Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 24, 1161-1168

The Radius of Univalence of Certain

Analytic Functions

B. S. Mehrok
\# 643 E, B.R.S. Nagar
Ludhiana (Punjab), India

Gagandeep Singh

Department of Mathematics
Rayat Polytechnic college
Railmajra (Punjab), India
kamboj.gagandeep@yahoo.in

Deepak Gupta

Department of Mathematics, M.M.University
Mullana-Ambala (Haryana), India
guptadeepak2003@yahoo.co.in

Abstract

Let $f(z)=z+a_{2} z^{2}+\ldots \ldots$. be analytic and $g(z)=z+b_{2} z^{2}+\ldots \ldots$. is univalent in the unit disc $E=\{z:|z|<1\}$ such that $\frac{f(z)}{g(z)} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in E$. In this paper, we shall find the radius of starlikeness for the function $f(z)$ in E.

Keywords: Subordination, Starlike functions, Radius of Univalence.

1. Introduction

Let U denote the class of functions

$$
\begin{equation*}
w(z)=\sum_{k=1}^{\infty} c_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are regular in the unit disc $E=\{z:|z|<1\}$ and satisfying the conditions

$$
w(0)=0 \text { and }|w(z)|<1, z \in E .
$$

If f and g are analytic functions in E, then we say that f is subordinate to g, written as $f \prec g$ or $f(z)<g(z)$, if there exists a function $w(z) \in U$ such that $f(z)=g(w(z))$. If g is univalent then $f<g$ if and only if $f(0)=g(0)$ and $f(E) \subset g(E)$.

Suppose that

$$
f(z)=z+a_{2} z^{2}+\ldots . . . \text { be analytic }
$$

and

$$
g(z)=z+b_{2} z^{2}+\ldots \ldots . . \text { is univalent in } E
$$

with the conditions

$$
\begin{equation*}
\frac{f(z)}{g(z)} \prec \frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1, \quad z \in E . \tag{1.2}
\end{equation*}
$$

Krzyz and Reade[3] made an early study for $A=1, B=-1$ and $A=1, B=0$ and obtained radius of starlikeness of $f(z)$. After this Goel[1] made investigations for the radius of starlikeness of $f(z)$ under the conditions $A=1, B=\frac{1}{\alpha}-1\left(\alpha>\frac{1}{2}\right)$. We shall obtain the radius of starlikeness of $f(z)$ for $-1 \leq B<A \leq 1$. Results due to Krzyz and Reade[3] and Goel[1] follow as special cases from our theorem.

2. Some Preliminary Lemmas

In our investigation, we shall require the following lemmas.
Lemma 2.1. If $w(z) \in U$, then for $|z|=r<1$,

$$
\left|z w^{\prime}(z)-w(z)\right| \leq \frac{r^{2}-|w(z)|^{2}}{1-r^{2}}
$$

This result was obtained by Singh and Goel[4] .
Lemma 2.2. Let $p(z)=\frac{1+B w(z)}{1+A w(z)}, w(z) \in U$, then for $|z|=r<1$,

$$
\operatorname{Re}\left[A p(z)+\frac{B}{p(z)}\right]+\frac{r^{2}|A p(z)-B|^{2}-|1-p(z)|^{2}}{\left(1-r^{2}\right)|p(z)|}
$$

$$
\leq\left\{\begin{array}{l}
\frac{A B(A+B) r^{2}-4 A B r+(A+B)}{(1-A r)(1-B r)}, R_{1} \leq R_{0}, \\
\frac{2}{\left(1-r^{2}\right)}\left[\left(1-A B r^{2}\right)-\left((1-A)(1-B)\left(1+A r^{2}\right)\left(1+B r^{2}\right)\right)^{1 / 2}\right], R_{1} \geq R_{0}, A \neq 1,
\end{array}\right.
$$

where $R_{1}=\frac{1-B r}{1-A r}$ and $R_{0}^{2}=\frac{(1-B)\left(1+B r^{2}\right)}{(1-A)\left(1+A r^{2}\right)}$.
The bounds are sharp.

Goel and Mehrok [2] established this result.
Lemma 2.3. Let

$$
g(z)=z+b_{2} z^{2}+\ldots \ldots
$$

be analytic and univalent in the unit disc E. Then inequality

$$
\begin{aligned}
& \operatorname{Re}\left[\frac{z g^{\prime}(z)}{g(z)}\right] \geq \frac{1-r}{1+r} \quad \text { holds for } \\
& |z| \leq \tanh \frac{1}{2}=0.46212 \ldots
\end{aligned}
$$

The bounds are sharp for each z.
This lemma is due to Krzyz and Reade[3] .

3. Main Result

Theorem 3.1. Let

$$
f(z)=z+a_{2} z^{2}+\ldots \ldots
$$

and

$$
g(z)=z+b_{2} z^{2}+\ldots \ldots
$$

are analytic in the unit disc E such that

$$
\frac{f(z)}{g(z)} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in E .
$$

If $g(z)$ is univalent in E, then
(i) For $A_{0} \leq A \leq 1, f(z)$ is starlike in $|z|<r_{0}$, where r_{0} is the smallest positive root of

$$
\begin{equation*}
A B r^{3}-B(2+A) r^{2}+(1+2 A) r-1=0 ; \tag{3.1}
\end{equation*}
$$

(ii) For $-1<A \leq A_{0}, f(z)$ is starlike in $|z|<r_{1}$, where r_{1} is the smallest positive root of

$$
\begin{gather*}
B(1-A) r^{4}-2 B(1-A) r^{3}+(1-2(A-B)-A B) r^{2}-2(1-A) r+(1-A)=0 ; \tag{3.2}\\
A_{0}=\left(\frac{3-\sqrt{5}}{2}\right) .
\end{gather*}
$$

Results are sharp .
Proof. By definition of subordination , (1.2) gives

$$
\frac{f(z)}{g(z)}=\frac{1+A w(z)}{1+B w(z)}, w(z) \in U
$$

This implies that

$$
\begin{equation*}
f(z)=g(z) \frac{1+A w(z)}{1+B w(z)} \tag{3.3}
\end{equation*}
$$

Differentiating logarithmically , (3.3) yields

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)=\frac{z g^{\prime}(z)}{g(z)}+(A-B) \frac{z w^{\prime}(z)}{(1+A w(z))(1+B w(z))} . \tag{3.4}
\end{equation*}
$$

Taking the real parts on both sides of (3.4) and using lemma 2.1 , we get

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geq \operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}
$$

$$
\begin{equation*}
+(A-B)\left[\operatorname{Re} \frac{w(z)}{(1+A w(z))(1+B w(z))}-\frac{r^{2}-|w(z)|^{2}}{\left(1-r^{2}\right)(1+A w(z))(1+B w(z)) \mid}\right] . \tag{3.5}
\end{equation*}
$$

Put $p(z)=\frac{1+B w(z)}{1+A w(z)}, w(z) \in U$.
Then from (3.5) , we have
$\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geq \operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}+\frac{(A+B)}{(A-B)}$

$$
\begin{equation*}
-\frac{1}{(A-B)}\left[\operatorname{Re}\left(A p(z)+\frac{B}{p(z)}\right)+\frac{r^{2}|A p(z)-B|^{2}-|1-p(z)|^{2}}{\left(1-r^{2}\right)|p(z)|}\right] . \tag{3.6}
\end{equation*}
$$

Since $g(z)$ is univalent, it follows from lemma 2.3 that

$$
\begin{equation*}
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} \geq \frac{1-r}{1+r} \tag{3.7}
\end{equation*}
$$

(3.6) in conjunction with (3.7) and lemma 2.2 yields
$\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)$

$$
\geq\left\{\begin{array}{l}
\frac{1-(1+2 A) r+B(2+A) r^{2}-A B r^{3}}{(1+r)(1-A r)(1-B r)}, R_{1} \leq R_{0}, \tag{3.8}\\
\frac{-2\left[(1-A)+(A-B) r+B(1-A) r^{2}\right]}{} \begin{array}{l}
+2\left[(1-A)(1-B)\left(1+A r^{2}\right)\left(1+B r^{2}\right)\right]^{1 / 2} \\
(A-B)\left(1-r^{2}\right)
\end{array}, R_{1} \geq R_{0}, A \neq 1 .
\end{array}\right.
$$

On equating the right hand sides of (3.8) to zero , we get (3.1) and (3.2) .
The equation $R_{1}=R_{0}$ yields

$$
\begin{equation*}
A B r^{4}-2 A B r^{3}+(2 A+2 B-A B-1) r^{2}-2 r+1=0 . \tag{3.9}
\end{equation*}
$$

Elimination of r between (3.1) and (3.9) leads to

$$
\begin{equation*}
(1+B)\left(B A^{3}-2 B A^{2}+2 A-1\right)=0 \tag{3.10}
\end{equation*}
$$

If $1+B \neq 0$, we have

$$
B=\frac{(2 A-1)}{A^{2}(2-A)}, A \neq 1 .
$$

Then $B<A$ implies that $0<(1-A)^{3}(1+A)$ which holds.
Also $B=\frac{(2 A-1)}{A^{2}(2-A)}>-1$ implies $A<\frac{3-\sqrt{5}}{2}<1$.
For $B=-1$, elimination of r between (3.1) and (3.9) gives

$$
A^{2}-3 A+1=0
$$

Therefore $A=\frac{3-\sqrt{5}}{2}=A_{0}$, say .
Corollary 1. By taking $A=1$ and $B=\frac{1}{\alpha}-1\left(\alpha>\frac{1}{2}\right), f(z)$ is univalent and starlike in $|z|<r$, where r is the smallest positive root of

$$
\left(1-\frac{1}{\alpha}\right) r^{3}-3\left(1-\frac{1}{\alpha}\right) r^{2}-3\left(1-\frac{1}{\alpha}\right) r+1=0 .
$$

This is a result proved by Goel[1] .
Corollary 2. For $A=1$ and $B=-1$, we get the radius of starlikeness as $2-\sqrt{3}$, earlier established by Krzyz and Reade[3].

Corollary 3. Putting $A=1$ and $B=0, f(z)$ is univalent and starlike in $|z|<\frac{1}{3}$. This result was proved by Krzyz and Reade[3] .

References

[1] R.M.Goel, The radius of univalence of certain analytic functions, Tôhoku Math. Journ., vol.18, No.4, 1966, 398-403.
[2] R.M.Goel and Beant Singh Mehrok, A subclass of univalent functions, J.Austral.Math.Soc.(Series A), 35(1983), 1-17.
[3] J.Krzyz and M.Reade, The radius of univalence of certain analytic functions, Michigan Math. Journ., 11(1964), 157-159.
[4] V.Singh and R.M.Goel, On radii of convexity and starlikeness of Some classes of functions, J.Math.Soc.Japan, 23(1971), 323-339.

Received: January, 2010

