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1. Introduction 

1.1 The Game: Quoridor 
 

Quoridor is a conceptually simple two- or four-player board game invented in 1997 by 
Mirko Marchesi, an Italian game designer working for Gigamic1.  Since Quoridor is a 
relatively unknown game in the literature, a brief description of the game setup and rules 
is given below: 
 
The Board: There is a single game board with 81 squares (9x9).  There are two storage 
slots for the 20 fences.  In two-player mode, there are 2 pawns (see Figure 1.1), and in 
four-player mode, there are 4 pawns.    
 
The Purpose: The purpose of the game is to be the first to reach the line opposite to 
one's base line (see Figure 1.7).   
 
The Rules2: Since this report only considers the two-player form of this game, only the 
rules for the two-player configuration are given.   
 

Starting: The fences are placed in their storage area, 10 for each player.  Each 
player's pawn is placed in the centre of his base line (see Figure 1.1).  A draw will 
determine who is allowed the first move. 
 
Gameplay: Each player in turn, chooses to move his pawn or to put up one of his 
fences.  When he has run out of fences, the player must move his pawn. 

 
Pawn Moves: The pawns are moved one square at a time, horizontally or 
vertically, forwards or backwards (see Figure 1.2).  The pawns must get around 
the fences (see Figure 1.3). 

 
Positioning of the Fences:  The fences must be placed between 2 sets of 2 squares 
(see Figure 1.4).  The fences can be used to facilitate the player's progress or to 
impede that of the opponent, however, an access to the goal line must always be 
left open (see Figure 1.5). 

 
Face to Face:  When two pawns face each other on neighbouring squares which 
are not separated by a fence, the player whose turn it is can jump the opponent's 
pawn (and place himself behind him), thus advancing an extra square (see Figure 
1.6). If there is a fence behind the said pawn, the player can place his pawn to the 
left or the right of the other pawn ( see Figures 1.8 and 1.9). 

 

                                                
1See http://www.gigamic.com/jeuxanglais/quoridore.htm for more details. 
2As described at http://www.gigamic.com/regles/anglais/rquoridore.htm,  (c) Copyright 1997 GigamicS.A. from a concept of Mirko 

Marchesi, developped by EPTA srl and QUALITY GAME sprl. 
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End of Game:  The first player who reaches one of the 9 squares opposite his base 
line is the winner (see Figure 1.7). 
 

Figure 13: (1) The initial configuration of the board prior to game play, with each player's pawn placed at the centre of his 
or her baseline.  (2) Legal pawn moves without fences.  (3) Legal pawn moves around fences.  (4) Legal placements of 
fences.  (5) Legal  game states; must allow access to goal line at all times.  (6) Jumpin an opponent's pawn.  (7) The goal 

                                                
3

 Image taken from http://www.gigamic.com/regles/anglais/rquoridore.htm. No explicit copyright was declared for this image at its 
source, but its use is nonetheless covered under the fair-use (nonprofit educational purposes) statute present in the governing copyright 
legislation. 
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state; reaching any of the 9 squares on the opponent's goal line.  (8) and (9) Legal moves in the event there is a fence 
behind the opponent.  (10) In a four-player game, it is forbidden to jump more than one pawn. 
 
 

1.2 Genetic Algorithms 
 Introduced by John Holland in 1975, a genetic algorithm is an approach that 
mimics biological processes for evolving optimal or near optimal solutions to problems.  
It performs a multi-directional search, maintaining a population of potential solutions.  
Beginning with a random population (group of chromosomes), it chooses parents and 
generates offspring using operations analogous to biological processes, usually crossover 
and mutation.  Adopting the survival of the fittest principle, all chromosomes are 
evaluated using a fitness function to determine their fitness values, which are then used to 
decide whether the chromosomes are eliminated or retained to propagate.  The more 
adaptive chromosomes, i.e. the "good" solutions, are kept to reproduce again and the less 
adaptive ones, i.e. the "bad" solutions, are discarded in generating a new population.  
Traditionally, this new population replaces the old one and the whole process is repeated 
until specific termination criteria are satisfied.  During each iteration step, called a 
generation, the structures in the current population are evaluated, and on the basis of 
those evaluations, a new population of candidate solutions are formed (Özylidirim, 1997).  
The chromosome with the highest fitness value in the last population gives the solution 
(Forrest, 1996; Hong, et al., 2001).  
 
 Genetic algorithms have been successfully applied to the fields of optimization, 
machine learning, neural networks, fuzzy logic controllers (Hong, et al., 2002), and to 
mainstream economics problems (Özylidirim, 1997; Riechmann, 2001).  More 
interestingly to this report, genetic algorithms have been widely used in a wide range of 
game playing issues (Buro, 1995; Davis and Kendall, 2002; Forrest, 1996; Hong, et al., 
2001; Hong, et al., 2002;  Kendall and Whitwell, 2001; Rosin and Belew, 1996).   
 

1.3 Simulated Annealing 
 

 First proposed by Kirkpatrick in 1983, simulated annealing was initially designed 
for solving combinatorial optimization problems. As its name implies, simulated 
annealing exploits an analogy between the way in which a metal cools and freezes 
into a minimum energy crystalline structure (the annealing process) and the search for 
a minimum in a more general system.  It is a global optimization method that 
distinguishes between different local optima, that is, it is an optimization of greedy 
local search. Starting from an initial point, the algorithm takes a step and a heuristic 
function is evaluated. The algorithm employs a random search which not only accepts 
changes that decrease an objective heuristic function, but also some changes that 
increase it (Fleischer, 1995).  Essentially, bad moves are randomly taken.  If the 
neighbour of a current assignment is better than the current assignment, a move to the 
neighbour is taken.  Otherwise, if the neighbour is worse, a move to the neighbour is 
still considered with a probability defined by the objective function.  The major 
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advantage with simulated annealing over other methods is an ability to avoid 
becoming trapped at local minima and, hence, has a greater chance of finding the 
global optima (Li and Lim, 2002).  
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2. Background 

2.1 Problem 
 
 The purpose of this report is to explore the use of genetic algorithms in creating 
an artificial player for two-player Quoridor.  Specifically, genetic algorithms will be 
developed to traverse the game search tree in order to select the "best" next-move.  In 
selecting the next generation in the algorithm, various fitness and selection criteria will be 
explored and compared empirically.  Also, for the purposes of empirical comparison, a 
player will be developed using simulated annealing techniques.   
 
 
 

2.2 Literature Survey 
  
 As mentioned before, Quoridor is a relatively unknown game in the realm of 
academic research.  As such, literature on similar two-player, adversarial games such as 
awari (Davis and Kendall, 2002), checkers (Rosin and Belew, 1996), chess (Kendall and 
Whitwell, 2001), draughts, and Othello (Buro, 1995) were used to provide guidance in 
designing the game search algorithms, genetic and otherwise, for this report. 
 
 The general representation of a two player game is a rooted tree (called the game 
search tree) as follows:  Every possible position in the game is denoted by a node.  The 
root represents the starting position, while every leaf denotes a possible end.  An edge 
from a node x to another node y (here, y is the child of x) represents a possible move from 
position x to position y.  The game starts at the root, and each player, in turn, moves from 
the node on which it is located to any child of this node.  The game is finished when a 
player ends up on any of the leaves (Tarsi, 1983). 
 
 The key mechanism for effective computer game playing is the game search 
algorithm.  This algorithm is responsible for exploring possible moves in searching for 
the best next moves.  Usually, the deeper the game search tree, the more accurate the 
prediction (Hong, et al., 2002).  Traditional two-player game search algorithms, such as 
minimax and α−β pruning, suffer great time and space inefficiencies when exploring 
deeply into search trees to find better playing strategies (Hong, et al., 2001).  The main 
focus of this report is to apply genetic algorithms to game-tree searches to improve this 
performance. 
 
 The evolving ability of genetic algorithms to find global, or nearly global, optima 
in limited time seems promising.  However, they have been rarely used for game-tree 
search due, primarily, to their fitness functions.  While traditional fitness functions find 
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only maximum or only minimum values, game-tree search for two-player adversarial 
games requires fitness functions to compute iterative minimax values.  Hong, et al. 
(2001) proposed a genetic minimax search strategy for determining good next moves 
employing conventional genetic algorithms.  It uses evaluation values calculated from a 
partial game-tree search to generate offspring.  In their model, after generation, the best 
solution is output as the next game move.  Their experiments showed that the proposed 
method finds more accurate solutions more quickly than the original minimax search 
strategy.  They claim that their algorithm is thus practical and can be applied to real 
computer games. 
 
 Essential to the selection of the next move is the evaluation of the current game 
position.  These evaluation functions estimate the players' winning chances in the 
positions at the leaves of game trees, and these values are propagated upwards in order to 
choose a move which leads to the highest score.  According to Buro (1995), these 
evaluation functions normally combine features that measure properties of the position 
correlated with the winning chance, such as material in chess or mobility in Othello.  
However, the techniques employed to determine the feature weights were laborious.  
Buro offers the following strategies to enhance this calculation.  First, the strategy of 
move adaptation.  In this strategy, evaluation function parameters are tuned to maximize 
the frequency with which searches yield moves that occur in the lists of moves belonging 
to training positions.  The idea is to get the program to mimic experts' moves.  The other 
main strategy Buro offers is that of value adaptation.  Given a set of labeled example 
positions, parameters are determined such that the evaluation function fits a specific 
model.  For instance, evaluation functions can be constructed in this way to predict the 
final game result.  Buro suggests that in games such as Othello and chess, value 
adaptation is more promising as move adaptation does not offer any global interpretation 
for optimized evaluation functions.  With value adaptation, evaluations from different 
phases are comparable if the example position labels have a phase-independent meaning. 
 
 Also essential to the search process in any genetic algorithm are the stages of 
crossover and mutation.  Kendall and Whitwell (2001) proposed an interesting approach 
for crossover.  In their model, there is no crossover.  That is, reproduction is completely 
asexual.  After the selection and competition of two population members, there will be at 
most one breeding parent - the fittest one of the pair.  The population member that wins 
the competition becomes the breeding parent and creates a clone to replace its rival.  In 
the case of a drawn competition, Kendall and Whitwell denied both candidate parents 
from breeding.  They also suggest an interesting approach to mutation.  Their proposed 
mutation system is dependent on the distribution of the population to create a more 
explorative search.  After each competition between pairs of candidate evaluation 
functions, they mutate each of their parameters by a proportion of the standard deviations 
for those parameters for those parameters depending on the outcome of competition.  
They claim that when the population is diverse at the start of the learning process, they 
mutate by a larger amount than when the population begins to converge towards the end 
of learning.  Thus, all mutation is controlled by the population's diversity, and the user 
does not need to specify a mutation scheme.  Kendall and Whitwell developed a chess 
player that, according to their results, had exhibited better learning under their design 
than the "before" design. 
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 Designing the fitness function is important to create an effective genetic 
algorithm.  It is the fitness function that evaluates each chromosome and generates values 
representing their degree of fitness.  Chromosomes with smaller fitness values are usually 
discarded to increase the probability of retaining population superiority.  Hong, et al. 
(2001) propose the use of a reservation tree to aid in fitness evaluation.  They claim that 
since the minimax principle must be used to justify the fitness of any new individual in a 
two-player game-search tree, chromosomes must be therefore compared with other 
chromosomes in the population to get accurate fitness values.  As such, this reservation 
tree is used to retain the fitness of all chromosomes ever seen to aid in fitness evaluation.  
Their design connects all inspected individuals to a tree structure, evaluates each 
individual's leaf node, and then propagates the board evaluation values upward along the 
current partial game tree.  During propagation, the value of each node is evaluated using 
the minimax principle.  In a two-player game-search tree, they claim that the best move 
sequence (path) is the one whose leaf value is propagated along the path to the root node 
in the reservation tree.  That is, each node on the path has the same value as the leaf node.  
A path whose leaf value can be propagated to a higher level can thus be thought of as 
more important.  The fitness function in their proposed genetic minimax algorithm is 
defined as the height from the bottom that the leaf value of a chromosome (path) can 
attain.  Hong, et al. concluded that their genetic algorithm-based game-search method 
was remarkable for the introduction of this reservation tree notion.  Their experimental 
results showed that their method not only accelerated the search speed but also found a 
more accurate solution in a limited amount of time. 
 
 Baum, et al. (1995), among other things, explored the interesting question of 
whether or not breeding proportional to fitness is optimal.  They examined standard 
genetic algorithm breeding methods and compared them with an alternate sampling 
method they termed culling.  This breeding method chooses parents randomly and 
uniformly, and breeds them.  If the resulting child has fitness statistically greater than the 
expected fitness, µ, (plus one standard deviation, σ) of a member of the current 
generation, the child is accepted.  Otherwise, the child is rejected.  This means that they 
only reject a constant fraction of children, but in the process, achieve a gain per 
generation of at least one standard deviation,  σ.  Μore generally, they propose, they 
could reject children of fitness less than  µ + λ σ and optimize the parameter σ.  Their 
experimental results suggested that culling was near optimal on the problem they were 
interested in (additive search problem), far better than the standard genetic algorithms.  
Incidentally, they found that their culling method was also highly noise tolerant.
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3. Methods 
 

3.1 Approach 
While researching the game, we had come across an open-source Java implementation of 
the game, called HardQuor4 that was written specifically to interface easily with new and 
different AI players.  As packaged, the game allowed for a single human player to play 
against either another human player through a network, or a provided AI player.  We 
modified this game implementation to allow for two AI players to play against each 
other. 
 
In developing the genetic algorithm-based AI player, the following components were 
given special attention: 
 
Evaluation Function: 
Our AI players, both genetic and annealing, use the same heuristic function to evaluate 
their current position in the game.  This heuristic considers both the number of walls each 
player has left to place and the difference in the distances of each player to reaching the 
goal side.  It is a linear function in both of these characteristics. 
 
Fitness Function: 
The fitness of an individual is calculated to be the value of the evaluation (heuristic) 
function in their current state after they have completed all their moves. 
 
Generating Populations: 
We considered all of the search tree moves possible, selected a random move from these.  
Then, we assume the opponent myopically selects the best move from its point of view.  
Then we select a random move from the available moves at that point.  This continues 
until our depth bound within the tree is reached.  We have designed the genetic algorithm 
player in such a way that it is trivial to alter various parameters associated with a 
population, including number of individuals and generations. 
 
Selection Methods: 
The selection method is key in determining how quickly a game search converges versus 
the breadth of the search.  For example, a selection method that always selected the best 
individual would simply converge to that individual, and there would be no breadth to the 
search.  A selection method that would select individuals from the population with equal 
probability would have a large breadth, but would not likely converge to the best 
solution.  We implemented and compared the following selection methods: 
 

(i) Total Fitness:  The fitness of all individuals in the population is summed.  

                                                
4See http://www.swank.ca/slacker/hardquor/index.html for more information.  Please note that at the time of submission, the given 

webpage was undergoing reconstruction and the HardQuor page content had been moved offline temporarily.  They claim the 
content will be available again August 15, 2003.   



11 

Then, the probability for one individual being selected is their fitness divided by 
the total population's fitness.   
 
(ii) Tournament Selection: Two individuals are selected randomly and uniformly 
from the population so that each individual has equal probability of being 
selected.  Then, the individual with the higher fitness is selected from these two. 
 
(iii) Rank-Based: Individuals are sorted and ranked based on their fitness.  The 
ranks are then summed (mathematically, {size(population) * 
[size(population)+1]}/2).  The individual's probability of being selected is then 
their rank over the total sum of ranks. 
 

Crossover: 
As suggested by Kendall and Whitwell (2001), we decided not to implement crossover.   
This seemed appropriate as crossovers in the Quoridor game search tree would, with high 
probability, result in illegal moves.  As described in Hong, et al. (2001), when there are a 
variable number of possible moves at each node on the same level of a game tree, 
implementing crossover so that the maximum number of possible moves at each level can 
be used, but many illegal offspring states may be derived.  Although appropriate repair 
mechanisms can still be designed to resolve the conflicts, much additional and 
unnecessary computational time may be spent if many or most offspring chromosomes 
are illegal.  As such, we felt that adding crossover would have no beneficial effects on 
our implementation, only demanding more overhead work to recover from the illegal 
moves. 
 
Mutation: 
This was a two-step process.  We first select a point in the path for the selected 
individual.  Once the point was selected, we regenerate a path as if we were generating a 
new individual starting at that point.  The probability of any one move in the path being 
selected is that move's index in the path divided by the total sum of the indices.  This 
implies that an earlier move in the path has less probability of being selected for mutation 
in the path than a later move.  This was done because an earlier move would suggest that 
the individual associated with the move would be relatively more fit than later 
individuals.  Mutating these earlier moves would have a more drastic effect than mutating 
later moves.  For example, if the first move in a path is selected for mutation, then it 
results in a completely new individual that has no relation to its parent. 
 
 
In developing the simulated annealing algorithm-based AI player, the following 
components were given special attention: 
 
Evaluation: 
Since simulated annealing is an optimization of greedy local search, the evaluation 
function for nodes would assume nodes to be myopic.  Specifically, it would not 
incorporate any adversarial strategy of an opponent player into evaluating a node, such as 
assuming that the opponent will select a move that is best for itself.  As such, the 
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application of simulated annealing to two-player game search trees requires some 
expansion in the design of the evaluation function.  We have decided to expand the 
evaluation function of nodes for a given player by having it traverse down the tree from 
the given move, taking into consideration an opponent's myopic move at that level, and 
then selecting the move under traditional simulated annealing.  This would conceptually 
translate into the simulated annealing player looked downward three levels from a given 
position in the game tree to evaluate this position.  The same linear evaluation heuristic 
function is used for the evaluating the game position itself, taking into consideration both 
the number of walls left for each player and the distance of each player to the goal side. 
 
Objective Function: 
The objective function is responsible for determining the probability with which worse 
moves are taken from a given position.  Our objective function is of the form: 
 e[h(current)-h(neighbour)]/time 

where h is the same heuristic evaluation function used in the genetic algorithm.  Here, our 
parameter controlling randomness versus greediness is time, and not a constant.  This was 
inspired by Fleischer (2001), which described the use of temperature for this parameter 
under traditional annealing with metals.  This is the aspect of our simulated annealing 
which avoids becoming trapped in local optima.  When we reach later stages in the game 
search tree where the player is close to its goal state, the difference between h(current) 
and h(neighbour) will be relatively large (conversely, it would be relatively small at the 
beginning of the game).  This would suggest that using a constant parameter in place of 
time would result in the player taking bad moves more often near the end.  Since time 
would also be a relatively large value near the end of the game, it would offset this large 
difference and get us to a goal state quicker.  
 
 
 
 

3.2 Rationale 
 

 First, we offer our rationale for selecting a genetic algorithm-based player rather 
than implementing other search tree algorithms.  It is characteristic of most two-player 
games that, if one could search the entire depth of the game search tree down to the leaf 
nodes (i.e. goal nodes) with some given algorithm to determine the next move, then this 
algorithm would constitute a perfect player that would make perfect moves.  However 
with Quoridor, as with many other two-player games, this is infeasible given the 
magnitude of the search trees.  As mentioned in Hong, et al. (2001), genetic algorithms 
offer the ability to go deeper into the search tree, with reasonable space and time 
requirements, to find optimal solutions. 
 
 As far as our rationale for the specifics of the genetic and simulated annealing 
algorithms implemented, we refer the reader to Section 3.1 above which offers the 
reasoning for our design decisions among the descriptions. 
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 Lastly, we selected simulated annealing as a final comparison for our genetic 
algorithm partially based on the advice of Dale Schuurmans, and partially based on our 
realization (during our literature search and survey) that very few efforts have been made 
at applying simulated annealing to two-player game search trees.  As mentioned in the 
introduction, simulated annealing was initially designed for solving combinatorial 
optimization problems.  We noticed that simulated annealing is quite similar to the 
motivation behind genetic algorithms, but much simpler.  As such, we felt it would serve 
as a good comparison tool. Its performance as an optimization to greedy local search is 
quite celebrated in the literature (Li and Lim, 2002).  We believe that our modification of 
standard simulated annealing may provide some advances in how simulated annealing 
may be applied to game search problems.   
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4. Plan 
 

4.1 Hypotheses 
 
H1(a): Tournament selection will outperform selection using total fitness. 
H1(b): Rank-based selection will outperform selection using total fitness. 
H1(c): Rank-based selection will outperform tournament selection. 
 
H2: Performance will worsen as the number of individuals per generation is increased 
and the number of generations is decreased. 
 
H3: The simulated annealing player will outperform the genetic algorithm player. 
 
 

4.2 Experimental Design 
 
 As mentioned in Section 3.1 above, we selected an open-source Java 
implementation of Quoridor we came across on the Internet that was built in such a way 
to allow for easy interface with automated AI players.  This package was setup so that a 
human player could face off against a computer AI player.  We modified the functionality 
so that it would allow two computer AI players to face off against each other.   
 
 For all of the hypotheses presented, we define the notion of performance to be 
strictly based on the win-loss ratio when two players face off over multiple games.  We 
assume that a player has outperformed the other player when it wins more than half of the 
trial games.  We require multiple trials because of the notion of randomness inherent to 
both the genetic and simulated annealing algorithms.   
 
 To address the first set of hypotheses (H1) exploring the different selection 
methods used, three separate Java classes were created to represent players implementing 
each of the selection methods.  Please see Appendix A for the Java source code.  To 
gather evidence for evaluating each hypothesis, we simply ran the modified game with 
the appropriate AI players.  For each hypothesis, we ran six such games.  To avoid any 
first-move bias, we allowed each AI player to have the first move an equal number of 
times.  Since we are using the same standard random number generator 
(java.util.Random) for all AI players, we assume that no bias is introduced when 
selecting random individuals.  Only the selection methods are different between the 
players, all other common components (e.g. game state representation, board 
representation, etc.) were kept the same. 
 
 For the second hypothesis (H2) exploring the performance of the genetic AI 
player with respect to changing population parameters, we used the genetic AI player 
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from our H1 tests that was best.  That is, we used the genetic AI player whose selection 
method outperformed the other two selection methods implemented.  The default 
implemented values for the (individuals, generation) pair are (25, 3).  We used this 
default-settings player as the common opponent to all of the various degrees of increased 
individuals and decreased generation players we tried.  Specifically, we tried the 
following values for (individuals, generations): (50, 2), and (10, 5).  For each value pair 
(and its associated modified-settings player), we have the default-settings player face off 
against the modified-settings player 6 times.  As with the H1 testing, we have each player 
make the first move an equal number of times to avoid any first-move bias. 
 
 To explore the third hypothesis (H3), we implemented a Java class to represent a 
player using the simulated annealing strategy described above.  Refer to Appendix B for 
the Java source code.  We selected the genetic AI player from our H2 tests that yielded 
the best performance to face off against the simulated annealing player.  As with the 
testing of the previous hypotheses, we let these two players face off against each other 6 
times, each player getting the first move an equal number of times. 
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5. Experiments 
 

5.1 Results 
 
H1 Testing Results: 
 
Refer to Table 1 for the results of the H1 tests. 
 

 Opponent Selection Method 
Selection Method Total Fitness Tournament Rank-Based 

Total Fitness -- 2 2 
Tournament 4 -- 3 
Rank-Based 4 3 -- 
 
Table 1:  The results of H1 testing, comparing the performance of different selection methods for the genetic algorithm-based AI 
players.  The values shown represent the number of games won by the player using selection method in the left-column against the 
specified opponent. 
 
 
H2 Testing Results: 
 
Refer to Table 2 for the results of the H2 tests.  The tournament-based selection player 
was used. 
 

Parameter Values 
(individuals, generations) 

Games Won 

(50, 2) 4 
(10, 5) 5 
(10, 5) [vs (50,2)] 6 
 
Table 2:  The results of H2 testing, comparing the performance of different population parameters for the genetic algorithm-based AI 
players against the default-valued genetic AI player.  The values shown represent the number of games won by the modified-
parameter player in the left-column against the default-valued opponent.  The default values for the (individuals, generations) 
parameter are (25, 3).  The third test was run for curiousity, and was not part of the original experimental design. 

 
H3 Testing Results: 
 
Refer to Table 3 for the results of the H3 tests. 
 

AI Player Games Won 
Genetic  3 
Simulated Annealing 3 
 
Table 3:  The results of H3 testing, comparing the performance of the best genetic AI player against the simulated annealing AI player.  
The values shown represent the number of games won by each of the players in the 6-game playoff.  The genetic AI player selected 
was tournament-based selection with (individuals, generations) values (10,5). 
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5.2 Critical Evaluation 
 

H1 Testing Evaluation:  
 The results suggest that selection by total fitness was the worst of the three 
implemented methods, as hypothesized.  This is expected because this selection method 
implements the narrowest search in the tree.  Thus, it is more likely to be dominated by 
one individual with high fitness individually, converging to it too quickly.  This quick 
convergence yields poor results because a good first move can be quickly overshadowed 
by poor moves selected later due to random selection.  A broader search would offer a 
slower convergence to a solution, as it would not focus on a single individual with high 
probability.  This can be shown mathematically: 
 
For total fitness selection: 

-assume the distribution of fitness among individuals can be modeled by the 
function f(x) = 1/x  between x = 1 and x = n  
 -this is a reasonable assumption by observation 
-note that the integral of f(x) = 1/x is given by F(x) = ln x 
-P(selecting an individual from the weaker half) 
 = 1 - P(selecting an individual from the stronger half) 

= 1 - [(area under f(x) between 1 and n) - (area under f(x) between n/2 and 
n)]/[area under f(x) between 1 and n] 

 = 1 - [(F(n) - F(1)) - (F(n) - F(n/2))]/[F(n) - F(1)] 
 = 1 - [F(n/2) - F(1)]/[F(n) - F(1)] 
 = 1 - [ln(n/2) - ln(1)]/[ln(n) - ln(1)] 
 = 1 - [ln(n/2)] / [ln(n)] 
 = 1 - [ln(n) - ln(2)] / [ln(n)] 
-as n gets infinitely large, we can apply l'Hopital's Rule so that this probability is: 
 = 1 - lim (n→∞) {[1/n] / [1/n]} 
 = 1 - 1 
 = 0 
-thus, the probability of an individual being selected from the weaker half of a 
population as the size of the population grows is 0 

 
For tournament selection: 

-P(selecting an individual from the weaker half) = ½ 
-an individual from the weaker half will only be able to win if it is competing with 
another individual from the weaker half. 
-P(selecting two individuals from the weaker half to compete) = ½ * ½ = ¼  
-thus, the probability of an individual being selected from the weaker half of a 
population is ¼ 
 

For rank-based selection: 
-P(selecting an individual from the weaker half) 

= (sum of indices over first n/2 ranks) / (sum of indices over all n ranks) 
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= [(n/2)(n/2+1)/2] / [n(n+1)/2] 
= (n2 + 2n) / [4(n2 + n)] 

-as n gets infinitely large, we can apply l'Hopital's Rule so that this probability is: 
 = lim (n→∞) {(2n + 2) / (8n + 4)} 
-again, applying l'Hopital's rule 
 = 2/8 

= ¼ 
-thus, the probability of an individual being selected from the weaker half of a 
population is ¼ 

 
 

The results of the experiment also suggest that tournament selection and rank-based 
selection offered similar performance.  Both outperformed selection by total fitness 
because they involve much broader searches.  Although we expected rank-based to 
outperform tournament selection, the calculations above justify their like performance as 
both methods result in the same probability of selecting an individual from the weaker 
half. 
 

H2 Testing Evaluation: 
The results suggest that the (10,5) player was by far the best, beating both the default 
(25,3) player and the (50,2) player.  This is consistent with our hypothesis; performance 
improves as the number of individuals is decreased and the number of generations is 
increased.  This hypothesis does not appear to have held in the (25,3) vs. (50,2) test, 
where the (50,2) player won more games.  However, we believe that of the two 
parameters we altered, the number of generations has a greater effect on performance.  
The (10,5) player combines the locality of more generations with the larger breadth of 
search that tournament selection offers (as described above) to yield such good 
performance. 

 
H3 Testing Evaluation: 

The results suggest that both the tournament-selection based genetic AI player and the 
simulated annealing AI player performed at an equal level.  This is encouraging, as it 
suggests that if we had designed our evaluation function for the simulated annealing 
player so that it explored the tree to a greater depth (currently, 3 levels down), it may 
offer greater performance.   
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6. Conclusion 
 
 

This project involved exploring genetic algorithms to great depths.  We designed and 
implemented a variety of selection techniques, and relied on current research in the field 
to design other aspects such as crossover and mutation.  We also explored simulated 
annealing to some depth, and through our modifications, we may have introduced it to the 
academic world as a viable technique to apply to adversarial, two-player zero-sum games.    

 
The game we chose to use, Quoridor, is also quite novel to the academic world.  

We believe Quoridor is a good model to explore game search techniques, as it has certain 
characteristics that distinguish it from similar two-player games such as chess.  Since this 
game does not appear to have been used in the literature, we were forced to examine it 
closely to learn of and exploit its characteristics to make our AI players “smarter.”  For 
example, we realized that we had to assign differing weights to wall moves and pawn 
moves.  This newly acquired domain knowledge proved to be quite effective in fine-
tuning our algorithms.   

 

Further testing would serve to confirm our results, for example running more 
games for each test.  In our exploration of the effects of altering the population 
parameters (individuals and generations), future work could be done to confirm that it is 
indeed the number of generations that has a greater affect than the number of individuals.  
This could be achieved by isolating and altering one of the parameters, while examining 
the effect on the player’s performance.  Also, very little testing was done with respect to 
the effectiveness of our heuristic function.  More testing of the weights given to the 
number of walls left for each player and difference of distances to a goal state may serve 
to fine tune the heuristic.  Also, it is conceivable that other factors could improve our 
heuristic.  For example, the number of possible paths or considering the next shortest path 
from a given position may make our heuristic more representative of the optimal heuristic 
function. 
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8. Appendix A: Java Source Code for Genetic Algorithm 
Based AI Players 

8.1 Total Fitness Selection Player 
 

package ca.swank.hq.ai; 
 
import ca.swank.hardquor.*; 
 
/** 
 * @author Quinn McDermid 
 */ 
public class fitgenAIUser 
    implements hardquorUser { 
  public static final int AI_TYPE_LOOKAHEAD = 4; 
  public static final int AI_TYPE_TREE = 5; 
 
  private String serverIp; 
  private String userName; 
  private hardquorClient client; 
  private int selection; 
  private int maxmin; 
 
  /** 
       * constructs a new aiUser which attempts to connect to the server as username 
   */ 
  public fitgenAIUser(String serverIp, String userName, int select, int maxmin) { 
    this.serverIp = serverIp; 
    this.userName = userName; 
    this.selection = select; 
    this.maxmin = maxmin; 
 
    client = new hardquorClient(this); 
    client.connect(serverIp); 
  } 
 
  /** 
   * called upon connection to a hardquor game server. Upon having this method 
   */ 
  public void notifyRequestUserName(String reason) { 
    System.out.println("username requested for reason: " + reason); 
    client.tryUsername(userName); 
  } 
 
  /** 
   * provides a list of online users upon connection to a hardquor game. 
   */ 
  public void notifyUserList(String[] users) { 
    System.out.println("received userlist: " + users); 
  } 
 
  /** 
   * notification that another user has disconnected from the hardquor game 
   */ 
  public void notifyUserGone(String username) { 
    System.out.println("user gone: " + username); 
  } 
 
  /** 
   * notification that another user has connected to the current hardquor game 
   */ 
  public void notifyUserNew(String username) { 
    System.out.println("user new: " + username); 
  } 
 
  /** 
   * a chat message received from the specified user. Chat messages should 
   */ 
  public void notifySpeak(String user, String message) { 
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    System.out.println(user + ": " + message); 
  } 
 
  /** 
   * an incoming game request from another user on the current hardquor server. 
   */ 
  public void notifyGameRequest(hardquorGameRequest request) { 
    System.out.println("game requested"); 
    client.acceptGameRequest(request); 
  } 
 
  /** 
   * requests the user create an instance of an implementation of the 
   */ 
  public hardquorUserGame startGame(hardquorGameClient gameClient, 
                                    int playerNumber) { 
    System.out.println("game start"); 
    hardquorUserGame userGame = null; 
    userGame = new GenAIGame(gameClient, playerNumber, userName, selection, 
                             maxmin); 
 
    return userGame; 
  } 
 
  public void startAIvsAI() { 
    hardquorGameRequest gameRequest = new hardquorGameRequest(0, "GEN-FIT", 33); 
    client.makeGameRequest(gameRequest); 
  } 
 
  /** 
   * starts a new WalkerUser which accepts all requests on specified server and name 
   */ 
  public static void main(String[] args) { 
    if (args.length != 4) { 
      System.out.println( 
          "usage: aiUser [server_ip] [aiName] [selection] [maxmin]"); 
    } 
    else { 
      int value = 0; 
      int maxmin = 0; 
      char[] test = args[2].toCharArray(); 
      value = (int) test[0]; 
      if (value == 49) { 
        value = 1; 
      } 
      else if (value == 50) { 
        value = 2; 
      } 
      else { 
        value = 3; 
      } 
      test = args[3].toCharArray(); 
      maxmin = (int) test[0]; 
      if (maxmin == 49) { 
        maxmin = 1; 
      } 
      else if (value == 50) { 
        maxmin = -1; 
      } 
 
      System.out.print("FITNESS*******"); 
      fitgenAIUser user = new fitgenAIUser(args[0], args[1], 1, 1); 
 
    } 
  } 
 
}
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8.2 Tournament Selection Player 
 
package ca.swank.hq.ai; 
 
import ca.swank.hardquor.*; 
 
/** 
 * @author Quinn McDermid 
 */ 
public class tourgenAIUser 
    implements hardquorUser { 
  public static final int AI_TYPE_LOOKAHEAD = 4; 
  public static final int AI_TYPE_TREE = 5; 
 
  private String serverIp; 
  private String userName; 
  private hardquorClient client; 
  private int selection; 
  private int maxmin; 
 
  /** 
       * constructs a new aiUser which attempts to connect to the server as username 
   */ 
  public tourgenAIUser(String serverIp, String userName, int select, int maxmin) { 
    this.serverIp = serverIp; 
    this.userName = userName; 
    this.selection = select; 
    this.maxmin = maxmin; 
 
    client = new hardquorClient(this); 
    client.connect(serverIp); 
  } 
 
  /** 
   * called upon connection to a hardquor game server. Upon having this method 
   */ 
  public void notifyRequestUserName(String reason) { 
    System.out.println("username requested for reason: " + reason); 
    client.tryUsername(userName); 
  } 
 
  /** 
   * provides a list of online users upon connection to a hardquor game. 
   */ 
  public void notifyUserList(String[] users) { 
    System.out.println("received userlist: " + users); 
  } 
 
  /** 
   * notification that another user has disconnected from the hardquor game 
   */ 
  public void notifyUserGone(String username) { 
    System.out.println("user gone: " + username); 
  } 
 
  /** 
   * notification that another user has connected to the current hardquor game 
   */ 
  public void notifyUserNew(String username) { 
    System.out.println("user new: " + username); 
  } 
 
  /** 
   * a chat message received from the specified user. Chat messages should 
   */ 
  public void notifySpeak(String user, String message) { 
    System.out.println(user + ": " + message); 
  } 
 
  /** 
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   * an incoming game request from another user on the current hardquor server. 
   */ 
  public void notifyGameRequest(hardquorGameRequest request) { 
    System.out.println("game requested"); 
    client.acceptGameRequest(request); 
  } 
 
  /** 
   * requests the user create an instance of an implementation of the 
   */ 
  public hardquorUserGame startGame(hardquorGameClient gameClient, int playerNumber) { 
    System.out.println("game start"); 
    hardquorUserGame userGame = null; 
    userGame = new GenAIGame(gameClient, playerNumber, userName, selection, maxmin); 
 
    return userGame; 
  } 
/* 
  public void startAIvsAI() { 
    hardquorGameRequest gameRequest = new hardquorGameRequest(0, "GEN-FIT", 33); 
    client.makeGameRequest(gameRequest); 
  } 
*/ 
  /** 
   * starts a new WalkerUser which accepts all requests on specified server and name 
   */ 
  public static void main(String[] args) { 
    if (args.length != 4) { 
      System.out.println( 
          "usage: aiUser [server_ip] [aiName] [selection] [maxmin]"); 
    } 
    else { 
      int value = 0; 
      int maxmin = 0; 
      char[] test = args[2].toCharArray(); 
      value = (int) test[0]; 
      if (value == 49) { 
        value = 1; 
      } 
      else if (value == 50) { 
        value = 2; 
      } 
      else { 
        value = 3; 
      } 
      test = args[3].toCharArray(); 
      maxmin = (int) test[0]; 
      if (maxmin == 49) { 
        maxmin = 1; 
      } 
      else if (value == 50) { 
        maxmin = -1; 
      } 
 
      System.out.print("HERE STARTS THE BATTLE\n"); 
      System.out.print("TOURNAMENT *************\n"); 
 
      // value 1,2  maxmin 1,-1 
      tourgenAIUser user = new tourgenAIUser(args[0], args[1], 2, 1); 
 
    } 
  } 
 
}
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8.3 Rank-Based Selection Player 
 
package ca.swank.hq.ai; 
 
import ca.swank.hardquor.*; 
 
/** 
 * @author Quinn McDermid 
 */ 
public class rankgenAIUser 
    implements hardquorUser { 
  public static final int AI_TYPE_LOOKAHEAD = 4; 
  public static final int AI_TYPE_TREE = 5; 
 
  private String serverIp; 
  private String userName; 
  private hardquorClient client; 
  private int selection; 
  private int maxmin; 
 
  /** 
       * constructs a new aiUser which attempts to connect to the server as username 
   */ 
  public rankgenAIUser(String serverIp, String userName, int select, int maxmin) { 
    this.serverIp = serverIp; 
    this.userName = userName; 
    this.selection = select; 
    this.maxmin = maxmin; 
 
    client = new hardquorClient(this); 
    client.connect(serverIp); 
  } 
 
  /** 
   * called upon connection to a hardquor game server. Upon having this method 
   */ 
  public void notifyRequestUserName(String reason) { 
    System.out.println("username requested for reason: " + reason); 
    client.tryUsername(userName); 
  } 
 
  /** 
   * provides a list of online users upon connection to a hardquor game. 
   */ 
  public void notifyUserList(String[] users) { 
    System.out.println("received userlist: " + users); 
  } 
 
  /** 
   * notification that another user has disconnected from the hardquor game 
   */ 
  public void notifyUserGone(String username) { 
    System.out.println("user gone: " + username); 
  } 
 
  /** 
   * notification that another user has connected to the current hardquor game 
   */ 
  public void notifyUserNew(String username) { 
    System.out.println("user new: " + username); 
  } 
 
  /** 
   * a chat message received from the specified user. Chat messages should 
   */ 
  public void notifySpeak(String user, String message) { 
    System.out.println(user + ": " + message); 
  } 
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  /** 
   * an incoming game request from another user on the current hardquor server. 
   */ 
  public void notifyGameRequest(hardquorGameRequest request) { 
    System.out.println("game requested"); 
    client.acceptGameRequest(request); 
  } 
 
  /** 
   * requests the user create an instance of an implementation of the 
   */ 
  public hardquorUserGame startGame(hardquorGameClient gameClient, 
                                    int playerNumber) { 
    System.out.println("game start"); 
    hardquorUserGame userGame = null; 
    userGame = new GenAIGame(gameClient, playerNumber, userName, selection, 
                             maxmin); 
 
    return userGame; 
  } 
 
  public void startAIvsAI() { 
    hardquorGameRequest gameRequest = new hardquorGameRequest(0, "GEN-TOUR", 33); 
    client.makeGameRequest(gameRequest); 
  } 
 
  /** 
   * starts a new WalkerUser which accepts all requests on specified server and name 
   */ 
  public static void main(String[] args) { 
    if (args.length != 4) { 
      System.out.println( 
          "usage: aiUser [server_ip] [aiName] [selection] [maxmin]"); 
    } 
    else { 
      int value = 0; 
      int maxmin = 0; 
      char[] test = args[2].toCharArray(); 
      value = (int) test[0]; 
      if (value == 49) { 
        value = 1; 
      } 
      else if (value == 50) { 
        value = 2; 
      } 
      else { 
        value = 3; 
      } 
      test = args[3].toCharArray(); 
      maxmin = (int) test[0]; 
      if (maxmin == 49) { 
        maxmin = 1; 
      } 
      else if (value == 50) { 
        maxmin = -1; 
      } 
 
      // value 1,2  maxmin 1,-1 
      rankgenAIUser user = new rankgenAIUser(args[0], args[1], 3, -1); 
      System.out.print("RANK********\n"); 
 
      try { 
       Thread.sleep(1000 * 10); 
      } 
      catch (Throwable t) {} 
 
      System.out.print("HERE STARTS THE BATTLE\n"); 
      System.out.print("RANK **********\n"); 
      user.startAIvsAI(); 
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    } 
  } 
 
}
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9. Appendix B: Java Source Code for Simulated 
Annealing AI Player 

 
package ca.swank.hq.ai; 
 
import ca.swank.hardquor.*; 
import java.util.TreeSet; 
import java.util.Iterator; 
import java.util.ArrayList; 
import java.util.Random; 
import java.util.Vector; 
 
import java.util.Comparator; 
 
/** 
 * @author Touran Raguimov 
 */ 
/** 
 * An intelligent "AI" player that uses a simulated annealing to decide upon a move. 
 * 
 * The player generates all possible next moves and then takes the best one or random 
one. 
 * 
 */ 
public class SimAnnAIGame 
    extends hqSimpleAIGame { 
  private static final int POPULATION_SIZE = 25; 
  private static final int NUM_GENERATIONS = 3; 
  private static final int INFINITY = Integer.MAX_VALUE; 
  public static Random selector = new Random(System.currentTimeMillis()); 
  public static double _SCORE; 
  private static final double WALK_PROB = 0.25; 
 
  public SimAnnAIGame(hardquorGameClient gameClient, int me, String userName) { 
    super(gameClient, me, userName); 
  } 
 
  /** 
   * notification that a move required by the current player. 
   * 
   * The player initially speaks a comment to the board, and then examines the board. 
   * If a loss is inevitable, the sore-loser player gives up. Otherwise a 'best' move is 
made. 
   */ 
  public void notifyTurn() { 
    /* Get all the possible moves then: 
     * if neigbour is better than current then move to the neighbour 
     * else move to neighbour with prob e^(curr-neigh)/temp 
     * where temp controlls the randomness vs. greediness 
     */ 
 
    double h_curLoc, h_curGlob; 
    double h_nextLoc = 0; 
    double h_nextGlob = 0; 
    double h_diff = 0; 
    double exp, temp, prob, randProb; 
    final double e = (double) 2.7182818284590452354; 
    Move posbMove1 = null; 
    Move posbMove2 = null; 
    Move posbMove3 = null; 
    Move nextMove = null; 
 
    int TIME1 = 1; 
    int TIME2 = 1; 
 
    //-- GET ALL THE POSSIBLE MOVES --// 
    Vector _possibleWalkMoves = board.findPossibleWalkMoves(); 
    Vector _possibleWallMoves = board.findPossibleWallMoves(); 
 
    int index = -1; 
 
    //-- GENERATE PATH OF LENGTH 3 --// 
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    Move[] movePath = genPath(3); 
    h_curGlob = _SCORE; 
 
    //GLOBAL ANNL// 
    for (int i = 0; i < INFINITY; i++) { 
 
      TIME1++; 
      double wallORwalk1 = selector.nextDouble(); 
      //-- RANDOM SELECTED POSSIBLE 1st MOVE --// 
      if (wallORwalk1 > 0.5 && _possibleWallMoves.size() > 0) { 
        index = selector.nextInt(_possibleWallMoves.size()); 
        posbMove1 = (Move) _possibleWallMoves.elementAt(index); 
      } 
      else { 
        index = selector.nextInt(_possibleWalkMoves.size()); 
        posbMove1 = (Move) _possibleWalkMoves.elementAt(index); 
      } 
 
      //-- MAKE MOVE 1--// 
      board.makeMove(posbMove1); 
      //-- MAKE MOVE 2 OPONENT --// 
      posbMove2 = selectWorstMove(board.findPossibleMoves()); 
      board.makeMove(posbMove2); 
      //-- GET CURRENT SCORE AFTER OPONENT MOVE--// 
      h_curLoc = board.genScore(); 
 
      //LOCAL ANNL// 
      for (int j = 0; j < INFINITY; j++) { 
 
        TIME2++; 
 
        double wallORwalk2 = selector.nextDouble(); 
        //-- RANDOM SELECTED POSSIBLE MOVE --// 
        if (wallORwalk2 > 0.5 && _possibleWallMoves.size() > 0) { 
          index = selector.nextInt(_possibleWallMoves.size()); 
          posbMove3 = (Move) _possibleWallMoves.elementAt(index); 
        } 
        else { 
          index = selector.nextInt(_possibleWalkMoves.size()); 
          posbMove3 = (Move) _possibleWalkMoves.elementAt(index); 
        } 
 
        // LOCAL ANNEALING TO GET THE 3rd MOVE // 
        board.makeMove(posbMove3); 
        h_nextLoc = board.genScore(); 
        h_nextGlob = board.genScore(); 
        board.unMove(posbMove3); 
 
        //-- DIFFERENCE --// 
        h_diff = h_nextLoc - h_curLoc; 
        //-- flip to mimimize the score --// 
        h_diff = -1 * h_diff; 
 
 
        if (h_diff > 0) { 
          nextMove = posbMove3; 
          break; 
        } 
        else { 
          temp = (double) TIME2; 
          exp = (double) h_diff / temp; 
          prob = (double) Math.pow(e, exp); 
          randProb = selector.nextDouble(); 
 
          if (randProb <= prob) { 
            nextMove = posbMove3; 
            break; 
          } 
 
        } 
 
      } // for local annealing // 
 
      //unmove 
      board.unMove(posbMove2); 
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      board.unMove(posbMove1); 
 
      //GLOBAL ANNEALING 3rd move of PATH vs 3rd move of NEW nextMove// 
      //-- DIFFERENCE --// 
      h_diff = h_nextGlob - h_curGlob; 
      //-- flip to mimimize the score --// 
      h_diff = -1 * h_diff; 
 
      if (h_diff > 0) { 
        nextMove = posbMove1; 
        break; 
      } 
      else { 
        temp = (double) TIME1; 
        exp = (double) h_diff / temp; 
        prob = (double) Math.pow(e, exp); 
        randProb = selector.nextDouble(); 
 
        if (randProb <= prob) { 
          nextMove = posbMove1; 
          break; 
        } 
 
      } 
    } // for global annealing // 
 
    // wall move 
    if (nextMove instanceof WallMove) { 
      WallMove wallMove = (WallMove) nextMove; 
      gameClient.tryMove(wallMove.a1(), wallMove.a2(), wallMove.b1(), 
                         wallMove.b2()); 
      // walk move 
    } 
    else if (nextMove instanceof WalkMove) { 
      WalkMove walkMove = (WalkMove) nextMove; 
      gameClient.tryMove(walkMove.source(), walkMove.target()); 
    } 
 
    System.out.print("\n\n---------------------------------\n"); 
    System.out.print("ANNEALING AI MOVE: Player 1\n"); 
    System.out.print(board); 
    System.out.print("\nSCORE: " + board.genScore() + "\n"); 
 
  } //notifyTurn() 
 
  //-- GENERATE PATH OF MOVES --// 
  private Move[] genPath(int depth) { 
 
    int MAX_DEPTH = 3; 
    Move[] path = new Move[MAX_DEPTH]; 
    Move nextMove; 
    int i; 
    for (i = 0; i < MAX_DEPTH; i++) { 
      if ( (i % 2) == 0) { 
        nextMove = selectRandomMove(); 
        board.makeMove(nextMove); 
      } //if 
      else { 
        nextMove = selectWorstMove(board.findPossibleMoves()); 
        board.makeMove(nextMove); 
      } //else 
 
      path[i] = nextMove; 
      if (board.getWinner() != hardquorBoard.PLAYER_NONE) { 
        break; 
      } 
    } //for 
    i--; 
    _SCORE = board.genScore(); 
 
    for (; i >=0; i--) { 
      board.unMove(path[i]); 
    } //for 
    //END GEN PATH // 
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    return path; 
 
  } 
 
  //__ RANDOM MOVE --// 
  public Move selectRandomMove() { 
    Vector walkMoves = board.findPossibleWalkMoves(); 
    Vector wallMoves = board.findLocalWallMoves(); 
    if (wallMoves.size() > 0) { 
      double someNumber = selector.nextDouble(); 
      if (someNumber < WALK_PROB) { 
        return (Move) walkMoves.elementAt(selector.nextInt(walkMoves.size())); 
      } //if 
      else { 
        return (Move) wallMoves.elementAt(selector.nextInt(wallMoves.size())); 
      } //else 
    } //if 
    return (Move) walkMoves.elementAt(selector.nextInt(walkMoves.size())); 
  } //selectRandomMove 
 
  //-- WORST MOVE --// 
  public Move selectWorstMove(Vector possibleMoves) { 
    int bestIndex = 0; 
    double bestScore; 
 
    board.makeMove( (Move) possibleMoves.elementAt(0)); 
    bestScore = board.genScore(); 
    board.unMove( (Move) possibleMoves.elementAt(0)); 
 
    for (int i = 1; i < possibleMoves.size(); i++) { 
      board.makeMove( (Move) possibleMoves.elementAt(i)); 
      double score = board.genScore(); 
      if (score < bestScore) { 
        bestScore = score; 
        bestIndex = i; 
      } //if 
      board.unMove( (Move) possibleMoves.elementAt(i)); 
    } //for 
 
    return (Move) possibleMoves.elementAt(bestIndex); 
  } //selectBestMove 
 
} //SimAnnAIGame 

 
 
 


