White Paper

Cache Array Routing Protocol
and Microsoft Proxy Server 2.0

© 1997 Microsoft Corporation. All rights reserved.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED,
IN THIS DOCUMENT.

Microsoft trademarks: Microsoft, BackOffice, the BackOffice logo and MSN are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries”;

Other products and company names mentioned herin may be the trademarks of their respective owners.
Microsoft Corporation « One Microsoft Way « Redmond, WA 98052-6399 « USA

"'V'

N

P

Fosott

Bro

Xy Server

Microsoftd Proxy Server 2.0 uses the Cache Array Routing
Protocol (CARP) to provide seamless scaling and extreme
efficiency when using multiple proxy servers arrayed as a
single logical cache. CARP uses hash-based routing to provide
a deterministic “request resolution path” through an array of
proxies. The request resolution path, based upon a hashing of
proxy array member identities and uniform resource locators
(URLs), means that for any given URL request, the browser or
downstream proxy server will know exactly where in the proxy
array the information will be stored — whether already cached
from a previous request, or making a first Internet hit for
delivery and caching.

CARP provides two powerful benefits:

1) Because CARP provides a deterministic request
resolution path, there is none of the query messaging between
proxy servers that is found with conventional Internet Cache
Protocol (ICP) networks, a process that creates a heavier
congestion of queries the greater the number of servers.

2) CARP eliminates the duplication of contents that
otherwise occurs on an array of proxy servers. With an ICP
network, an array of five proxy servers can rapidly evolve into
essentially duplicate caches of the most frequently requested
URLSs. The hash-based routing of CARP keeps this from
happening, allowing all five proxy servers to exist as a single
logical cache. The result is a faster response to queries and a
far more efficient use of server resources.

CONTENTS [T} f oTo [UTox i T o [0 P 2
Taking a Closer Look at Queryless Distributed Caching 4
How CARP Works 4
Improving Client Performance with Distributed Caching 5
Charting a Request with Distributed Caching 5
Understanding the Routing Algorithm 6
Incremental Scaling — Easy to Add or Subtract Servers 8
ROULING OPtIONS ..o i eae 10
Hierarchical Routing 10
Distributed Routing 11
Combination Routing 11
Preventing Routing Loops 12
Automatic Updating of Membership LisSt.......cccccooiiiiiiiiiiiiiiieen 13
Membership Management 13

Upstream Table Management 13
Local Table Management 13
5181 0 1. =1 Y/ P 15
For More INformation 16

Microsoft Cache Array Routing Protocol 1

INTRODUCTION

Microsoftd Proxy Server 2.0 introduces the Cache Array Routing Protocol (CARP) to
greatly expand the scalability and efficiency of proxy servers networked into an array.

To fully appreciate the Microsoft Proxy Server 2.0 solution to caching, it is helpful
to consider the growing need for the efficiencies that are gained by caching web
sites. The World Wide Web (WWW) has become so popular, and the traffic so
heavy, that frustration with response times has led to jokes about the WWW stand-
ing for the World Wide Wait.

Proxy servers, originally developed for security as extensions of firewalls, soon
proved to have additional value — the speed with which their cached URLs were re-
turned to users. Because it is the most requested URLSs that remain stored in cache,
proxy servers provide great efficiency:

Less network traffic. Once an object has been downloaded from the Internet,
subsequent users will retrieve that object from the cache instead of having to re-
guest the same object across a remote network link.

Better user performance. Typically Proxy caches reside much closer to an end
user than the remote web server. Additionally, while requests across the Internet
are serviced at lowest common denominator WAN speeds (typically 64 kbps -
1.5 Mbps), requests to the cache are serviced at LAN speeds (10 Mbps - 100
Mbps).

Better perceived network reliability. Having cached copies of objects compen-
sates for transient Internet "brownouts" and loss of service due to heavy
congestion on remote segments.

Caching proved so efficient that the need was soon seen for deploying multiple
proxy servers that could communicate and work together to create a more robust
system. In 1995 the Internet Cache Protocol (ICP) was developed to allow Individual
proxies to "query" manually configured neighboring proxies in order to find cached
copies of requested objects. If all queries failed to find a cached object, the proxy
would then use HTTP to request the object from the Internet.

Although ICP allows proxy servers to be networked together, certain problems
emerge when using the protocol. These include:

ICP arrays must conduct queries to determine the location of cached infor-
mation, an inefficient process that generates extraneous network traffic.

ICP arrays have “negative scalability” in that the more proxy servers added to
the array, the more querying required between servers to determine location.
ICP arrays over a period of time tend to become highly redundant, with each
server containing largely the same information — the URLs of the most fre-
guently used sites.

Now Microsoft has significantly enhanced the efficiency of using multiple proxy
servers with the introduction of Cache Array Routing Protocol (CARP), a series of
algorithms that are applied on top of HTTP. CARP yields several new and interesting
benefits to cache users and network operators — without introducing new wire proto-
cols. Microsoft will present the finalized version of the CARP protocol to the Internet
Engineering Task Force (IETF) for consideration as an Internet Standard protocol.

Microsoft Proxy Server 2.0, with the power of CARP, allows for “queryless” dis-

2 Microsoft Cache Array Routing Protocol

tributed caching. This is especially important because the vast resources of the Inter-
net, as well as its huge potential for marketing, sales, and other business activities,
make the Internet an increasingly essential element for an organization’s communi-
cations infrastructure. Furthermore, distributed caching helps alleviate network
administrator concerns about bottlenecks arising from “push” technologies to client
desktops.

The queryless distributed caching allowed by Microsoft Proxy Server 2.0 provides
strengths including:

CARP doesn't conduct queries. Instead it uses hash-based routing to provide
a deterministic “request resolution path” through an array of proxies. The re-
sult is single-hop resolution. The web browser, such as Microsoft Internet
Explorer, or a downstream proxy, will know exactly where each URL would
be stored across the array of servers.

CARP has positive scalability. Due to its hash-based routing, and hence, its
freedom from peer-to-peer pinging, CARP becomes faster and more efficient
as more proxy servers are added.

CARP protects proxy server arrays from becoming redundant mirrors of
content. This vastly improves the efficiency of the proxy array, allowing all
servers to act as a single logical cache.

CARP automatically adjusts to additions or deletions of servers in the array.
The hashed-based routing means that when a server is either taken off line or
added, only minimal reassignment of URL cache locations is required.

CARP provides its efficiencies without requiring a new wire protocol. It simply
uses the open standard HTTP. One advantage of this is compatibility with
existing firewalls and proxy servers.

CARP can be implemented on clients using the existing, industry-standard cli-
ent Proxy Auto-Config file (PAC). This extends the systemic benefits of single
hop resolution to clients as well as proxies. By contrast, ICP is only imple-
mented on Proxy servers.

The seamless scalability, freedom from ICP-type querying, protection against re-
dundant caching, client integration, and ability to automatically adjust to server array
membership, combine to make Proxy Server 2.0 the platform of choice for bringing
the power of proxy server efficiencies into the enterprise.

Microsoft Cache Array Routing Protocol 3

TAKING A CLOSER
LOOK AT QUERYLESS
DISTRIBUTED CACHING

The Cache Array Routing Protocol allows Proxy Server 2.0 to be used for queryless

distributed caching. The beauty of queryless distributed caching is that as many

proxy servers as desired can be joined into an array, without incurring the inefficiency

of ICP queries. For example, a single URL request from an ICP-based array of six
proxy servers could result in a process of:

Query being sent to the client’s default proxy server.

If URL not found, default server sends queries to the other five servers.
No-hit messages are returned from the servers without the URL.

A hit message confirming presence of URL, if currently cached.

If a hit message is received, a copy of the cached information is transferred to

the client’s default proxy server -- a practice which over time can lead to redun-

dant copies across the other servers.

Praecy "—IMi_Sgl
Query
Client AT, Prog e :"G“"
Cuerny
Prosoy ["Send Object”

Figure 1. ICP-based arrays generate extraneous traffic because they must query for cache locations.

With CARP, the web browser or downstream proxy server handling the request

performs a hash function based upon the “array membership list” and URL to provide

the exact cache location of an object, or where it will be cached upon downloading
from the Internet — resulting in single-hop resolution.

How CARP Works
A closer look at the routing algorithm is provided later in this paper, but the basic
mechanism is:

All proxy servers are tracked through an “array membership list”, which is auto-
matically updated through a time-to-live (TTL) countdown function that regularly

checks for active proxy servers.

A hash function is computed for the name of each proxy server.

A hash function is computed for the name of each requested URL.

The hash value of the URL is combined with the hash value for each proxy.

Whichever URL+Proxy Server hash comes up with the highest value, becomes

“owner” of the information cache.

The result is a deterministic location for all cached information, meaning that the

web browser or downstream proxy server can know exactly where a requested URL

either already is stored locally, or will be located after caching. Because the hash

4 Microsoft Cache Array Routing Protocol

functions used to assign values are so great — 232 = 4294967296 — the result is a
statistically distributed load balancing across the array.

The deterministic request resolution path that CARP provides means that there’'s
no need to maintain massive location tables for cached information. The browser
simply runs the same math function across an object to determine where it is .

Improving Client Performance with Distributed Caching
CARP allows for distributed caching, allowing hierarchical proxy arrays, such as
might exist with a branch office, to forward requests to the central office proxy array.
Distributed caching offers several benefits, including:

Distribution of server loads, with downstream proxies (such as with a branch
office) offloading cache hits from upstream proxies.

Improvement of client performance by bringing caches closer to client (such
as caching information at the workgroup level, rather than at the enterprise
level, or making use of a regional internet service provider (ISP) point of
presence (POP) rather than a central ISP POP).

Improvement of cache hit rates due to increase in cache space.

Distributed caching also provides value in environments such as:

Corporate branch office with Internet connectivity provided by central office.
Consolidated ISP POPs — with multiple, geographically distributed POPs
routed into a central POP which has Internet connectivity

Corporate proxies operating behind proxy-type firewalls

Corporations/ISP POPs that are too big to operate with a single proxy server
and need additional robustness.

Distributed caching also can be combined with the IPX-capabilities of Winsock
Proxy to support mixed network environments and allow pockets of IPX-only clients
access to IP-based intranet and Internet sites.

Charting a Request with Distributed Caching

The clean logic of distributed caching can best be seen with a basic flowchart illus-
trating the decision path for a request-forwarding decision in the distributed caching
scheme.

Microsoft Cache Array Routing Protocol 5

No Get / Update
Upstream Cluster
List

Client URL
Request

Compute route
values

Yes

Forward to
Proxy #1...n

Serve From Cache

Proxy Available?

Forward Response
to Client &
Cache Locally

. ——]
Figure 2. Flowchart for a request-forwarding decision in distributed caching.

Note that “upstream” proxies can be either other proxy arrays or other members
of the local array.

Understanding the Routing Algorithm

As noted earlier, the power of the CARP algorithm is that it is deterministic — identical
scores will be calculated for identical sets of inputs. Given a list of all the proxies in an
upstream array, Proxy Server 2.0 computes a hash of the requested URL, and com-
bines it with a hash of the available upstream proxy names. The result of this
combination of a single URL plus n proxies results in n ‘scores’. The proxy with the
highest ‘score’ will be the first proxy to which Proxy Server 2.0 will attempt to for-
ward its requests. If that request fails, Proxy Server 2.0 routes to the next highest
score and so on. This provides the advantage of coordinated caching (higher cache
hit rates due to sorted requests) without incurring the liability of expensive coordina-
tion mechanisms such as ICP.

The following is a simplified, step-by-step representation of how the light-weight
on-the-fly routing algorithm works, based upon an array of four proxy servers named
Jerichol-4:

(1) Get upstream array membership list and compute hashes on proxy names:

Proxy Hash

Jerichol 13
Jericho2 8
Jericho3 5
Jericho4 28

6 Microsoft Cache Array Routing Protocol

(2) Get URL to route upstream, and compute a hash of the URL:

WwWw.microsoft.com

=
©

(3) Combine hashes. The hash combination algorithm takes into account a load
factor assigned to each proxy (Proxies with ability to handle more HTTP re-

guests should be routed more traffic):

E
]
o
=
=]
W
g
2
E
Proxy Hash 19
Jerichol 13 5
Jericho2 8 9
Jericho3 5 7
Jericho4 28 4

(4) Find the highest “score” and forward the URL request to that proxy (in this case

Jericho2):
€
o
©
©
(%]
(@)
S
S
Proxy Hash 19
Jerichol 13 5
Jericho2 8-
Jericho3 5 7
Jericho4 28 4

Microsoft Cache Array Routing Protocol

7

(5) Compute for route for other URLs (this shows the natural load balancing that
occurs as the hash functions result in distribution across the array):

IS
(@]
) £
5| 8| E§| =
3 o S 8
= s} &)
O ;—E) e
£ > £ 2
Proxy Hash 19 14 5 2
Jerichol 13 5 6 4
Jericho2 8 2 7 5
Jericho3 5 4
Jericho4

Incremental Scaling — Easy to Add or Subtract Servers
The CARP algorithm is especially good at accommodating changes in array mem-
bership. With other proxy systems, adding or subtracting a server from the proxy
array can result in reassigning all cached URLs. With CARP, only a fraction are re-
assigned — 1/n, in which n is the number of proxy servers. For example, adding a fifth
server would result in about 1/5™ of the cache to be reassigned — as URLs are as-
signed to the server with the next highest hashing score. The effect of this is that
proxies can be added and subtracted from a proxy array with minimal cache invali-
dation of existing proxies’ caches.

Here’s an illustration of adding another proxy — Jericho5 — to the array:

=
o
o €
S 3] £ £
n o o o
e s} : S
S < @ €
E[S| g| =2
Proxy Hash 19 14 5 2
Jerichol 13 5 6 4
Jericho2 sl 5
Jericho3 5 7 4
Jericho4 28 4 7
Jericho5 2

Notice that the only ‘highest scoring’ route that changes is that of
www.yahoo.com, which is routed to Jericho5 instead of Jericho4. More specifically,
a change in the table membership from n member to x members results in a reshuf-
fling of 1/x of the routes. Because the machine name is hashed, as well as the URL,

8 Microsoft Cache Array Routing Protocol

the algorithm produces a “route stickiness” which makes additions to and removals
from the array a very efficient process.

In addition to easy scalability, this allows for excellent fail-over. If a server fails, its
URLSs are automatically re-routed to the servers with the next highest scores. In the
above example, a failure of “Jericho2” would result in www.microsoft.com being re-
routed to Jericho3. Because hash functions are deterministic, all fail-over reassign-
ments are made in a consistent, reliable manner.

Microsoft Cache Array Routing Protocol

9

ROUTING OPTIONS

The CARP algorithm provides two routing options — hierarchical and distributed.
Hierarchical routing involves forwarding requests from a single proxy up to an array
of upstream proxies. Distributed routing involves resolving requests received by one
member of the array via another member of the same array. Distributed routing ex-
tends the benefits of CARP to legacy downstream clients which aren’t capable of
implementing CARP.

It's important to note that these two routing options aren’t mutually exclusive and
can be arbitrarily combined. (For example, a request might be first resolved in the
distributed manner within an array and then if a cached copy still can’t be found, it is
forwarded upstream hierarchically). The only real technical differences between
these two methods are:

Whether the request is forwarded to the local or upstream array
Whether responses from the forwarding are cached by the local proxy

Hierarchical Routing

Jericho 1 Jericho 2 Jericho 3 Jericho 4

Requests Routed Upstream by Hash
Function

Downs(rer Proxy

User Pool

Figure 3. Hierarchical routing, in which requests are forwarded to upstream proxies.

Hierarchical routing involves a downstream proxy that has n upstream proxies to
which it can forward requests. The downstream proxy uses the array membership
list of the upstream proxies and hash-based routing to intelligently determine which
upstream proxy to forward the request to.

Because all downstream proxies are constructing their route table with the same
inputs, they will all route their requests to the same upstream proxy thereby maxi-
mizing potential cache hit rates.

10 Microsoft Cache Array Routing Protocol

Distributed Routing

Upstream proxy
evaluates request
against own cluste

Jericho 1 Jericho 2 Jericho 4

Users don't implement routing function,
and forward requests to one proxy

User Pool

Figure 4. Distributed routing, in which requests are forwarded laterally to the highest scoring proxy.

Distributed routing uses hash-based routing to intelligently process requests within
an array of proxies. In this scenario, a proxy with full knowledge of the members of
it's own array determines that the request is not ideally processed by himself. Proxy
1 then forwards the request to the ‘highest scoring’ proxy — in this case Proxy 4. Be-
cause Proxy 1 forwarded the request within its own array, he won’t cache the
returned response since a cacheable response will be held in Proxy 4. This provides
maximum efficiency in cache usage, protecting the efficiency of a single coordinated
disk cache spread out across all machines.

Combination Routing

Distributed and hierarchical caching can be easily combined. For example, all re-
guests within a workgroup or branch office might first be resolved within its own array
of proxies and then forwarded to the enterprise or ISP proxy array as needed. Ex-
amining the case of client - local proxy array = ISP proxy array = Internet, there
may be up to four routing calculations per request:

1. The client forwards to local proxy #1. That proxy applies the routing algorithm
against its own array and determines that local proxy #2 in its own array should
handle the request and forwards it.

2. Local_proxy #2 applies the routing algorithm against its array and decides that it
is the proper proxy to handle this request.

Microsoft Cache Array Routing Protocol 11

Local_proxy #2 doesn’t have the object in its cache, so it applies the routing al-
gorithm against the upstream array and forwards the request to ISP_Proxy #1
ISP_Proxy #1 applies the routing algorithm against its array and discovers that
its the correct proxy to handle this request. Since it doesn't have it in its cache, it
forwards the request to the Internet.

ISP_Proxyl = ISP_Proxy2 — ISP_Proxy3 = ISP_Proxy4 =
(— [— (- 1

/
\

= I~ I~ =

3. \ ISP Array

—
Local_Proxy2 -=z
]

2.
" m—m

N~ —

\

Local_Proxy1

AT

==
S=]
5=
=]

/l Corporate Array

User Pool

Figure 5. Combination routing uses distributed and hierarchical caching.

Preventing Routing Loops

Routing loops within an array are prevented by the deterministic scoring mechanism.
For any given URL, the sequence of proxy preferences within the array is fixed.
Since all proxies always forward requests to a higher scoring proxy and never back-
track track to a lower scoring proxy, loops will never occur.

12 Microsoft Cache Array Routing Protocol

AUTOMATIC UPDATING
OF MEMBERSHIP LIST

Proxy Server 2.0 uses an “array manager” to maintain a current list of the members
of a particular proxy array, and to make that list available to other systems which
request it, such as downstream clients and proxies.

Communications between array managers are handled via HTTP and remote
procedure calls (RPC). RPC interfaces are used to handle modifications to the array
table -- such as membership, status, and parameters. HTTP is used to publish array
information. Publishing via HTTP allows the array table to be consumed by any
product supporting the HTTP protocol. The array manager is designed to provide
“one-stop shopping” — any one member of the array will have current information
about every other member of the array. Therefore, a client need only query one,
randomly selected, array member in order to properly route into the array.

The membership lists contains information including:

The URL that a array manager should call in order to get the array information
from a remote manager.

Load factors to allow a different proportion of the requests for an array to be
sent to different machines. Load factors could be a factor if new machines
have been added to an array that have larger hard drives, or significantly greater
processing power.

Time-to-Live (TTL) countdown until array members are checked again for status.
Global parameters such as how often any member of the array table should ask
other members for an update in array membership.

Here’s a sample array table:

Proxy Array Information/1.0

ArrayEnabled: 1
ConfigID: 866749230
ArrayName: Test Cluster

ListTTL: 900

CATNETO7 157.55.98.140 80 http://CATNETO07:80/array.dll MSProxy/2.0 171 Up 100 3000
CATNETO09 157.55.98.140 80 http://CATNET09:80/array.dll MSProxy/2.0 171 Up 100 1500
GSFGROUP 157.55.98.140 80 http://GSFGROUP:80/array.dll MSProxy/2.0 171 Up 100 1500
GENACCTS2 157.55.98.140 80 http://GENACCTS2:80/array.dll MSProxy/2.0 171 Up 100 500

Membership Management

Once an array has been created, all members of the array manage their own local
copies of the array list. There are two cases for table management: managing an
upstream table, and managing a local table.

Upstream Table ManagementA Proxy manages its own “impression” of the
upstream tables. Whenever the TTL countdown expires (usually set for several min-
utes), the proxy queries for a new array table.

Local Table Management In addition to the upstream table management pro-
tocol (reloading the table if the TTL has expired), a proxy within an array also
watches all HTTP requests to any array member in order to determine the status of

Microsoft Cache Array Routing Protocol 13

that member. If a request fails, the local proxy marks that proxy member as down in
its table for a given TTL period and doesn’t forward requests to that member until the
TTL expires, and the next table query shows it is active.

Request =
Manage Table TTL http://member/scripts/ Response?
cluster.dll

Combine TTLs from R B
current table + |« esponse = Mark status=DOWN [«—
Cluster Table
response table

Figure 6. Each array member manages its own array table through queries triggered by TTL countdowns.

14 Microsoft Cache Array Routing Protocol

SUMMARY

The Cache Array Routing Protocol of Microsoft Proxy Server 2.0 allows organiza-
tions to gain much greater efficiencies from their proxy servers. The hash-based
routing of CARP, with its deterministic request resolution path, provides single-hop
resolution, while creating a single logical cache.

Proxy servers are spared the traffic congestion of ICP queries — a problem which
increases which each server added to an ICP array. The efficiency of the array is
preserved by avoiding duplication of content that can degrade a five-server ICP array
into five independent caches holding much the same content.

Because server identities are hashed, in addition to the URLs, cached information
has “stickiness”, meaning that array membership can be increased or decreased
while causing minimal reassignment of currently stored information.

All of this results in the ability to deploy Proxy Server arrays that provide built-in
load balancing, scalability, fault tolerance, ease of administration, and the efficiency
of a single logical cache. And because CARP uses HTTP, it accomplishes this with-
out introducing a new wire protocol.

CARP means faster response to queries, and a far more efficient use of server
resources.

Microsoft Cache Array Routing Protocol 15

FOR MORE To access information via the World Wide Web, go to http://www.microsoft.com and
INFORMATION select Microsoft BackOfficea .

BackOffice info: http://www.microsoft.com/BackOffice

Proxy info: http://www.microsoft.com/Proxy

ICP Working Group: http://www.nlanr.net/Cache/ICP

Hierarchical HTTP Routing Protocol (a predecessor to CARP):
http://www.nlanr.net/Cache/ICP/draft-vinod-icp-traffic-dist-00.txt

16 Microsoft Cache Array Routing Protocol

