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Abstract. Efficient non-interactive zero-knowledge proofs are a power-
ful tool for solving many cryptographic problems. We apply the recent
Groth-Sahai (GS) proof system for pairing product equations (Eurocrypt
2008) to two related cryptographic problems: compact e-cash (Eurocrypt
2005) and simulatable verifiable random functions (CRYPTO 2007). We
present the first efficient compact e-cash scheme that does not rely on a
random oracle. To this end we construct efficient GS proofs for signature
possession, pseudo randomness and set membership. The GS proofs for
pseudorandom functions give rise to a much cleaner and substantially
faster construction of simulatable verifiable random functions (sVRF)
under a weaker number theoretic assumption. We obtain the first effi-
cient fully simulatable sVRF with a polynomial sized output domain (in
the security parameter).

1 Introduction

Since their invention [BFM8&8] non-interactive zero-knowledge proofs played an
important role in obtaining feasibility results for many interesting cryptographic
primitives [BG90,G092,5ah99], such as the first chosen ciphertext secure public
key encryption scheme [BFM88,RS92,DDN91]. The inefficiency of these con-
structions often motivated independent practical instantiations that were ar-
guably conceptually less elegant, but much more efficient ([CS98] for chosen
ciphertext security).

We revisit two important cryptographic results of pairing-based cryptog-
raphy, compact e-cash [CHLO05] and simulatable verifiable random functions
[CLO7], that have very elegant constructions based on non-interactive zero-
knowledge proof systems, but less elegant practical instantiations. Our results
combine the best of both worlds, a clean design and an efficient implementation.

Compact e-cash.  Electronic cash (e-cash) was introduced by Chaum [Cha83]
as an electronic analogue of physical money and has been a subject of ongoing
research since then [CFN90,FY92,CP93,Bra93,SPC95,FTY96,Tsi97]. The par-
ticipants in an e-cash system are users who withdraw and spend e-cash; a bank
that creates e-cash and accepts it for deposit, and merchants who offer goods



and services in exchange for e-cash, and then deposit the e-cash to the bank.
The main security requirements are (1) anonymity: even if the bank and the
merchant and all the remaining users collude with each other, they still cannot
distinguish Alice’s purchases from Bob’s; (2) unforgeability: even if all the users
and all the merchants collude against the bank, they still cannot deposit more
money than they withdrew.

Unfortunately, it is easy to see that, as described above, e-cash is useless.
The problem is that here money is represented by data, and it is possible to
copy data. Unforgeability will guarantee that the bank will only honor at most
one of copy of a given coin for deposit and will reject the others. Anonymity will
guarantee that there is no recourse against such a cheating Alice. So one of the
merchants will be cheated. There are two known remedies against this double-
spending behavior. The first remedy is on-line e-cash [Cha83], where the bank
is asked to vet a coin before the spend protocol can terminate successfully. The
second remedy is off-line e-cash, introduced by Chaum, Fiat and Naor [CFN90].
The additional requirement of an offline e-cash system is (informally) that no
coin can be double-spent without revealing the identity of the perpetrator.

A further development in the literature on e-cash was compact e-cash [CHLO5].
In compact e-cash, the user withdraws N coins in a withdrawal protocol whose
complexity is O(log N) rather than O(N). Similarly, the resulting wallet requires
storage size (log N) rather than O(N). The main idea is as follows: in the with-
drawal protocol, a user obtains the Bank’s signature on (z, s, t), where s and ¢
are random seeds of a pseudorandom function (PRF) F()(-) and z is the user’s
identifier. In the spend protocol, a serial number of the ith coin is computed as
S = F4(i), and a double spending equation is computed as T' = x+ RF; (i), where
R is a random challenge by the merchant. The coin itself consists of (S, T, R, ),
where 7 is a non-interactive zero-knowledge proof of knowledge of the following
values: z, s, t, i, o where o is the Bank’s signature on (z,s,¢), 1 < i < N,
S = Fs(i) and T = z + RF;(i) mod ¢q. If ¢ is a generator of a group G of order
¢, and G is the range of the PRF F{,(-), then the double-spending equation
can instead be computed as T = ¢g®F;(i)f. It is easy to see that two double-
spending equations for the same ¢, ¢ but different R’s allow us to compute g*. It
was shown that this approach yields a compact e-cash scheme [CHLO5]. Later,
this was extended to so-called e-tokens [CHK™06] that allow up to k& anonymous
transactions per time period (for example, this would correspond to subscrip-
tions to interactive game sites or anonymous sensor reports).

Thus, we see that compact e-cash and variants such as e-tokens can be ob-
tained from a signature scheme, a pseudorandom function, and a non-interactive
zero-knowledge (NIZK) proof system for the appropriate language. However, un-
til now no efficient instantiations of the NIZK proofs could be given, and all prac-
tical instantiations of compact e-cash had to derive the non-interactive proofs
from interactive proofs via the Fiat-Shamir heuristic [FS87] which is known not
to yield provably secure constructions [GK03]. It seemed that, perhaps, random
oracle based techniques were necessary to achieve such schemes efficiently. We
show here that this is not the case.



Challenges and Techniques.  Until the recent proof system of Groth and Sa-
hai [GS07], there were no efficient NIZK proof systems for languages most heavily
used in cryptographic constructions (such as languages of true statements about
discrete logarithm representations and bilinear pairings). However, constructing
an efficient provably-secure compact e-cash scheme is not simply a matter of re-
placing the Fiat-Shamir based NIZK proofs with the Groth-Sahai system. There
are several issues that arise when we attempt to apply the Groth-Sahai proofs.
First, recall that the Groth-Sahai system only works for proofs of particular
types of statements. Thus, we must find a PRF and a signature scheme where
verification can be phrased in terms of such statements. In the case of the PRF,
we use a modification of the Dodis-Yampolskiy VRF [DYO05], which outputs el-
ements of bilinear group G;. We show that this is secure under the assumption
that DDHI holds in this group. ®

For the signature scheme, we note that verification of Boneh-Boyen signa-
tures [BB04b] can be phrased as a pairing product equation. However, as noted
in Belenkiy et al. [BCKLO08], because Groth-Sahai proofs are only partially ex-
tractable, we need a stronger unforgeability. Here we need that it be impossible
to produce F'(m),Sign,,(m) for an unsigned message m, where F'(m) is a value
that can be extracted from a commitment to m. Belenkiy et al. gave a con-
struction which satisfies this definition, but only allows signatures on a single
message. We need the bank to be able to sign multiple message blocks, thus
we extend that construction to construct a multi-block P-signature scheme. We
also show that issuing can be done efficiently using more recent techniques given
in [BCC*09]. (The original [BCKLOS| construction relied on general two party
computation for arithmetic circuits.)

We also need to be able to prove that the coin value falls within a given
range. The original Camenisch et al. construction uses a technique by [Bou00],
which relies on the fact that the underlying RSA group has unknown order.
Groth-Sahai proofs, on the other hand, rely on the cryptographic bilinear group
model, and it is not known how to construct such groups with unknown order.
Thus, we must use a different technique for our range proofs. We follow the
basic concept of [TS06,CCS08], and implement the range proofs using the new
P-signatures mentioned above.

Finally, while Groth and Sahai present a NIZK proof system for a large class
of statements, their simpler witness indistinguishable proof system is much more
efficient. Thus, we specifically design our protocols to use NIZK proofs only when
necessary. As a result, we obtain a construction that is almost competitive in
efficiency with the original Camenisch et al. construction.

E-cash construction.  Our construction is in the common parameters model
and relies on several number-theoretic assumptions. Our first building block is
a signature scheme and an unconditionally binding commitment scheme that
allows for an efficient proof of knowledge of a signature on a set of commit-

® We note that the original Camenisch et al. [CHLO05] construction used a similar PRF
based on DDHI in a standard prime order group (without a bilinear map). They then
proved correctness of each PRF output using the Fiat-Shamir heuristic.



ted values, as well as for an efficient protocol for getting a committed value
signed. This is done by extending the P-signature construction of Belenkiy et
al. [BCKLO0S8|, which only allows to sign single values, and incorporating the
techniques from [BCCT09]. In our construction we will also use P-signatures,
together with the techniques of [CCS08] (that relied on interactive proofs) to
obtain efficient non-interactive interval proofs.

Our second building block is a pseudorandom function and an uncondition-
ally binding commitment scheme Com(.,.) (the same as for the P-signature
scheme) with an efficient proof system for the serial number S and the dou-
ble spending tag T

Simulatable verifiable random functions.  Our main observation is that the
NIZK proof for a compact e-cash serial number, a proof of the language Lp =
{s,Cy,Cs | 3s,y,rs,ry such that S = F,(y),Cy = Com(y,ry),Cs = Com(s,rs)}
is a special case of a simulatable verifiable random function (sVRF), introduced
by Chase and Lysyanskaya [CL07]. Chase and Lysyanskaya gave an efficient
construction of a multi-theorem non-interactive zero-knowledge proof system
for any language L from a single-theorem one for the same language (while
other single-theorem to multi-theorem transformations required the Cook-Levin
reduction [Coo71] to an NP-complete language first).

Chase and Lysyanskaya [CL0T7] gave two constructions for sVRFs. The first
is based on generic non-interactive zero-knowledge proofs and is therefore im-
practical. The second construction is based on composite order bilinear pair-
ings [BGN05,FSTO06], and has several shortcomings. In particular, its range is
either only logarithmic in the security parameter or it is only weakly simulat-
able. Our fully simulatable construction is thus more efficient by a factor of the
security parameter; it is also designed in a way that is more modular and there-
fore easier to understand (and improve). Finally, it relies on a somewhat weaker
assumption. Therefore, we believe this result will be of independent interest.

Our contribution and outline of the paper. We present the first P-signature
scheme for multiple messages, the first fully simulatable VRF with polynomial
sized output domain, and the first efficient compact e-cash scheme that does not
rely on random oracles. (The security of conventional e-cash was, e.g., studied in
[JLO97,5TS99,Tro05].) The rest of the paper is organized as follows. In Section 2
we discuss our assumptions and recall useful results about non-interactive zero-
knowledge. In Section 3 we define and construct our new P-signature scheme for
message blocks. Section 4 and Section 5 revisit simulatable verifiable random
functions and compact e-cash respectively.

2 Preliminaries

In this section we list our assumptions and recall some useful results about non-
interactive zero-knowledge proofs (NIZK).

A function v is negligible if, for every integer c, there exists an integer K such
that for all k > K, |v(k)| < 1/k°. A problem is said to be hard (or infeasible) if
there exists no probabilistic polynomial time (p.p.t.) algorithm to solve it.



Bilinear Pairings. Let G1, G2, and G be groups of prime order p. The map
e : G1 x Gy — G must satisfy the following properties: (a) Bilinearity: a map
e : G1 X Gy — G is bilinear if e(a®, bY) = e(a, b)™; (b) Non-degeneracy: for all
generators g € G and h € G, e(g, h) generates Gr; (c) Efficiency: There exists
a p.p.t. algorithm BMGen(1*) that outputs (p,G1,G2,Gr,e,g,h) to generate
the bilinear map and an efficient algorithm to compute e(a,b) for any a € Gy,
b € Gs.

Assumptions. The security of our scheme is based on previously proposed number-
theoretic assumptions. The unforgeability of our P-signature construction relies

on the TDH [BCKLO08] and the HSDH [BWO07] assumptions; pseudo-randomness

is based on the ¢-DDHI assumption [BB04a,CHLO05]; and the zero-knowledge of

the Groth-Sahai proof system rests on the XDH or DLIN assumption [GS07].

Definition 1 (Triple DH). On input g,¢%,9¥ € G1, h,h® € G2, and {c;,
gl/(z"’c’i)}i:lmq for random z,y, and ci1,...,cq, it is computationally infeasible
to output a tuple (hH* gh¥ gH*¥) for u # 0.

Definition 2 (Hidden SDH). On input g, g*,u € Gy, h, h* € Gy and {g"/(#+c0),
het,u oz, q for random x and cq, . .. cq, it is computationally infeasible to out-
put a new tuple (g @+ he ue).

Definition 3 (¢-DDHI). On input g,ga,ga2, ...g*" € G for a random o —
Zy,, it is computationally infeasible to distinguish gé from a random element of
G with probability non-negligibly better than 1/2.

Our sVRF requires that the g-DDHI assumption holds either in G; or G5. With-
out loss of generality we fix this group to be G;. Note that this is slightly stronger
than the assumption used in [DY05] to construct an efficient VRF (there the
challenge is e(g,h)= or a random element of Gp). However, it is still weaker
than the BDHBI assumption used in the sVRF construction in [CLO7].

Composable Non-Interactive Proofs. We review composable non-interactive proof
systems. Let R(-, -) be any polynomial-time computable relation. A non-interactive
proof system for an NP language allows a prover to convince a verifier of the truth
of the statement 3z : R(y,z) about instance y using witness z. Non-interactive
proof systems use a common reference string params as output by Setup(1*)
that is common input to both the 7 «— Prove(params,y,x) and accept/reject «—
Verify(params, z, ) algorithms. This notion can be generalized for a relation
R(params, y,x) parameterized by params.

Informally, zero-knowledge captures the notion that a verifier learns nothing
from the proof but the truth of the statement. Witness-indistinguishability is
a weaker notion that guarantees that the verifier learns nothing about which
witness was used in the proof.

In a composable (under the definition of Groth and Sahai [GS07]) non-
interactive witness indistinguishable proof system there exists a SimSetup algo-
rithm that outputs params together with a trapdoor sim, such that (1) params



output by SimSetup are indistinguishable from those output by Setup; (2) the
output of Prove using these parameters is perfectly witness-indistinguishable (in
other words, even if there are two witnesses to a statement, they induce identical
distributions on the proofs). Composable non-interactive zero-knowledge further
means that there exists an algorithm SimProve that outputs a simulated proof
using sim and the output of SimProve is distributed identically to that of Prove
when given the simulated parameters. The big advantage of a composable def-
inition is that it is fairly simple and easy to work with, and yet it still implies
the standard multi-theorem definitions.

Composable proofs about commitments. The prover and verifier frequently get
some set of commitments (Cy,...,C,) as common input. The prover wants to
show that a statement about instance y = (Cy,...,C,, Condition) holds. The
witness to the statement is (x1, openy, ..., x,, open,, z), where (x;, open;) is the
opening of commitment C;, while z is some value that has nothing to do with the
commitments. The relation is R = {(params,y, z)|Cy = Com(params, 1, openi)A
... N Cy, = Com(params, x,,, open,,)

A Condition(params, x1, ..., Tpn, 2)}.

Summary of Groth-Sahai proofs.  Groth and Sahai [GS07] give a composable
witness-indistinguishable proof system that lets us efficiently prove statements in
the context of groups with bilinear maps. Let params g, = (p, G1, G2, Gr,¢€,9,h)
be the setup for pairing groups of prime order p.

In a Groth-Sahai proof, the prover and the verifier both know {aq}q=1..¢ €
Gh {bq}qzl.“Q S G27 te GT» and {aq,m}qzlu.Q,mzlu.Nh {ﬂq,n}q:L..Q,n:lu.N S
Z,. In addition, they both know commitments {Cy, }:m=1..m and {Dj, }n=1..n to
values in G; and G4 respectively. For each commitment C,, and D,, the prover
knows the opening information and the committed value z,, € G; or y, € G»
respectively (m = 1...M, n = 1...N).

Groth-Sahai proofs prove that the values in these commitments fulfill the
pairing product equation Hqul e(aq H%ﬂ T ™, by Hf:,:l yff”) =t.

Groth-Sahai commitments.  Throughout the paper we will use Groth-Sahai
commitments (GSCom) in our constructions. Under the parameters output by
Setup they are perfectly binding. We will sometimes make use of the fact that
they are also extractable.

3 A Multi-block P-Signature Scheme

Belenkiy et al. [BCKLO08] intruduced signatures with efficient non-interactive
proofs of signature possession. Their construction can only be used to sign a
single message block. In this section, we briefly review the definition of a P-
signature scheme and construct a multi-block P-signature scheme.

Before defining and constructing P-signatures, we recall some particulars
about the way Belenkiy et al. use Groth Sahai proofs. In addition to the zero-
knowledge or witness indistinguishability property they rely on the fact that
they are partially extractable (f-extractable [BCKLO08]) proofs of knowledge



about committed values. By ‘zin C’ we denote that there exists open such that
C' = Com(z, open). Following Camenisch and Stadler [CS97a] and Belenkiy et al.
[BCKLO08], we use the following notation to express an f-extractable NIPK for in-
stancey = (C4,. .., Cy, Condition) with witness w = (z1, opena, . .., Ty, openy, z):

7w — NIPK[z1inCh, ..., 2, in C,J{( f(params, (z1,0peny,..., Ty, 0penn,,y)) ) :

Condition(params, z1, ..., Zn, 2)}.

For such a proof there exists a polynomial-time extractor (ExtractSetup, Extract).
ExtractSetup(1*) outputs (¢d, params) where params is distributed identically
to the output of Setup(1¥). For all p.p.t. adversaries A, the probability that
A(1% params) outputs (y, 7) such that Verify(params,y, 7) = accept and Extract(
td,y, ) fails to extract f(params,(x1,0peny,...,x,,0peny,, z)), such that x; is
the content of the commitment C;, and Condition(params,x1,...,x,, z) is satis-
fied is negligible in k.

Groth-Sahai proofs use commitments GSCom(z, open) that allow to extract
the value x but not the opening open. In short, Groth-Sahai proofs are f-
extractable proofs of the following form

NIPK[{,ﬁEm in C’m}%:p{yn in Dn}nNle(xl, ceos TM YLy -eey ?JN)

Q M N
[T etaq IT wgem b TT witem) =13
q=1 m=1 n=1

In our P-signature scheme we will commit to a message m € Z, as Com(m, (open1,
openg)) = (GSCom(h™, openy ), GSCom(u™, opensy)). Such a commitment allows
to extract F'(m) = (h™,u™).

3.1 Definition of Multi-block P-Signatures

A signature scheme consists of four algorithms: Setup, Keygen, Sign, and VerifySig.
Setup(1¥) generates the public parameters params. Keygen(params) generates a
signing key pair (pk, sk). Sign(params, sk, m) computes a signature o on m.
VerifySig(params, pk, m, o) outputs accept if o is a valid signature on m, reject
otherwise. We extend this definition to support multi-block messages m =
(m,...my).

Definition 4 (F-Secure Signature Scheme [BCKLO8]). Let F be an ef-
ficiently computable bijection. With not necessarily efficient inverse F~1. We
say that a signature scheme is F-secure (against adaptive chosen message at-
tacks) if it has the following properties: (a) Correctness: VerifySig always ac-
cepts a signature o obtained using the Sign algorithm; (b) F-Unforgeability: no
adversary should be able to output values (Fi,...,F,,0) such that for m =
(F7Y(F),...,F7Y(F,)) algorithm VerifySig(params, pk,m,o) = accept unless
he has previously obtained a signature on m.



Definition 5 (P-Signature Scheme [BCKLO8]). A P-Signature scheme com-
bines an F-secure signature scheme with a commitment scheme and three pro-
tocols:

1. An algorithm SigProve(params, pk,o,m = (my, ..., my,)) that generates com-
mitments (C1,...,Cy) and a NIZK proof < NIPK[m;inCy, ..., m, in C,]{
(F(my),...F(my),o0) : VerifySig(params, pk,m, o) = accept}, and the cor-
responding VerifyProof (params, pk, 7, (C1,...,Cy)) algorithm.

2. A composable non-interactive zero-knowledge proof system for proving equal-
ity of committed values, i.e., a proof of relation R = {(params, (x,y), (open,,
openy)) | C = Com(params, x, open, ) A D = Com(params,y, openy) ANz = y}.

3. A secure two party computation [JSO07] that lets a signer issue a signature on
a committed message vector m without learning any information about m.
The protocol consists of interactive algorithms Siglssue(params, sk, C1, ... Ch)
and SigObtain(params, pk, m,openy, ..., openy).

3.2 Construction of a Multi-Block P-Signature Scheme

We first construct an F-secure multi-block signature scheme.

Setup(1%). Let (p,G1,Ga,Gr,e,g,h) «— BMGen(1*) be the parameters of a bi-
linear map, let u be an additional generator for G, and let params ;g
be the parameters for the corresponding Groth-Sahai NIZK proof system
(either in the XDH or the DLIN setup). Output parameters params =
((g, G1,G2,Gr, g, h),u, params g, z = e(g, h)).

Keygen(params) picks random «, 31, ..., By < Z,. The signer calculates v = h?,
=g w; = h%, w; = g% 1 < i <n. The secret-key is sk = (c, 3). The
public-key is pk = (v, w, ¥, w). The public key can be verified by checking
that e(g,v) = e(9, h) and e(g,w;) = e(w;, h) for all 7.

Sign(params, (o, 3), m) chooses a random r «— Z,\{—(a+S1mi+- -+ Bnmy)}
and calculates oy = g!/(@trthimittbnmn) G, — b7 gq = u”. The signature
is (01, 02,03).

VerifySig(params, (v, w, 0, W), m, (01, 02,03)) outputs accept if (o1, vos [[1, w™)
=z and e(u,09) = e(os, h).

Theorem 1. Let F(m) = (h™,u™). The above signature scheme is F-secure
giwen the HSDH and TDH assumptions. See Appendix 77 for the proof.

We need to augment the multi-block signature scheme with the three P-Signature
protocols.

1. SigProve(params, (v, w, 0, W), (01,02,03), m) is defined as follows: We use
Com to commit to the m; as follows: Com(m;, (open;. 1, open; 2)) = (GSCom(



h™i open; 1), GSCom(u™:, open; 2)) = (H;, U;) = C;; then we form the Groth-
Sahai proof:

m «+ NIZK[R™ in H;,v"™ inUy, ..., A" in H,,u™ in U, [{
(A u™ w™ R T w0, 09, 03)
e(or,vo[[l_jwi™) = 2/
e(u,o9)e(oz, h1) =1A {e(w;, K™ )e(g™, wi™) =1
e(u, h™)e(u™  h™1) = 1} 4}

VerifyProof (params, pk, m, (C1, ..., Cy)) simply verifies the proof .

To see that the witness indistinguishable proof 7 is also zero-knowledge, the
simulation setup sets © = g*. The simulator can then pick s,mq,...m, «— Z,
and compute o1 = ¢'/*. We implicitly set r = s — (o + >, mif3;). Note
that the simulator does not know r and «. However, he can compute h” =
e/ (v, wi) and u” = w®/(0[];—, w;"")* Now he can use h™, u™,
wi™,. .o, B u™ wn gy, 09 = W7, 03 = u” as a witness and construct
the proof 7 in the same way as the real Prove protocol. By the witness
indistinguishability, a proof using the faked witnesses is indistinguishable
from a proof using a real witness. See also [BCKLO0S|.

. The second protocol is a proof of equality of committed values. It is of the
form NIPK[zin C;yin D]{(z,y,h?) : e(z/y, h%) = 1 A e(g,h%) = e(g, h)}.
Groth and Sahai [GS07] show that such witness-indistinguishable proofs are
also zero-knowledge. A simulator that knows the simulation trapdoor sim for
the GS proof system can simulate the two conditions by setting € to 0 and 1
respectively. In this way he can fake the proofs for arbitrary commitments.
. The third protocol is a secure two-party computation for signing a commit-
ted value. One could use the same technique as in Belenkiy et al. [BCKLOS]
to reduce computing a signature to computing an arithmetic circuit using
the Jarecki and Shmatikov [JS07] secure two-party computation protocol.
Alternatively, we suggest the use of a more efficient protocol based on ho-
momorphic encryption as for example done in [BCCT09,CKW04].

Theorem 2. The above construction is a secure P-Signature scheme given the
HSDH and TDH assumption, either the SXDH or DLIN assumption, and the
security of the two-party computation protocol.

The proof follows from the F-unforgeability of the multi-block signature scheme
and the security of the Groth-Sahai proofs, which depend on either the SXDH or
DLIN assumptions. The zero-knowledge simulations are done as sketched above.
For details we refer to [GS07,BCKL08,BCCT09].

4 Strongly Simulatable Verifiable Random Functions

Here we present our new construction for sVRFs. Later, we will show that an
extension of this construction (as described in sections 4.2 and 4.3) can be used
to construct provably secure e-cash.



At a high level, a sVRF is an extension of a pseudorandom function (PRF)
(and also of a slightly weaker extension, called a VRF [MRV99]). It includes
a key generation procedure that generates a seed for the PRF along with a
corresponding public key. It also includes a proof system for proving that a
particular output is correct with respect to a given input and a given public key.
We require fairly strong hiding properties from this proof system — in particular,
we do not want it to interfere with the pseudorandomness properties of the PRF.
For the full definition, see [CLO7].

4.1 A New sVRF Construction

Our construction will be in the bilinear group setting where (p, G1, G2, Gr, e, g,
h) «— BMGen(1¥). We will use the function Fi(x) = g7+ to build an effi-
cient Simulatable VRF.® Note that the base function is similar to the Dodis-
Yampolskiy VRF [DY05], which uses the function Fs(z) = e(g, h)s%r and thus
gives output in Gp. Moving our function to output elements in G; is the crucial
step which allows us to use the Groth-Sahai proof techniques.

Theorem 3. Let Dy, C Z denote a family of domains of size polynomial in
k. Let p,g,e,G1,Go, Gt be as described above where |p| = k. If the DDHI as-

sumption holds in G, then the set {gﬁ}xepk is indistinguishable from the set
{9" }zep, where s,{ry}zecp, are chosen at random from Z,. The proof is very
similar to that in [DY05].

We will build an sVRF based on this function as follows:

Setup(1%). Let (p,G1,Ga,Gr,e,g,h) «— BMGen(1*) be the parameters of a bi-
linear map and let params ;4 be the parameters for the corresponding Groth-
Sahai NIZK proof system (either in the XDH or the DLIN setup). Output
parameters params ypp = ((p, G1, G2, GT, g, h), params gg).

Keygen(params pp). Pick a random seed s « Z, and random opening in-
formation openg, and output secret key sk = (s,opens) and public key
pk = GSCom(h?®, opens).

Eval(params gy, sk = (s, opens), z). Compute y = g'/(s+%),

Prove(params gy, sk = (s,0pens),z). Compute y = g*/(57%) and Cy = GSCom(
y, open,,) from random opening open,,. Next create the following two proofs:
w1, & composable NIZK proof that C, is a commitment to y; this is proof
that the value v committed to in C), fulfills the pairing product equation
e(v/y,h?) =1 Ae(g,h?) = e(g,h) (see [GSOT7] for details); 72, a GS compos-
able witness indistinguishable proof that C, is a commitment to Y and pk
is a commitment to S such that e(Y, Sh®) = e(g, h). Output m = (C, w1, 72).

Verify(params, pk, z,y, ™ = (C,m1,72)). Use the Groth-Sahai verification to Ver-
ify 7y, o with respect to C, x, pk,y.

Theorem 4. This construction with domain size p is a strong sVRF under the
q-DDHI for G1 and under the assumption that the Groth-Sahai proof system is
secure. For proof, consult the full version of the paper.

5 This function is also known as a Weak Boneh-Boyen signature [BB04b].



4.2 A NIZK Protocol for Pseudo-random Functions

In some applications, we need something stronger than an sVRF. In our e-cash
application, we need to be certain that the proofs will reveal no information
about which wallet was used, which means that they should completely hide the
seed used. Furthermore, we do not want to reveal which coin in the wallet is
being spent, thus we also want to hide the input z.

Thus, we will build a composable NIZK proof for the following language:

Ls={Cs, Cy,y|3z, s, 0pen,, opens such that
Cs = Com(s,opens) A Cp =Com(z,open,) Ay = Fs(x)}

Note that there are four points where an sVRF proof is weaker than a full NIZK
proof. First, the sVRF public key is not guaranteed to hide the secret key, only to
hide enough information to preserve the pseudorandomness of the output values.
However, this is not a problem in the above construction, since our public key is
formed as a commitment. Second, an sVRF has a fixed public key, while we want
to be able to compute unlinkable proofs for many different values of the PRF.
This again is not relevant in the above construction: since we form our public key
using a commitment scheme, we can easily use a different value in each proof.
Third, in the sVRF proof, the input x is given in the clear. We can fix this fairly
easily by replacing x by a commitment and proof. The final difference is that the
sVRF proof need not be fully zero knowledge - the sVRF simulator is given the
secret key as input (in our construction, the opening of the commitment Cj).
We resolve this last point by adding extra commitments C%, C!, (whose opening
the zero-knowledge simulator will know), and zero-knowledge proofs that they
commit to the same values as Cs, C,.

On input (Cs,Cy,y) and (x, s, openg, opens) a NIZK proof of membership
in Lg is done as follows: We first compute commitment C7 to h®. Then we
compute Cy, m; as in the sVRF Prove protocol, with pk = C. Next we compute
a commitment C’, to h”, and a GS composable witness-indistinguishable proof
7o that Cp is a commitment to Y, C7 is a commitment to X, and C} is a
commitment to S such that e(Y, SX) = e(g, h). Finally, to make the construction
zero-knowledge, we add composable NIZK proofs 74 and 7, that Cs and C?, and
C, and C! are commitments to the same values. Let v be s or z, respectively.
Then each proof is a proof that the values v and v’ committed to in C, and C,
fulfill the pairing product equation e(v/v’, h%) = 1Ae(g, h?) = e(g, h). See [GS0T]
for why this is zero-knowledge. The final proof is 7 = (C§, Cy,, Cy, m1, T2, 75, T2 ).

The proof is verified using the Groth-Sahai verification techniques to check
™1, T2, T3, T4 With respect to Cs, Cy, y, Cy, Cf, Cy.

Theorem 5. The above proof system is a secure composable zero knowledge
proof system for the language Ls(params), where params is output by Setup.
For proof appears in the full version.



4.3 NIZK Proofs Doublespending Equations: A More Complex
Language

In our application, we use NIZKs about PRFs in two different places. The first
is to prove that a given serial number has been computed correctly as Fi(x)
according to a committed seed s and committed input x. That can be done
using the NIZK protocol described in the previous section. However, we also
need to be able to prove that the doublespending value T" has been computed
correctly. Thus, we also need a proof system for the following language:

Lr={Cs,Cy, Cs, tag, ch | 3z, s, sk, open,,, opens, openg, such that
Cs = Com(s,opens) A Cp = Com(x, open)
A Cyp = Com(sk, openg;) A tag = (g°%)" Fy(z)}

We can generalize our above proof system to handle this as well. For the con-
struction see the full version.

4.4 Efficiency comparison with previous sVRF construction

As described above, our sVRF proof requires 1 commitment in Gy, 1 Groth-
Sahai proof, and one zero-knowledge proof of equality of values in G;. Thus, if
we instantiate the proofs under the SXDH assumption, our construction requires
14 elements of G and 14 elements of G5 to give a proof, and the sVRF outputs
a random element of the group G;. Note that the group size is exponential in
the security parameter k, so this really produces k bits of pseudorandomness.

We compare this to the previous contruction of sVRFs given by Chase and
Lysyanskaya [CLO7]. That construction was based on composite order bilinear
groups. For the order of such groups to resist factorization they must be of
a much greater size to achieve the same security as prime order groups. We
assume a conservative factor of 5 for this difference 7. As pairing operations
(and exponentiation) have cubic complexity, it is fair to assume that composite
order pairings are at least two orders of magnitude slower than prime order
pairings.

In addition, the basic construction of [CLO7] is only weakly simulatable: for
each input value there was a certain restricted set of outputs for which the sim-
ulator could output a simulated proof. Finally, the simulator also required some
trapdoor information about the desired output value (in the construction it was a
discrete logarithm). In order to obtain full simulatability, in which the simulator
could produce a simulated proof for any output value in the range of the function
with no additional information, this result applied an extractor to the output of
the weak sVRF to extract a single bit. The simulator could then sample values
from the simulatable range together with some trapdoor information, until it
had found one on which the extractor produced the appropriate bit. Clearly ex-
tending this approach to achieve more than O(log k) bits of randomness would
be infeasible.

" http://www.keylength.com/en/3/



Each proof generated by this construction requires 3 elements of the com-
posite order group G. Thus, in order to produce k bits of randomness, even if we
assume that we extended the construction to extract log k bits, we would need
k/log k proofs, for a total of 3 % k/log k elements of G.

5 New Compact E-Cash Scheme

We construct a compact e-cash scheme using our multi-block P-signatures and
sVRF protocols. Compact e-cash as defined by Camenisch et al. [CHLO5] lets a
user withdraw multiple e-coins simultaneously. There are three types of players: a
bank B as well as many users I/ and merchants M (though merchants are treated
as a special type of user). Please refer to [CHLO5] for protocol specifications
and a definition of security.® We now show how to construct compact e-cash.

CashSetup(1*). The setup runs SigSetup(1*) and returns the P-signature param-
eters params. Our construction is non-blackbox: we reuse the GS NIPK proof
system parameters params g that are contained in params. The parameters
params g in turn contain the setup for a bilinear pairing paramsg,, =
(p,G1,G2,Gr,e,g,h) for a paring e : G; x G3 — G for groups of prime
order p.

BankKG(params,n). The bank creates two P-signature key pairs, (pk,,, skw) <
SigKeygen(params) for issuing wallets and (pk,, sk.) < SigKeygen(params)
for signing coin indices. Then the bank computes a P-signature on the n
coin indices Xy, ..., X, where X; = SigSign(sk,,i).” The bank’s secret-key
is sk = (sku, sk.) and the bank’s public-key is (pk,,, pk., X1, ..., Xn).

UserKG(params). The user picks sky < Z5 and returns (pky, = e(g, h)*t, sky).
Merchants generate their keys in the same way but also have a publicly
known identifier idys = f(pk o) associated with their public keys (f is some
publicly known mapping).

Withdraw (U (params, pk g, sku,n), B(params, pky,, skg,n)). The user withdraws
a wallet of coins from the bank.

1. The user picks s,t' «— Z,; computes commitments comm, = Com(sky,
opengy,, ), commg = Com(s’,openy ), and commy = Com(t',openy);
and sends commyy, commyg, and commy to the bank. The user proves

8 The original [CHLO5] definition had an interactive Spend protocol, while we break
it up into two non-interactive protocols: SpendCoin(params, W, pk ., info) and
VerifyCoin(params, pk ,,, pkg, coin). The merchant sends the user a info, the user
runs SpendCoin and gives the resulting e-coin for the merchant to verify using
VerifyCoin. We prefer to use a non-interactive spend protocol because often two-
way communication is not available or impractical, e.g. when sending an e-coin by
email.

This will allow us to use the range proof approach from [T'S06] and [CCSO08], where
a user proves that a value (the coin index) is in a list (the list {1,..., N}) by proving
knowledge of a signature on that value.

©



in zero-knowledge that he knows the opening to these values, and that
commg, corresponds to the secret key used for computing pky,.*°

2. If the proofs verify, the bank sends the user random values s”,t" € Z,,.

3. The user picks random openg, open;, commits to comms = Com(s’ +
s", opens), and comm; = Com(t' + ¢/, openy), sends comm, and comm;
to the bank, and proves that they are formed correctly. Let s = s’ + s
and t =t +t".

4. The user and bank run SigObtain(params, pk,,, (sky, s,t), (openg, opens,
openy)) < Siglssue(params, skq,, (commgy, commsg, commy)) respectively.
The user obtains a P-signature o on (sky, s,t). The user stores the wallet
W = (s,t, pkg, o,n); the bank stores tracing information Ty = pk,.

SpendCoin(params, (s,t, pkg, o, J), pk o, info). The user calculates a serial num-
ber S = F(J) = g"/(5+7) The user needs to prove that he knows a signature
o on (sky, s,t) and a signature X; on J such that S = F(J). Next the user
constructs a double-spending equation T = (gi®mll#fo)sku F, (1) .11 The user
proves that T is correctly formed for the sky, ¢, J, signed in o and X;.

All these proofs need to be done non-interactively. We now give more details.
The user runs SigProve, first on ¢ and pk, to obtain commitments and
proof ((Ciq4,Cs,Ct),m1) < SigProve(params, pk,,, o, (sky,s,t)) for sky,s,t
respectively and second on X; and pk,. to obtain commitment and proof
(Cy,my) « SigProve(params, pk,, X, J) for J.

Then the user constructs non-interactive zero-knowledge proofs that indeed
(S, T, C4a,Cs, Ct, Cy,idpg]|info) are well formed. This is done by computing
two proofs g and wp: mp proves that (Cs, Cy,S) € Lg and is computed as
described in Section 4.2, where Lg is defined as:

Lg ={Cs,Cy,y|3z, s, 0pen,, opens such that
Cs = Com(s,opens) A Cyp = Com(x, openy) ANy = Fs(x)} ;

mr proves that (Cy, Cy,Cig, T, (idpq|info)) € Lr and is computed as de-
scribed in Section 4.3, where L is defined as:

L1 ={Cs,Cy,Cyi, tag, ch | Iz, s, sk, open,, openg, openg, such that
Cs = Com(s,opens) A Cy = Com(z, openg)A
Cx = Commit(sk, openga) A tag = (g*F) M Fy ()} .

The user outputs a coin = (S, T, Cyq,Cs, Cy, Cy,m1, T, s, T, idpg]| info).

10 These and the rest of the proofs in the issue protocol can be done using efficient
sigma protocols [CS97b,Dam02] and their zero-knowledge compilers [Dam00].

11 The merchant is responsible for assuring that info is locally unique. Coins which
have the same serial number and the same ida||info cannot be deposited and the
damage lies with the merchant. The dangers that users get cheated by verifiers that
do not accept coins with correct info can be mitigated using techniques such as
endorsed e-cash [CLMO7].



VerifyCoin(params, pk v, pkg, coin). To verify parses coin as (S, (T, Ciq4,Cs, Cy,
Cy, 71, T2, Ts, T1), idrd ||info) and checks that the following checks succeed:
(1) Check that idyy' = f(pk pq)- (2) SigVerify(params, pk,,, 71, (Cia, Cs, Ct)) =
accept. (3) SigVerify(params, pk,,mo,Cy) = accept. (4) Verify,_(params gg,
(Cs,Cy, S),ms) = accept. (5) Verify . _(params g5, (Ct, Cy, Cia, T, (idpq||info)),
1) = accept.
Note that the merchant is responsible for assuring that info is unique over all
of his transactions. Otherwise his deposit might get rejected by the following

algorithm.
Deposit(params, pkg, pk v, coin, stateg). The algorithm parses the coin as coin =

(S,T,C4a,Cs, C,Cy,m, w2, Ts, 71, idaq]|info) and performs the same checks
as VerifyCoin. The bank maintains a database statep of all previously ac-
cepted coins. The output of the algorithm is an updated database statel; =

state U {coin} and the flag result, that is computed as follows:
(i) If the coin verifies and if no coin with serial number S is stored in states,

result = accept to indicate that the coin is correct and fresh. The bank
deposits the value of the e-coin into the merchant’s account and adds

cotn to stateg.
(ii) If the coin doesn’t verify or if there is a coin with the same serial number

and the same idpq||info already stored in statep, result = merchant to
indicate that the merchant cheated. The bank refuses to accept the e-coin

because the merchant failed to properly verify it.

(iii) If the coin verifies but there is a coin with the same serial number S
but different idaq||info in stateg, result = user to indicate that a user
doublespent. The bank pays the merchant (who accepted the e-coin in
good faith) and punishes the double-spending user.

Identify(params, pkg, coiny, coinz) allows the bank to identify a double-spender.

Parse coiny = (S, (T, Cya,Cs, Ct, Cy, w1, 72, Ts, T1), idaq1 || info,) and coing =
(Slv (T/’ zl‘d’ C;’ év CS’ 71—/17
T, T, Tp), tdaqa ]| infoy).
The algorithm aborts if one of the coins doesn’t verify, if S # S’, or if
idpq ||info, = idaqs]|infoy. Otherwise, the algorithm outputs Tw = pk;, =
e((T)T")Y/ Gdrallinfo,—idrmallinfos) ‘B | which the bank compares to the trace
information it stores after each withdrawal transaction.

Theorem 6. This e-cash scheme is a secure compact e-cash scheme given the
security of the P-signature scheme, the PRF, and the Groth-Sahai NIZK proof

system.

In the full version we provide a proof and a performance analysis of our scheme.
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