Spring term 2011

Introduction to Optimization - Serie 4
http://www.ifor.math.ethz.ch/teaching/lectures/intro_ss11

Exercise 11: LP Modeling

Consider the polyhedron $P=\left\{x \in \mathbf{R}^{n} \mid a_{i}^{\prime} x \leq b_{i}, i=1, \ldots, m\right\}$. A ball B with center y and radius r is defined as the set of all points within Euclidean distance r from y, i.e. $B=\left\{x \mid\|y-x\|_{2} \leq r\right\}$. We are interested in finding a ball with the largest possible radius, which is entirely contained in P. The center of such a ball is called the Chebychev center of P.
a)Provide a Linear Program for the problem of finding the Chebyshev center of P.
b)Solve your LP with a Linear Optimization software (e.g. CPLEX) for the polyhedron $P=\{x \in$ $\left.\mathbb{R}^{3} \mid A x \leq b\right\}$, where

$$
A=\left(\begin{array}{ccc}
4 & -2 & 4 \\
-2 & 1 & 2 \\
2 & 4 & -4 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad b=\left(\begin{array}{c}
4 \\
16 \\
16 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Solution:

(a)We introduce a variable vector $y \in \mathbb{R}^{n}$ representing the coordinates of the Chebychev center of P and a nonnegative variable $r \in \mathbb{R}_{\geq 0}$ representing the radius of the (Euclidean) ball with center y.

For finding a ball with the largest possible radius, which is entirely contained in P, we have to ensure that for each P-defining inequality $a_{i}^{\prime} x \leq b_{i}$ the distance between the center y of the ball to the hyperplane given by $a_{i}^{\prime} x=b_{i}$ is less than or equal to the radius r. For this, we consider the points $z^{i} \in \mathbb{R}^{n}, i=1, \ldots, m$, where each z^{i} is located on the line that is defined by the center y and the direction a_{i} and that has the distance r to the Chebyshev center y, i. e. $z^{i}=y+\frac{1}{\left\|a_{i}\right\|_{2}} a_{i} r$.
It now suffices to guarantee that each inequality $a_{i}^{\prime} x \leq b_{i}$ is valid for the point z^{i}. This yields

$$
b_{i} \quad \geq \quad a_{i}^{\prime} z^{i}=a_{i}^{\prime}\left(y+\frac{1}{\left\|a_{i}\right\|_{2}} a_{i} r\right)=a_{i}^{\prime} y+\frac{a_{i}^{\prime} a_{i}}{\left\|a_{i}\right\|_{2}} r=a_{i}^{\prime} y+\left\|a_{i}\right\| r, \quad \text { for } i=1, \ldots, m
$$

Thus, finding the Chebychev center of the polyhedron P can be formulated as the following linear optimization problem

$$
\max \quad r, \quad \text { s. t. } a_{i}^{\prime} y+\left\|a_{i}\right\|_{2} r \leq b_{i}, \text { for all } i=1 \ldots, m, \text { and } r \geq 0
$$

(b)For the given polyhedron P, the LP formulation for finding the Chebychev center is given by

$$
\max \quad r, \quad \text { s.t. }\left(\begin{array}{cccc}
4 & -2 & 4 & 6 \\
-2 & 1 & 2 & 3 \\
2 & 4 & -4 & 6 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
r
\end{array}\right) \leq\left(\begin{array}{c}
4 \\
16 \\
16 \\
0 \\
0 \\
0
\end{array}\right), \quad r \geq 0
$$

The cplex interface computes $y^{*}=(0.75,3.25,0.75)$ and $r^{*}=0.75$ with optimal value 0.75 . This means the ball with largest possible radius, which is entirely contained in P is given by the ball with center $(0.75,3.25,0.75)$ and radius 0.75 .

Exercise 12: LP Optimality

Find all necessary conditions on the parameters $s, t \in \mathbf{R}$ such that the Linear Program given by

$$
\begin{aligned}
\operatorname{maximize} & x_{1}+x_{2} \\
\text { subject to } & s x_{1}+t x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

a) is unbounded,
c) has multiple optimal solutions,
b) is infeasible,
d) has one unique optimal solution.

In particular, argue for each case why your conditions obtained are the only ones.

Solution:

(a) $s \leq 0$ or $t \leq 0$ or both.
(b)never.
(c) $s=t$ and $s>0$.
(d) $s>0$ and $t>0$ and $s \neq t$.

