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MIPS ABIs Described

1. Introduction and scope
This document describes standards (‘‘ABIs’’) to which compilation systems should adhere to achieve the following
goals, which are ordered approximately by how challenging they are:

• Inter-calling : a binary program built with one compiler should be able to call a subroutine defined in another (so
long as address resolution problems are solved).

The standards relevant to this are called the ‘‘calling conventions’’; they describe how subroutines pass
parameters, return values, and co-operate to share the register set and stack resources. They’re discussed in §5
below.

• Interlinkable : object files built with one compiler can be linked successfully with those produced by another.

The standard relevant to this is the object code definition, in particular the definition of symbols and relocation
mechanisms, and is discussed in §7 below.

• Runnable : a binary produced with a compliant toolkit can be successfully executed on a compliant OS (in
particular we’re interested in versions of the Linux OS). The program must first be compatible with the
semantics of the library and/or system calls provided by the OS, of course; the ABI says nothing about that.

This requires standards regulating the use of run-time linked system library code. Most of this stuff is defined by
related standards such as the overarching [SVR4 ABI], to which all subsequent ABI manuals are footnotes. But
because that is very long and abstract, and much of this ABI would not make sense otherwise, there’s a fair
amount of background material in §3 which summarises how Linux runs applications.

• Debuggable : more conventions and standards are required before a program build with a toolkit can be
successfully debugged. People quite often use ‘‘foreign’’ debuggers with code built with the GNU toolchain, for
example. The issues involved are described in §6.1.

• Profilable : where available, code profilers have their own requirements - related to but not identical to those of
debuggers.

Three ABIs
Three MIPS ABIs are described here, perhaps with some notes on common variants. This document sets out to
describe; a later document will prescribe!

The three ABIs are:

o32 An ABI elaborated from the calling and linkage conventions first developed to go with the MIPS CPUs in the
early 1980s. Those conventions were extended by SGI to comply with the requirements of the generic
‘‘System V’’ specification [SVR4 ABI], and in particular to support position-independent shared libraries.

o32 as described here attempts to record the practice of MIPS/Linux systems and tools in 2002. Thanks are
particularly due to Kjeld Borch Egevang for his painstaking work in elucidating these practices, recorded in
the precursor of this document, [MIPSABI2].

n64 An ABI designed from scratch to fit the ‘‘System V’’ specification by SGI, for use on 64-bit CPUs only
(MIPS III or superset). n64 has 64-bit representations of C pointers and long integers; essential to exploit the
large memory space of these CPUs, but a source of unwelcome data bloat in programs which don’t use it.

n32 Very closely related to n64 and readily supported by the same OS kernel, n32 has 32-bit pointer and long
types, but otherwise has identical rules and syntax to n64.

All these historical ABIs have features which are troublesome for the MIPS architecture, and may not be well-
matched to the ‘‘embedded’’ applications where the CPUs are to be found.

A summary of differences between o32 and n32/n64 can be found as Appendix B below.
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Document Conventions
C language snippets will be set in monospace type.

Numbers will be in monospace type, and preceded by a radix indication. In particular 0b0101 is the binary
number representing ‘‘5’’, and 0x1c is the hexadecimal number representing ‘‘28’’.

Filenames will be in small monospace type.

Registers will be named in small monospace type.

MIPS instructions (written as in an assembler source file) will be in bold monospace type.
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2. Register naming conventions and usage
A MIPS CPU offers 32 general purpose registers for your program to use1: $0 to $31. Two, and only two, behave
differently from the others:

$0 always returns zero, no matter what you store in it.

$31 is always used by the normal subroutine-calling instruction (jal) for the return address. Note that the call-by-
register version (jalr) can use any register for the return address, though use of anything except $31 would be
eccentric.

In all other respects the general purpose registers are identical and can be used in any instruction (it is legal to use $0
as the destination of instructions, though the result data will disappear without trace).

In the MIPS architecture the ‘‘program counter’’ is not a register, and it is probably better for you not to think of it
that way - in a pipelined CPU there are multiple candidates for its value, which gets confusing. The return address
of a jal is the next instruction but one in sequence:

...
jal printf
move $4, $6
xxx # return here after call

That makes sense because the instruction immediately after the call is the call’s ‘‘delay slot’’ - the MIPS architecture
rules say it must be executed before the branch target. By default most assemblers hide the delay slot from you, but
it’s always there. The delay slot instruction of the call is rarely wasted, because it is typically used to set up a
parameter.

The floating point math coprocessor (called FPA for floating point accelerator), if included, adds 32 floating point
registers with their own conventions: see §2.2 below.

2.1. Conventional names and uses of general-purpose registers
Although the hardware makes few rules about the use of registers, their practical use is governed by a forest of
conventions, and as part of those conventions the registers are referred to by conventional names - typically defined
in a header file2 and implemented by using the C preprocessor on assembler files.

MIPS hardware cares nothing for these conventions, but all the benefits of software standardisation are lost without
them. Table 2.1 shows the register numbers, conventional names and a note on their use.

In a few cases the mapping of the conventional names differs between the o32 and n32/n64 ABIs. We’ll discuss
them as we go.

More about register usage

• AT : this register is reserved for the synthetic instructions generated by the assembler. Where you must use it
explicitly - such as when saving or restoring registers in an exception handler - there’s an assembler directive to
stop the assembler from using it behind your back (but then some of the assembler’s macro instructions won’t be
available.)

The assembler directive’s existence is the reason why this name is traditionally used in upper case...

• v0-v1 : used when returning non-floating-point values from a subroutine. If you need to return anything too big
to fit in two registers, the compiler will allocate a memory buffer whose address will be passed as an invisible
first argument.

While a function is running v0-v1 can be freely used as temporaries.

In o32 only integer values are returned in these registers. Structure or array types (even if small enough to fit in
the two registers) are always returned through a data area defined by the caller and whose address is an invisible
first argument. (This rule appears to be a bug blessed by tradition.)

• a0-a3/a7 : used to pass the first four (o32) or eight (n32/n64) non-FP parameters to a subroutine. But that’s a
misleading simplification; see §5 below for a more complicated but correct description.

1 The contents of this section and some others are adapted with permission from ‘‘See MIPS Run’’ - see [SMR]
2 /usr/include/asm/regdef.h on most Linux/MIPS systems.
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Register Nos name use

$0 zero always zero

$1 AT assembler temporary

$2-$3 v0-v1 return value from function

$4-$7 a0-a3 arguments

o32 n32/n64
name use name use

$8-$11 t0-t3 a4-a7 more arguments

$12-$15 t4-t7 t0-t3

$24-$25 t8-t9 t8-t9
temporaries

temporaries

$16-$23 s0-s7 saved registers

$26-$27 k0-k1 reserved for interrupt/trap handler

$28 gp global pointer

$29 sp stack pointer

$30 s8/fp frame pointer if needed (additional saved register if not)

$31 ra Return address for subroutine

Table 2.1: Conventional names of registers with usage mnemonics

Argument registers which are unused or whose value is no longer needed can be freely used as temporaries.

The odd-looking reallocation of temporary register names and numbers for n32/n64 vs o32 is some kind of effort
to reduce the amount of effort spent porting assembler modules; I doubt if it helped!

• t0-t9 : by convention, subroutines may use these registers without doing anything to preserve their previous
contents. This makes them a good choice for ‘‘temporaries’’ when evaluating expressions - but the
compiler/programmer must remember that values stored in them may be destroyed by a subroutine call.

• s0-s8 : by convention, subroutines must guarantee that the values of these registers on exit are the same as they
were on entry - either by not using them, or by saving them on the stack and restoring before exit.

This makes them eminently suitable for use as ‘‘register variables’’ or for storing any value which must be
preserved over a subroutine call.

• k0-k1 : reserved for use by an OS’ trap/interrupt handlers, which will use them and not restore their original
value; so they are of little use to anyone else. Not used at all by application code.

• gp : has two quite different roles. In position-independent (PIC) code - typically used only for application and
library code in a large OS - it is used in the double-indirection used to reach variables and functions whose
location is not known until the program and its libraries are loaded.

In non-PIC code, typically used for all non-Linux embedded applications, it’s sometimes used to provide
efficient access to C static/extern data.

We’ll consider the two uses separately.

• gp in PIC code : In position-independent code gp acts as a pointer to the GOT (‘‘global offset table’’), as
described in §3.2.

The GOT pointer is loaded by code in the prologue of every function which makes a reference through the GOT.

In the n32/n64 ABIs the value in gp is defined to survive a function call; so functions using the register must
save it on entry and restore its old value before exit.

In o32 PIC code, a function call may overwrite the value in gp and the compiler must ensure it’s reloaded after
any such call. This isn’t very efficient...

• gp in non-PIC code : (if used) gp is initialised to point to a load-time-determined location in the midst of your
static data. This means that loads and stores to data lying within 32Kbytes either side of the gp value can be
performed in a single instruction using gp as the base register. Note that the pointer in gp is a constant; no
application code ever writes to the register once it has been initialised.
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Without the global pointer, loading data from a static memory area takes two instructions: one to load the most
significant bits of the 32-bit constant address computed by the compiler and loader, and one to do the data load.

To use gp a compiler must know at compile time that a datum will end up linked within a 64Kbyte range of
memory locations. In practice it can’t know, only guess. The usual practice is to put ‘‘small’’ global data items
(8 bytes and less in size) in the gp area, and to get the linker to complain if it still gets too big. The compiler
-Gnn flag can be used to adjust the threshold of what is considered ‘‘small’’.

Not all compilation systems and not all run-time systems support gp.

• sp : (stack pointer). It takes explicit instructions to raise and lower the stack pointer, so MIPS code usually
adjusts the stack only on subroutine entry and exit; and it is the responsibility of the subroutine being called to
do this. sp is normally adjusted, on entry, to the lowest point that the stack will need to reach at any point in the
subroutine. Now the compiler can access stack variables by a constant offset from sp.

• fp : (also known as s8). A subroutine will use a ‘‘frame pointer’’ to keep track of the stack if it wants to do
things which involve extending the stack by an amount which is determined at run-time. Some languages -
including C++ - may do this implicitly; assembler programmers are always welcome to experiment; and C
programs which use some efficient implementations of the alloca() library routine will find themselves doing
so.

If the stack bottom can’t be computed at compile time, you can’t access stack variables from sp, so fp is
initialized by the function prologue to a constant position relative to the function’s stack frame. Cunning use of
register conventions means that this behavior is local to the function, and doesn’t affect either the calling code, or
any nested function calls.

• ra : (return address). On entry to any subroutine, ra holds the address to which control should be returned - so a
subroutine typically ends with the instruction: jr ra.

Subroutines which themselves call subroutines must first save ra, usually on the stack.

2.2. Floating Point register conventions
There are a corresponding set of standard uses for floating point registers too.

MIPS floating point
MIPS CPUs which have FPA hardware have 32 floating point registers, whose assembler names are $f0 - $f31.
Even 32-bit MIPS CPUs support the 64-bit IEEE double-precision format.

The o32 ABI generates code compatible with ‘‘traditional’’ 32-bit MIPS I and MIPS II CPUs, which do arithmetic
only in the 16 even-numbered registers $f0 - $f30. The odd-numbered registers are referred to in move and
load/store instructions; but the assembler provides synthetic ‘‘macro’’ instructions for move and load/store double,
so you will probably never see the odd-numbered registers when writing o32 code.

The n32/n64 ABIs run only on 64-bit MIPS CPUs, and exploit their ability to have 32 independent 64-bit registers.
You can run o32 code on 64-bit CPUs, but only by setting the FPA into a compatibility mode where the odd-
numbered registers disappear.

The MIPS32 specification gives a third option, where you get 32 registers which work in pairs for double precision
(as per MIPS I) but also work independently to provide 32 registers usable for single-precision calculation. So far,
no FPU of this model has been built, but it is compatible with o32 - somewhat over-engineered, but does everything
required.

FP register software use and calling conventions
Like the general-purpose registers, the MIPS calling conventions add a whole bunch of rules about register use
which are nothing to do with the hardware; they tell you which FP registers are used for passing arguments, which
ones’ values are expected to be preserved over function calls and so on.

The division of functions is much as for the integer registers, less the special cases.

It may be worth stressing that the role of the odd-numbered registers is not affected by the CPU’s ‘‘endianness’’.
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Figure 2.1 shows these for each ABI. Note that the o32 ABI assumes that the CPU either has a MIPS II or earlier FP
unit or that the CPU has the SR[FR] compatibility bit cleared to zero; in either case only 16 registers are usable for
arithmetic, so there are no odd-numbered registers in the table.

n32/n64 are usable only when all 32 floating point registers are exposed.

There are some conventional names defined for the floating point registers and reflecting these roles; but they don’t
seem to be much used, and are not described here.

role o32 n32 n64

$f0, $f2function return values

argument registers $f12, $f14 $f12-$f19

ev ens$f20−$f30 $f24−$f31saved over function call
(suitable for register variables)

temporaries (not saved over
function call, or
‘‘caller−saved’)

ev ens$f4−$f10, $f16,

$f18

ev ens$f4−$f10, $f16,

$f18, all odds$f1−$f31†

$f1, $f3−$f11,

$f20−$f23

Table 2.2: Floating point register usage conventions

† This strange difference between n32 and n64 (it’s the only difference, apart from the mapping of the pointer and
long data types) is evidently due to an attempt to increase the portability of assembler programs from o32 to n32. It
seems unlikely that this was a good idea.
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3. Background material
This section is not part of the ABI definition. But some background and some common definitions here will allow
us to keep the real definition shorter and more comprehensible.

3.1. Virtual memory layout
In particular, it’s useful to draw some simple pictures of the various pieces of code and data which might make up an
ABI-compliant application. For ‘‘static’’ applications this is almost too simple to be required; but for Linux
applications the pictures contain a fair amount of information.

Names used for memory regions and object code chunks
Some definitions:

• Module : A compilation unit (the assembler is seen as just another compiler...), and also used for an object file
generated from one compilation unit.

• Program : all the addressable data and code associated with an application. Strictly speaking, that associated
with an instance of an application; in Linux there may be many copies of the shell running, and they’re distinct
programs in this sense.

For Linux applications, this excludes the kernel and other parts of the memory map which are not accessible to
the application.

• Link unit : a part of a program which has been bound together so that its components are at fixed offsets from
each other.

• Segment3 : a part of a program which is contiguous in the memory image of the running program, and which is
distinguished for link/build purposes. By ancient convention segment names begin with a dot, and are called
things like .text and .bss.

When several modules are being combined into a single link unit during the build process, sections of the same
name in different modules are brought together and various sections concatenated to make a segment.

• _main4 : C programmers think execution begins with main(); but in reality there’s always a more primitive,
machine-dependent startup routine supplied by your build environment. This does things like initialising the sp
register to mark the stack region, and zero-ing the memory region which contains the ‘‘uninitialised’’ C
variables. If you write C++, this will also arrange for initialisor routines to be run.

3.1.1. Simple standalone application
Figure 3.1 depicts some important features of a simple MIPS application.

3 Used in a sense which harmonises with its more technical use in the formal descriptions of object files.
4 This is probably the wrong name for Linux.
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code all in the same
256Mbyte region

initialised data 

uninitialised data 

stack region grows down

grows upheap

data from
object file

defined in
obj file

defined at
run−time

optional "small"
data area
(<= 64Kbytes)

Figure 3.1 Memory map of typical statically-linked application

What’s to see here?

• Code, initialised and uninitialised data : form a single link unit; their relative positions are fixed when the
software is built. In fact, their absolute locations in program memory are also typically fixed at build-time; this
code is position-dependent.

• Stack : is assigned by the start-up program in accordance with OS and toolchain conventions. It grows down, so
is typically placed at the top of the program’s memory space.

• Heap : an old-fashioned word for data space allocated by the program through C setbrk() or (slightly higher
level) malloc() calls. The heap usually starts at the lowest suitably aligned location available after allowing
for the linked code and data.

• Small data area : a MIPS special. It takes two MIPS instructions to load from or store to a C location declared at
module level or as static. Where the ‘‘small’’ data area is used, the gp register is set to point to the middle of
it by __main(). Now you can load and store to variables in that area with a single instruction.

You can’t expect many programs entire data to fit within the 64Kbyte address range limit imposed by the MIPS
load/store instruction’s 16-bit offset; so during compilation and build only data items below a certain size are
considered as candidates for this area - that’s why it’s called ‘‘small’’ data.

The small data area, if provided, overlaps both the initialised and uninitialised segments (and is implemented as a
pair of sub-segments).

• Common segment names :

.text all the code

.data initialised data possibly excluding...
.sdata initialised data for the ‘‘small’’ area
.bss uninitialised data possibly excluding

.sbss uninitialised data for the ‘‘small’’ area.
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A word of warning: in many embedded OS’ all the software runs in the same address space (perhaps because the OS
doesn’t use the MIPS memory management facilities at all). Such systems have complicated memory maps which
are deeply OS dependent.

3.1.2. Linux application
Several things make Linux applications more interesting. These applications are built without their library
functions; the library routines are linked in as the program is loaded into memory. The library routine may have
been updated since the application was built, and it should still work5. The result is a much more complicated
memory map with a number (perhaps quite a large number) of separately linked pieces, sketched in Figure 3.2.

data from
object file

defined in
obj file

stack region grows down

code

initialised data 

uninitialised data 

GOT
gaps: code/data
are in separate
pages

application

heap area

library 1

heap area

library 2

etc

one link unit whole program

Figure 3.2 Memory map for Linux application and its libraries

In the memory map of Figure 3.2 all the link units except the base application are shared libraries of some kind
(either built-in shared libraries or dynamically loaded by explicit programming). They are loaded into program
memory working upward, first-come first-served. While the base application runs at program addresses which were
known at build time, the libraries must be able to run at arbitrary memory addresses6.

The requirement that library modules should link in just anywhere and still work (‘‘position-independent code’’,
always ‘‘PIC’’ in Linux discussions) forces considerable changes to the way code is generated. The MIPS
architecture’s preferred subroutine call instruction is jal, and that instruction is not PC-relative; it encodes (most
of) the absolute virtual address of the subroutine entry point. Moreover, Linux standards (and UNIX® standards
before them) require that the shared libraries should also be able to share extern data. But this is a big subject for
the next section.

5 A version system based on conventional names should make sure that the library you pick up provides a compatible
interface.

6 In practice code and data segments start at the beginning of a virtual memory page, commonly 4Kbytes. Some OS
versions may align link units to a small multiple of a page size.
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3.2. PIC code and the Global Offset Table
An application’s binary code is built before you know where data or subroutines in other link units will reside in the
program’s memory map; both the absolute and relative position of each link unit depends on what versions of what
libraries get loaded in what order.

It isn’t possible for the run-time loader to fix up these addresses in the code itself, because the code itself must be
shared between different instances of the application program (and each instance may have a different library
layout). So there’s no hope that an application’s or library’s binary will contain the address information needed to
reference functions and data in a different link unit.

The Global Offset Table (GOT)
Instead, the compiler generates code which makes every function call and every reference to static/extern data
indirect, via a table of pointers. The table of pointers is the Global Offset Table or ‘‘GOT’’; it is in a data segment
and separate copies are kept for each instance of the application, so it can be and is fixed up by the loader. There’s a
sketch of how you might see it in Figure 3.3 below. The GOT contains an entry for each function or data item that is
accessed by any code in the link unit (the loader finds each item by its name, so we often say there’s an entry for
each symbol). The table offset for a particular symbol is known at build time, and is a constant in the binary code.

For MIPS code, the gp register is maintained as a pointer to the GOT of the link unit7.

code

GOT

lw t0, somevar lw t0, off(gp)
lw t0, 0(t0)

gp

address of somevar

address of somefunc

To other link units

jal somefunc lw t9, foff(gp)
jalr t9

Figure 3.3 The GOT in action

The gp register is set to point to the GOT by code included as part of the prologue of each function (at least, each
function which makes any use of the GOT.) This is suboptimal, since for intra-link-unit calls it will already hold the
right value... but the compiler can’t (in general) distinguish intra- and inter-link-unit calls.

In the o32 ABI, the calling code must be aware that a function call might overwrite the value in the gp register, and
the caller must preserve or recalculate the value after the call if required; in the n32/n64 ABIs, gp is defined as a
register whose value must be preserved, so any function which uses it has to save the old value of gp and restore it
before exit. This is undoubtedly a better idea...

7 There can be more than one GOT in a link unit in some circumstances; see §3.2 below.
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Loading a PIC application and its libraries
The program loader is the Linux application which really runs when you load any binary which uses shared libraries
- it’s the ‘‘interpreter’’ for these files8. The program loader maps the application code and data and any libraries it
needs into the program’s address space. The build system leaves a list of required library names in the application’s
object file, and the program loader finds the library files via a series of search path mechanisms - for details see
[LoaderHowTo]. Conventions about file names (if followed correctly) make sure the program finds the ‘‘right’’
library.

The program loader maintains symbol tables for the data items and subroutine entry points which are exported by
the application and each library, so it can tie up references between separate link units.

Lazy loading/binding of libraries
While you don’t hav e to actually read in all the code of the libraries required by an application (the ordinary virtual
memory paging system takes care of that), the process of binding in a link unit, fixing up its GOT and getting it
ready for use is relatively time-consuming. This penalty is paid even for libraries which provide facilities which the
application rarely uses. That can slow the application startup.

So as an optimisation Linux defers loading and fixing up libraries until they are first used. By the nature of the PIC
code the unresolved references are all in the GOT. Where the first reference to the new library is a function call this
is relatively straightforward; the GOT entry for an unresolved subroutine reference is set to point to a function in the
run-time loader which then loads the library, patches the GOT so that future calls will go direct, and calls the library
function.

Allowing libraries to be ‘‘demand-loaded’’ after a program trips over a missing data reference is more difficult. It
could certainly be done by co-operation between the run-time loader and the virtual memory exception handlers in
the kernel - but this isn’t done in current Linux/MIPS kernels (at least up to 2.5). There are other more subtle issues
(for example, where the same symbol is provided by two different libraries) which make lazy loading problematic.
So the build system is charged with identifying which libraries are safe to lazy-load, and to identify them in the
application binary. The loader can then load unsafe libraries at startup.

Dynamic (explicit) loading of libraries - dlopen()
It’s also possible to get software to pick its own shared library and then build an explicit software-visible table of
calls to it. This mechanism (which is reminiscent of Microsoft Windows ‘‘DLL’’ s) fits naturally onto the
object/class concepts of C++, and libraries loaded like this are referred to as ‘‘dynamic shared objects’’.

You don’t hav e to build a Linux shared library in a special way to make it fit for dlopen() - any library will do.

At the lowest level you call dlopen() to grab the library and dlsym() calls to obtain pointers to named data
items or functions in the dynamic shared object. But because dynamic libraries are just shared libraries, you get
some unexpected ‘‘bonus’’ semantics.

Firstly, the explicitly-loaded library will gain access to any public symbols in the application (or its pre-loaded
libraries). Perhaps more unexpectedly, a straightforward extern function pointer reference in the application can
bind to a symbol from a library which wasn’t mentioned at all at build time, but only brought in with dlopen().

It’s much more complicated than that, of course; there has been substantial theological debate in the Linux mailing
lists... everyday programmers beware.

PIC/GOT problems
There are some complications which are worth mentioning here.

• What to do when your GOT overflows : On MIPS, GOT pointer loads are usually compiled to a single load
relative to the gp register; but this can only span a table 64Kbytes in size (16K pointer entries, or only 8K in
n64). Large applications and libraries can use more symbols than that.

There are two approaches. One is to just let the GOT grow above 64Kbytes, and require the compiler to generate
code which can load/store arbitrary entries in it. This generally uses the gcc -PIC option - it’s trouble-free and
portable but generates truly awful code.

8 On Linux it’s usually /lib/ld-linux.so.
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Some compilers support an option where you can generate one GOT to each module in a link unit
(gcc -multigot). Done properly this is no trouble, but the dynamic loader has to know about it.

• Ameliorating the overheads of PIC code : nothing in the ABI obliges the compiler to go through the GOT when
accessing data or calling subroutines which are in the same link unit; neither is it strictly necessary for a function
to reset the gp register on an intra-link-unit call.

However, there are several reasons why this hasn’t been done:

1. Even within the link unit only relative addresses are known; the MIPS architecture lacks efficient PC-
relative call and load instructions.

2. The compiler doesn’t know which references are in the link unit. While it’s possible to get the linker to do
some instruction re-writing to simplify intra-link-unit calls and references, it’s bad practice...

3. The PIC calling convention for MIPS requires that on entry to a function the t9 register holds the address
of the function’s entry point. Since calls made through the GOT mean the address may be in some register,
this seems unproblematic - but this requirement is burdensome to any possible future intra-link-unit (or
ev en intra-module) call mechanism.
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4. How data types map onto memory (and endianness)
For the purposes of this document memory is taken as an array of unsigned 8-bit quantities, whose index is the
virtual address. For all known MIPS architecture CPUs this corresponds to a C definition unsigned char [].

Like all the modern computers I know of, MIPS uses 2s-complement representation for signed integers - so in any
data size ‘‘-1’’ is represented by binary all-ones. The overwhelming advantage of 2s-complement numbers is that
the basic arithmetic operations (add, subtract, multiply, divide) have the same implementation for signed and
unsigned data types9.

C integer data types come in signed and unsigned versions, which are always the same size and alignment.
When you don’t specify which you typically get a signed int, long or long long but often an unsigned
char10.

Sizes of basic types
Table 4.1 lists fundamental C data types and how they’re implemented for MIPS architecture CPUs. We’ll come
back to the long and pointer types a bit later - their size changes according to which ABI you use.

C type MIPS asm name size (bytes)

char byte 1

short half 2

int word 4

long long† dword 8

float word‡ 4

double dword‡ 8

Table 4.1: Data types and memory representations

Size of ‘‘long’’ and pointer types
Although these vary according to the type, in practice they’re always stored the same as something else... For the
n64 ABI long is implemented just like the long long shown above, while for o32 and n32 long is implemented
just like an int.

And then in all three ABIs a pointer is always implemented as an unsigned long; the MIPS architecture always
boasts a simple ‘‘flat’’ address space.

Alignment requirements
All these primitive data types can only be directly handled by standard MIPS instructions if they are naturally
aligned: that is, a 2-byte datum starts at an address which is even (zero modulo 2), a 4-byte datum starts at an
address which is zero modulo 4, and an 8-byte datum starts at an address which is zero modulo 811.

4.1. Memory layout of basic types and how it changes with endianness
Table 4.2 shows how each basic type is laid out in our byte-addressed memory; the arrangement is different for big-
endian and little-endian software.

9 At least, until the result has greater precision than the operands.
10 This is an ANSI C feature. In early C char was also signed by default. Most compilers allow you to change the

default for char with a command line flag.

† The long long data type is familiar to GNU C users, and widely used elsewhere.

‡ The assembler does not distinguish storage definitions for integer and floating-point data types.
11 For MIPS32 CPUs using only 32-bit registers and data paths, 8-byte data types are not handled by any machine

instruction and the 8-byte alignment restriction is not strictly necessary. Howev er, it is still imposed in all known ABIs.
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char
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float

double
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07
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relative byte address
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char

short

int

long long

float

double

0 7

8 150 7

16 23 24 318 150 7

mantissa sign
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exp

56 6332 39 40 47 48 5516 23 24 318 150 7

mantissa signexp

relative byte address
0 1 2 3 4 5 6 7

B
ig−E

ndian
Little−E

ndian

Table 4.2: C data types in memory

In Table 4.2 I’ve giv en in to the temptation to reverse the bit-numbering within each byte for the big-endian layouts.
For memory addressing purposes this is meaningless; bytes are indivisible 8-bit objects. However, rev ersing the bit
numbers as above makes the bitwise depiction of the fields of floating point numbers easier to absorb (and prettier).

Each of these data types is naturally aligned, as described above.

‘‘Endianness’’ can be a troubling subject. If you are uneasy about it, read it up in [SMR].

4.2. Memory layout of structure and array types and alignment
Complex types are built by concatenating simple types, but inserting unused (‘‘padding’’) bytes between items so as
to respect the alignment rules12.

It’s worth giving a couple of examples. Here’s the byte offsets of data items in a struct mixed:

12 Some compiler systems provide mechanisms to alter the alignment rules for particular data definitions. This allows
you to model more possible data patterns with C data declarations, and the compiler will generate appropriate code (with
some loss of efficiency) to handle the resulting unaligned basic data types. But such features are outside the scope of this
document.
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struct mixed {
char c; /* byte 0 */

/* bytes 1-14 are ‘‘padding’’ */
double d; /* bytes 8-15 */
short s; /* bytes 16-17 */

};

It’s worth stressing that the byte offsets of the fields of constructed data types (other than those using C bitfields, see
§4.2 below) are unaffected by endianness.

Constructed data types are aligned in memory to the largest alignment boundary required by an data type defined
inside them. So a struct mixed will start on an 8-byte boundary; and that means that if you build an array of
these structures you will need padding between each array element. C compilers provide for this by ‘‘tail padding’’
the structure to make it usable for an array, so sizeof(struct mixed) == 24 and the structure should really
be annotated:

struct mixed {
char c; /* byte 0 */

/* bytes 1-14 are ‘‘padding’’ */
double d; /* bytes 8-15 */
short s; /* bytes 16-17 */

/* bytes 18-23 are ‘‘tail padding’’ */
};

Just to remind you: the size and alignment requirement of pointer and long data types can be 4 or 8, depending on
the ABI.

Bit fields in structures
C allows you to define structures which pack several short ‘‘bit field’’ members into one or more locations of a
standard integer type. This is a useful feature for emulation, hardware interfacing, and perhaps for defining dense
data structures, but is fairly incomplete. Bitfield definitions are nominally CPU-dependent (but so is everything) but
also genuinely endianness-dependent.

One can, for example, define a data structure which permits access to the various fields of a MIPS single-precision
floating point number:

#if BYTE_ORDER == BIG_ENDIAN

struct ifloat {
unsigned int sign:1;
unsigned int bexp:8;
unsigned int mant:23;

};

#else /* little-endian */

struct ifloat {
unsigned int mant:23;
unsigned int bexp:8;
unsigned int sign:1;

};

#endif

In this case (as you’d hope and expect) the three fields are packed into one 32-bit int storage unit. How do the two
cases differ? Well, for both endianness’ the bitfields are allocated with the first-defined field occupying the lowest
byte-addressed part of the int. For big-endian, that means the high-order bits are occupied first; for little-endian,
it’s the low-order bits.
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Does this make sense? Certainly some; if you tried to implement bitfields in a less endianness-dependent way, then
in the following example struct fourbytes would have a different memory layout from
struct fouroctets- and that doesn’t seem reasonable:

struct fourbytes {
signed char a; signed char b; signed char c; signed char d;

}

struct fouroctets {
int a:8; int b:8; int c:8; int d:8;

}

A field can only be packed inside one storage unit of its defined type; if we try to define a structure for a MIPS
double-precision floating point number, the mantissa field contains part of two 32-bit int storage units and can’t be
defined in one go. The best we can do is something like this:

struct ieee754dp_konst {
unsigned sign:1;
unsigned bexp:11;
unsigned manthi:20; /* cannot get 52 bits into... */
unsigned mantlo:32; /* .. a regular C bitfield */

};

You’re permitted to leave out the name of the field definition, so you don’t hav e to invent names for fields which are
just there for padding.

Although ANSI doesn’t require it, many compilers permit you to use bitfields of type other than int. We could
have used an unsigned long long bit field and defined the double-precision floating point register in one go.

The full alignment rules for bit-fields are complicated:

• As we said above, a bit-field must reside entirely in a storage unit that is appropriate for its declared type. Thus a
bit-field never crosses its unit boundary.

• Bit-fields can share a storage unit with other struct/union members, including members that are not bit-fields (to
pack together, the adjacent structure member must be of a smaller integer type).

• Structures generally inherit their own alignment requirement from the alignment requirement of their most
demanding type. Named bit-fields will cause the structure to be aligned (at least) as well as the type requires.

Unnamed fields - regardless of their defined type - only force the storage unit or overall structure alignment to
that of the smallest integer type which can accommodate that many bits.

• You might want to be able to force subsequent structure members to occupy a new storage unit. In some
compilers you can do that with an unnamed zero-width field. Zero-width fields are otherwise illegal (or at least
pointless).

You now know everything you need to map C data declarations to memory in a manner compatible with the various
ABIs.
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5. Calling conventions
The calling convention describes how arguments are passed to functions, and how values are returned. It’s also a
convenient place to describe the stackframe structure which builds up to represent the current function nest.

ANSI C permits pretty much any value - structures and arrays as well as scalars - to be passed as arguments or
returned by a function.

Stack maintenance and alignment
When the stack is adjusted by functions to make space for local variables, register saves and argument passing it is
always adjusted by a multiple of 8 bytes (o32) or 16 bytes (n32/n64), so that the stack base is aligned to the greatest
extent required by any variable.

Registers and the argument structure
For efficiency, we want (most of the time) to pass arguments in registers, and avoid data loads/stores. But C permits
pretty much any non-array data type - no matter how large or complex - to be passed as an argument13. It isn’t going
to be ‘‘obvious’’ how such arguments should be passed. To make sure we handle corner cases correctly, the set of
arguments passed to a function is mapped as it would be to a memory-based argument structure, and then as much
of that structure as will fit is pasted into the available registers. For any arguments left over after all available
argument registers have been used up, we put a copy of that part of the argument structure onto the stack.

Here are the rules:

1. Each argument is aligned to the start of a new argument slot within the argument structure; these slots are 4
bytes on o32 and 8 bytes on n32/n64 - chosen to match the size of the general-purpose registers.

If the next slot doesn’t hav e the correct alignment for a value (for example, a double on o32 requires 8-byte
alignment), it is skipped to find a slot which is correctly aligned. Skipped slots remain unused.

Large arguments may spill over into more than one slot.

2. Integer values are first converted to the type of the argument, if there’s a function prototype, using standard C
rules. Where there’s no function prototype the rules (derived from old K&R C) are that integer and floating
point values are coerced to signed int and double respectively.

3. Integers smaller than int are expanded to int by zero- or sign-extending them in accordance with C rules.

Then on n32/n64, where the argument slot is bigger than the an int, the value is expanded up to the size of a
register by sign-extension, in accordance with the way the MIPS architecture represents 32-bit values in 64-bit
registers.

4. Non-integer arguments smaller than a register-sized slot are aligned to the lowest addressed part of the slot.

5. In o32, float arguments are 8-byte aligned and occupy two slots (even though there’s nothing useful in the
second four bytes). Note that you need function prototypes to be passing floatrather double arguments

6. The argument registers are rigidly identified with a particular slot in the argument structure. If for alignment or
other reasons a slot cannot be used, then the corresponding register won’t be used to pass an argument.

From this point on o32 is different from n32/n64.

o32 n32/n64

7. The caller will always build an argument data
structure, even though it may remain unused in whole
or part. Moreover, the data structure is always a
minimum of 16 bytes (four register-sized slots) in
size.

The caller need not provide any data structure unless
the arguments occupy more space than can be
mapped onto registers, and the remaining arguments
have to be passed on the stack.

13 In practice, C programmers almost always prefer to pass pointers to data structures, but we can’t rely on that.
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o32 n32/n64

8 The first 4 × register-sized (ie 4 byte) slots of the
structure are mapped to registers a0−3. point register
pairs $f12/$f13 and $f14/$f15 - more often known
as fa0 and fa1.

The first 8 register-sized (8 byte) slots of the structure
are mapped to registers a0−7 (for integer arguments),
and the same slots mapped to eight floating point
registers $f12-$f19.

Slots which are known to contain a properly aligned
floating point value are passed in the floating point
register; everything else is passed in the integer
register.

9. o32 does not assume the existence of function
prototypes. For reasons to do with the
implementation of functions with variable numbers of
arguments, it is difficult to ensure that the caller and
the called function always agree when to use a
floating point rather than a general-purpose register
for an argument.

o32’s rule is that up to two leading floating point
arguments will be passed in FP registers, but if the
first argument is not an FP a second FP argument will
not be put in an FP register. In functions like
printf() the first argument is a pointer, so floating
point values will be passed in integer registers or on
the stack.

n32/n64 do require function prototypes, so that the
caller has information about the type of arguments
and can determine whether to use a floating point
register.

That’s it. Armed with the information above you can describe the register and stack values to be passed for any
possible set of C arguments.

Returning values from a function
In all the ABIs a simple scalar value is returned in a register; v0 for integers, and fv0 for floating point values. A
second integer register is defined for returning larger values, and is used when returning a long long value in o32.

In n32/n64 a structure value will be returned in the registers if it fits (that is, if it’s 16 bytes or less in size). A
structured value will only be returned in floating point registers when it consists exactly of one or two floating point
fields, and nothing else.

For all other structures or larger values which are not accommodated in the registers, the caller must provide a
pointer to a memory buffer (usually on the stack, but that’s not mandatory). The caller prepends a pointer to the
memory buffer as an implicit first argument, followed by its explicit arguments. The called function should copy the
return value to the supplied address.

5.1. Calling conventions extended for Linux (‘‘MIPS ABI’’) PIC code.
In PIC code functions are not called directly; instead the compiler/assembler generate code which loads the function
address from the GOT table (see §3.2 above). The disassembled code looks something like this:
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/* (caller) */
lw t9, <function symbol offset in GOT>(gp)
# nop
jalr t9
# nop
...

/* function */
/* _gp_disp is magic symbol for offset between start of

function and gp pointer into GOT */
li gp, _gp_disp
addu gp, gp, t9
...

It’s mandatory that the t9 register should be used to compute the function address; the function itself depends on it
to recalculate the GOT base register gp14. _gp_disp is calculated so as to place gp 32Kbytes on from the start of
the GOT, to maximise the amount of the table which is in reach of a MIPS load instruction (which has a ±32K offset
range).

14 It’s not obvious that a function can compute the GOT base address with only its own address for input; but a glance
back at the memory map Figure 3.2 should remind you that the code, data and GOT of a link unit are loaded together in
memory, with their offsets from one another fixed at link time.
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6. Further constraints required by other tools
It’s possible to build an application fully compliant with the ABI as described up to this point - it should load and
run correctly on a compliant OS - but it may be very ill-behaved in relation to other development tools. For
example, the debugger may be unable to reconstruct a stack backtrace after a breakpoint. In this section we aim to
identify known constraints of significant tools.

6.1. Meeting debugger assumptions
The gdb debugger obtains information about the program under test, in the first place, from the object file. When a
program is compiled with the -g option, the compiler notes lots of extra information about the program and provides
it as a special debug section of the object file. To reach the final executable object file the debug information has to
pass through the assembler and linker, but neither of them knows much about the data format or what it means: for
most purposes, you should visualise that the compiler speaks straight to the debugger.

Various debug formats are in use: for o32 use ‘‘stabs’’ [STABS] is popular, but n32/n64 use DWARF2.

The ‘‘stabs’’ format doesn’t encode much information about functions. Some things which are missing (and what
the debugger does about it):

• Function end marker : the debugger assumes a function continues until the next function entry point symbol in
the text segment, or the end of the segment.

• Size of a functions stack region : the debugger infers the size of the stack by reading the first few instructions
from the function entry point looking for a subui sp, sp, nn instruction used to lower the sp register.

• Layout of a functions stack : the debugger requires that functions lay out their stack in a particular order:
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7. ELF object code
Programs ready to be executed, shared libraries ([SVR4 ABI] calls them ‘‘shared objects’’) are kept as ELF files.
Intermediate compilation and link files are kept as ELF too, but that’s not of any further interest in the ABI.

The ELF format is a binary file format obtained by mapping C language structures into memory, and then dumping
the structure to disk byte-by-byte from its memory image. Everyone who ever taught you programming will have
told you not to do this - and they were right - but:

• ELF is designed to hold large, raw images which will be paged into virtual memory when the application is run.
Such images are useful only in the context of the appropriate CPU architecture, OS and ABI rules. They can’t
be portable, for most purposes.

• The key ELF data structures which are most often used for navigation of the file are constructed from a small
range of ‘‘machine-independent’’ data types with explicit alignment rules, so that object code tools - which may
be run on a host machine of quite different architecture from the target - can still make sense of them.

• The machine-dependent ELF data structures are otherwise defined as being laid out as per the rules in this ABI
document for the target CPU; so at least the definition is unambiguous.

For truly authoritative information, consult [SVR4 ABI].

This document will proceed by reference to a well-defined15 snapshot of Linux/MIPS header files and other source
code; it will only define bits where wanting to assert that the snapshot is wrong. Otherwise, it will only explain what
is in the source files.

What’s in an ELF file?
We’ll proceed by reference to an example. For each chunk of the file we’ll show the name used in [SVR4 ABI], the
header file and structure where it’s defined, and (to keep us rooted) what’s to be found in the executable for
/bin/ls on a typical Linux/MIPS system.

To be supplied

Table 7.1: Structures, fields and examples in an executable ELF file

15 Exact version numbers will be added, I promise.
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8. Debug information in object code.
To do its job, the debugger needs intimate information about a program; it needs to know where all variables (even
local ones) are in memory, and what C line corresponds to each instruction that was generated.

When given the -g flag, the compiler generates that information. The assembler just wraps it up and passes it
through, the linker does nothing except to collect it into sections; for most purposes you can assume that the
compiler alone generates debug information and the debugger alone consumes it.

As we saw above, ELF files can contain arbitrary sections. Existing Linux/MIPS toolchains generate debug
information in a style called ‘‘stabs’’, which was invented at the University of California at Berkeley and popularised
by Sun: see [STABS] for more information.

MIPS ABIs Described

Copyright © 2002 MIPS Technologies Inc. All Rights Reserved.

25



9. References
SMR ‘‘See MIPS Run’’

LoaderHowTo the Linux Documentation Project’s ‘‘Program Library HOWTO’’, available as a web page.

SVR4 ABI The ‘‘System V Application Binary Interface’’ Edition 4.1, written by AT&T and the Santa Cruz
Operation Inc.

MIPSABI2 "MIPS® Linux Application Binary Interface (ABI) Specification", MIPS Technologies document
MD00245.

STABS ‘‘The ’stabs’ debug format’’ - GNU tools manual written by team members at Cygnus Support.
Av ailable as web (HTML) or printable format from many places.

DWARF

The web site
For internal MIPS Technologies16 use refer to http://ukwww.algor.co.uk/abi/ for updates, references and
other web materials relevant to this manual. The external references and links to published MIPS documentation
will soon be made available on a publicly-accessible web site, too.

Locating compliant source code for Linux/MIPS
[This section will eventually have a list of CVS revisions and archives describing the versions used for reference].

16 Outsiders please ask your favourite MTI contact.
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Appendix A: Revision History

Revision Date Description
1.2d 4th October 2002 First visibility of incomplete document outside MTI.
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Appendix B: Differences between o32 and n32/n64 ABIs

o32 n32/n64

Registers saved and restored as 32-bit 64-bit

Argument structure 4-byte slots 8-byte slots
8-byte alignment 16-byte alignment
at least 4 slots long no minimum size

Argument registers 4 integer, 2 FP 8 integer, 8 FP

Arguments in FP registers? Leading FP arguments only (doesn’t
need correct function prototypes)

Any FP argument which occupies a
whole slot (except that varargs
arguments are always passed in
integer registers).

Horribly fragile without prototypes,
which are assumed available.

Return values Only scalars are ever returned in
registers; v1 is used only for
long long data.

Any structure of up to 16 bytes in
size will be returned in the registers.

A structure consisting of one or two
FP values (and nothing else) will be
returned in the two FP return-value
registers (for compatibility with the
Fortran complex type.)

long long type hardware typeimplemented with register pairs and
library calls

gp register in PIC code not preserved over calls preserved over calls
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