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Abstract

In the paper we prove some comparative growth properties of com-
posite entire functions on the basis of their maximum terms and maxi-
mum moduli using generalised L∗-order and generalised L∗-lower order.
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1 Introduction, Definitions and Notations.

Let C be the set of all finite complex numbers and f be an entire function

defined in C. The maximum term μ (r, f) of f =
∞∑

n=0

anzn on |z| = r is defined

by μ (r, f) = max
n≥0

|an| rn and the maximum modulus M (r, f) of f on |z| = r

is defined as M (r, f) = max
|z|=r

|f (z)| .We use the standard notations and defini-

tions in the theory of entire functions which are available in [11]. In the sequel
we use the following notation :

log[k] x = log
(
log[k−1] x

)
for k = 1, 2, 3, .... and log[0] x = x.

To start our paper we just recall the following definitions :

Definition 1 The order ρf and lower order λf of an entire function f are
defined as

ρf = lim sup
r→∞

log[2] M(r, f)

log r
and λf = lim inf

r→∞
log[2] M(r, f)

log r
.

Extending this notion, Sato [6] defined the generalised order and gen-
eralised lower order of an entire function as follows :

Definition 2 [6]Let m be an integer ≥ 2. The generalised order ρ
[m]
f and

generalised lower order λ
[m]
f of an entire function f are defined by

ρ
[m]
f = lim sup

r→∞

log[m] M (r, f)

log r
and λ

[m]
f = lim inf

r→∞
log[m] M (r, f)

log r

respectively.

For m = 2, Definition 2 reduces to Definition 1.
If ρf < ∞ then f is of finite order. Also ρf = 0 means that f is of order

zero. In this connection Datta and Biswas [2] gave the following definition :

Definition 3 [2]Let f be an entire function of order zero. Then the quantities
ρ∗∗

f and λ∗∗
f of f are defined by:

ρ∗∗
f = lim sup

r→∞

log M (r, f)

log r
and λ∗∗

f = lim inf
r→∞

log M (r, f)

log r
.
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Let L ≡ L (r) be a positive continuous function increasing slowly i.e.,
L (ar) ∼ L (r) as r → ∞ for every positive constant a. Singh and Barker [7]
defined it in the following way:

Definition 4 [7]A positive continuous function L (r) is called a slowly chang-
ing function if for ε (> 0) ,

1

kε
≤ L (kr)

L (r)
≤ kε for r ≥ r (ε) and

uniformly for k (≥ 1) .
If further, L (r) is differentiable, the above condition is equivalent to

lim
r→∞

rL′ (r)
L (r)

= 0 .

Somasundaram and Thamizharasi [8] introduced the notions of L-order
(L-lower order ) for entire functions where L ≡ L (r) is a positive continuous
function increasing slowly i.e.,L (ar) ∼ L (r) as r → ∞ for every positive
constant ‘a’. The more generalised concept for L-order ( L-lower order ) for
entire function are L∗-order ( L∗-lower order ). Their definitions are as follows:

Definition 5 [8]The L∗-order ρL∗
f and the L∗-lower order λL∗

f of an entire
function f are defined as

ρL∗
f = lim sup

r→∞

log[2] M (r, f)

log [reL(r)]
and λL∗

f = lim inf
r→∞

log[2] M (r, f)

log [reL(r)]
.

In the line of Sato [6] , Datta and Biswas [2] one can define the gener-

alised L∗-order ρ
[m]L∗
f and generalised L∗-lower orderλ

[m]L∗
f of an entire function

f in the following manner :

Definition 6 Let m be an integer ≥ 1. The generalised L∗-order ρ
[m]L∗
f and

generalised L∗-lower order λ
[m]L∗
f of an entire function f are defined as

ρ
[m]L∗
f = lim sup

r→∞

log[m] M (r, f)

log [reL(r)]
and λ

[m]L∗
f = lim inf

r→∞
log[m] M (r, f)

log [reL(r)]

respectively.

Datta, Biswas and Hoque [3] reformulated Definition 6 in terms of the
maximum terms of entire functions in the following way:
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Definition 7 [3] The growth indicators ρ
[m]L∗
f and λ

[m]L∗
f for an entire function

f are defined as

ρ
[m]L∗
f = lim sup

r→∞

log[m] μ (r, f)

log [reL(r)]
and λ

[m]L∗
f = lim inf

r→∞
log[m] μ (r, f)

log [reL(r)]

respectively where m be an integer ≥ 1.

Lakshminarasimhan [4] introduced the idea of the functions of L-
bounded index. Later Lahiri and Bhattacharjee [5] worked on the entire func-
tions of L-bounded index and of non uniform L-bounded index. In this pa-
per we would like to investigate some growth properties of composite entire
functions on the basis of their maximum terms and maximum moduli using
generalised L∗-order and generalised L∗-lower order .

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [9] Let f and g be any two entire functions with g(0) = 0. Then
for all sufficiently large values of r,

μ (r, f ◦ g) ≥ 1

2
μ

(
1

8
μ
(r

4
, g
)
− |g(0)| , f

)
.

Lemma 2 [1] If f and g are any two entire functions then for all sufficiently
large values of r,

M

(
1

8
M
(r

2
, g
)
− |g(0)| , f

)
≤ M(r, f ◦ g) ≤ M (M (r, g) , f) .

3 Theorems.

In this section we present the main results of the paper.

Theorem 1 Let f and g be any two entire functions such that 0 < λ
[m]L∗
f ≤

ρ
[m]L∗
f < ∞ where m ≥ 1 and 0 < λL∗

g ≤ ρL∗
g < ∞. Then for every constant A

and real number x,

lim
r→∞

log[m] μ (r, f ◦ g){
log[m] μ (rA, f)

}1+x = ∞ .



Applications of slowly changing functions 241

Proof. If x is such that 1+x ≤ 0, then the theorem is obvious. So we suppose
that 1 + x > 0.
Now in view of Lemma 1, we get for all sufficiently large values of r that

μ (r, f ◦ g) ≥ 1

2
μ

(
1

16
μ
(r

2
, g
)

, f

)

i.e., log[m] μ (r, f ◦ g) ≥ O (1) + log[m] μ

(
1

16
μ
(r

2
, g
)

, f

)

i.e., log[m] μ (r, f ◦ g) ≥ O (1) +
(
λ

[m]L∗
f − ε

) [
log

{
1

16
μ
(r

2
, g
)}

+L

(
1

16
μ
(r

2
, g
))]

i.e., log[m] μ (r, f ◦ g) ≥ O (1) +
(
λ

[m]L∗
f − ε

) [
log M

(r

2
, g
)

+ O (1)

+L

(
1

16
μ
(r

2
, g
))]

i.e., log[m] μ (r, f ◦ g) ≥ O (1)

+
(
λ

[m]L∗
f − ε

){(r

2

)
eL(r)

}λL∗
g −ε

+ O (1) + L

(
1

16
μ
(r

2
, g
))

(1)

where we choose 0 < ε < min
{

λ
[m]L∗
f , λL∗

g

}
.

Also for all sufficiently large values of r, we obtain that

log[m] μ
(
rA, f

) ≤
(
ρ

[m]L∗
L(f) + ε

)
log
{

rAeL(rA)
}

i.e., log[m] μ
(
rA, f

) ≤
(
ρ

[m]L∗
f + ε

)
log
{

rAeL(rA)
}

i.e.,
{

log[m] μ
(
rA, f

)}1+x

≤
(
ρ

[m]L∗
f + ε

)1+x (
A log r + L

(
rA
))1+x

. (2)

Therefore from (1) and (2) it follows for all sufficiently large values of r that

log[m] μ (r, f ◦ g){
log[m] μ (rA, f)

}1+x

≥
O (1) +

(
λ

[m]L∗
f − ε

){(
r
2

)
eL(r)

}λL∗
g −ε

+ O (1) + L
(

1
16

μ
(

r
2
, g
))

(
ρ

[m]L∗
f + ε

)1+x

(A log r + L (rA))1+x
. (3)
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Thus the theorem follows from (3).

In the line of Theorem 1, we may establish the following theorem for the
right factor of the composite entire function :

Theorem 2 Let f and g be any two entire functions with 0 < λ
[m]L∗
f ≤

ρ
[m]L∗
f < ∞ and 0 < λL∗

g ≤ ρL∗
g < ∞ where m ≥ 1. Then for every constant A

and real number x,

lim
r→∞

log[m] μ (r, f ◦ g){
log[2] μ (rA, g)

}1+x = ∞ .

The proof is omitted.

Theorem 3 Let f and g be any two entire functions such that 0 < λ
[m]L∗
f ≤

ρ
[m]L∗
f < ∞ and 0 < λL∗

g ≤ ρL∗
g < ∞ where m ≥ 1. Then for any two positive

integers α and β,

lim
r→∞

log[m+1] μ (exp (exp (rα)) , f ◦ g)

log[m] μ (exp (rβ) , f) + L (exp (exp (rα)))
= ∞ ,

where K (r, α; L) =

{
0 if rβ = o {L (exp (exp (rα)))} as r → ∞
L (exp (exp (rα))) otherwise .

Proof. Taking x = 0 and A = 1 in Theorem 1, we obtain for K > 1 and for
all sufficiently large values of r that

log[m] μ (r, f ◦ g) > K log[m] μ (r, f)

i.e., log[m−1] μ (r, f ◦ g) >
{

log[m−1] μ (r, f)
}K

i.e., log[m−1] μ (r, f ◦ g) >
{

log[m−1] μ (r, f)
}K

i.e., log[m−1] μ (r, f ◦ g) > log[m−1] μ (r, f) (4)

Therefore from (4) we get for all sufficiently large values of r that

log[m] μ (exp (exp (rα)) , f ◦ g) > log[m] μ (exp (exp (rα)) , f)

i.e., log[m] μ (exp (exp (rα)) , f ◦ g)

>
(
λ

[m]L∗
f − ε

)
. log {exp (exp (rα)) . expL (exp (exp (rα)))}
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i.e., log[m] μ (exp (exp (rα)) , f ◦ g)

>
(
λ

[m]L∗
f − ε

)
. {(exp (rα)) + L (exp (exp (rα)))}

i.e., log[m] μ (exp (exp (rα)) , f ◦ g)

>
(
λ

[m]L∗
f − ε

)
.

{
(exp (rα))

(
1 +

L (exp (exp (rα)))

(exp (rα))

)}

i.e., log[m+1] μ (exp (exp (rα)) , f ◦ g) > O (1) + log exp (rα)

+ log

{
1 +

L (exp (exp (rα)))

(exp (rα))

}

i.e., log[m+1] μ (exp (exp (rα)) , f ◦ g) > O (1) + rα

+ log

{
1 +

L (exp (exp (rα)))

(exp (rα))

}

i.e., log[m+1] μ (exp (exp (rα)) , f ◦ g) > O (1) + rα + L (exp (exp (rα)))

−log [exp {L (exp (exp (rα)))}]
+ log

[
1 +

L (exp (exp (rα)))

exp (μrα)

]

i.e., log[m+1] μ (exp (exp (rα)) , f ◦ g) > O (1) + rα + L (exp (exp (rα)))

+ log

[
1

exp {L (exp (exp (rα)))}
+

L (exp (exp (rα)))

exp {L (exp (exp (rα)))} . exp (rα)

]

i.e., log[m+1] μ (exp (exp (rα)) , f ◦ g) > O (1) + r(α−β).rβ

+ L (exp (exp (rα))) . (5)

Again we have for all sufficiently large values of r that

log[m] μ
(
exp

(
rβ
)
, f
) ≤ (ρ[m]L∗

f + ε
)

log
{

exp
(
rβ
)
eL(exp(rβ))

}
i.e., log[m] μ

(
exp

(
rβ
)
, f
) ≤ (ρ[m]L∗

f + ε
){

log exp
(
rβ
)

+ L
(
exp

(
rβ
))}

i.e., log[m] μ
(
exp

(
rβ
)
, f
) ≤ (ρ[m]L∗

f + ε
){

rβ + L
(
exp

(
rβ
))}
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i.e.,
log[m] μ

(
exp

(
rβ
)
, f
)− (ρ[m]L∗

f + ε
)

L
(
exp

(
rβ
))

(
ρ

[m]L∗
f + ε

) ≤ rβ . (6)

Now from (5) and (6) it follows for all sufficiently large values of r that

log[m+1] μ (exp (exp (rα)) , f ◦ g)

≥ O (1) +

(
r(α−β)

ρ
[m]L∗
f + ε

)[
log[m] μ

(
exp

(
rβ
)
, f
)− (ρ[m]L∗

f + ε
)

L
(
exp

(
rβ
))]

+ L (exp (exp (rα))) (7)

i.e.,
log[m+1] μ (exp (exp (rα)) , f ◦ g)

log[m] μ (exp (rβ) , f)
≥ L (exp (exp (rα))) + O (1)

log[m] μ (exp (rβ) , f)

+
r(α−β)

ρ
[m]L∗
f + ε

⎧⎨
⎩1 −

(
ρ

[m]L∗
f + ε

)
L
(
exp

(
rβ
))

log[m] μ (exp (rβ) , f)

⎫⎬
⎭ . (8)

Again from (7) we get for all sufficiently large values of r that

log[m+1] μ (exp (exp (rα)) , f ◦ g)

log[m] μ (exp (rβ) , f) + L (exp (exp (rα)))

≥ O (1) − r(α−β)L
(
exp

(
rβ
))

log[m] μ (exp (rβ) , f) + L (exp (exp (rα)))

+

(
r(α−β)

ρ
[m]L∗
f +ε

)
log[m] μ

(
exp

(
rβ
)
, f
)

log[m] μ (exp (rβ) , f) + L (exp (exp (rα)))

+
L (exp (exp (rα)))

log[m] μ (exp (rβ) , f) + L (exp (exp (rα)))

i.e.,
log[m+1] μ (exp (exp (rα)) , f ◦ g)

log[m] μ (exp (rβ) , f) + L (exp (exp (rα)))
≥

O(1)−r(α−β)L(exp(rβ))
L(exp(exp(rα)))

log[m] μ(exp(rβ),f)
L(exp(exp(rα)))

+ 1

+

(
r(α−β)

ρ
[m]L∗
f +ε

)
1 + L(exp(exp(rα)))

log[m] μ(exp(rβ),f)

+
1

1 +
log[m] μ(exp(rβ),f)

L(exp(exp(rα)))

. (9)

Case I. If rβ = o {L (exp (exp (rα)))} then it follows from (8) that

lim inf
r→∞

log[m+1] μ (exp (exp (rα)) , f ◦ g)

log[m] μ (exp (rβ) , f)
= ∞ .
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Case II. If rβ 
= o {L (exp (exp (rα)))} then two sub cases may arise:

Sub case (a). If L (exp (exp (rα))) = o
{

log[m] μ
(
exp

(
rβ
)
, f
)}

, then we get

from (9) that

lim inf
r→∞

log[m+1] μ (exp (exp (rα)) , f ◦ g)

log[m] μ (exp (rβ) , f) + L (exp (exp (rα)))
= ∞ .

Sub case (b). If L (exp (exp (rα))) ∼ log[m] μ
(
exp

(
rβ
)
, f
)

then

lim
r→∞

L (exp (exp (rα)))

log[m] μ (exp (rβ) , f)
= 1

and we obtain from (9) that

lim inf
r→∞

log[m+1] μ (exp (exp (rα)) , f ◦ g)

log[m] μ (exp (rβ) , f) + L (exp (exp (rα)))
= ∞ .

Combining Case I and Case II we obtain that

lim
r→∞

log[m+1] μ (exp (exp (rα)) , f ◦ g)

log[m] μ (exp (rβ) , f) + L (exp (exp (rα)))
= ∞ ,

where K (r, α; L) =

{
0 if rμ = o {L (exp (exp (rα)))} as r → ∞
L (exp (exp (rα))) otherwise .

This proves the theorem.

Theorem 4 Let f and g be any two entire functions with 0 < λ
[m]L∗
f ≤

ρ
[m]L∗
f < ∞ and 0 < λL∗

g ≤ ρL∗
g < ∞ where m ≥ 1. Then for any two positive

integers α and β,

lim
r→∞

log[m+1] μ (exp (exp (rα)) , f ◦ g)

log[2] μ (exp (rβ) , g) + L (exp (exp (rα)))
= ∞ ,

where K (r, α; L) =

{
0 if rβ = o {L (exp (exp (rα)))} as r → ∞
L (exp (exp (rα))) otherwise .

The proof is omitted because it can be carried out in the line of Theorem
3.

Remark 1 In view of Lemma 2 , the results analogous to Theorem 1, Theorem
2, Theorem 3 and Theorem 4 can also be derived in terms of maximum moduli
of composite entire functions.
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Theorem 5 Let f and g be any two entire functions such that 0 < ρL∗
g <

λ
[m]L∗
f ≤ ρ

[m]L∗
f < ∞ where m ≥ 1. Then for any β > 1,

lim
r→∞

log[m] μ(r, f ◦ g)

log[m] μ (r, f) · K (r, g; L)
= 0 ,

where K (r, g; L) =

⎧⎨
⎩

1 if L (μ (βr, g)) = o
{
rαeαL(r)

}
as r → ∞

and for some α < λ
[m]L∗
f

L (μ (βr, g)) otherwise.

Proof. In view of Lemma 2 and taking R = βr in the inequality μ (r, f) ≤
M (r, f) ≤ R

R−r
μ (R, f) {cf. [10] } , we have for all sufficiently large values of

r that

μ(r, f ◦ g) ≤ M(r, f ◦ g) ≤ M (M (r, g) , f)

i.e., log[m] μ(r, f ◦ g) ≤ log[m] M (M (r, g) , f)

i.e., log[m] μ(r, f ◦ g) ≤
(
ρ

[m]L∗
f + ε

) [
log M (r, g) eL(M(r,g))

]

i.e., log[m] μ(r, f ◦ g) ≤
(
ρ

[m]L∗
f + ε

)
[log M (r, g) + L (M (r, g))] (10)

i.e., log[m] μ(r, f ◦ g) ≤
(
ρ

[m]L∗
f + ε

)[{
reL(r)

}(ρL∗
g +ε)

+ L

(
β

(β − 1)
μ (βr, g)

)]

i.e., log[m] μ(r, f ◦ g) ≤
(
ρ

[m]L∗
f + ε

) [{
reL(r)

}(ρL∗
g +ε)

+ L (μ (βr, g))

]
. (11)

Also we obtain for all sufficiently large values of r that

log[m] μ (r, f) ≥
(
λ

[m]L∗
f − ε

)
log
[
reL(r)

]
i.e., log[m] μ (r, f) ≥

(
λ

[m]L∗
f − ε

)
log
[
reL(r)

]
i.e., log[m] μ (r, f) ≥ [reL(r)

]�λ
[m]L∗
f −ε

�
. (12)
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Now from (11) and (12) we get for all sufficiently large values of r that

log[m] μ(r, f ◦ g)

log[m] μ (r, f)
≤

(
ρ

[m]L∗
f + ε

)[{
reL(r)

}(ρL∗
g +ε)

+ L (μ (βr, g))

]

[reL(r)]

�
λ
[m]L∗
f −ε

� . (13)

Since ρL∗
g < λ

[m]L∗
f , we can choose ε (> 0) in such a way that

ρL∗
g + ε < λ

[m]L∗
f − ε . (14)

Case I. Let L (μ (βr, g)) = o
{
rαeαL(r)

}
as r → ∞ and for some α < λ

[m]L∗
f .

As α < λ
[m]L∗
f , we can choose ε (> 0) in such a way that

α < λ
[m]L∗
f − ε . (15)

Since L (μ (βr, g)) = o
{
rαeαL(r)

}
as r → ∞ we get on using (15) that

L (μ (βr, g))

rαeαL(r)
→ 0 as r → ∞

i.e.,
L (μ (βr, g))

[reL(r)]

�
λ
[m]L∗
f −ε

� → 0 as r → ∞ . (16)

Now in view of (13), (14) and (16) we obtain that

lim
r→∞

log[m] μ(r, f ◦ g)

log[m] μ (r, f)
= 0 . (17)

Case II. If L (μ (βr, g)) 
= o
{
rαeαL(r)

}
as r → ∞ and for some α < λ

[m]L∗
f

then we get from (13) that for a sequence of values of r tending to infinity,

log[m] μ(r, f ◦ g)

log[m] μ (r, f)L (μ (βr, g))
≤
(
ρ

[m]L∗
f + ε

){
reL(r)

}(ρL∗
g +ε)

[reL(r)]

�
λ
[m]L∗
f −ε

�
L (μ (βr, g))

+

(
ρ

[m]L∗
f + ε

)
[reL(r)]

�
λ
[m]L∗
f −ε

� . (18)

Now using (14) it follows from (18) that

lim
r→∞

log[m] μ(r, f ◦ g)

log[m] μ (r, f)L (μ (βr, g))
= 0 . (19)
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Combining (17) and (19) we obtain that

lim
r→∞

log[m] μ(r, f ◦ g)

log[m] μ (r, f) · K (r, g; L)
= 0 ,

where K (r, g; L) =

⎧⎨
⎩

1 if L (μ (βr, g)) = o
{
rαeαL(r)

}
as r → ∞

and for some α < λ
[m]L∗
f

L (μ (βr, g)) otherwise.

Thus the theorem is established.

The following theorem can be carried out in the line of Theorem 5 and
therefore its proof is omitted :

Theorem 6 Let f and g be any two entire functions with 0 < ρL∗
g < ρ

[m]L∗
f <

∞ where m ≥ 1. Then for any β > 1,

lim inf
r→∞

log[m] μ(r, f ◦ g)

log[m] μ (r, f) · K (r, g; L)
= 0 ,

where K (r, g; L) =

⎧⎨
⎩

1 if L (μ (βr, g)) = o
{
rαeαL(r)

}
as r → ∞

and for some α < ρ
[m]L∗
f

L (μ (βr, g)) otherwise.

Replacing maximum term by maximum modulus in Theorem 5 and Theo-
rem 6 we respectively get Theorem 7 and Theorem 8 and therefore their proofs
are omitted.

Theorem 7 Let f and g be any two entire functions such that 0 < ρL∗
g <

λ
[m]L∗
f ≤ ρ

[m]L∗
f < ∞ where m ≥ 1. Then

lim
r→∞

log[m] M(r, f ◦ g)

log[m] M (r, f) · K (r, g; L)
= 0 ,

where K (r, g; L) =

⎧⎨
⎩

1 if L (M (r, g)) = o
{
rαeαL(r)

}
as r → ∞

and for some α < λ
[m]L∗
f

L (M (r, g)) otherwise.

Theorem 8 Suppose f and g be any two entire functions with 0 < ρL∗
g <

ρ
[m]L∗
f < ∞ where m ≥ 1. Then

lim inf
r→∞

log[m] M(r, f ◦ g)

log[m] M (r, f) · K (r, g; L)
= 0 ,

where K (r, g; L) =

⎧⎨
⎩

1 if L (M (r, g)) = o
{
rαeαL(r)

}
as r → ∞

and for some α < ρ
[m]L∗
f

L (M (r, g)) otherwise.



Applications of slowly changing functions 249

Theorem 9 Let f and g be any two entire functions with ρ
[m]L∗
f < ∞, 0 <

λL∗
g ≤ ρL∗

g < ∞ where m is any positive integer. Then for any β > 1,

(a) If L (μ (βr, g)) = o
{

log[2] μ (r, g)
}

then

lim sup
r→∞

log[m+1] μ (r, f ◦ g)

log[2] μ (r, g) + L (μ (βr, g))
≤ ρL∗

g

λL∗
g

and (b) if log[2] μ (r, g) = o {L (μ (βr, g))} then

lim
r→∞

log[m+1] μ (r, f ◦ g)

log[2] μ (r, g) + L (μ (βr, g))
= 0 .

Proof. Taking R = βr in the inequality

μ (r, f) ≤ M (r, f) ≤ R

R − r
μ (R, f) {cf. [10] }

and also using log
{

1 + O(1)+L(μ(βr,g))
log μ(βr,g)

}
∼ O(1)+L(μ(βr,g))

log μ(βr,g)
, for all sufficiently large

values of r we obtain from (10) that

log[m] μ(r, f ◦ g)

≤
(
ρ

[m]L∗
f + ε

)[
log μ (βr, g) + O(1) + L

(
β

(β − 1)
μ (βr, g)

)]

i.e., log[m] μ(r, f ◦ g) ≤
(
ρ

[m]L∗
f + ε

)
log μ (βr, g)

[
1 +

O(1) + L (μ (βr, g))

log μ (βr, g)

]

i.e., log[m+1] μ(r, f ◦ g) ≤ log
(
ρ

[m]L∗
f + ε

)
+ log[2] μ (βr, g)

+ log

{
1 +

O(1) + L (μ (βr, g))

log μ (βr, g)

}

i.e., log[m+1] μ (r, f ◦ g) ≤ log
(
ρ

[m]L∗
f + ε

)
+
(
ρL∗

g + ε
)
log
{
βreL(βr)

}
+ log

{
1 +

O(1) + L (μ (βr, g))

log μ (βr, g)

}

i.e., log[m+1] μ (r, f ◦ g) ≤ log
(
ρ

[m]L∗
f + ε

)
+
(
ρL∗

g + ε
)
log
{
βreL(r)

}
+ log

{
1 +

O(1) + L (μ (βr, g))

log μ (βr, g)

}
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i.e., log[m+1] μ (r, f ◦ g) ≤ O (1) +
(
ρL∗

g + ε
) {log βr + L (r)} +

O(1) + L (μ (βr, g))

log μ (βr, g)

i.e., log[m+1] μ (r, f ◦ g) ≤ O (1) +
(
ρL∗

g + ε
) {log r + L (r)}

+
(
ρL∗

g + ε
)
log β +

O(1) + L (μ (βr, g))

log μ (βr, g)
. (20)

Again from the definition of L∗-lower order, we get for all sufficiently large
values of r that

log[2] μ (r, g) ≥ (λL∗
g − ε

)
log
[
reL(r)

]
i.e., log[2] μ (r, g) ≥ (λL∗

g − ε
)
log
[
reL(r)

]
i.e., log[2] μ (r, g) ≥ (λL∗

g − ε
)
[log r + L (r)]

i.e., log r + L (r) ≤ log[2] μ (r, g)(
λL∗

g − ε
) . (21)

Hence from (20) and (21) it follows for all sufficiently large values of r that

log[m+1] μ (r, f ◦ g)

≤ O (1) +

(
ρL∗

g + ε

λL∗
g − ε

)
· log[2] μ (r, g) +

(
ρL∗

g + ε
)
log β +

O(1) + L (μ (βr, g))

log μ (βr, g)

i.e,
log[m+1] μ (r, f ◦ g)

log[2] μ (r, g) + L (μ (βr, g))

≤ O (1) +
(
ρL∗

g + ε
)
log β

log[2] μ (r, g) + L (μ (βr, g))
+

(
ρL∗

g + ε

λL∗
g − ε

)
· log[2] μ (r, g)

log[2] μ (r, g) + L (μ (βr, g))

+
O(1) + L (μ (βr, g))[

log[2] μ (r, g) + L (μ (βr, g))
]
log μ (βr, g)

i.e,
log[m+1] μ (r, f ◦ g)

log[2] μ (r, g) + L (μ (βr, g))
≤

O(1)+(ρL∗
g +ε) log β

L(μ(βr,g))

log[2] μ(r,g)
L(μ(βr,g))

+ 1
+

(
ρL∗

g +ε

λL∗
g −ε

)
1 + L(μ(βr,g))

log[2] μ(r,g)

+
1[

1 + log[2] μ(r,g)
L(μ(βr,g))

]
log μ (βr, g)

. (22)
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Since L (μ (βr, g)) = o
{

log[2] μ (r, g)
}

as r → ∞ and ε (> 0) is arbitrary, we

obtain from (22) that

lim sup
r→∞

log[m+1] μ (r, f ◦ g)

log[2] μ (r, g) + L (μ (βr, g))
≤ ρL∗

g

λL∗
g

. (23)

Again if log[2] μ (r, g) = o {L (μ (βr, g))} then from (22) we get that

lim
r→∞

log[m+1] μ (r, f ◦ g)

log[2] μ (r, g) + L (μ (βr, g))
= 0 . (24)

Thus the theorem follows from (23) and (24).

Corollary 1 Let f and g be any two entire functions with ρ
[m]L∗
f < ∞ and

0 < ρL∗
g < ∞ where m ≥ 1. Then for any β > 1,

(a) if L (μ (βr, g)) = o
{

log[2] μ (r, g)
}

then

lim inf
r→∞

log[m+1] μ (r, f ◦ g)

log[2] μ (r, g) + L (μ (βr, g))
≤ 1

and (b) if log[2] μ (r, g) = o {L (μ (βr, g))} then

lim inf
r→∞

log[m+1] μ (r, f ◦ g)

log[2] μ (r, g) + L (μ (βr, g))
= 0 .

We omit the proof of Corollary 1 because it can be carried out in the line
of Theorem 7.

Remark 2 The equality sign in Theorem 5 and Corollary 1 cannot be removed
as we see in the following example:

Example 1 Let f = g = exp z, m = 2, β = 2 and L (r) = 1
p
exp

(
1
r

)
where p

is any positive real number.
Then

ρL∗
f = λL∗

g = ρL∗
g = 1.

Now

log μ (r, f ◦ g) ≤ log M (r, f ◦ g) = exp r,

and 2μ (2r, g) ≥ M (r, g) = exp r .
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Also

log μ (r, f ◦ g) ≥ log M
(r

2
, f ◦ g

)
+ O(1) = exp

(r

2

)
+ O(1),

and μ (r, g) ≤ M (r, g) = exp r .

So

L (M (r, g)) = L (exp r) =
1

p
exp

(
1

exp r

)
.

Hence

lim sup
r→∞

log[3] μ (r, f ◦ g)

log[2] μ (r, g) + L (μ (βr, g))
≤ lim sup

r→∞

log r

log r + O (1) + 1
p
exp

(
1

exp r

) = 1

and

lim inf
r→∞

log[3] μ (r, f ◦ g)

log[2] μ (r, g) + L (μ (βr, g))
≥ lim inf

r→∞
log r + O(1)

log r + 1
p
exp

(
1

exp r

) = 1 .

Therefore

lim inf
r→∞

log[3] μ (r, f ◦ g)

log[2] μ (r, g) + L (μ (βr, g))
= lim sup

r→∞

log[3] μ (r, f ◦ g)

log[2] μ (r, g) + L (μ (βr, g))
= 1 .

Theorem 10 Let f and g be any two entire functions with ρ
[m]L∗
f < ∞ and

0 < λL∗
g ≤ ρL∗

g < ∞ where m is any positive integer. Then

(a) if L (M (r, g)) = o
{

log[2] M(r, g
}

then

lim sup
r→∞

log[m+1] M (r, f ◦ g)

log[2] M (r, g) + L (M (r, g))
≤ ρL∗

g

λL∗
g

and (b) if log[2] M (r, g) = o {L (M (r, g))} then

lim
r→∞

log[m+1] M (r, f ◦ g)

log[2] M (r, g) + L (M (r, g))
= 0 .

Corollary 2 Let f and g be any two entire functions with ρ
[m]L∗
f < ∞ and

0 < ρL∗
g < ∞ where m ≥ 1. Then for any β > 1,

(a) if L (M (r, g)) = o
{

log[2] M (r, g)
}

then

lim inf
r→∞

log[m+1] M (r, f ◦ g)

log[2] M (r, g) + L (M (r, g))
≤ 1
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and (b) if log[2] M (r, g) = o {L (M (r, g))} then

lim inf
r→∞

log[m+1] M (r, f ◦ g)

log[2] M (r, g) + L (M (r, g))
= 0 .

We omit the proof of Theorem 10 and Corollary 2 because in view of Lemma
2 it can be carried out in the line of Theorem 9 and Corollary 1 respectively.

Remark 3 Considering f = g = exp z, m = 2 and L (r) = 1
p
exp

(
1
r

)
where

p is any positive real number, one can easily verify that the equality sign in
Theorem 10 and Corollary 2 cannot be removed.
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