
Lecture 10: Carnot theorem

Feb 7, 2005

1 Equivalence of Kelvin and Clausius formulations

Last time we learned that the Second Law can be formulated in two ways.

The Kelvin formulation:

No process is possible whose sole result is the complete conversion of heat into work.

It can be also expressed in a slightly different form: It is impossible to transform heat

systematically into mechanical work in a cycle involving only one bath

The Clausius formulation:

No process is possible whose sole effect is transfer of heat from a colder to a hotter body.

It was mentioned that these two formulations are equivalent, which can be formally proved

as follows.

Suppose the Second Law in the Kelvin’s formulation does not hold, i.e. one can produce

some work W using only one bath of some temperature T1. This work can be transformed into

heat, for example by friction. So using the work which the engine produces one can increase

the temperature of any other system of arbitrary temperature T2. Since T2 may be higher then

T1 it turns that one transfers heat from colder system to the hot one, which is violation of the

Second Law in the Clausius formulation. For instance, one can use the work W to run another

engine which operates the inverse Carnot cycle (see the figure below). This combined machine

produces no work and its net effect is transferring heat from cold bath to the hot one.

The combined machine absorbs positive heat Qc from the cold bath, and delivers the heat

Qd = Qh − Qx to the hot bath. Clearly, Qd > 0 because Qx = W = Qh − Qc. (Note: in this

lecture we use symbols Q, W , etc. for absolute values of corresponding quantities.)
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Let us made the opposite assumption, i.e. that, in violation of the Clausius formulation,

one manages to transfer a certain amount of heat Q from cold bath to the hot one. Suppose it

is exactly the heat another heat engine absorbs from the hot bath during isothermal expansion.

Then the hot bath receives and gives up the same amount of heat, and remains virtually

unchanged. As a result, the net effect is producing work at the expanse of heat extracted from

a single (cold) bath, which is a violation of the Second Law in the Kelvin formulation.

The above argument prove that the Clausius and Kelvin statements are equivalent.

2 First Carnot theorem: General proof

When we considered the Carnot cycle for an ideal gas we have found that efficiency of the

cycle η = (Th − Tc)/Th depends only on temp. of two heat baths and does not depend of gas

characteristics, say gas heat capacity. This suggests that the result is actually general and valid

for arbitrary gas.

The first Carnot theorem: all reversible engines operating between the same two baths

has the same efficiency η = (Th − Tc)/Th.

Consider two Carnot cycle engines using different gases but working between the same two

temperatures. Suppose the engines have different efficiencies η1 and η2. The Carnot theorem

states that it is impossible. Let us assume for a moment that the theorem is wrong and that

efficiencies are different, say η1 < η2.
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One can demonstrate that this assumption leads to a contradiction. Let us operate the first

engine counterclockwise.
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This would requires some external work. We can use the work produced by the second

engine to feed the first one. The reasoning is especially simple for the special case when

W1 = W2. Since η = W/Qh the assumption η1 < η2 gives

Q1
h > Q2

h.

Also, recall that

η = W/Qh =
Qh −Qc

Qh

= 1− Qc

Qh

.

Then inequalities η1 < η2 and Q1
h > Q2

h gives

Q1
c > Q2

c .

The total heat received from the cold bath bath is

Qc = Q1
c −Q2

c > 0

and the heat obtained by the hot bath is

Q1
h −Q2

h > 0.

The total work produced by the combined engine is zero, and the net result is that some amount

of heat is pumped out of cold bath and is given up to the hot bath which is violation of the

Second law (in the Clausius formulation).

In general W1 6= W2. But one can easily bypass this difficulty in a following way. Suppose

W2/W1 is a rational number and therefore can be written as W2/W1 = n1/n2 where ni some

integers. Then

n1W1 = n2W2.

It is important to understand that there is no need to run both machine simultaneously. In the

combined machine the first and second engine may work in a sequence. For example, first the

second engine performs n2 cycles and does work n2W2, for example lifting the piston. Then the
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potential energy of the piston, which is exactly n2W2, is spent on running the first engine. If

n2 and n2 satisfy the condition n1W1 = n2W2, then the first engine will performed exactly n1

cycles.

Let us consider all quantities related to the first engine, such as Q1
h, Q1

c , W1 during not one

but n1 cycles:

Q̃1
h = n1Q

1
h, Q̃1

c = n1Q
1
c W̃1 = n1W1,

and similar for the second engine

Q̃2
h = n2Q

2
h, Q̃2

c = n2Q
2
c W̃2 = n2W2.

Since W̃1 = W̃2, one can repeat the above proof for the case W1 = W2 just changing the

notations, and using the quantities related not to one cycle but to n1 cycle for the first engine

and n2 cycles for the second one.

3 Second Carnot theorem

The Carnot cycle is the only reversible cycle which involve only two temperatures. But there are

many irreversible cycles operating between two temperatures. If one changes TD parameters

of the system fast, say by a sudden move of the piston, evolution of the gas becomes essentially

irreversible involving many complicated irreversible processes such as sound propagation.

Consider the Carnot cycle and some other irreversible cycle, both operating between the

same two temperatures.
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The Second Carnot theorem states that ηc ≥ ηx.

Let us assume for a moment that the theorem wrong and that ηc < ηx. One can apply the

same trick as before, reversing the Carnot cycle. Considering the combination of two machines
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and using the same argument as before, one can see that our assumption ηc < ηx is inconsistent

with the Second Law, and therefore is wrong.

Note: One can ask what prevent us from applying the argument in opposite direction, that is

inverting not the Carnot engine but the other machine? But the X machine can not be reversed

by definition because its operation involves fast irreversible processes leading to dissipation of

energy.

The first and second Carnot’s theorems can be formulated together as follows

If there are several heat engines operating between the same two temperatures,

then all reversible engines have the same efficiency, while irreversible ones have

efficiencies which can never exceed the efficiency of the reversible engines

This theorem is of paramount importance and has implications which go far beyond the

area of heat engines.
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4 Thermodynamic temperature

Recall that we accepted operational or better to say empirical definition of temperature. The

empirical temperature we used so far is based on properties of rarefied gases. We used gases since

their TD properties behave identically in the limit of low density. Let us call such temperature

ideal-gas temperature.

Now we have found a quantity which does not depend on properties of any substance at all.

Namely, the Carnot theorem suggests that the efficiency of the Carnot cycle depends only on

empirical temperatures of two baths,

η = 1− Q2

Q1

= φ(T1, T2),

or

Q2/Q1 = 1− φ(T1, T2) ≡ f(T1, T2).

Here the explicit form of the function f depends on definition of temperature we use. For the

ideal gas temperature we used so far f(T1, T2) = T2/T1, but for other empirical temperature

scales it may be different. Actually, one can prove (see below) that the function f can not be

arbitrary and always can be factorized as

f(T1, T2) =
g(T2)

g(T1)
.

Then one can define temperature as θ = g(T ), and therefore

Q2/Q1 = θ2/θ1.

The temperature θ defined in this way is called thermodynamic temperature and has an ad-

vantage that it does not depend of properties of any particular system.

Clearly, we still have a freedom to choose the TD temperature with an arbitrary factor. But

this ambiguity can be eliminated when one assign a certain value to a temperature at a certain

reference point. For example one can take θ2 as a temperature of melting ice and assign to it

the value 273.15. Then all other temperatures will be unambiguously defined θ = θ2
Q1

Q2
.

Suppose we need to measure a TD temperature of a substance X. To do it, we must use a

heat engine and operate the Carnot cycle taking X as one bath and melting ice as the other.

Then we must measure amounts of heat obtained from X, Qx and released to the Ice Bath Qi.

Then

θx = 273.15
Qx

Qi
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Lemma:

f(T1, T2) =
Q2

Q1

=
g(T2)

g(T1)

Consider a combined machine in the figure below. One can always arrange that the heat

released by the second engine exactly the same as heat received by the second one.
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Q2/Q1 = f(T1, T2), Q3/Q2 = f(T2, T3)

But this equivalent to a single machine operating between T1 and T3,

Q3/Q2 = f(T1, T3).

Since

Q3/Q1 = Q3/Q2 ·Q2/Q1

we have

f(T1, T3) = f(T1, T2)f(T2, T3).

The left side does not depend on T2 which therefore must cancel out in the right side. This is

possible only if f(x, y) factorize as g(y)/g(x):

g(T2)

g(T1)

g(T3)

g(T2)
=

g(T3)

g(T1)

One can prove that thermodynamic and empirical ideal-gas temperatures equal to each

other. We have defined the TD T using the ratio

Q2

Q1

=
θ2

θ1
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where Q1 and Q2 are heat received from (or injected to) the bath one and two, respectively,

and θi are their TD T. On the other hand, using the for ideal gas temperature we obtained

η = 1− Q2

Q1

=
T1 − T2

T1

= 1− T2

T1

,

or
Q2

Q1

=
T2

T1

.

Comparing this with our definition of TD temperature

Q2

Q1

=
θ2

θ1

one observes that the empirical ideal-gas T may differ from the TD temperature only by a

constant factor T = aθ. Since TD temperature itself is defined up to the arbitrary factor, one

can chose a = 1, so that both temperature scales coincide.
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