
It can easily be verified that Eq. (28) is in agreement 
with Eq. (25) up to the first-order terms in woo Thus, 
whenever the frequency of band width variation is 
reasonably small by comparison with the mean band 

width, Eq. (28) provides an adequate approximation to 
the impulsive response of the network. A higher order 
approximation may be obtained, if necessary, by con­
tinuing the iteration beyond F 2. 
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The theory of prediction described in this paper is essentially an extension of Wiener's theory. It differs 
from the latter in the following respects. 

1. The signal (message) component of the given time series is assumed to consist of two parts, (a) a non­
random function of time which is representable as a polynomial of degree not greater than a specified number 
n and about which no information other than n is available; and (b) a stationary random function of time 
whic~ is described statistically by a given correlation function. (In Wiener's theory, the signal may not 
contam a non-random part except when such a part is a known function of time.) 

2. The impulsive response of the predictor or, in other words, the weighting function used in the process 
of prediction is required to vanish outside of a specified time interval O~t~T. (In Wiener's theory T is 
assumed to be infinite.) 

The theory developed in this paper is applicable to a broader and more practical class of problems than 
that covered in Wiener's theory. As in Wiener's theory, the determination of the optimum predictor reduces 
to the solution of an integral equation which, however, is a modified form of the Wiener-Hopf equation. 
A simple method of solution of the equation is developed. This method can also be applied with advantage 
to the solution of the particular case considered by Wiener. The use of the theory is illustrated by several 
examples of practical interest. 

I. INTRODUCTION 

PREDICTION-in the broad sense of the term­
consists essentially of estimating the values of some 

function of time on the basis of a time series which may 
or may not contain random errors. For instance, a 
typical problem in prediction is as follows. Given a time 
series e1 (t) which is composed of a signal set) and a 
random disturbance (noise) N(t); provide an estimate 
of s(t+a), a being a positive constant, as a continuous 
function of time. More generally, the quantity to be 
estimated may be a functional of set) such as ds/dt, 
fsdt, etc. In forming such estimates the mathematical 
operations that may be employed are usually limited by 
practical considerations. Thus, in most cases the oper­
ator furnishing the estimate must be linear and fixed in 
addition to the obvious requirement of being physically 
realizable. The physical counterpart of such an oper­
ator is what is commonly known as a predictor or an 
estimator. 

It is evident that a function of time cannot be pre­
dicted intelligently unless sufficient a priori information 
is available about both the function and the errors. The 
nature of such information, as well as the characteris­
tics of the signal and noise, can assume a variety of 
forms. Of these the more common ones have been in­
vestigated in recent years with the result that for 
certain classes of time series it is now possible to design 

* This work was performed in association with the Special 
Projects Department of The M. W. Kellogg Company for the 
Watson Laboratories of the Air Materiel Command. 
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predictors which make optimum use of the a priori 
information concerning the signal and the noise. Thus, 
when the given time series is stationary and the correla­
tion functions of the signal and noise are known, one 
can use Wiener's theory! to arrive at the specifications 
of the optimum predictor, that is, one minimizing the 
mean-square value of the prediction error. On the other 
hand, when, as is often the case in practice, the given 
time series is non-stationary, the available theories of 
prediction, notably Phillips and Weiss' theory,2 do not 
lead to the best possible predictor except for a narrow 
class of time series. It is possible, however, to extend 
Wiener's theory in many different directions thereby 
making it applicable to a wider class of problems than is 
covered by either Wiener's or Phillips and Weiss' 
theories in their present forms. One such extension is 
discussed in this paper. A feature of the extension is 
that the signal (message) is assumed to consist of a 
stationary component superimposed on a non-random 
function of time which is known to be representable as 
a polynomial of degree less than or equal to a specified 
number n. It will also be shown that the general method 
developed for treating this problem can be applied with 
advantage to the solution of many cases of practical 

1 N. Wiener, "The extrapolation, interpolation, and smoothing 
of s.tationary time series," Report of the Services 19, Research 
Project DIC-6037, M.LT. (February, 1942). Published in book 
form by John Wiley and Sons, Inc., New York (1949). 

2 R. S. Phillips and P. R. Weiss, "Theoretical calculation on 
best smoothing of position data for gunnery prediction," Report 
532, Rad. Lab., M.I.T. (February, 1944). 

645 

Downloaded 17 Nov 2010 to 128.32.153.79. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



interest as well as the particular case considered by 
Wiener. 

II. FORMULATION 

Consider a given time series el (t) which is the sum 
of a function set) (signal) and a stationary random dis­
turbance N(t). Let s*(t) be the quantity to be estimated 
and let s*(t) be related to set) through a given linear 
operator K(p), i.e., 

s*(t) = K(p )s(t). (1) 

K(p) may be thought of as the system function of an 
ideal predictor, i.e., a predictor capable of perfect pre­
diction in the absence of noise. In many cases, particu­
larly those involving actual prediction, the operator 
K(p) is not physically realizable so that the process of 
estimation cannot be carried out exactly even in the 
absence of random disturbances. 

Frequently it will be convenient to use a different, 
though equivalent representation of Eq. (1), i.e., 

s*(t) = f"" k(r)s(t-r)dr, 
-"" 

(2) 

where r is the variable of integration and k(t) represents 
the impulsive response of the ideal predictor. K(p) shall 
be referred to as the ideal prediction operator. As a 
matter of convenience, the more common of the many 
possible forms which K(p) and k(t) can assume are 
given in Table I. 

Like all theories of prediction, the theory to be de­
scribed applies only to a special class of time series. The 
time series to be considered in the work which follows 
will be assumed to consist of a signal set) and noise N(t), 
with the signal being composed of a random component 
M(t) superposed upon a non-random function of time 
pet), i.e., 

set) =M(t)+ PCt). (3) 

The assumptions made concerning the characteristics 
of PCt), M(t), and N(t), are as follows: 

(a) pet) is assumed to be representable as a polyno­
mial in t of degree not higher than a specified number n. 

(b) M(t) and N(t) are stationary functions of time 
described respectively by their auto-correlation func­
tions VtM(r) and VtN(r). 

PREO. ERROR 

.Ctl 

OUTPUT 

NOISE 

FIG. 1. Flow diagram of prediction process. 
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TABLE I. Common forms of the prediction operators 
K(p) and k(t). 

Relation be­
tween s*(1) 

and s(/) 

s*(t) =S(t) 
S*(t) =$(t) 
S*(t) =S(t) 
S*(t) = s(t-a) 

Significance of the quantity to 
be estimated 

Present value of set) 
Present value set) 
Present value of set) 
Past or future value of set) 

depending respectively 
on whether a is a positive 
or negative constant 

K(P) k(t) 

Note.-~(t) denotes a unit impulse at t =0, and ~('l(t) stands for the .th 
derivative of ~(t) with respect to / (time). 

(c) M(t) and N(t) have zero mean and are uncorre­
lated. This assumption is introduced only for the pur­
pose of simplification and is not essential to the analysis. 
The condition expressed by (c) prevails in most prac­
tical cases. 

Referring to Fig. 1, these inputs are shown being 
applied to the actual predictor whose system function 
is H(p) and whose impulsive response is Wet). The out­
put of the predictor, e2(t), may be expressed in opera­
tional form 

(4) 

or, alternatively, in the form of a superposition integral 

e2(t) = f"" W(r)el(t-r)dr. 
o 

(5) 

An important characteristic of the actual predictor is 
the so-called prediction or estimation error E, which is 
defined as the difference between the output of the 
predictor and the quantity to be estimated, s*(t). 
Equation-wise this is: 

E=e2(t)-s*(t). (6) 

If there were no noise and if K(p) were physically 
realizable there would be no prediction error and H(p) 
would be identical with K(p). This, of course, is the 
trivial case of the prediction problem. In what follows 
it will be assumed that either because of the presence 
of noise or physical unrealizability of K (p), or both, 
H(p) cannot be the same as K(p). 

The available a priori information about set) and 
N(t) is assumed to consist ot n, VtM(r), and VtN(r). The 
problem is to specify the system function or the im­
pulsive response of a predictor that would minimize in 
a certain sense the prediction error E= e2(t) - s*(t). By 
analogy with Wiener's theory it will be postulated that 
the optimum predictor is the one in which: (a) the 
ensemble mean of e is equal to zero (for all values of t), 
and (b) the ensemble variance of e is a minimum. De­
noting the ensemble average by the symbol ( )AV, these 
conditions read: 

(a) (e)Av=O or, equivalently, (e2(t»Av=(S*(t»Av> (7) 

(b) (12= (e2)AV= minimum, (8) 
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where (J"2, the ensemble variance of E, is equal to the 
mean-square value of the prediction error. In what fol­
lows, conditions (a) and (b) will be used as the basis for 
the determination of the optimum predictor. 

III. DETERMINATION OF THE IMPULSIVE RESPONSE 
OF THE OPTIMUM PREDICTOR 

or 

P !l2p 
(e2(t) )AV= !loP(t) -!ll (t)+- (t)+··· 

2J 

and 

!In 
+(-l)"-PCn)(t), (16) 

n! 

It will be recalled that the output of a predictor maYor 
be expressed in the form of a superposition integral 

(S*(t»AV= (K(p)S(t»AV 

(S*(t»AV= K(p)P(t). 

(17) 

(18) 

e2(t) = J'" WH e1(t- T)dT 
o 

(9) 

where T is a dummy variable and Wet) represents the 
impulse response of the predictor. In practice it is 
usually found necessary to restrict the duration of 
sampling of the input time series to a finite constant T, 
meaning in other words that Wet) must be zero outside 
the interval O~t~ T. To place this property in evidence 
Eq. (9) will be written in the following form: 

T 

e2(t) = J W(T)e1(t-T)dT. (10) 
o 

In the limiting case where the duration of sampling is 
infinite (T~oo) Eq. (10) becomes identical with Eq. (9). 

By hypothesis, 

e1(t) = P(t)+ M(t)+ N(t). (11) 

Substituting Eq. (11) into Eq. (10) and making use of 
the identity 

T2 

P(t-T)=.P(t)-TP(t)+-p(t)+ . .. 
2! 

Tn 
+ (-l)n_p(n)(t), (12) 

n! 

it is found that e2(t) may be expressed as: 

. !l2 .. !l" 
e2(t) = !loP(t)- !l1P(t)+-P(t)+ ... + (-l)"-P(")(t) 

2! n! 

+ jT W(T)M(t-T)dT+jT W(T)N(t-T)dT, (13) 
o 0 

where }.to, }.tl, }.t2, etc., designate the moments of Wet), i.e., 

T 

!l.= j T'W(T)dT, v=O, 1,2, ... n. (14) 
o 

Since M(t) and N(t) are stationary (with zero mean), 
it follows that the ensemble means of e2(t) and s*(t) 
depend only on the non-random component of the 
signal, i.e., 

(e2(t»A,= fT W(T)P(t-T)dT (15) 
o 
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Comparing Eqs. (16) and (18), condition (a) is re­
duced to 

P !l2p 
K(p)P(t)='!loP(t)-!ll (t)+- (t)+ .. · 

2! 

Equation (19), being an identity, determines the values 
of !lo, !ll, "', and !In. In other words, the ideal pre­
diction operator K(p) determines through Eg. (19) the 
first n+ 1 moments of the impulsive response of the opti­
mum predictor. 

As an illustration of the foregoing statement consider 
a case where the quantity to be estimated is the deriva­
tive of set), i.e., s*(t) = set). For this case Eq. (19) 
reduces to 

. . !l2.. 
pet) =. !loP(t) - !llP(t)+-P(t)+ ... 

2! 

!In + (-l)n-pCn)(t), (20) 
n! 

and a term by term comparison of the left-hand and 
right-hand sides of Eq. (20) yields: 

T 

!lo= j W(T)dT=O 
o 

T 

!ll= I TW(r)dr=-l 
o 

T 

!l,,= j rnW(T)dr=O. 
o 

(21) 

These, therefore, are the n+ 1 constraints which the 
impulsive response of a derivative estimating network 
must satisfy. 

As the second example consider a case where K(p)s(t) 
=s(t-a), a being a positive or negative constant. For 
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this case Eq. (19) reads 

Jl.n + (-1)n-pCn) (t). (22) 
n! 

Rewriting P(t- a) as 

. a? .. 
P(t- a)==.P(t)-aP(t)+-p(t)+ ... 

2! 

an 
+ (-1)n--;-pCn)(t), (23) 

n. 

and making in Eq. (22) a term-by-term comparison of 
the coefficients of pet), Pet), etc., it is easily found that: 

Jl.o= iT W(r)dr= 1 
o 

T 

Jl.l= f rW(r)dr=a 
o (24) 

which thus represent the constraints imposed upon Wet) 
in case the quantity to be estimated is set-a). 

The problem that remains to be solved is that of 
minimizing q2. For this purpose it will be necessary to 
develop an explicit expression for q2 in terms of W (t) 
and the auto-correlation functions of the signal and 
noise. Assuming that condition (a) is satisfied, it follows 
from inspection of Eqs. (6), (13), and (19) that the 
prediction error is given by the expression 

E= iT W(r)[M(t-r)+N(t-r)]dr-K(p)M(t) (25) 
o 

or equivalently 

E= iT W(r)[M(t-r)+N(t-r)]dr 

- f'" k(r)M(t-r)dr (26) 
-00 

where k(t) is the impulsive response of the ideal pre­
dictor. The mean-square value of E may be written as 

1 fL 
q2= (E2)A'= lim - E2dt (27) 

L~oo~L 0 
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or 

1 L { T 
q2= lim - f dt r W(r)[M(t-r)+N(t-r)]dr 

L_oo L 0 Jo 

-J: k(r)M(t-r)dr r. (28) 

A typical term of Eq. (28) such as 

1 L [ T ]2 
lim - f dt f W(r)M(t-r)dr 

L->oo L 0 0 

(29) 

is expressible in the form of a triple integral 

which in view of the definition of the auto-correlation 
function of M(t), i.e., 

1 fL 
YtM(r)= lim - M(t)M(t-r)dt (31) 

L_oo L 0 

may be written as 

Proceeding similarly in the case of other terms, Eq. (28) 
reduces finally to the following expression: 

+ Joo f'" k(rl)kh)YtM(rl-r2)drldr2 (33) 
-00 -00 

where, to recapitulate: rl, r2= dummy variables; 
Wet) = impulsive response of the predictor; YtM( r) = auto­
correlation function of M(t) [M(t) is the stationary part 
of the input signal]; YtN(r)=auto-correlation function 
of N(t) [N(t) is the input noise]; k(t)=impulsive re­
sponse of the ideal predictor. 

Returning to the problem of minimization of q2 it 
will be noted first that the last term in Eq. (33) is 
independent of Wet) and hence, insofar as minimization 
of q2 is concerned, need not be considered. Second, it will 
be recalled that Wet) is subject to the n+ 1 constraints 
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expressed by Eq. (14) j therefore, the problem of mini­
mizing 0'2 with respect to the class of W(t)'s satisfying 
Eq. (14) reduces essentially to an isoperimetric problem 
in the calculus of variations. Following the standard 
approach to such problems, one is led to minimizing the 
following expression: 

1= 0'2- 2Ao}lo- 2AI!lI- ... - 2An!ln (34) 

or, more explicitly 

+if;N(rl- r2)Jdr2-2 foo k(r2)if;M(rl- r2)dr2 
-00 

where the constants AO, AI, ... , An, are the Lagrangian 
multipliers. Proceeding in the usual manner, that is, 
setting the variation of I equal to zero, it is easily found 
that I and hence 0'2 is a minimum provided Wet) satisfies 
the following integral equation: 

T f W(r)[if;M(t-r)+if;N(t-r)]dr= AO+Alt+··· 
o 

+ Antn+ foo k( r)if; M(t- r )dr, Os ts T. (36) 
-00 

This equation together with the n+ 1 constraints ex­
pressed by Eq. (14) provides the basis for the deter­
mination of the optimum predictor. It will be observed 
that in the particular case where n=O, T= 00, and 
k(t) = o(t+a) [oCt) standing, as usual, for a unit impulse 
at t=OJ, Eq. (36) reduces to 

100 

W(r)[if;M(t-r)+if;N(t-r)Jdr 
o 

which is essentially the integral equation of Wiener's 
theory. On the other hand, in the special case where 
M(t)=O, Eq. (36) reduces to 

iT W(r)if;N(t- r)dr= Ao+Alt+·· ·+Antn, 

° 
OStST (38) 

which is the integral equation of Phillips and Weiss' 
theory. Thus, the integral equations of Wiener's, and 
Phillips and Weiss' theories are special cases of Eq. (36). 

IV. SOLUTION OF THE INTEGRAL EQUATION 

In the general case where if;M(r) and !/IN(r) are pre­
scribed but otherwise arbitrary auto-correlation func-
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tions, the complicated nature of the integral equation 
makes it appear that the solution of Eq. (36) is a 
formidable problem. In reality, the problem is not as 
difficult as it may seem, for by using a procedure to be 
described, the general case can be reduced to a special 
case which has a simple solution. 

Preliminary to the discussion of this procedure it will 
be expedient to introduce the spectral densities of M(t), 
N(t), and M(t)+N(t). Denoting these by SM(W2), 

SN(W2), and S(w2), respectively, and recalling that the 
spectral density of a function is the inverse Fourier 
transform of its auto-correlation function,I it follows 
that 

SM(W2) = foo if;M(r)e-iw'dr (39) 
-00 

SN(W2) = Joo Y;N(r)e-iw'dr (40) 
-00 

and 
S(w2

) =SM(W2)+SN(W2
). (41) 

Now the spectral density function S(w2) may be fac­
toredl into the product of two conjugate factors 

S(w2)= G(jw) ·G( - jw) (42) 

such that both G(jw) and 1/G(jw) are analytic in the 
right half of the jw-plane. Usually S(w2) is assumed to 
be a rational function of w2 of the form 

(43) 

where A (w2) and B(w2) are polynomials in w2• For such 
cases the process of factorization is quite straight­
forward as can be seen from the following examples: 

(a) S(W2)=W2 j G(jw) = jw. 

1 1 
(b) S(w2)=--j 

w2+W02 
G(jw)=--. 

jw+wo 

To summarize, a rational spectral de~sity function may 
be written as 

S(w2
) = !G(p)l21=j'" 

where G(p) is of the form: 

G(p) Q(p) 
R(p) 

ao+ alP+ ... + ampm 

bo+blp+·· ·+b1p! ' 

(44) 

(45) 

and the polynomials Q(p) and R(P) do not have any 
zeros in the right half of the p-plane. 
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FIG. 2. Division of the predictor into the component 
networks Nt and N,. 

The outline of the procedure used3 for the solution of 
Eq. (36) can be best explained with reference to Fig. 2. 
The predictor N is assumed to be composed of two net­
works N 1 and iV 2. The function of N 1 is to suitably 
modify some of the characteristics of the input time 
series e1(t), while that of N2 is to provide the desired 
prediction through operating on the time series e1'(t), 
which is the output of N 1. It will be seen later that it is 
possible to choose N 1 in such a manner that the deter­
mination of the impulsive response of lIT 2 becomes an 
easily solvable problem. Then, once W 2(t) (the impul­
sive response of N 2) is determined, the impulsive re­
sponse of N, Wet), can easily be found from the relation 

(46) 

where H1(p) is the system function of '\\' The choice of 
H1(p) and the problem of determination of W 2(t) are 
discussed in the sequel. 

It is evident that the problem of determination of 
W2(t) is similar to that of the determination of Wet), 
except that the characteristics of the input time series 
are different for the two problems. An inspection of the 
integral equation (36) shows that it can be solved rather 
easily when the input to the predictor consists of a 
polynomial in t and a stationary component whose 
spectral density is a polynomial in w2• Therefore, in 
order to make the determination of W 2(t) a simple prob­
lem, it is necessary to provide .V2 with an input which 
has this property. It is not difficult to verify that such a 
condition will obtain if, and only if, the system function 
of N 1 is chosen to be 

(47) 

where R(p) is the denominator of G(p) [ef. Eq. (45)]. 
With this choice of H 1(p) the input to N2 will consist of 
a polynomial in t of the same degree4 as pet), and a 
stationary component M'(t)+N'(t) whose spectral 
density is 

S'(w2)= IH1(jw)j2S(w2) 

or, in view of Eqs. (43), (44), and (47), 

S'(w2)=A (w2), 

(48) 

(49) 

3 The appendix of a report by Bode, Blackman, and Shannon, 
"Data smoothing and prediction in fire-control systems," Re­
search and Development Board, Washington, D. C. (August, 
1948), contains a brief exposition of a method which is similar in 
certain respects to the method described here. 

4 It is tacitly assumed that R(p) does not have a zero at the 
origin or, in other words, that S(w2) does not have a pole at zero 
frequency. 
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where A (w2) is the numerator of S(w2). It will be noted 
that A (w2) is a polynomial of the form 

A (w2) = 'YO+Y1w2+ ... +'YmW2m, (50) 

and correspondingly the auto-correlation function of 
M'(t)+N'(t) is 

1fM'(;)+lftN'( r) = 'Yoo( r) - 'Y10(2)(r)+ ... 
+(-l)m'Ym/l(2m)(r), (51) 

where /lev) (r) represents the impulse function of 11th 
order [i.e., the 11th derivative of the unit impulse func­
tion Q(r)]. 

In addition to lftM'(r)+lftN'(r) , a number of other 
quantities associated with the input to N2 enter the 
integral equation satisfied by W 2(t). The significance of 
each of these quantities, as well as their expressions, 
are as follows: 

(a) SM'(W2) = spectral density of M'(t) 
=SM(w2) I R(jw) 12. (52) 

(b) 1fM'( r) = auto-correlation function of M'(t) 

(c) k'(t) = ideal impulsive response for N2 
= [l/R(p)Jk(t). (54) 

In terms of these quantities the integral equation satis­
fied by W 2(t) reads: 

f'" W 2(r)[1fM'(t-r)+1fN'(t-r)Jdr 
o 

+ J'" k'(r)1fM'(t-r)dr, t2::0. (55) 
-'" 

It will be noticed that in the case of W 2(t) the upper 
limit of the integral is infinity, while in the case of Wet) 
[ef. Eq. (36)J it is T. The explanation for this difference 
is that W 2(t) need not vanish for t> T, even though 
Wet) is required to do so. Thus in general, W 2(t) will be 
piecewise analytic in the interval 0 < t < 00 as is illus­
trated in Fig. 3. Denoting the parts of W 2(t) extending 
over the intervals O-::;.t-::;'T and T<t< 00 by U(t) and 
Vet), respectively, the relation connecting Wet) and 
Wa(t) [ef. Eq. (46)J may be rewritten in the follow­
ing form: 

and 
W(t)=R(p)U(t) 

O=R(p)V(t). 

(56a) 

(56b) 

These relations show that Wet) is completely deter­
mined by the part of W2(t) which extends over the 
interval O-::;.t-::;. T; the form of W 2(t) outside this interval 
is irrelevant to the determination of Wet). 
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Returning to the integral equation (55), it will be 
noted that the range of integration O~ r< 00 may be 
divided into two parts, O~ r~ T and T < r< 00, involv­
ing U(t) and Vet), respectively. Since Vet) is determined 
by Eq. (56b) to within a finite number of constants, 
the integral equation in question degenerates into an 
integral equation involving only U(t): 

T f U(r )[lftM'(t- r)+lftN'(t- r)Jdr= >"0'+ >"1't+ ... 
o 

+A,,'tn+ f'" k'(r)lftM'(t-r)dr, O~t~T. (57) 
-00 

Upon substitution of Eqs. (52), (53), and (54), and 
performing minor simplifications, Eq. (57) reads 

iT U(r)[ 'Y05(t-r)-'Y15(2)(t-r)+'" 
o 

1 co 

+-f S M(w2)K(jw)R( - jw)eiwtdw. (58) 
2'11" -co 

Making use of the identity 

iT U(r)o(2')(t-r)dr=p2'U(t), (59) 
o 

Equation (58) may be rewritten as 

[1'0- 'Y1p2+ ... + (-1) m'YmP2mJU(t) 

= Ao' + A1't+ ... + An't" 

1 '" +- f SM(w 2)K(jw)R(-jw)eiwtdw. (60) 
2'11" -co 

Since in this equation the left-hand side operator is 
simply A(_p2) [cf. Eq. (50)J, the integral equation (57) 
finally reduces to the following differential equation: 

1 co 
+- f SM(w2)K(jw)R( - jw)eiwtdw. (61) 

2'11" -co 
The general solution of this equation is of the form: 

U,(t) = A o'+A 1't+ ., ·+An'tn+B1' exp(a1t) 

+B2' exp(a2t)+·· ·+B2m' exp(a2mt) 

1 foo SM(W 2
) +- --2-K (jW)R(- jw)eiwtdw, 

21l' -00 A(w) 

O~t~T, (62) 
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yet undetermined constants, and a1, a2, "', a2m are 
the roots of the characteristic equation 

A(_p2)=O. (63) 

In brief, Eq. (62) provides an explicit expression for U(t) 
involving 2m+n+ 1 undetermined constants. Avail­
ability of such an expression reduces the problem of 
determination of Wet) to a relatively routine matter 
which is discussed in the following section. 

V. DERIVATION OF AN EXPLICIT 
EXPRESSION FOR W(t) 

Recalling that Wet) is related to U(t) through the 
operational relation 

Wet) = R(p) U(t), (56a) 

and substituting U(t) as given by Eq. (62) into Eq. 
(56a), it is readily found that in the most general case 
W(t) is given by the following expression: 

W(t) = [u(t)-u(t- T)]{ Ao+A1t+·· ·+A"tn 

+B1 exp(alt)+· .. + B 2m exp(Q:2mt) 

+~R(P) fco SM(W
2

) KCjw)RC-jw)eiwtdw} 
2'11" -00 A (w 2) 

+C1o(t)+· .. +Cz-m o(l-m-l)(t) 

+D1o(t-T)+·· ·+Dl_mo(l-m-l)(t-T) (64) 

where the A's, B's, C's, and D's are as yet undetermined 
constants, and the unit step functions u(t) and u(t- T) 
are used simply to indicate that Wet) is zero outside the 
interval O~t~ T. The impulse functions contained in 
the expression for W(t) arise from operation by R(p) on 
the discontinuities of U(t) at t= 0 and t= T. It will be 
observed that the order of these impulse functions does 
not exceed I-m-l, which is one-half the order of the 
zero of S(w2) at infinity minus one. This is due to the 
fact that the first m-1 derivatives of U(t) vanish at 
t= 0 and t= T. It is not difficult to verify that if this 
would not have been the case, the mean-square error at 
the output of N 2 would be infinite. 

Having obtained the general expression for W(t) in 
the form of Eq. (64), there remains the problem of deter­
mination of the 21+n+ 1 unknown constants. These can 
be found in the following manner: 

W,(t) 

FIG. 3. Form of the impulsive response of N 2. 
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1. Substituting Wet) as given by Eq. (64) into the 
integral equation (36) and requiring that the equati'lll 
be satisfied identically, leads to 2llinear homogeneous 
equations in the A's, B's, C's, and D's. 

2. Substituting Wet) as given by Eq. (64) into the 
n+ 1 moment equations 

T I r'W(r)dr=J.L" 11=0,1,2,"" n (65) 

° 
yields other n+ 1 linear equations. These n+ 1 equa­
tions, together with the 2l equations obtained in (1), 
provide a system of 2l+n+ 1 linear equations in the 
unknown constants. Solution of this system gives the 
values of the A's, B's, C's, and D's and thus completes 
the process of determination of Wet). 

It should be remarked that in some cases it is ad­
vantageous to deal with the system function HCP) of the 
predictor, rather than with its impulsive response wet). 
In such cases one can use a transformed form of the 
integral equation (36) which is as follows: 

1 00 - f H(jw)S(w 2)e iOl1dw=>"O+>"lt+·· '+>"ntn 
211' -00 

Using Eq. (64), the solution of this equation may be 
written directly as 

T 

H(p) = 1 (Ao+A1t+·· ·+Antn)e-p'dt 

Bl B2 B 2m 
+--+--+ ... +-­

p+ al p+ a2 p+ a2m 

{
Bl exp(alT) B2 exp(a2T) - + + ... 

p+al p+a2 

f
'" SM(W2) 

X --K(jw)R(- jw)ei"'ldw 
-00 A (w 2

) 

+C1+C2P+ ... +Cl_mpl-m-l 

+ (D1+ ... + Dl_mpl-m-l)e-PT• (67) 

The undetermined constants involved in this expres­
sion are found in the same manner as in the case of Wet), 
tb,at is, H(p) as given by Eq. (67) is substituted into the 
integral equation (66) and the resulting expression is 
treated as an identity. The 211inear relations between 
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A o, AI, A z, .. " etc., which are obtained in this manner 
are adjoined to the n+ 1 relations resulting from Eq. 
(65); then the system of linear equations in the un­
known constants is solved for A o, AI, A 2, •• " etc. 

In order to facilitate application of the techniques 
described in the preceding sections, a summary of the 
procedure for the determination of wet) (or Hep» is 
given in Section VI. Furthermore, actual use of the 
procedure is illustrated by a few practical examples at 
the end of the section. 

VI. SUMMARY OF THE PROCEDURE FOR 
DETERMINATION OF Wet) AND H(P) 

The complete expressions for Wet) (the impulsive 
response of the optimum predictor) and H(p) (the sys­
tem function of the optimum predictor) are given by 
Eqs. (64) and (67). In order to avoid the necessity for 
reference to preceding sections, the meaning of all sym­
bols appearing in these equations is given: 

11(t) = unit step function. 
T=duration of sampling (settling time). 

Ao, AI, "', An, B l , B 2, "', B 2m , Cl , C2, "', Cl_m , D l , D2, "', 

Dl-m = undetermined constants. 
n=degree of the polynomial component of the input signal. 

SM(W') = spectral density of M(t)[M(t) is the stationary part of 
the input signal]. 

S(cJt) = spectral density of M(t)+N(t)[N(t) is the input noise]. 
A (w2) = numerator of S(w2). 
B(w2) = denominator of S(eJI). 
Q(jw) = a factor of A (w2) containing all the zeros in right half of 

the jw-plane. 
R(jw) = a factor of B(eJI) containing all the zeros in the left half 

of the jw-plane. 
21= degree of B(w2). 

2m = degree of A (eJI). 
0'1, 0'2, •• " O'2m = roots of the characteristic equation A (- p2) = O. 

oCt) = unit impulse function. 
o(')(t) =vth derivative of oCt). 

The undetermined constants occurring in the expression 
for Wet) [and Hep)] can be found in the following 
manner. 

1. Wet) as given by Eq. (64) is substituted into the 
integral equation (36) and the resulting expression is 
treated as an identity. This gives 2l homogeneous linear 
equations in the unknown constants. Same equations 
can be obtained by substituting H(p), as given by 
Eq. (67), into the integral equation (66). 

2. Wet) as given by Eq. (64) is substituted into the 
n+ 1 constraint equations 

T f r'W(r)dr=J.L" 11=0,1,,", n. (14) 
o 

where the J.L, are determined by the choice of the predic­
tion operator K(p) [ef. Eq. (19)]. The resulting n+l 
linear equations in the unknown constants are adjoined 
to the 2l equations obtained from (1). The set of 
2l+n+ 1 linear equations thus obtained is solved for the 
undetermined constants A 0, AI, "', D l- m• This con­
cludes the process of determining wet) [or H(p)]. 
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VII. ILLUSTRATIVE EXAMPLES 

Example 1. Wiener's Theory 

Wiener's theory is, in the main, a study of the par­
ticular case in which P(t)=O, T= 00 and K(p)=e-ap. 
For this case Eq. (64) gives 

W (t) = u(t) {~R(P) 
211" 

f
oo SM(W2) 

X --K(jw)R( - jw)eiw(l-aldw 
-00 A (w 2) 

+ BI exp(alt)+ ... + B 2m exp(a2mt) }. (68) 

The exponential terms appearing in Eq. (68) may be 
made to vanish through a slight rearrangement of the 
factors in the first term of Eq. (68). The resulting ex­
pression for Wet) is the same as that obtained by using 
Wiener's theory, namely, 

1 R(p) 
W(t)=u(t)-­

hQ(p) 

f
OO SM(w2) 

X . R( - jw)eiw(l-aldw. (69) 
-00 Q( - JW) 

The rearrangement amounts, essentually, to choosing 
a particular solution of Eq. (61) which differs from the 
one chosen before by the exponential terms of Eq. (68). 
The same result may be achieved directly by choosing 
H 1(p) [d. Eq. (47)J as 

HI(p) = R(p )/Q(p). 

With this choice of H 1(p) [in place of the one expressed 
by Eq. (47)J the various quantities entering Eq. (55) 
become: 

S'(w2) = 1, 
V; M'( r)+V;N'( r) = o(r), 

SM'(W2)=SM(W2) 1 R(jw)/Q(jw) 1 2, 

K'(j~)=K(jw)Q(jw)/R(jw), 

and hence the integral equation (55) reduces to 

1 foo SM(W2
) 

W 2(t)=u(t)- . K(jw)R(- jw)eiw1dw; (55a) 
211" -00 Q( - JW) 

Eq. (69) then follows immediately from the relation 
connecting Wet) and W 2(t) [d. Eq. (46)]. 

Example 2 

The assumptions made here are as follows: 

1. M(t)=O. 

2. n= 1. 
2a 

3. V;N(r)=e-a!T!; SN(W 2)=--. 
w2+a2 

The choice of the prediction operator is left open. 
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Solution 

For this case A ( - p2) = 2a, and hence al = ... 

= a2m=0. Also, l= 1, M=O; hence Eq. (64) gives 

. W(t)=Ao+Alt+CI0(t)+D10(t-T), (70) 
and 

Ao 
H(p)=-(1-e- pT) 

p 

Substituting H(p) as given by Eq. (71) into the integral 
equation 

and requiring that this equation be satisfied identically, 
leads to the following relations: 

aA o-A I-a2C1=0, (73) 

aAo+ (aT+ 1)A I-a2DI=0. (74) 

Furthermore, substituting Wet) as given by Eq. (70) 
into the constraint equations 

and 

yields 

and 

T f rW(r)dr= J1.1, 
o 

(75) 

(76) 

The unknown constants A o, AI, CI , and DI can be 
readily found from the solution of Eqs. (73), (74), (77), 
and (78). Thus, 

4a(a2P+3aT+3) 
Ao= J1.o--------­

(a2P+6aT + 12) (aT + 2) 

6a2 12a2 

Al =-J1.O +JLI , (80) 
a2P+6aT+12 T(a2P+6aT+12) 

2(2a2P+ 9aT + 12) 
C 1= J1.o'---------

(a 2P+ 6aT + 12) (aT + 2) 

6(aT+2) 
- J1.l , (81) 

T(a2P+6aT + 12) 
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W(tl 

lal 

W(tl 

FIG. 4. Shapes of optimum weighting functions. (a) For the best 
value of 5(t). (b) For the best value of 5(1-a) (a-negative). 

and 
2aT(aT+3) 

D I = -J.Lo'----------
(a2P+6aT+ 12)(aT+2) 

6(aT+2) 
+J.Ll------­

T(a2P+6aT + 12) 
(82) 

Whenever the stationary part of the input signal is 
zero [i.e., M(t)=O], the mean-square value of the pre­
diction error assumes the simple form 

(12= J.LoAo+J.L,AI+· .. + J.LnAn, (83) 

which may be readily established by substituting Eq. 
(36) into the general expression for (12 [d. Eq. (33)]. 
For the particular case under consideration Eq. (83) 
gives 

8(a2P+3aT+3) 
(12=J.Lo2---------

(a2P+6aT+ 12)(aT+2) 

24a 
+J.L12 

T(a 2 P+6aT + 12) 

24a 

On the other hand, in the case of the estimation of 
s(t+a) (i.e., the value of set) a-seconds in the future) 

J.Lo= 1 

[d. Eq. (24)J (86) 
J.LI=-a. 

The shapes of Wet) for these two particular cases are 
illustrated in Fig. 4. 

Example 3 

The case to be considered here is the same as that 
treated in Example 2, except that the auto-correlation 
function of N(t) is assumed to be of the form 

(87) 

with the associated spectral density function being 

(88) 

This form of spectral density function is of con­
siderable practical importance since it provides a reason­
ably good approximation to many of the actual spectra 
encountered in practice. 

Solution 

By Eq. (64), the weighting function for this case is of 
the form 

Wet) = Ao+Alt+ B 1eh t + B 2e-bl 

+elo(t)+Dlo(t- T), O~t~T, (89) 

where h= (a2+wo2)!. Substituting Wet) as given by Eq. 
(89) into Eq. (36), and requiring that Eq. '(36) be 
satisfied by Wet) establishes four linear algebraic equa­
tions between the six constants A o, AI, B l, B 2, el , D I. 
These are: 

- 2ab2A o+ 2(a2- wo2)A 1-b3Bl+b3B2+el = 0, 

2woWAo-4awo2Al+b3(b-a)BI+b3(b+a)B2=0, 

- 2ab2A o+ 2(wo2-a2-aTb2)A 1 

eh T C bT (90) 
+-B1--B2+DI=0 

2b 2b ' 

-J.LOJ.Ll-----­
(a2T2+6aT+12) 

(84) 2wo2b2AO+ 2wo2(2a+b2T)A l+b3(b+a)ebT BI 

The expressions given above are valid for any choice 
of the prediction operator. For the particular' case in 
which the predictor is called upon to furnish the best 
possible estimate of the present value of set), the values 
of J.Lo and J..I.l are, respectively, 

J.Lo=O 

[d. Eq. (21)J (85) 

J.LI= -1. 
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The constraints imposed by the prediction operator 
K(p).are given by Eq. (14); they are: 

and 

T f W(T)dT=J.LO, 
o 

T f TW(T)dT= J..I.I. 
o 

(75) 

(76) 
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The requirement that Wet) must satisfy Eqs. (75) and 
(76) leads to two additional linear equations. These are: 

2bT A o+bPA l+2(ebT -1)B1 - 2(e-bT -1)B2 
+ 2bC 1 + 2bD1 = ILo, 

and 

3b2PAo+2b2PA1+b[ebT(bT-l)+lJBl 
-6[e-bT(bT+ 1)-lJB2+6b2Dl = ILl. (91) 

The coefficients Ao, A l , B l , B 2, C I , Dl of Eq. (89) are 
the solutions of the six linear equations (90) and (91). 

The expression for the mean-square value of the pre-

diction error can be conveniently expressed in terms of 
Ao and A l . Thus, making use of Eq. (83) it is readily 
found that 

(92) 

This completes essentially the solution of the problem. 
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Potential Flow into Circumferential Openings in Drain Tubes* 
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A theoretical analysis of the effect of the spaces between drain tube units as used in the artificial drainage 
of soil is given. The problem is one of potential flow; therefore, the results are applicable to heat flow, etc. The 
basic problem solved is that for axially symmetric flow from an external cylindrical boundary at constant 
potential to a series of equal, equally spaced openings at a lower potential, all located axially on, and com­
prising a part of, the otherwise impervious drain tube. The radii of the open sections and impermeable 
sections of the drain tube are equal. The basic problem is extended to obtain the solution to the practical 
problem-the seepage of ground water into drain tubes beneath a horizontal water table. The exact solution 
of the basic problem is not suitable for numerical work. Accordingly, approximate solutions of specified 
uncertainty are derived and are utilized for tabulation of numerical results. As an example, the analysis 
shows, in the case of 6 in. diameter drain tubes having 1 ft. long impermeable sections and buried 4 ft. deep 
in uniformly permeable soil, that increasing the openings from -h in. width to t in. width will increase the 
flow 36 percent; while embedding the tubes in gravel, to make the ~ in. openings of effectively infinite width, 
will increase the flow 180 percent. 

I N the drainage of soil, for agricultural use, for founda­
tions, roads, or for dams, excess ground water is 

generally removed by drain tubes installed two or more 
feet below the soil surface. These tubes consist, in 
most cases, of 1 ft. long sections of impervious pipe, 
either tile or cement, fitted together axially, except for a 
space left between individual units, to permit the water 
to enter. In practice the opening between the units is 
usually small. It may be less than 1/64 in. or, as much 
as i in. But if the tubes are embedded in gravel, as is 
sometimes the case, the open space between the pipe 
units becomes effectively infinite. This is a consequence 
of the negligible loss of head which results when water 
seeps through gravel as compared with water seeping 
through soil. In this paper the effect of width of opening 
between the pipe units on drainage rate will be analyzed. 
As the problem is one of potential theory, the results will 
be applicable to other physical problems as flow of heat, 
electricity, etc. l 

In the actual drainage problem the drain tubes are 
installed in a nearly horizontal position in the soil. 

* Journal Paper No. 1728 of the Iowa Agricultural Experiment 
Station, Ames, Iowa. Project No. 998. 

1 M. Muskat, The Flow of Homogeneous Fluids through Porous 
Media (McGraw-Hili Book Company, Inc., New York, 1937, or 
J. W. Edwards, Inc., Ann Arbor, Michigan, 1946), p. 140. 
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Therefore if the soil is water-saturated to the surface of 
the ground, the soil surface is an equipotential plane, 
and the flow problem may be solved by the method of 
images. 

AXIAL FLOW 

Before applying the method of images it is convenient 
to solve a simpler problem: that of axially symmetrical 
flow for the system indicated in Fig. 1. Here, because of 
symmetry, only a section ABCD need be considered. 
This section is bounded by inner and outer cylindrical 
surfaces at r=a and r=b; by a plane z=O, midway be­
tween an open space of width 2c; and a plane z=s, 2s 
being the distance between centers of openings. 

Taking cjJ as the potential function, Va as the constant 
potential over the openings of the drain tube, and Vb the 
constant potential over the outer cylinder, the boundary 
conditions are-I: cjJ= Va, r=a, O'::;z.:Sc; II: acjJ/ar=O, 
r=a, c<z.:Ss; III: acjJ/az=o, z=s; IV: cjJ= Vb, r=b; 
V: acjJ/aZ=o, z=O. 

The exact solution of \72cjJ which satisfies the above 
conditions can be formulated. This exact solution, is not, 
however, tractable in calculations. Therefore, a simpler, 
approximate solution is sought. Simplification is looked 
for through substitution of approximately correct, 
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