose register file (GRF). In the Gen8 architecture, each EU has seven threads for a total of

28 Kbytes of GRF per EU. Flexible addressing modes permit registers to be addressed

together to build effectively wider registers, or even to represent strided rectangular block data

structures. Per thread architectural state is maintained in a separate dedicated architecture

register file (ARF).

5.3.1 Simultaneous Multi-Threading and Multiple Issue Execution

Depending on the software workload, the hardware threads within an EU may all be executing

the same compute kernel code, or each EU thread could be executing code from a completely

different compute kernel. The execution state of each thread, including its own instruction

pointers, are held in thread-specific ARF registers.

On every cycle, an EU can co-issue up to four different instructions, which must be sourced

from four different threads. The EU’s thread arbiter dispatches these instructions to one of four

functional units for execution. Although the issue slots for the functional units pose some

instruction co-issue constraints, the four instructions will be independent, since they are

dispatched from four different threads. It is theoretically possible for just two non-stalling

threads to fully saturate the floating-point compute throughput of the machine. More typically all

The Compute Architecture of Intel® Processor Graphics Gen8 7

seven threads are loaded to deliver more ready-to-run instructions from which the thread arbiter

may choose, and promote the EU’s instruction level parallelism.

5.3.2 SIMD FPUs

Within each EU, the primary computation units are a pair of SIMD floating-point units (FPUs).

Although called FPUs, they support both floating-point and integer computation. These units

can SIMD execute up to four 32-bit floating-point (or integer) operations, or SIMD execute up to

eight 16-bit integer or 16-bit floating-point operations. The 16-bit float (half-float) support is new

for Gen8 compute architecture. Each SIMD FPU can complete simultaneous add and multiply

(MAD) floating-point instructions every cycle. Thus each EU is capable of 16 32-bit floating-point

operations per cycle: (add + mul) x 2 FPUs x SIMD-4. Also new for Gen8, both FPUs now

support native 32-bit integer operations. Compared to Gen7.5, Gen8 effectively doubles integer

computation throughput within each EU. Finally, one of the FPUs provides extended math

capability to support high-throughput transcendental math functions and double precision 64-bit

floating-point.

Within each EU, Gen8 compute architecture offers significant local bandwidth between GRF

registers and the FPUs. For example, MAD instructions with three source operands and one

destination operand are capable of driving 96 bytes/cycle read bandwidth, and 32 bytes/cycle

write bandwidth locally within every EU. Aggregated across the whole architecture, this

bandwidth can scale linearly with the number of EUs. For Gen8 products with multiple slices of

EUs and higher clock rates, the aggregated theoretical peak bandwidth that is local between

FPUs and GRF can approach multiple terabytes of read bandwidth.

5.3.3 Branch and Send Units

Within the EUs, branch instructions are dispatched to a dedicated branch unit to facilitate SIMD

divergence and eventual convergence. Finally, memory operations, sampler operations, and

other longer-latency system communications are all dispatched via “send” instructions that are

executed by the message passing send unit.

5.3.4 EU ISA and Flexible Width SIMD

The EU Instruction Set Architecture (ISA) and associated general purpose register file are all

designed to support a flexible SIMD width. Thus for 32-bit data types, the Gen8 FPUs can be

viewed as physically 4-wide. But the FPUs may be targeted with SIMD instructions and

registers that are logically 1-wide, 2-wide, 4-wide, 8-wide, 16-wide, or 32-wide.

For example, a single operand to a SIMD-16 wide instruction pairs two adjacent SIMD-8 wide

registers, logically addressing the pair as a single SIMD-16 wide register containing a

contiguous 64 bytes. This logically SIMD-16 wide instruction is transparently broken down by

the microarchitecture into physically SIMD-4 wide FPU operations, which are iteratively

executed. From the viewpoint of a single thread, wider SIMD instructions do take more cycles to

complete execution. But because the EUs and EU functional units are fully pipelined across

multiple threads, SIMD-8, SIMD-16, and SIMD-32 instructions are all capable of maximizing

compute throughput in a fully loaded system.

The instruction SIMD width choice is left to the compiler or low level programmer. Differing

SIMD width instructions can be issued back to back with no performance penalty. This flexible

design allows compiler heuristics and programmers to choose specific SIMD widths that

The Compute Architecture of Intel® Processor Graphics Gen8 8

precisely optimize the register allocation footprint for individual programs, balanced against the

amount of work assigned to each thread.

5.3.5 SIMD Code Generation for SPMD Programming Models

Compilers for Single Program Multiple Data (SPMD) programming models such as

Renderscript, OpenCL™1, Microsoft® DirectX®2 Compute Shader, OpenGL Compute, and

C++AMP, generate SIMD code to map multiple kernel instances3 to be executed

simultaneously within a given hardware thread. The exact number of kernel instances per

thread is a heuristic driven compiler choice. We refer to this compiler choice as the dominant

SIMD-width of the kernel. In OpenCL and DirectX Compute Shader, SIMD-8, SIMD-16, SIMD-

32 are the most common SIMD-width targets.

On Gen8 compute architecture, most SPMD programming models employ this style code

generation and EU processor execution. Effectively, each SPMD kernel instance appears to

execute serially and independently within its own SIMD lane. In actuality, each thread executes

a SIMD-Width number of kernel instances concurrently. Thus for a SIMD-16 compile of a

compute kernel, it is possible for SIMD-16 x 7 threads = 112 kernel instances to be executing

concurrently on a single EU. Similarly, for a SIMD-32 compile of a compute kernel, 32 x 7

threads = 224 kernel instances could be executing concurrently on a single EU.

For a given SIMD-width, if all kernel instances within a thread are executing the same

instruction, then the SIMD lanes can be maximally utilized. If one or more of the kernel

instances chooses a divergent branch, then the thread will execute the two paths of the branch

separately in serial. The EUs branch unit keeps track of such branch divergence and branch

nesting. The branch unit also generates a “live-ness” mask to indicate which kernel instances

within the current SIMD-width need to execute (or not execute) the branch.

5.4 SUBSLICE ARCHITECTURE
In Gen8 compute architecture, arrays of EUs are instantiated in a group called a subslice. For

scalability, product architects have choice as to the exact number of EUs per subslice. For most

Gen8-based products, each subslice contains 8 EUs. Each subslice contains its own local

thread dispatcher unit and its own supporting instruction caches. Given these 8 EUs with 7

threads each, a single subslice has dedicated hardware resources and register files for a total of

56 simultaneous threads. Each subslice also includes a sampler unit and a data port memory

management unit. Compared against the Gen7.5 design which had 10 EUs per subslice, this

Gen8 design reduces the number EUs sharing each subslice’s sampler and data port. From the

viewpoint of each EU, this has the effect of improving effective bandwidth local to the subslice.

1 OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
2 Microsoft and DirectX are either registered trademarks or trademarks of Microsoft Corporation in the
United Stated and/or other countries.
3 We use the generic term kernel instance as equivalent to OpenCL work-item, or DirectX Compute
Shader thread.

The Compute Architecture of Intel® Processor Graphics Gen8 9

Figure 4: The Intel® Processor Graphics Gen8 subslice, containing 8 EUs each. The subslice also instantiates
sampler and data port units per subslice.

5.4.1 Sampler

The sampler is a read-only memory fetch unit that may be used for sampling of tiled (or not

tiled) texture and image surfaces. The sampler includes a level-1 sampler cache (L1) and a

level-2 sampler cache (L2). Between the two caches is dedicated logic to support dynamic

decompression of block compression texture formats such as DirectX BC1-BC7, DXT, and

OpenGL compressed texture formats. The sampler also includes fixed function logic that

enables address conversion on image (u,v) coordinates, and address clamping modes such as

mirror, wrap, border, and clamp. Finally the sampler supports a variety of sampling filtering

modes such as point, bilinear, tri-linear, and anisotropic.

5.4.2 Data Port

Each subslice also contains a memory load/store unit called the data port. The data port

supports efficient read/write operations for a variety of general purpose buffer accesses, flexible

SIMD scatter/gather operations, as well as shared local memory access. To maximize memory

bandwidth, the unit dynamically coalesces scattered memory operations into fewer operations

over non-duplicated 64-byte cache line requests. For example, a SIMD-16 gather operation

against 16 unique offset addresses for 16 32-bit floating-point values, might be coalesced to a

single 64-byte read operation if all the addresses fall within a single cacheline.

The Compute Architecture of Intel® Processor Graphics Gen8 10

5.5 SLICE ARCHITECTURE

Figure 5: The Intel® Processor Graphics Gen8 slice, containing three subslices for a total of 24 EUs. The slice adds
supporting L3 cache, shared local memory, atomics, barriers, and other fixed function units.

Subslices are clustered into slices. For most Gen8-based products, 3 subslices are aggregated

into 1 slice. Thus a single slice aggregates a total of 24 EUs4. Aside from grouping subslices,

the slice integrates additional logic for thread dispatch routing, a banked level-3 cache, a

smaller but highly banked shared local memory structure, and fixed function logic for atomics

and barriers. Additional fixed function units support media and graphics capability, but are not

discussed here.

5.5.1 Level-3 Data Cache

For Gen8-based products, the level-3 (L3) data cache capacity has been increased from

Gen7.5 to a range of 384 Kbytes to 576Kbytes total per slice. Each application context has

flexibility as to how much of the L3 memory structure is allocated: 1) as application data cache,

2) as system buffers for fixed-function pipelines, and 3) as shared local memory. For example,

3D rendering contexts often allocate more L3 as system buffers to support their fixed-function

pipelines, instead of as shared local memory. For compute application contexts on Gen8

compute architecture, the typical allocation is 384 Kbytes per slice as application data cache.

(For Gen7.5 compute architecture, the amount was 256 Kbytes per slice.)

4 Note some Gen8-based products may enable fewer than 24 EUs in a slice.

The Compute Architecture of Intel® Processor Graphics Gen8 11

As with previous generations, Gen8 products with multiple subslices will instantiate multiple L3

cache partitions. These cache partitions aggregate together and act as a single larger capacity

monolithic cache. Cachelines are 64 bytes and are uniformly distributed across the entire

aggregate cache. Every sampler and every data port are given their own separate memory

interface to the L3. The interface between each data port and the L3 data cache enables both

read and write of 64 bytes per cycle. Thus a slice containing three subslices, each with a

unique data port, will have an aggregate bandwidth of 192 bytes per cycle. For accesses that

miss the L3 cache, the L3 fill logic can read and write system memory data at 64 bytes per

cycle.

All data into and out of the samplers and data ports flows through the L3 data cache in units of

64-byte wide cachelines. This includes read and write actions on general purpose buffers. It

also includes sampler read transactions that miss the level-1 (L1) and level-2 (L2) sampler

caches. L3 cache bandwidth efficiency is highest for read/write accesses that are cacheline

aligned and adjacent within a cacheline. Compute kernel instructions that miss the subslice

instruction caches flow through the L3 cache.

5.5.2 Shared Local Memory

Shared local memory5 is a structure within the L3 complex that supports programmer

managed data for sharing amongst EU hardware threads within the same subslice. The

read/write bus interface between each subslice and shared local memory is again 64-bytes

wide. Latency wise, access to shared local memory is similar to accessing the L3 data cache.

However, the shared local memory itself is more highly banked than the L3 data cache. The

shared local memory banking can yield full shared local memory bandwidth for access patterns

that may not be 64-byte aligned or that may not be contiguously adjacent in memory. For

Gen8-based products, 64 Kbytes of shared local memory is dedicated and available per

subslice. Note that shared local memory is not coherent with other memory structures.

SPMD programming model constructs such as OpenCL’s local memory space or DirectX

Compute Shader’s shared memory space are shared across a single work-group (thread-

group). For software kernel instances that use shared local memory, driver runtimes typically

map all instances within a given OpenCL work-group (or a DirectX11 threadgroup) to EU

threads within a single subslice. Thus all kernel instances within a work-group will share access

to the same 64 Kbyte shared local memory partition. Because of this property, an application’s

accesses to shared local memory should scale with the number of subslices.

At first glance, it may seem like Gen8 instantiates an equivalent share local memory capacity

per subslice as did Gen7.5: 64 Kbytes per subslice. However, recall that Gen8 has 8 EUs per

subslice, whereas Gen7.5 had 10. The Gen8 EUs/subslice ratio means that fewer EUs will be

simultaneously sharing the 64 Kbytes, resulting in modestly improved local bandwidth between

EUs and their subslice’s shared local memory.

5.5.3 Barriers and Atomics

Each slice within Gen8 compute architecture bundles dedicated logic to support implementation

of barriers across groups of threads. This barrier logic is available as a hardware alternative to

5 We use the term shared local memory to indicate the hardware memory structure that supports the
software address space which OpenCL refers to as work-group local memory, and which DirectX
Compute Shader refers to as thread-group shared memory.

The Compute Architecture of Intel® Processor Graphics Gen8 12

pure compiler based barrier implementation approaches. The Gen8 logic can support barriers

simultaneously in up to 16 active thread-groups per subslice.

Each slice also provides a rich suite of atomic read-modify-write memory operations. These

operations support both operations to L3 cached global memory or to shared local memory.

Gen8-based products support 32-bit atomic operations.

5.5.4 64-Byte Data Width

A foundational element of Gen8 compute architecture is the 64-byte data width. Recall that

the EU register file is composed of 128 32-byte registers (SIMD-8 x 32-bit). But recall also that

operands to SIMD-16 instructions typically pair two such registers, treating the pair as a single

64-byte SIMD-16 register. Observe:

 A SIMD-16 instruction can source 64-byte wide operands from 64-byte wide registers.

 The data for such 64-byte wide registers are read and written from L3 over a 64-byte

wide data bus.

 Within the L3 data cache, each cacheline is again 64-bytes wide.

 Finally the L3 cache’s bus interface to the SoC shared LLC is also 64-bytes wide.

5.6 PRODUCT ARCHITECTURE
Finally, SoC product architects can create product families or a specific product within a family

by instantiating a single slice, or groups of slices. Members of a product family might differ

primarily in the number of slices. These slices are combined with additional front end logic to

manage command submission, as well as fixed function logic to support 3D, rendering, and

media pipelines. Additionally the entire Gen8 compute architecture interfaces to the rest of the

SoC components via a dedicated unit called the Graphics Technology Interface (GTI).

Figure 6: A potential product design that instantiates the compute architecture of Intel® Processor Graphics Gen8. It
is composed of a single slice with three subslices, for a total of 24 EUs. The Intel® Core M Processor with Intel® HD

Graphics 5300 instantiates such a design.

The Compute Architecture of Intel® Processor Graphics Gen8 13

Figure 7: Another potential product design that instantiates the compute architecture of Intel® Processor Graphics
Gen8. This design is composed of two slices, of three subslices each for a total of 48 EUs.

5.6.1 Command Streamer and Global Thread Dispatcher

As its name implies, the command streamer efficiently parses command streams submitted

from driver stacks and routes individual commands to their representative units. For compute

workloads, the global thread dispatcher is responsible for load balancing thread distribution

across the entire device. The global thread dispatcher works in concert with local thread

dispatchers in each subslice.

The global thread dispatcher operates in two modes. For compute workloads that do not

depend upon hardware barriers nor upon shared local memory, global thread dispatcher may

choose to distribute the workload over all available subslices to maximize throughput and

utilization. Given the unit’s global visibility, it is able to load balance across all the execution

resources. For compute workloads that do depend upon hardware barriers or shared local

memory, the global thread dispatcher will assign thread-group sized portions of the workload to

specific subslices. Such an assignment ensures localized access to the barrier logic and

shared local memory storage dedicated to each subslice.

5.6.2 Graphics Technology Interface (GTI)

The graphics technology interface, or simply GTI, is the gateway between Gen8 compute

architecture with the rest of the SoC. The rest of the SoC includes memory hierarchy elements

such as the shared LLC memory, the system DRAM, and possibly embedded DRAM. GTI

The Compute Architecture of Intel® Processor Graphics Gen8 14

facilitates communication with the CPU cores, and possibly with other fixed function devices

such as camera imaging pipelines. GTI also implements global memory atomics that may be

shared between Intel® Processor Graphics Gen8 and CPU cores. Finally GTI implements

power management controls for Intel® Processor Graphics Gen8 and interfaces between the

GTI clock domain and the (usually different) SoC clock domains.

The bus between each slice that is interfaced to GTI is capable of 64-bytes per cycle read and

64-bytes per cycle write. Internally, GTI has memory request queues to maintain memory order

and manage differing latencies on individual memory requests. For instances of Intel®

Processor Graphics Gen8, the bus between GTI and LLC has two possible configurations. Like

Gen7.5, one Gen8 configuration is capable of 64-bytes per cycle read and 32-bytes per cycle

write. A second configuration (new for Gen8) is capable of 64-bytes per cycle read and 64-

bytes per cycle write. Like other aspects of the architecture, this bus width is also scalable, and

SoC designers may configure it for specific products.

5.7 MEMORY

5.7.1 Unified Memory Architecture

Intel® Processor Graphics architecture has long pioneered sharing DRAM physical memory

with the CPU. This unified memory architecture offers a number of system design, power

efficiency, and programmability advantages over PCI Express hosted discrete memory systems.

The obvious advantage is that shared physical memory enables zero copy buffer transfers

between CPUs and Gen8 compute architecture. By zero copy, we mean that no buffer copy is

necessary since the physical memory is shared. Moreover, the architecture further augments

the performance of such memory sharing with a shared LLC cache. The net effect of this

architecture benefits performance, conserves memory footprint, and indirectly conserves system

power not spent needlessly copying data. Shared physical memory and zero copy buffer

transfers are programmable though the buffer allocation mechanisms in APIs such as OpenCL

1.0+ and DirectX11.2+.

5.7.2 Shared Memory Coherency

A new feature for Gen8 compute architecture is global memory coherency between Intel®

Processor Graphics and the CPU cores. SoC products with Intel® Processor Graphics Gen8

integrate new hardware components to support the recently updated Intel® Virtualization

Technology for Directed I/O (VT-d) specification. This specification extends the Intel®

Virtualization Technology, which generally addresses virtual machine to physical machine

usage models and enables virtual machine monitor implementation. In particular, the recent

VT-d specification extensions define new page table entry formats, cache protocols, and

hardware snooping mechanisms for shared memory between CPU cores and devices such as

Intel® Processor Graphics.

These new mechanisms can be used to maintain memory coherency and consistency for fine

grained sharing throughout the memory hierarchy between CPU cores and devices. Moreover,

the same virtual addresses can be shared seamlessly across devices. Such memory sharing is

application programmable through emerging heterogeneous compute APIs such as the shared

virtual memory (SVM) features specified in OpenCL 2.0. The net effect is that pointer-rich data-

structures can be shared directly between application code running on CPU cores with

The Compute Architecture of Intel® Processor Graphics Gen8 15

application code running on Intel® Processor Graphics, without programmer data structure

marshalling or cumbersome software translation techniques.

Within Intel® Processor Graphics, the data port unit, the L3 data cache, and GTI have all been

upgraded to support a new globally coherent memory type. Reads or writes originating from

Intel® Processor Graphics to memory typed as globally coherent drive VT-d specified snooping

protocols to ensure data integrity with any CPU core cached versions of that memory. Similarly

for GPU cached memory, for any reads or writes that originate from the CPU cores. As shown

in Figure 8, the sampler’s L1 and L2 caches as well as the shared local memory structures are

not coherent.

Figure 8: A view of the SoC chip level memory hierarchy and its theoretical peak bandwidths for the compute
architecture of Intel® Processor Graphics Gen8.

5.8 ARCHITECTURE CONFIGURATIONS, SPEEDS, AND FEEDS
The following table presents the theoretical peak throughput of the compute architecture of

Intel® Processor Graphics, aggregated across the entire graphics product architecture. Values

are stated as “per clock”, as final product clock rates were not available at time of this writing.

The Compute Architecture of Intel® Processor Graphics Gen8 16

 Intel ® HD
Graphics 5300

Derivation, notes

Configurations:

Execution Units (EUs) 24 EUs

8 EUs x 3 subslices x 1 slices

Hardware Threads 168 threads 24 EUs x 7 threads

Concurrent kernel instances (e.g.

OpenCL work-items or DirectX Compute
Shader “threads”)

5376 instances 168 threads * SIMD-32 compile

Level-3 data cache (L3$) size 384 Kbytes 1 slice
x 384 Kbytes /slice

Max Shared Local Memory size 192 Kbytes 3 subslices
x 64 Kbytes /subslice

Last Level Cache (LLC$) size 2-8 Mbytes depending on product configuration

Package embedded DRAM size n/a

Peak Compute Throughput

32b float FLOPS 384 FLOP/cycle

24 EUs
x (2 x SIMD-4 FPU)
x (MUL + ADD)

64b double float FLOPS 96 FLOP/cycle 24 EUs
x SIMD-4 FPU
x (MUL + ADD)
x ½ throughput

32b integer IOPS 192 IOP/cycle 24 EUs
x (2 x SIMD-4 FPU)
x (ADD)

6 EXAMPLE COMPUTE APPLICATIONS

The following images provide a few visual examples of the kinds of compute applications and

algorithms that have been accelerated on Intel® Processor Graphics.

Before After Before After

Figure 9: Intel® Processor Graphics acceleration in Adobe Photoshop, via OpenCL. In the left pair of images, Adobe
Photoshop‘s “Smart Sharpen” feature uses Intel® Processor Graphics to efficiently analyze images to maximize

clarity and minimize visual noise and halos. In the right pair of images, Adobe Photoshop‘s “Intelligent upsampling”
feature use Intel® Processor Graphics to accelerate upsampling operations that preserve detail and sharpness

without introducing visual noise. Images courtesy of Anita Banerjee and Ilya Albrekht.

The Compute Architecture of Intel® Processor Graphics Gen8 17

Figure 10: Interactive Real-time volumetric rendered 3D smoke effect implemented using DirectX11 Compute Shader
on Intel® Processor Graphics. Image courtesy Doug McNabb.

 Raw video frame & virtual lights Computed surface normals Video frame with relighting

Figure 11: Interactive dynamic relighting of a real-time video feed. A localized surface polynomial approximation
solver are implemented in OpenCL and applied to real-time depth captures. Derived surface normals and lighting

computations can then synthetically re-light the scene based on virtual light sources. Images courtesy of
Konstantin Rodyushkin. See an interactive example video.

Figure 12: Crowd simulation-based transition effect between two photos (or videos). Particles carry colors of the

source image and then change the colors while moving to form the destination image. Dynamic particle collision
detection and response are calculated with UNC’s RVO2 library ported to OpenCL 2.0 and running on Intel®

Processor Graphics. Intel Processor Graphics and OpenCL 2.0’s Shared Virtual Memory enable passing the original
pointer-rich data structures of the RVO2 library directly to Intel® Processor Graphics “as is”. Neither data structure

redesign nor fragile software data marshaling is necessary. Images courtesy of Sergey Lyalin and UNC.
More info: http://gamma.cs.unc.edu/RVO2/.

https://videoportal.intel.com/media/Perceptual+Computing%3A+Bouncing+Light+Balls/0_9ugm8fqb
http://gamma.cs.unc.edu/RVO2/

The Compute Architecture of Intel® Processor Graphics Gen8 18

Figure 13: OpenCV Face detection algorithm, accelerated via OpenCL and optimized for Intel® Processor Graphics.
Image courtesy Aaron Kunze.

7 ACKNOWLEDGEMENTS

Intel® Processor Graphics architecture, products, supporting software, and optimized

applications are the results of many years and the efforts of many engineers and architects, too

many to list here. Also many reviewers contributed to this document. Thank you all. A

particular thank-you to Jim Valerio, Murali Sundaresan, David Blythe, and Tom Piazza for their

technical leadership and their support in writing this document.

8 MORE INFORMATION

 The Compute Architecture of Intel® Processor Graphics Gen7.5

 Intel® Iris™ Graphics Powers Built-in Beautiful

 About Intel® Processor Graphics Technology

 Open source Linux documentation of Gen Graphics and Compute Architecture

 Intel® OpenCL SDK

 Optimizing Heterogeneous Computing for Intel® Processor Graphics, IDF 2014

Shenzhen

 Intel® 64 and IA-32 Architectures Software Developers Manual

 Intel® Virtualization Technology for Directed I/O (VT-d): Enhancing Intel platforms for

efficient virtualization of I/O devices

 Intel® Virtualization Technology for Directed I/O - Architecture Specification

https://software.intel.com/en-us/articles/intel-graphics-developers-guides
http://www.intel.com/content/www/us/en/architecture-and-technology/microarchitecture/latest-microarchitecture.html
http://ark.intel.com/Products/ProcessorGraphicsModels
https://01.org/linuxgraphics/documentation
https://software.intel.com/en-us/vcsource/tools/opencl-sdk
https://intel.activeevents.com/sz14/connect/sessionDetail.ww?SESSION_ID=1260
https://intel.activeevents.com/sz14/connect/sessionDetail.ww?SESSION_ID=1260
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
https://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices

The Compute Architecture of Intel® Processor Graphics Gen8 19

9 NOTICES

Copyright © 2014 Intel Corporation. All rights reserved

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel

products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which

includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR

IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO

LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR

USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY

RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal

injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION,

YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE

DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND

EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF

PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL

APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the

absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition

and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information

here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by

calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,

operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information

and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product

when combined with other products.

Intel, the Intel logo, Iris™, Core™ are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Intel® Graphics 4600, Iris™ Graphics, and Iris™ Pro Graphics are available on select systems. Consult your system manufacturer.

visit http://www.intel.com/content/www/us/en/architecture-and-technology/microarchitecture/latest-microarchitecture.html

http://www.intel.com/design/literature.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/microarchitecture/latest-microarchitecture.html

	2 Audience
	3 Introduction
	3.1 What is Intel® Processor Graphics?

	4 SoC Architecture
	4.1 SoC Architecture
	4.2 Ring Interconnect
	4.3 Shared LLC
	4.4 Optional EDRAM

	5 The Compute Architecture of Intel® Processor Graphics Gen8
	5.1 Key Changes in Intel® Processor Graphics Gen8
	5.2 Modular Design for Product Scalability
	5.3 Execution Unit (EUs) Architecture
	5.3.1 Simultaneous Multi-Threading and Multiple Issue Execution
	5.3.2 SIMD FPUs
	5.3.3 Branch and Send Units
	5.3.4 EU ISA and Flexible Width SIMD
	5.3.5 SIMD Code Generation for SPMD Programming Models

	5.4 Subslice Architecture
	5.4.1 Sampler
	5.4.2 Data Port

	5.5 Slice Architecture
	5.5.1 Level-3 Data Cache
	5.5.2 Shared Local Memory
	5.5.3 Barriers and Atomics
	5.5.4 64-Byte Data Width

	5.6 Product Architecture
	5.6.1 Command Streamer and Global Thread Dispatcher
	5.6.2 Graphics Technology Interface (GTI)

	5.7 Memory
	5.7.1 Unified Memory Architecture
	5.7.2 Shared Memory Coherency

	5.8 Architecture Configurations, Speeds, and Feeds

	6 Example Compute Applications
	7 Acknowledgements
	8 More Information
	9 Notices

