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Un Algorithme Récursif de Pgcd Binaire

Résumé : L’algorithme binaire est une variante de l’algorithme d’Euclide
particuliérement efficace en pratique. Nous décrivons un algorithme récursif de
complexité quasi-linéaire qui calcule le plus grand commun diviseur de deux
entiers en simulant une légére modification de ’algorithme binaire. La struc-
ture de cet algorithme est trés proche de celle du célébre algorithme de calcul
rapide de pged de Knuth et Schonhage, mais sa description ainsi que sa preuve
sont nettement plus simples. Cela a pour conséquence une simplification de
I'implantation et de meilleurs temps de calcul.

Mots-clés : Calcul de pged, algorithme d’Euclide, algorithme de Knuth-
Schonhage, complexité quasi-linéaire.
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1 Introduction

Gced computation is a central task in computer algebra, in particular when
computing over rational numbers or over modular integers. The well-known
Euclidean algorithm solves this problem in time quadratic in the size of the in-
puts. Several variants of this algorithm have been presented in the last decades.
For example, by taking centered quotients instead of positive quotients, one
already gets a significant improvement (see |2| for a detailed analysis of Eu-
clidean algorithms with diverse divisions). In 1970, Knuth |5] presented the first
quasi-linear time ged algorithm, based on fast multiplication [7]. The complex-
ity of this algorithm was improved by Schénhage [6] to O(nlog® nloglogn).
A comprehensive description of the Knuth-Schonhage algorithm can be found
in [11]. The correctness of this algorithm is quite hard to establish, essentially
because of the technical details around the so-called “fix-up procedure”:. This
“fix-up procedure” is rather difficult to implement and makes the algorithm
uninteresting unless for very large numbers (of length significantly higher than
10° bits).

In this paper, we present a variant of the Knuth-Schénhage algorithm that
does not have the “fix-up procedure” drawback. To achieve this, we describe
a new division (GB for Generalized Binary), which can be seen as a natural
generalization of the binary division. It does not seem possible to use the bi-
nary division itself in a Knuth-Schénhage-like algorithm, because its definition
is asymmetric: it eliminates least significant bits but it also considers most
significant bits to perform comparisons. There is no such asymmetry in the
GB division. The recursive GB Euclidean algorithm is much simpler to de-
scribe and to prove than the Knuth-Schénhage algorithm, and it has the same
asymptotic complexity.

This simplification of the description turns out to be an important advan-
tage in practice: we implemented the algorithm in GNU MP, and it revealed
between three and four times faster than the implementations of the Knuth-
Schonhage algorithm in Magma and Mathematica. In GNU MP, the algorithm
used for ged computations of large integers is the one of Sorenson [8], which is
not quasi-linear. The cutoff with Sorenson’s algorithm is around 2000 machine

! As an example, several mistakes can be noticed in the proof of [11], as it can be observed at the
webpage http://www.cs.nyu.edu/cs/faculty /yap/book/errata.html
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4 Damien Stehlé and Paul Zimmermann

words, i.e. 64000 bits. As far as we know, our code is the fastest gcd routine
for large integers.

The paper is organized as follows. In Section 2 we introduce the GB division
and give some basic results about it. In Section 3, we describe precisely the
new recursive algorithm. We prove its correctness in Section 4 and analyze its
complexity in Section 5. Some implementation issues are discussed in Section 6.

Notations: The notations O(.), o(.) and ©(.) are standard. The complexity is
measured in elementary operations on bits. Unless specified explicitly, all the
logarithms are taken in base 2. If a is a non-zero integer, £(a) denotes the length
of the binary representation of a, i.e. £(a) = |log|a|] + 1. v(a) denotes the 2-
adic valuation of a, i.e. the number of consecutive zeroes in the least significant
bits of the binary representation of a; by definition, v(0) = co. r := a cmod b
denotes the centered remainder of ¢ modulo b, i.e. r satisfies ¢ = r mod b and
—2 <1 < % We recall that M(n) = ©(nlognloglogn) is the asymptotic time
required to multiply two n-bit integers with Schonhage-Strassen multiplication
(we refer to [10] for a complete description of basic arithmetic operations).

2 The Generalized Binary Division

In this section we first recall the binary algorithm. Then we define the GB
division and give some basic properties about it. Subsection 2.3 explains how
to compute modular inverses from the output of the Euclidean algorithm based
on the GB division. This subsection is independent from the remainder of the
paper but is justified by the fact that computing modular inverses is a standard
application of the Euclidean algorithm.

2.1 The binary Euclidean algorithm

The binary division relies on the following properties: ged(2a, 2b) = 2 ged(a, b),
ged(2a 4+ 1,2b) = ged(2a+1,b), and ged(2a + 1,20+ 1) = ged(206+1,a — b).
It consists of eliminating the least significant bit at each loop iteration. Here
is a description of the binary algorithm:

The behavior of this algorithm is very well understood (we refer to [2] for
an average complexity analysis). Although it is still quadratic in the size of

INRIA



A Binary Recursive Ged Algorithm 5

Algorithm Binary-Gced.
Input: a,b € Z.
Output: gcd(a,bd).

. If |b] > |a|, return Binary-Gcd(b, a).

If b = 0, return a.

. If a and b are both even then return 2.Binary-Ged(a/2,b/2).
If a is even and b is odd then return Binary-Ged(a/2,b).

. If a is odd and b is even then return Binary-Ged(a,b/2).

. Otherwise return Binary-Ged((a — )/2,b).

o Ul W

Fig. 1. The binary Euclidean algorithm

the inputs, there is a significant gain towards the usual Euclidean algorithm,
in particular because there is no need to compute any quotient.

2.2 The generalized binary Euclidean algorithm

In the case of the standard Euclidean division of a by b with |a| > |b|, one
computes a quotient ¢ such that when ¢b is substracted to a, the most signifi-
cant bits of a vanish. The GB division is the reverse: in order to GB-divide a
by b with v(a) < v(b), one computes a quotient g such that when ¢5glrmy is
added to a, the least significant bits of a vanish.

Lemma 1 (GB Division). Let a,b be non-zero integers with v(a) < v(b).
Then there ezists a unique pair of integers (q,r) such that:

- (1) r=a-+ QQu(b)b—u(a_) ,
—(2) lq| < 27O,
- (3) v(r) > v(b).

The integers q and r are called respectively the GB quotient and the GB re-
mainder of (a,b). We define GB(a,b) as the pair (q,7).

Proof. q is exactly —%.(?%)_1 cmod 2v®~v(@)+1 Since ¢ is odd, the second
condition is fulfilled and gives the uniqueness of ¢. As a consequence, r =
a—+ qzy(w%,(a) is unique. O

RR n° 5050



6 Damien Stehlé and Paul Zimmermann

We now give two algorithms to compute ¢ and r. The first one is is the
equivalent of the naive division algorithm, and is asymptotically slower than
the second one, which is the equivalent of the fast division algorithm. For most
of the pairs (a, b), the Euclidean algorithm based on the GB division performs
almost all its divisions on pairs (¢, d) for which v(d)—v(c) is small. This enlights
the fact that the first algorithm suffices in practice.

Algorithm Elementary-GB.
Input: Two non-zero integers a, b satisfying v(a) < v(b).
Output: (q,7) = GB(a,b).

1. ¢g:=0,r:=a.

2. While v(r) < v(b) do

3 gi=q_ 2V

4. ri=r— 20O

5. g := q cmod 2”(b)_”(a)+1, = ‘12u(b)bT(a) +a.
6. Return (q,7).

Fig. 2. Algorithm Elementary-GB

It is clear that the following result holds:

Lemma 2. The algorithm Elementary-GB of Figure 2 is correct and if the
input (a,b) satisfies £(a), £(b) < n, then it finishes in time O(n(v(b) — v(a))).

The second algorithm computes G B(a, b) in quasi-linear time, in the case of
Schonhage-Strassen multiplication, by using Newton’s iteration. It is adapted
from [4] and we refer to [3] for a proof of the following lemma.

Lemma 3. The algorithm Fast-GB of Figure 3 is correct and in the case of
Schonhage-Strassen multiplication, if a and b satisfy the conditions £(a), £(b) <
2n and v(b) — v(a) < n, then it finishes in time LM (n) + o(M(n)).

A GB Euclidean algorithm can be derived very naturally from the definition
of the GB division, see Figure 4.

INRIA
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Algorithm Fast-GB.
Input: Two non-zero integers a, b satisfying v(a) < v(b).
Output: (q,7) = GB(a,b).

L Ai=—50, B:= 21,%, n:=v(b) —v(a) + 1.
2. q:=1.

3. For i from 1 to [logn] —1 do

4 q:=q+q(l — Bq) mod 22",

5. ¢’ := Aq mod 2".

6. ¢ :=q' + q(A — Bq') cmod 2™.

7.r:=a+ 2"‘1—’_1().

8. Return (q¢', ).

Fig. 3. Algorithm Fast-GB

Algorithm GB-gcd.

Input: Two non-zero integers a, b satisfying v(a) < v(b).

Output: %5, where g is the greatest common divisor of @ and b.
1. If b = 0, return z;ﬁ

2. (g,r) := GB(a,b).

3. Return GB-gcd (b, 7).

RR n° 5050

Fig. 4. The GB Euclidean algorithm




8 Damien Stehlé and Paul Zimmermann

Lemma 4. The GB FEuclidean algorithm of Figure 4 is correct, and if we use
the algorithm Elementary-GB of Figure 2, then for any input (a,b) satisfying
U(a), £(b) < n, it finishes in time O(n?).

Proof. Let rq = a,r1 = b, 7r9,... be the sequence of remainders that appear in
the execution of the algorithm. We first show that this sequence is finite and
thus that the algorithm terminates.

k
We have for any k > 0, |rxia| < |rge1| + |7x], so that |rg| < 271 (%) .

k
Moreover, 2% divides |r|, which gives the inequalities 2F < |ry| < 27! (%)

and (1—log 1+2—‘/5)k < n. Therefore there are O(n) remainders in the remainder
sequence. Let ¢t = O(n) be the length of the remainder sequence. Suppose
that r; is the last non-zero remainder. From Lemma 2, we know that each
of the calls to a GB-division involves a number of bit operations bounded
by O(log |re|(v(rks1) — v(r%))) = O(n(v(rgs1) — v(rk))), so that the overall
complexity is bounded by O(nv(ry)).

The correctness comes from the fact that if ¢ = ged(a,b) and (¢,7) =
GB(a,b), then ged(b,7)/g is a power of 2. O

A better bound on |rg| and thus on ¢ is proved in Section 5.1. Nonetheless
the present bound is sufficient to guarantee the quasi-linear time asymptotic
complexity of the recursive algorithm. The improved bound only decreases the
multiplying constant of the asymptotic complexity.

. 2"
For n > 1 and ¢ € [-2" 4+ 1,2" — 1] we define the matrix [¢], = <20n ¢ )
Let rgy, 71 be two non-zero integers with 0 = v(rg) < v(r1), and 79,71, 79, .. be
their GB remainder sequence, and ¢, qs,... be the corresponding quotients:

Tiv1 = Ti—1 + qzm for any 7 > 1. Then the following relation holds for

any ¢ > 1:
T _ L , To
<7'i—|—1) - 2U(7‘i)[q1]ni e [QI]m <7.1> )

where n; = v(r;) — v(rj—1) > 1 for any j > 1.
In what follows, we use implicitly the following simple fact several times.

INRIA



A Binary Recursive Ged Algorithm 9

Lemma 5. Let 1y, 71 be two non-zero integers with 0 = v(ry) < v(ry), and
ro, T'1, T2, ... be their GB remainder sequence. Let d > 0. Then there exists a
unique 1 > 0 such that v(r;) < d < v(riq).

2.3 Computing modular inverses

Let a,b be two non-zero integers with 0 = v(a) < v(b). Suppose that we
want to compute the inverse of b modulo a, by using an extended version of
the Euclidean algorithm based on the GB division. The execution of the GB
Euclidean algorithm gives two integers A and B such that Aa + Bb = 2%g,
where « = O(n) and g = ged(a,b). From such a relation, it is easy to check
that ¢ = 1. Suppose now that the inverse B’ of b modulo a does exist. From
the relation Aa 4+ Bb = 2%, we know that:

B' = 2'% mod a.
Therefore, in order to obtain B’, it is sufficient to compute the inverse of
2% modulo a. By using Newton’s iteration (like in the algorithm Fast-GB of
Figure 3), we obtain the inverse of @ modulo 2. This gives x and y that satisfy:
zra + y2* = 1. Clearly y is the inverse of 2¢ modulo a.

Since multiplication, Newton’s iteration and division on numbers of size
O(n) can be performed in time O(M (n)), given two n-bit integers a and b, the
additional cost to compute the inverse of b modulo a given the output of an
extended Euclidean algorithm based on the GB division is O(M (n)).

3 The Recursive Algorithm

We now describe the recursive algorithm based on the GB division. This de-
scription closely resembles the one of [11]. It uses two routines: the algorithm
Half-GB-gcd and the algorithm Fast-GB-gcd. Given two non-zero inte-
gers 7o and 7 with 0 = v(rg) < v(r1), the algorithm Half-GB-gcd out-
puts the GB remainders r; and 7;;; of the GB remainder sequence of (rg, ;)
that satisfy v(r;) < €(ro)/2 < v(ri11). It also outputs the corresponding ma-
trix 27(+-Fm)[g] ... [g1]n,- Then we describe the algorithm Fast-GB-gcd,
which, given two integers a and b, outputs the gcd of ¢ and b by making
successive calls to the algorithm Half-GB-gcd.

RR n° 5050



10 Damien Stehlé and Paul Zimmermann

3.1 Half-GB-gcd

The algorithm Half-GB-gcd works as follows: a quarter of the least significant
bits of ¢ and b is eliminated by doing a recursive call on the low ¢(a)/2 of the
bits of ¢ and b. Then the two corresponding remainders (a’,b') of the GB
remainder sequence of (a,b) are computed thanks to the returned matrix R;.
A single step of the GB Euclidean algorithm is performed on (d, '), which
gives a new remainder pair (b',7). Then there is a second recursive call on
approximately £(a)/2 of the least significant bits of (&',7). The size of the
inputs of this second recursive call is similar to the one of the first recursive
call. Finally, the corresponding remainders (c, d) of the GB remainder sequence
of (a,b) are computed thanks to the returned matrix Ry, and the output matrix
R is calculated from Ry, Ry and the GB quotient of (a', ). Figure 5 illustrates
the execution of this algorithm.

Note that in the description of the algorithm Half-GB-gcd in Figure 6, a
routine GB’ is used. This is a simple modification of the division GB: given a
and b as input with 0 = v(a) < v(b), it outputs their GB quotient ¢, and 5
if 7 is their GB remainder.

3.2 Fast-GB-gcd

The algorithm Fast-GB-gcd uses several times the algorithm Half~-GB-gcd
in order to decrease the lengths of the remainders quickly.

The main advantage towards the other quasi-linear time algorithms is that
if a matrix R is returned by a recursive call of the algorithm Half-GB-gcd,
then it contains only “correct quotients”. There is no need going back in the GB
remainder sequence to make the quotients correct, and thus no need to store
the sequence of quotients. The underlying reason is that the remainders are
shortened by the least significant bits, and since the carries go in the direction
of the most significant bits, these two phenomena do not interfere. For that
reason, the algorithm is as simple as the Knuth-Schénhage algorithm in the
case of polynomials.

4 Correctness of the Recursive Algorithm

In that section, we show that the algorithm Fast-GB-gcd of Figure 7 is cor-
rect. We first give some results about the GB division, and then we show the

INRIA
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n 3n/4 n/2 n/4 0]
a,b
Truncation
a0,b0
Regursive Call
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GB Division
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Truncation
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RecursiveCal [~ R2
c2,d2 [
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Algorithm Half-GB-gcd.
Input: a,b satisfying 0 = v(a) < v(b).
Output: An integer j, an integer matrix R and two integers ¢ and d such
that (;) =2"%R (Z), and ¢* = 2/¢, d* = 2/d are the two consecutive
remainders of the GB remainder sequence of (a,b) that satisfy

v(c*) < £(a)/2 < v(d*) and 0 = v(c) < v(d).

. k= £(a)/2].
. If v(b) > k, then return 0, (é 0) ,a,b.

1

2 1

3. ki:=|k/2].

4. a:=a12”*! tag, b:=b2M%" 4 by with 0< ao,bo < 27F1F
5. ji1,Ri,c1,d1 := Half-GB-gcd(ao, bo).
6
7
8
9

a o 92k1+1-2j ai C1
(5w () + ().

. Ifv(@®') + j1 > k, then return ji, R1,a’,b.
(Qa T) = GBI(G,’,I)’), Jo:= V(bl)'
. ke =k — (V(b’) +]1)
10. #’b,) =122k Ll o= 22821 4 pg with 0 < b, e < 22k2HL,

11. jo,R2,co,d2 := Ha]f-GB-gcd(b(),T‘o).

C\ . _ 92ka+1-2j2 p. bll C2
(o) =zmmm (1) + (32)-

13. Return j1 + jo + 72, RQ[q]jORl, c, d.

—_
N

Fig. 6. Algorithm Half-GB-gcd

Algorithm Fast-GB-gcd.
Input: a,b satisfying 0 = v(a) < v(b).
Output: g = ged(a,b).

1. If b = 0, return a.
2. j,R,d', b/ .= Half-GB-gcd(a,b).
3. Return g := Fast-GB-ged(a, V).

Fig. 7. Algorithm Fast-GB-gcd

INRIA



A Binary Recursive Ged Algorithm 13

correctness of the algorithm Half-GB-gcd which clearly implies the correct-
ness of the algorithm Fast-GB-gcd.

4.1 Some properties of the GB division

The properties described below are very similar to the ones of the standard
Euclidean division that make the Knuth-Schonhage algorithm possible.

Lemma 6. Let a,b, a' and b be such that ' = a mod 2" and ' = b mod 2!
with | > 2v(b) + 1. Assume that 0 = v(a) < v(b). Let (¢,7) = GB(a,b) and
(¢',7") = GB(a',b'). Then q =q' and r = r' mod 2!=7®),

Proof. By definition, ¢ = —a (2,,%)_1 cmod 2/®)+1 Therefore, since | > 2uv(b)+

1, 5% = 57y mod 2°OF1 g = o’ mod 2°®*! and ¢ = ¢'. Moreover, r =
a+ g5 and ' = d' + g%, Consequently r = ' mod 2'=®). O

From the previous result, we obtain that:

Lemma 7. Leta, b, a' andb' such that a' = a mod 22" andt/ = b mod 2%+,
with k > 0. Suppose that 0 = v(a) < v(b). Let ro = a, 1y = b, 79, ... be the
GB remainder sequence of (a,b), and let q1,qs,... be the corresponding GB
quotients: Tj41 = Tj_1 + gjzir, with n; = v(r;) —v(rj_1). Let vy =o', ri =V,
rh, ...be the GB remainder sequence of (a',V'), and let ¢, g5, ... be the corre-

sponding GB quotients: 1%, =15 | + q;;z—’}j, with ny = v(r}) —v(r}_,). Then if
riy1 08 the first remainder such that v(ri 1) > k, then for any j < i, we have

_ o 2%-+1—u(r;
qj = q; and rj1 = 1} mod 2°** v(rj),

Proof. We prove this result by induction on j > 1. This is true for j = 1, since
a' = a mod 2%**! and ¥ = b mod 2%*!. Suppose now that 2 < j < i. We use

. . . rh_ r’
Lemma 6 with 2V’Eﬁjjl), 2,,(:;71), 2,,(]”,11); oy and [ =2k +1- 2v(rj_1). By
induction, modulo 22F1¥(r-1) 7, | = ¢! and r; = 1. Since j < i, we have
by definition of ¢, 2k +1 —2v(r;_1) > 2(v(r;) —v(rj—1)) + 1, and consequently
we can apply Lemma 6.

Thus ¢; = ¢ and 7,1 = r},, mod 2%+1=(r), O

RR n° 5050



14 Damien Stehlé and Paul Zimmermann

4.2 Correctness of the Half~-GB-gcd algorithm

To show the correctness of the algorithm Fast-GB-gcd, it suffices to show
the correctness of the algorithm Half~-GB-gcd, which is established in the
following theorem.

Theorem 8. The algorithm Half-GB-gcd of Figure 6 is correct.

Proof. We prove the correctness of the algorithm by induction on the size of
the inputs. If £(a) = 1, then the algorithm finishes at Step 2 because v(b) > 1.
Suppose now that £ > 2 and that v(b) < k.

Since 2| £ |41 < £(a), Step 5 is a recursive call (and the inputs satisfy the in-
put conditions). By induction j;, Ry, ¢; and d; satisfy (§1> =2 2R, (CbLO),

1 0

and 2¢; and 27'd; are the consecutive remainders r; and 7}, of the GB
remainder sequence of 1y = ay and 7} = by that satisfy v(r ) < ki <v(rj ;1)

From Lemma 7, we know that 2771 R; (Z) are two consecutive remainders

271g' = r;, and 2910’ = r; ., of the GB remainder sequence of ry = a and
ry = b, and they satisfy r;, = rj and r;, ;1 = 7}, modulo 2"*!. From these
last equalities, we have that v(r;,) = v(r],) < ki < v(ri41) < v(rf, ). There-
fore, if the execution of the algorithm stops at Step 7, then the output is
correct.

Otherwise, r;,12 is computed at Step 8. At Step 9 we compute ky =
k — v(ri;41). Step 7 ensures that ks > 0. Since v(ry41) > |k/2], we have
ko < [k/2] — 1. Therefore Step 11 is a recursive call (and the inputs sat-

isfy the input conditions). By induction, js, S, c2 and ds satisfy: (22> =
2

!/

2722 R, TO , and 2”c, and 27°d, are the consecutive remainders r;, and r]

0

of the GB remainder sequence of (by,r;). Moreover, v(rj,) < ko < v(ri,,1)-
J1p!

d1p!

r; and ;41 (with ¢ = 4; 4+ 49 + 1) of the GB remainder sequence of (a, b), that
sitay = 22c mod 28272 and that s = 272d; mod 2%*. Therefore the

following sequence of inequalities is valid: v(r;) = j1 +ja +v(0') < k < v(ri1).
This ends the proof of the theorem. O

From Lemma 7, we know that 27725, are two consecutive remainders

INRIA



A Binary Recursive Ged Algorithm 15

5 Analyses of the Algorithms

In that section, we first study the GB Euclidean algorithm. In particular we
give a worst-case bound regarding the length of the GB remainder sequence.
Then we bound the complexity of the recursive algorithm in the case of the
use of Schénhage-Strassen multiplication, and we give some intuition about
the average complexity.

5.1 Analysis of the length of the GB remainder sequence

In this subsection, we first bound the size of the matrix ngm[qZ]m @]
where the g¢;’s are the GB quotients of a truncated GB remainder sequence
70y .-, Tip1 With v(r;) < v(rg) +d < v(rj41) for some d > 0. This will make
possible the analysis of the lengths and the number of the GB remainders. As
mentioned in Section 2, this subsection is not necessary to prove the quasi-
linear time complexity of the algorithm.

Theorem 9. Letd > 1. Letro, 1 with0 = v(rg) < v(r1), andro, 71,79, . . ., Tit1
their first GB remainders, where i is such that v(r;) < d < v(riz1). We con-
sider the matriz ﬁ[qz]m ... [@1]n,, where the g;’s are the GB quotients and
nj =v(r;) —v(rj_1) for any 1 < j <i. Let M be the mazimum of the absolute
values of the four entries of this matriz. Then we have:

—Ifd=0o0orl, M =1,
— Ifd=3, M <11/8,
— Ifd=5, M <67/32,
d+1 d+1

_ — 2 1417 _ [1=117

=24 0rd>0, 00 < ((5) - (=),

Moreover, all these bounds are reached, in particular, the last one is reached

when n; =1 and ¢; =1 for any 1 < j <.

The proof resembles the worst case analysis of the Gaussian algorithm in [9].

Proof. We introduce a partial order on the 2 x 2 matrices: A < B if and only if
for any coordinate [4, j], A[4, j| < Bli, j]. First, the proof can be restricted to the
case where the g;’s are non-negative integers, because we have the inequality
giln; - - - [@1]ny | < [|@il]n; - - - [|q1]]n,- This can be easily showed by induction on

RR n° 5050



16 Damien Stehlé and Paul Zimmermann

i by using the properties: |[A.B| < |Al|.|B|, and if the entries of A, A’, B, B’ are
non-negative, A < A’ and B < B’ implies A.B < A".B'.

Consequently we are looking for the maximal elements for the partial order
> in the set:  {Iln, 4. tni<d [@ln; ---[@1)n, / V1 < 5 <4, 0 < g <2 —
1 and n; > 1}.

We can restrict the analysis to the case where n; +...4+n; = d and all the g;’s
are maximal, which gives the set: {II,, . 1n,—q [2" — 1|5, ... [2™ — 1]n, }.

Remark now that [2" —1],, < [1]} for any n > 3. Therefore, it is sufficient to
consider the case where the n;’s are in {1,2}. Moreover, for any integer j > 0,
[3)2[1)[3]2 < [1)7™, and we also have the inequalities [3]3 < [1]4, [1]3.[3]2 < [1]7,
3]>.[1]% < [1]" and [1]2.3],.[1]2 < [1]5.

From these relations, we easily obtain the maximal elements:

— For d =1, [1];.

— For d = 2, [1]? and [3],.

— Ford=3, [1}}, B [1], and 1, 3]

— For d =4, [1]1, [3]2.[1]%, [1]1.[3]2-[1]: and [1]}.[3o.

— For d =5, (1]}, [3]2.[1]3, [1]7.[3]2-[1]1, [1]1.[3]2.[1]} and [1]{.[3]..

— For d =6, [1]7, [3]2.[1]1, [1]3.[3]2-[1]1, [1]1.[3]2.[1]} and [1]1.[3]..

— For d =7, [1]f, [1]:.[3]2.[1]{ and [1]{.[3]2.[1]:.

— For d > 8, [1]¢.

The end of the proof is obvious once we note that 27%[1]¢ = (u;jj u:il),

with U = Uj—g + %Ui_l, Uy = 0 and uy = 1. [

From this result on the quotient matrices, we can easily deduce the follow-
ing on the size of the remainders and on the length of the remainder sequence.

Theorem 10. Let ry, 71 be two non-zero integers with 0 = v(ry) < v(r1), and
T0,T1,T2, -, Tqr1 their complete GB remainder sequence, i.e. with rq.1 = 0.
Assume that 8 < j < d. Then:

j—1 j—1
- 2 1+v17 1—+17
¥ <l < o= [nl | (=) - (=~
17 4 4

i (1+4\/ﬁ> _<1—4¢ﬁ) |
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These lower and upper bounds are reached together for

() =0 (%),

Moreover, if £(ry), £(r1) < n, then we have: d < n/ log(‘/z_l).

As a comparison, we recall that the worst case for the standard Euclidean
division corresponds to the Fibonacci sequence, with d = n/ log(l’;—‘/g) + o(n).

Note that 1/log(148) ~ 1.440 and 1/ log(¥Z=1) ~ 1.555.

5.2 Complexity bound for the recursive algorithm

In what follows, H(n) and G(n) respectively denote the maximum of the num-
ber of bit operations done by the algorithms Half-GB-gcd and Fast-GB-gcd,
given as inputs two integers of length at most n.

Lemma 11. The two following relations hold:

— G(n) = H(n) + G(cn) + O(n),
= H(n) =2H(|3] +1) + O(M(n)),

where ¢ = (1 + log(lz—‘/ﬁ)) /2.

Proof. The first relation is an obvious consequence of Theorem 9. We now prove
the second relation. The costs of Steps 1, 2, 3, 4, 7, 9 and 10 are negligible.
Steps 5 and 11 are recursive calls and the cost of each one is bounded by
H(|5] +1). Steps 6, 12 and 13 consist of multiplications of integers of size
O(n). Finally, Step 8 is a single GB division, and we proved in Lemma 3 that

it can be performed in time O(M (n)). O

From the previous result and the fact that ¢ < 1, one easily obtains the
following theorem:

Theorem 12. The algorithm Fast-GB-gecd of Figure 7 runs in quasi-linear
time. More precisely G(n) = O(M(n)logn).

RR n° 5050
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The constants that one can derive from the previous proofs are rather large,
and not very significant in practice. In fact, for randomly chosen n-bit integers,
the quotients of the GB remainder sequence are O(1), and therefore Step 8 of
the algorithm Half-GB-gcd has a negligible cost. Moreover, the worst-case
analysis on the size of the coefficients of the returned matrices gives a worst-

case bound O ((H—gﬁ)n), which happens to be O(2") in practice. With these

two heuristics, the “practical” cost of algorithm Half-GB-gcd satisfies, with
Strassen’s multiplication of 2 X 2 matrices:

n

H(n) = 2H(g) +19M(5).

This gives H(n) ~ 3 M (n)logn and G(n) ~ LM (n)logn. A similar heuristic
analysis gives the same estimates for the Knuth-Schonhage algorithm.

6 Implementation issues

We have implemented the algorithms described in this paper in GNU MP [1].
In this section, we first give some “tricks” that we implemented to improve the
efficiency of the algorithm, and then we give some benchmarks.

6.1 Some savings

First of all, note that some multiplications can be saved easily from the fact
that when the algorithm Fast-GB-gcd calls the algorithm Half-GB-gcd,
the returned matrix is not used. Therefore, for such “top-level” calls to the
algorithm Half-GB-gcd, there is no need computing the product Rs[ql;,R:.

Note also that for interesting sizes of inputs (our implementation of the
recursive algorithm is faster than usual Euclidean algorithms for several thou-
sands of bits), we are in the domain of Karatsuba and Toom-Cook multipli-
cations, and not far below the domain of the FFT-based multiplication. This
leads to some improvements. For example, the algorithm Fast-GB-gcd should
use calls to the algorithm Half-GB-ged in order to gain yn bits instead of 7,
with a constant v # % that has to be optimized.

Amongst others; below a certain threshold in the size of the inputs (namely
several hundreds of bits), a naive quadratic algorithm that has the requirements

INRIA



A Binary Recursive Ged Algorithm 19

of algorithm Half-GB-gcd is used. Moreover, each time the algorithm has to
compute a GB quotient, indeed it computes several of them in order to obtain
a 2 X 2 matrix with entries of length as close to the size of machine words
as possible. This is done by considering only the two least significant machine
words of the remainders (which gives a correct result, because of Lemma 6).

6.2 Comparison to other implementations of subquadratic gcd

We compared our implementation in a development version of GNU MP with
those of Magma V2.10-12 and Mathematica 5.0, which both provide a sub-
quadratic integer gcd. This comparison was performed on an Athlon MP
2200+, laurent3.medicis.polytechnique.fr. Our implementation wins over
the quadratic gcd of GNU MP up from about 2500 words of 32 bits, i.e. about
24000 decimal digits. We used as test numbers both the worst case of the clas-
sical subquadratic gcd, i.e. consecutive Fibonacci numbers F,, and F;, ;, and
the worst case of the binary variant, i.e. G, and 2G,,_1, where Go = 0, G; = 1,
G, = —G,_1 + 4G, _9, which give all binary quotients equal to 1.

type, n |Magma V2.10-12 Mathematica 5.0 Fast-GB-gcd (GNU MP)
F,, 10° 2.89 2.11 0.70
F,,2-10° 7.74 5.46 1.91
F,, 5-10° 23.3 17.53 6.74
F,, 107 59.1 43.59 17.34
G, 5-10° 2.78 2.06 0.71
G, 10° 7.99 5.30 1.94

Fig. 8. Timings in sec. of the gcd routines of Magma, Mathematica and our implementation in
GNU MP.

Our experiments show that our implementation in GNU MP of the binary
recursive ged is 3 to 4 times faster than the implementations of the classical
recursive ged in Magma or Mathematica. This ratio does not vary much with
the inputs, since ratios for F), and G,, are quite similar.
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