

Yocto Project and OpenEmbedded training 3-day session

Title	Yocto Project and OpenEmbedded development training
Overview	Understanding the Yocto Project Using it to build a root filesystem and run it on your target Writing and extending recipes Creating layers Integrating your board in a BSP Creating custom images Application development with an Eclipse SDK
Duration	Three days - 24 hours (8 hours per day). 40% of lectures, 60% of practical labs.
Trainer	One of the engineers listed on <pre>http://free-electrons.com/training/trainers/</pre>
Language	Oral lectures: English, French. Materials: English.
Audience	Companies and engineers interested in using the Yocto Project to build their embedded Linux system.
Prerequisites	<pre>Knowledge of embedded Linux as covered in our embedded Linux training (http://free-electrons.com/training/embedded-linux/) Knowledge and practice of Unix or GNU/Linux commands People lacking experience on this topic should get trained by themselves with our freely available on-line slides: http://free-electrons.com/docs/command-line/</pre>

Required equipment	 For on-site sessions only. Everything is supplied by Free Electrons in public sessions. Video projector PC computers with at least 4 GB of RAM, a CPU at least equivalent to an Intel Core i5 and Ubuntu Linux installed in a free partition of at least 20 GB. Using Linux in a virtual machine is not supported, because of issues connecting to real hardware. We need Ubuntu Desktop 14.04 (32 or 64 bit, Xubuntu and Kubuntu variants are fine). We don't support other distributions, because we can't test all possible package versions. High Speed Connection to the Internet (direct or through the company proxy). PC computers with valuable data must be backed up before being used in our sessions. Some people have already made mistakes during our sessions and damaged work data.
Materials	Print and electronic copies of presentations and labs. Electronic copy of lab files.

Hardware

The hardware platform used for the practical labs of this training session is the **BeagleBone Black board**, which features:

- An ARM AM335x processor from Texas Instruments (Cortex-A8 based), 3D acceleration, etc.
- 512 MB of RAM
- 2 GB of on-board eMMC storage (4 GB in Rev C)
- USB host and device
- HDMI output
- 2 x 46 pins headers, to access UARTs, SPI buses, I2C buses and more.

Day 1 - Morning

Lecture - Introduction to embedded Linux build systems				
 Overview of an embedded Linux system architecture Methods to build a root filesystem image Usefulness of build systems 				
Lecture - Overview of the Yocto Project and the Poky reference system	Lab - First Yocto Project build			
 Organization of the project source tree Building a root filesystem image using the Yocto Project 	Downloading the Poky reference build systemBuilding a system image			

Day 1 - Afternoon

Lecture - Using Yocto Project - basics	Lab - Flashing and booting
Organization of the build outputFlashing and installing the system image	• Flashing and booting the image on the BeagleBone
Lecture - Using Yocto Project - advanced usage	Lab - Using NFS and configuring the build
Configuring the build systemCustomizing the package selection	 Configuring the BeagleBone to boot over NFS Learn how to use the PREFERRED_ PROVIDER mechanism

Day 2 - Morning

Lecture - Writing recipes - basics	Lab - Adding an application to the build
 Writing a minimal recipe Adding dependencies Development workflow with <i>bitbake</i> 	 Writing a recipe for <i>nInvaders</i> Adding <i>nInvaders</i> to the final image

Lecture - Writing recipes - advanced features

- Extending and overriding recipes
- Adding steps to the build process
- Learn about classes
- Analysis of examples
- Logging
- Debugging dependencies

Day 2 - Afternoon

Lab - Learning how to configure packages

- Extending a recipe to add configuration files
- Using ROOTFS_POSTPROCESS_COMMAND to modify the final rootfs
- Studying package dependencies

Lecture - Layers

Lab - Writing a layer

- What layers are
- Where to find layers
- Creating a layer

- Learn how to write a layer
- Add the layer to the build
- Move *nInvaders* to the new layer

Day 3 - Morning

Lecture - Writing a BSP	Lab - Implementing the kernel changes
 Extending an existing BSP Adding a new machine Bootloaders Linux and the linux-yocto recipe Adding a custom image type 	 Extend the kernel recipe to add the nunchuk driver Configure the kernel to compile the nunchuk driver Play <i>nInvaders</i>

Day 3 - Afternoon

Lecture - Creating a custom image

- Writing an image recipe
- Adding users/groups
- Adding custom configuration
- Writing and using package groups recipes

Lab - Creating a custom image

- Writing a custom image recipe
- Adding *nInvaders* to the custom image

Lecture - Creating and using an SDK

Lab - Experimenting with the SDK

- Understanding the purpose of an SDK for the application developer
- Building an SDK for the custom image
- Building an SDK
- Using the SDK through Eclipse