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ABSTRACT
Feature extraction is of paramount importance for an accurate
classification of remote sensing images. Techniques based on
data transformations are widely used in this context. How-
ever, linear feature extraction algorithms, such as the princi-
pal component analysis and partial least squares, can address
this problem in a suboptimal way because the data relations
are often nonlinear. Kernel methods may alleviate this prob-
lem only when the structure of the data manifold is properly
captured. However, this is difficult to achieve when small-
size training sets are available. In these cases, exploiting the
information contained in unlabeled samples together with the
available training data can significantly improve data descrip-
tion by defining an effective semisupervised nonlinear feature
extraction strategy. We present a novel semisupervised Kernel
Partial Least Squares (KPLS) algorithm for non-linear fea-
ture extraction. The method relies on combining two kernel
functions: the standard RBF kernel using labeled information
and a generative kernel directly learned by clustering the data.
The effectiveness of the proposed method is successfully il-
lustrated in multi- and hyper-spectral remote sensing image
classification: accuracy improvements between +15 − 20%
over standard PCA and +10% over advanced kernel PCA and
KPLS for both images is obtained. Matlab code is available
at http://isp.uv.es for the interested readers.

Index Terms— Classification, feature extraction, kernel
methods, partial least squares (PLS), generative kernels

1. INTRODUCTION

Feature extraction consists in identifying the most discrim-
inative variables for data classification. These variable are
often associated with the most relevant directions in the data
distribution. The family of multivariate analysis methods for
feature extraction is commonly used to reduce the data di-
mensionality by projecting points onto the most relevant di-
rections. Principal component analysis (PCA) [1] and partial
least squares (PLS) [2] are two of the most common linear
feature extraction methods in remote sensing data analysis.
However, when the features and the target variables are non-
linearly related, linear methods cannot properly describe the
data distribution. Different non-linear versions of PCA and
PLS have been developed, which can address non-linear prob-
lems either by local approaches [3], neural networks [4], or
kernel-based algorithms [5].

This paper has been partially supported by the Spanish Ministry for Sci-
ence and Innovation under projects AYA2008-05965-C04 and CSD2007-18.

In the last decade, kernel methods have attracted the inter-
est of the remote sensing community because they allow one
to develop nonlinear models from linear ones in a very easy
and intuitive way [6]. Essentially, kernel methods project the
input data to a high dimensional Hilbert space, and define a
linear method therein. The model is nonlinear with respect
the input space. Interestingly, there is no need to work ex-
plicitly with the mapped data, but one computes the nonlinear
relations between data via a kernel (similarity) function im-
plicitly. Kernel methods have in general good performance
in the case of high dimensional problems and low number of
training examples. This is the approach used in kernel princi-
pal components analysis (KPCA) [5] and kernel partial least
squares (KPLS) [7]. The main difference between KPCA and
KPLS is that while KPCA finds the projections that maxi-
mize the variance of the input data in the feature space, KPLS
extracts projections that account for both the projected input
and target data (labels). In this paper, we focus on the KPLS
method, which proved to be effective and can extract nonlin-
ear features aligned with the class labels. These features are
then used in canonical linear classification or regression.

Extracting nonlinear features by KPLS is a very complex
problem in the common situation in remote sensing where
relatively few labeled data points are available. Including the
information conveyed by unlabeled data via semisupervised
learning can potentially improve the feature extraction task.
The semisupervised framework has recently attracted a con-
siderable amount of theoretical [8] as well as remote sensing
applied research [6]. In this paper, we present a new semisu-
pervised KPLS method for nonlinear feature extraction. Our
approach considers to modify the kernel similarity function
via a semisupervised kernel defined on the basis of cluster-
ing the analyzed image. Specifically, we propose to combine
a standard supervised kernel with a Gaussian mixture model
(GMM) clustering algorithm. While the supervised kernel ex-
ploits the information conveyed by the labeled samples, the
cluster kernel accounts for the structure of the data manifold.
The proposed semisupervised KPLS ( SS-KPLS) method is
successfully tested in very high resolution and hyperspectral
image classification scenarios.

The paper is outlined as follows. Section 2 reviews the
standard formulation of KPLS and highlights the problems
encountered when dealing with very few labeled samples.
This motivates the introduction of the proposed method in
Section 3. Section 4 presents the data set and the experimen-
tal results. Finally, Section 5 concludes this paper.
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2. KERNEL PARTIAL LEAST SQUARES

Notationally, we are given a set of l training data pairs
{xi,yi}li=1, with xi ∈ R

N , yi ∈ R
M . By using ma-

trix notation we can write, X = [x1, . . . ,xl]
� and Y =

[y1, . . . ,yl]
�, where superscript � denotes matrix or vector

transposition. For classification problems, Yij = 1 if sample
xi belongs to class j and Yij = 0 otherwise. We denote by

X̃ and Ỹ the centered versions of X and Y, respectively.
Note that, centering removes the mean of every variable in
the corresponding matrix.

KPLS is the nonlinear kernel-based extension of PLS [9],
which is based on maximizing the variance between the pro-
jected data in a proper Hilbert space H and the target data

matrix Ỹ (i.e. the labels):

KPLS: U,V = arg max
U,V

Tr{(Φ̃U)�ỸV}

subject to: U�U = V�V = I,
(1)

where matrix Φ̃� contains the mapped data centered in the
Hilbert space1, and U and V are the projection matrices to be
estimated for the data and the labels, respectively.

To solve this problem we use the representer’s theorem,
which states that all projection vectors (the columns of U)
can be approximated as a linear combination of the training

data, i.e. U = Φ̃�A, where A = [α1, . . . ,αnp ] and αi is
an l-length column vector containing the coefficients for the
ith projection vector. Introducing this expression into (1), the
maximization problem becomes:

KPLS (2): A,V = arg max
A,V

Tr{A�KỸV}

subject to: A�KA = V�V = I,
(2)

where we have defined the symmetric centered kernel matrix

K = Φ̃Φ̃� containing the inner products between pairs of

points in feature spaces, K(xi,xj) = 〈φ̃(xi), φ̃(xj)〉. The
solution to this problem can be obtained from the singular

value decomposition of KỸ. Alternatively, the problem can
be efficiently solved using the following two-steps iterative
procedure (see [5, Sec. 6.7] for more details):

1. Find the largest singular value of KỸ, and the associ-
ated vector directions: {αi,vi}.

2. Deflate the kernel matrix and labeled vector using:

K ←
[
I− Kαiα

�
i K

α�
i KKαi

]
K

[
I− Kαiα

�
i K

α�
i KKαi

]
(3)

Y = Y −KαiY
Kαi

‖Kα‖22
(4)

This deflation procedure allows us to extract more features
than classes. For a more detailed description as well as im-
plementation details, the reader is referred to [5, 6].

1Centering in feature space can be done implicitly via the simple kernel

matrix operation K ← HKH, where Hij = δij − 1
l

, δ represents the

Kronecker symbol, and δi,j = 1 if i = j, and zero otherwise.

Distribution m = 2 m = 4 m = 9

Fig. 1. Illustration of the cluster kernel construction. The
method clusters data with GMM clustering for m = {2, 4, 9},
and acumulates the similarities in a multiscale way. Samples
classified in the same clusters should belong to the same class.
The multiscale cluster kernel (right kernel) is a better estima-
tion of the optimal ideal kernel K = yy� (left kernel).

3. PROPOSED SEMISUPERVISED KPLS

The underlying idea of the proposed semisupervised KPLS
(SS-KPLS) is to modify the KPLS kernel (similarity) function
K(xi,xj) to account for the distribution of unlabeled pixels.
To this aim, we propose the Gaussian mixture model (GMM)
cluster kernel, which consists in combining a kernel on la-
beled data with a kernel computed from clustering unlabeled
data. The multiscale cluster kernel is obtained as follows:

1. Compute the supervised kernel function:

Ks(xi,xj) = 〈φs(xi),φs(xj)〉 (5)

2. Run t times the Gaussian mixture model (GMM) clus-
tering algorithm with different initializations and with
different number of clusters q. This results in q·t cluster
assignments where each sample xi has its correspond-
ing posterior probability vector πi ∈ R

m.

3. Build a cluster kernel Kc based upon the fraction of
times that xi and xj are assigned to the same cluster:

Kc(xi,xj) =
1

Z

t∑

p=1

q∑

m=2

π�
i πj , (6)

where Z is a normalization factor. An illustrative toy
example of the multiscale cluster kernel construction is
shown in Fig. 1.

4. Define the final kernel function K as the weighted sum
of the supervised and the cluster kernels:

K(xi,xj) = βKs(xi,xj) + (1− β)Kc(xi,xj), (7)

where β ∈ [0, 1] is a scalar parameter.

5. Plug K into the standard KPLS solver (see Section 2).

Note that the proposed kernel in (6) is a valid kernel be-
cause it corresponds to a summation of inner products in tq-

dimensional spaces, φc(xi) =
⋃t,q

p=1,m=2 πi, where operator⋃
represents vector concatenation. The summation of kernels

done in step 4, Eq. (7), leads also to valid Mercer’s kernels, as
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it corresponds to the concatenation of feature vectors in the
Hilbert space, φ(xi) = {√β·φs(xi)

� ,
√
1− β·φc(xi)

�}�.
The new averaged kernel accounts for similarities at small

and large scales in the manifold between the samples by using
both labeled and unlabeled data. Note that finding a proper
kernel is equivalent to learn metric relations in the manifold
which are defined here through a generative model learned
from the data. The proposed kernel generalizes previous ap-
proaches based on multiscale cluster kernels. For example,
the kernel in (6) reduces to the approach in [10] when only
the cluster assignment with maximum posterior probability is
considered.

4. EXPERIMENTAL RESULTS

This section presents the results obtained by applying the pro-
posed SS-KPLS technique to remote sensing multispectral
and hyperspectral image classification. The next section de-
tails the data used in the experiments. Then, we focus our
attention on the accuracy and robustness of the proposed al-
gorithm in terms of the number of extracted nonlinear fea-
tures. Finally, we analyze the eigenspectrum, structure, and
information content of the derived kernels.

4.1. Data

The first image dataset consists of 4 spectral bands acquired
on a residential neighborhood of the city of Zürich by the
QuickBird satellite in 2002. The portion of the image ana-
lyzed has size (329 × 347) pixels. The original image has
been pansharpened using a Bayesian data fusion method to
attain a spatial resolution of 0.6 m. Nine classes of interest
have been defined by photointerpretation. According to the
good results obtained in previous studies [11], a total of 18
spatial features extracted using morphological opening and
closing have been added to the spectral bands, resulting in a
final 22-dimensional vector.

The second image was acquired by the DAIS7915 sensor
over the city of Pavia (Italy), and constitutes a challenging
9-class urban classification problem dominated by structural
features and relatively high spatial resolution (5-meter pixels).
Following previous works on classification of this image, we
took into account only 40 spectral bands in the range [0.5,
1.76] μm, and thus skipped thermal and middle infrared bands
above 1958 nm.

4.2. Experimental setup

For our experiments, we used only 4 labeled samples per class
to illustrate the robustness of the proposed method to chal-
lenging ill-posed classification problems. In order to define
the (q · t) cluster centers and the pixel posterior probabili-
ties for each of them, πi, we used 190 unlabeled samples per
class for both images. In all cases, we used t = q = 20
and the parameter β was tuned between [0, 1] in steps of 0.05
for each number of extracted features with the proposed algo-
rithm. Once the mixture models are computed and stored, the
data are assigned to the most probable Gaussian mode and Kc

is constructed accordingly. The same assignment is used for
predicting the class membership of an unknown test pixel. A

Fig. 2. Overall accuracy as a function of extracted nonlinear
features for the Zürich image (left) and Pavia image (right).

3-fold cross-validation procedure was run to find the optimal
σ parameter, which was varied between [0.5, 2] × s, where s
represents the median distance between all labeled data.

Once the projections are obtained for all methods, the dis-
criminative power of the features was tested using a simple
linear model followed by a “winner-takes-all” activation func-

tion , i.e. ŷ = w.t.a.[W�φ̃(x)], where W is the optimal re-

gression matrix given by W = Φ̃†Ỹ. For testing the models,
the overall accuracy OA[%] and the estimated Cohen’s kappa
statistic κ are computed over a total of 1, 710 test randomly
chosen samples in both images. We also provide the classifi-
cation maps and the accuracies obtained in the whole scenes.
Matlab code and demos are available for the interested reader
in http://isp.uv.es.

4.3. Results and discussion

We evaluated the accuracy of several methods for a varying
number of extracted features: 1) unsupervised linear, PCA,
and its nonlinear version, KPCA; 2) supervised feature ex-
traction algorithms (PLS and its nonlinear version KPLS);
and 3) the different kernels involved in SS-KPLS. Note that
the proposed SS-KPLS generalizes both the supervised KPLS
(when β = 1) and a fully unsupervised feature extraction (for
β = 0).

Results are shown in Fig. 2. In general, nonlinear ker-
nel methods (KPCA, KPLS and variants) outperform linear
approaches (PCA and PLS). The proposed SS-KPLS outper-
forms the standard KPLS and the cluster kernel. The (unsu-
pervised) generative cluster kernel proposed here outperforms
the supervised kernel with an increasing number of features.
When a higher number of nonlinear features is extracted, all
curves become stable, but the proposed SS-KPLS largely out-
performs the standard PCA between +15-20% and the more
advanced KPCA or KPLS by about +10%. The behaviour
of PCA and KPCA in the Zürich image is worth analyzing
because higher accuracy is not obtained with higher number
of extracted features, revealing a kind of overfitting problem.
This effect has been recently reported in the literature [12].
This is not the case of the proposed unsupervised kernel Kc.
These results are confirmed by the visual inspection of the
classification maps shown in Fig. ??, where the SS-KPLS
shows a clear and consistent gain over KPLS of about +6%
for the Pavia dataset.

Figure 4 shows the eigenvalues of the best kernels for
the Pavia image. The eigendecomposition of the semisuper-
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RGB Ground truth PCA (51.49,0.42) PLS (58.64,0.50) KPCA (61.12,0.53) KPLS (68.67, 0.62) KcPLS (63.74, 0.58) SS-KPLS (69.11, 0.64)

RGB Ground truth PCA (79.04,0.75) PLS (78.09,0.74) KPCA (90.24,0.88) KPLS (90.46, 0.89) KcPLS (96.47, 0.96) SS-KPLS (96.84, 0.96)

Fig. 3. Left to right: RGB composite, ground truth and three classification maps along with the overall accuracy and kappa for
the Zürich (top) and the Pavia (bottom) images for 20 extracted features.
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(‖ · ‖F ,HSIC) (20.05,55.40)

(10.16,76.74) (9.27,80.12)

Fig. 4. Left: Normalized eigenvalues for all kernels used in
the Pavia dataset. Right: ideal and used kernels, along quan-
titative measures of error ‖ · ‖F and dependence (HSIC).

vised kernel shows a tradeoff between the supervised and the
unsupervised kernels, as expected. It is worth noting that
the unsupervised spectrum (blue line) shows a slower decay
because the kernel is indeed quite blocky and sparse. On
the other hand, the supervised kernel shows a heavier tail.
The introduction of the cluster kernel can be casted as an ex-
tra regularization of the supervised kernel. The right plots
present the used kernels and their similarity to the ideal one,
Kideal = yy�. Two quantitative measures are given: the
Frobenius norm of the difference of these two kernels, ‖ · ‖F ,
and the Hilbert-Schmidt Independence Criterion (HSIC) be-
tween them [13]. The proposed semisupervised kernel aligns
well with the ideal kernel (lower error, higher dependence),
and takes advantage of the sharper structure learned by the
cluster kernel.

5. CONCLUSIONS

This paper proposed a novel nonlinear feature extraction tech-
nique for remote sensing image classification. The method is
specifically devised for addressing critical ill-posed problems
where the number of training samples available is relatively
small, and thus using unlabeled samples in a semisupervised
framework can significantly improve the representation of the
data. Note that these problems are common in operational ap-
plications of remote sensing. Good results were obtained on

both multispectral and hyperspectral data sets considered in
our experiments, where the proposed method largely outper-
formed supervised and unsupervised linear and nonlinear lit-
erature approaches. Future work will consider the direct use
of the generative cluster kernel in unsupervised image seg-
mentation, and the study of the induced metric space by the
kernels.
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