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Abstract The computation of Lagrangian coherent structures (LCS) has become a
standard tool for the analysis of advective transport in unsteady flow applications.
LCS identification is primarily accomplished by evaluating measures based on
the finite-time Cauchy Green (CG) strain tensor over the fluid domain. Sampling
the CG tensor requires the advection of large numbers of fluid tracers, which
can be computationally intensive, but presents a large degree of data parallelism.
Processing can be specialized to parallel computing architectures, but on the other
hand, there is compelling need for robust and flexible implementations for end users.
Specifically, code that can accommodate analysis of wide-ranging fluid mechanics
applications, while using a modular structure that is easily extended or modified,
and facilitates visualization is desirable. We discuss the use of Visualization Toolkit
(VTK) libraries as a foundation for object-oriented LCS computation, and how this
framework can facilitate integration of LCS computation into flow visualization
software such as ParaView. We also discuss the development of CUDA GPU kernels
for efficient parallel spatial sampling of the flow map, including optimizing these
kernels for better utilization.

1 Introduction

The computation of Lagrangian coherent structures (LCS) originated as a means
to compute stable and unstable manifold type structures in vector fields with
aperiodic time dependence. This was motivated by knowledge that the interaction

S. Ameli • S.C. Shadden (�)
University of California, Berkeley, CA, USA
e-mail: sameli@berkeley.edu; shadden@berkeley.edu

Y. Desai
Georgia Tech, Atlanta, GA, USA
e-mail: yogindesai02@gmail.com

P.-T. Bremer et al. (eds.), Topological Methods in Data Analysis and Visualization III,
Mathematics and Visualization, DOI 10.1007/978-3-319-04099-8__13,
© Springer International Publishing Switzerland 2014

201

mailto:sameli@berkeley.edu
mailto:shadden@berkeley.edu
mailto:yogindesai02@gmail.com


202 S. Ameli et al.

of such manifolds gives rise to chaotic dynamics, and hence understanding these
interactions helped bring an ordered understanding to chaotic advection in fluid
flow. This approach was originally applied to time periodic systems, especially
using Poincaré mappings that make the dynamics autonomous. The applicability
of traditional invariant manifold concepts breaks down for time aperiodic vector
fields for practical and conceptual reasons. Notably, asymptotic notions associated
with invariant manifold theory are neither applicable nor desirable for understanding
inherently transient phenomena associated with unsteady computational or experi-
mental fluid flow data.

LCS computational techniques do not typically solve for the stable and unstable
manifolds of explicit trajectories. A global approach was developed from obser-
vations that material points straddling stable and unstable manifolds typically
separate faster in forward and backward time than pairs of points not straddling
such manifolds. That is, the manifold geometry may be inferred by considering
the stretching associated with the hyperbolicity of these structures [14]. This
led to an alternative characterization of organizing structures in fluid flows as
invariant manifolds (material surfaces) that satisfy certain locally attracting or
repelling properties, which became the basis for formalizing the concepts of LCS.
LCS computations have been applied to diverse applications, as reviewed in [26],
demonstrating wide-ranging utility in analysis of unsteady fluid advection.

Scalar measures are often used to identify LCS, such as the (largest) finite time
Lyapunov exponent FTLE field [29]. This is accomplished by plotting the field and
visually identifying such structures, or using an algorithmic approach to extract
features such as ridges in the field [19,21,24]. The FTLE is derived from the largest
eigenvalue of the Cauchy Green (CG) strain tensor

C.x0; t0; tf / D rF
tf
t0 .x0/

| � rF
tf
t0 .x0/ ; (1)

where F
tf
t0 W x.t0/ 7! x.tf / denotes the flow map, and x.t/ is a fluid element trajectory

with x0 D x.t0/. The full CG tensor encodes direction-dependent stretching
information that can be leveraged, for example in defining normally hyperbolic
LCS, i.e. material surfaces that are locally the most normally repelling over a chosen
time interval [9]. Therefore, the computation of the CG tensor over the flow domain
can be thought of as a common, or at least representative, target in LCS identification
strategies.

The global approach to LCS identification requires a highly resolved sampling
of the CG tensor over the fluid domain to locate potential LCS. One typically starts
with fluid velocity field data u.x; t/, obtained from computation or measurement,
and the flow map is computed by seeding the fluid domain with tracers and
integrating the advection equation

Px.x0; t/ D u.x; t/ ; (2)
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over a finite time interval .t0; tf / for a grid of seed points x0. This is typically the
most computationally intensive aspect of LCS identification since the seed grid may
be composed of millions of material points especially in 3D flows. Furthermore, the
integration of Eq. (2) for each seed point typically requires thousands of integration
steps or more, and each integration step can require several space-time interpolations
of u.x; t/. Furthermore, this process may be repeated for a time series of seed grids
at different t0 to obtain the time evolution of LCS. We note that the high resolution
of seed points is needed in part for finite differencing to compute rF

tf
t0 .x0/.

Alternatively, integration of the variational equations, as performed in [15], may also
be used to obtain the linearized flow map directly. However, sufficient resolution is
still needed for LCS detection, especially when ridge extraction is performed [24].

It has been our experience that two major deterrents for wider adoption of LCS
computations for flow post-processing are (1) computational time and (2) ease of
use. With regards to (1), we will discuss the use of general purpose computing on
graphics processing units (GPGPU) for accelerating flow map computations. This
work builds on previous works of [7, 8, 13]. With regards to (2), we will discuss the
use of the Visualization Toolkit (VTK) for creating an LCS computational pipeline
that on the “front-end” is capable of handling various input data, and on the “back-
end” facilitates visualization of LCS with standard flow analysis tools. In Sect. 2
we describe the main component of the LCS computational pipeline. In Sect. 3 we
describe the implementation of the flow map computation on the GPU and results
for various applications, ranging from 2D Cartesian to 3D unstructured velocity data
processing. In Sect. 4 we will discuss some results and relationship with previous
work.

2 LCS Pipeline

Here we describe a pipeline developed to process velocity field data for the purpose
of computing LCS. This pipeline was written in C++ and will be made openly
available on GitHub (www.github.com/FlowPhysics). This pipeline was developed
using an object-oriented approach to create filters (classes that modify data) that
can be extended or modified with minimal effort. Specifically, this pipeline makes
extensive use of the popular Visualization ToolKit (www.vtk.org). VTK is a broad
collection of open-source libraries for 3D computer graphics, image processing and
visualization. The filters that we developed adhere to VTK coding standards and
conventions for modularity, portability and debugging. We also chose to develop
our pipeline using VTK for two additional reasons. First, VTK has a number of
classes for reading standard file formats and data grid types commonly used by the
fluid mechanics community. We could therefore leverage existing functionality to
better support input from a variety of applications. Second, open-source programs
for visualizing scientific data such as ParaView and VisIt are built on VTK.

www.github.com/FlowPhysics
www.vtk.org
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Fig. 1 Pipeline architecture

Developing an LCS pipeline in VTK facilitates integration with these programs,
and alternatively development of custom rendering for a stand-alone software.

VTK is highly object-oriented and supports a pipeline architecture that general-
izes the connection and execution of algorithms. The benefits of this methodology
are (1) a universal interface between different filters in the pipeline, (2) greater
control over information flow to better manage cache. The pipeline enables stream-
ing of data, which is important for the application here because unsteady velocity
field data are typically stored by a series of files that are often altogether too large
to be loaded in memory. Streaming requires the use of time-aware filters and for
this we developed time-related request keys, similar to the approach described by
Biddiscombe et al. [4]. This pipeline does not support spatial streaming of velocity
data for applications where individual time frames are too large for memory.

Our pipeline architecture includes the following custom filters, which are
connected as shown in Fig. 1. We note that the pipeline does not represent data
flow, but rather connectivity of filters and the management of requests.

Reader. A reader filter was developed to accept a variety of input data. VTK
contains a number of classes to load various types of data (e.g. structured and
unstructured grid data) and file formats. There are few readers in VTK that are
time-aware, and those may only support one or a few file formats. Our filter
implements an reader class that casts to the appropriate readers of both legacy
and XML file types to support 11 file formats commonly used in VTK. This filter
provides additional functionality by providing two different types of output based
on requests of the pipeline. Output can be either a single data object or a data
object that encapsulates multiple data objects depending on if the request comes
from the Seed or the Cache filter. This filter also adds metadata on output objects
such as times and indices that are needed throughout the pipeline to facilitate
temporal streaming and interpolation. Lastly, this filter provides a framework for
implementing necessary pre-processing of velocity data, such as tetrahedralization
as motivated below.

Cache. This filter is connected to the output of Reader. The Cache filter is
essentially a wrapper that manages VTK’s vtkTemporalDataSetCache class.
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It stores a window of the last requested data time frames. The amount of data cached
depends on the upstream request. This filter is used to avoid repetitive streaming
processes in the pipeline and deletes unnecessary data on memory.

Interpolator. This filter is used to interpolate the velocity field data in space
and time. Data in the pipeline before this filter are provided discretely and all
filters after Interpolator treat velocity data as continuous. Tracers are updated
altogether each time step. This ensures that tracers are requesting the same flow field
information each update step to best handle data streaming and memory utilization.
This is also consistent with our GPU implementation whereby tracers are updated
altogether to keep threads short-lived. We note that both space and time interpolation
is performed on the GPU. Specifically, a window of velocity data frames (nominally
two velocity files for linear interpolation) are loaded on the GPU’s memory, and
interpolation is performed on the GPU as necessary as integration proceeds between
these time frames.

Seed. This filter is used to initialize the seed points where the CG tensor is to be
sampled. Currently these locations are defined as structured grid data. This filter
defines their initial conditions, other attributes, and for unstructured velocity data
computes which cell in the velocity field mesh each seed point is located in. While
the seed grid are nominally the locations where the CG tensor is evaluated, highly
localized auxiliary points may also be defined about each seed point for improving
flow map gradient computation as discussed below.

Flow Map. This filter maps the seed points forward in time. Therefore it is
connected to both Seed and Interpolator. It is capable of implementing
various types of integration routines, e.g. single step (Runge Kutta) and multi step
(e.g. Adams Bashforth) methods. The same points passed from the input (Seed)
are passed to the output with the final seed point locations added as a vector
attribute to the point data. If a trajectory leaves the spatial domain of the velocity
data, two options are possible. The CG tensor evaluation can be performed early
at all locations relying on this trajectory. Alternatively, velocity extrapolation can
be performed inside the interpolation filter, however one must take care is this
regard [26, 30].

Cauchy-Green. This filter calculates the finite time Cauchy-Green strain tensor
over the seed points using the initial and final point locations output from Flow
Map. Currently, this is performed using standard central difference formula for
the flow map gradient matrix entries. This differencing can be applied directly to
the evolution of the seed point grid, or by differencing auxiliary points attributed
to each seed location as described above. The auxiliary point method is more
computationally expensive, but can provide more accurate CG tensor computation
at less computational expense than an equivalent increase of seed grid resolution
when seed spacing is reduce by more than 1/2. However, an equivalent increase in
seed grid resolution also improves resolution of the CG tensor field, which is not
accomplished through the auxiliary points method. Additionally, the auxiliary point
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method can result in missed structures, when LCS are not properly straddled by
points used in finite differencing [29, 31]. This filter also computes the eigenvalues
and eigenvectors of the CG tensor at each seed point, which are commonly used for
LCS detection. The seed points are passed to the output with the eigenvalue/vector
fields added as point data attributes.

LCS. This filter processes the output from the Cauchy Green filter to apply
criterion for LCS detection, for example, further processing of FTLE field data,
such as Gaussian smoothing to remove computational noise as well as C-Ridge
computation [23, 24]. While not currently implemented, strainline and shearline
computation as described in [10] could be implemented in this filter.

Visualization. This is not a separate filter in our pipeline, but we have separated
this conceptually. One important benefit of using the new pipeline functionality of
VTK is that we can compile each filer to a shared library that can be loaded by the
ParaView plugin manager, so an end user can simply import the filters as plugins
in ParaView and then use these to create a pipeline for computing and visualization
of fields defined from the CG filter (e.g. FTLE), or visualize features from the LCS
filter. We note that support for FTLE computation was recently added to VisIt [2] as
used by Özgökmen et al. [18].

3 Flow Map Computation on the GPU

The computation of the CG tensor field requires the advection of a large set of
tracer trajectories. Since each tracer moves independently, these calculations present
a parallel workload. GPGPU was used to perform acceleration/parallelization of this
computation. On the hardware side, GPUs are widely available, cheap and scalable
and on the software side GPU programming has become widely accessible, portable
and supported by various compilers.

We used NVIDIA’s compute unified device architecture (CUDA) platform [1].
Optimization of a CUDA program depends somewhat on the GPU architecture used.
We report results run on a consumer-level graphics card with the NVIDIA GeForce
GTX 670 GPU and the higher-end NVIDIA Tesla K20 GPU. Both GPUs are based
on the Kepler architecture. GeForce GTX 670 has peak theoretical double floating
point performance of 0.19 TFlops whereas Tesla K20 has peak theoretical double
floating point performance of 1.17 TFlops. While GPU threads are plentiful and can
be launched and terminated with minimal overhead, performance of parallelized
flow map (trajectory) computation is primarily limited by memory bandwidth.

For the GPU implementation only registers, global memory and constant mem-
ory were utilized. Registers were used by individual threads to store local variables
in specific interpolation and integration kernels discussed below, and were reused in
each kernel to the greatest extent possible. Since constant memory is read only and
limited to 64 kb but can be accessed by all threads, we used this for mesh parameters
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and other constants. Tracer and velocity field arrays were always stored on global
memory.

Each streaming multiprocessor (SMX) can run up to 16 resident blocks or 2,048
resident threads concurrently for the architecture we used. A common target in
optimizing the code was to make sure every streaming processor had roughly 2,048
resident threads running at any given time. The number of registers available per
SMX limits the number of threads that can reside on a SMX. Since the number
of registers were limited to 64 K per multiprocessor, this implied that every thread
needed to use only 31 registers for 100 % occupancy. We developed our kernels, as
discussed below, to keep register usage nominally within this bound.

3.1 Implementation

For the purpose of explaining the implementation and performance results we
focus discussion on the 4th order explicit Runge-Kutta integration method (RK4).
To decrease register usage and hence improve GPU utilization, we broke up the
integration kernel into smaller kernels. For example, RK4 requires the vector field
to be evaluated at four different locations in space-time for a single update step.
These interpolations are done as separate kernels. Furthermore, for unstructured grid
data each interpolation requires a cell-search, i.e. determination of which velocity
grid cell the interpolation point is located. Therefore, for each integration step, eight
kernels are run; four kernels to evaluate the velocity field, and each of these requires
a preceding cell-search kernel call. This strategy involves the use of a large number
of threads that are short-lived, which are what GPUs are designed to handle. Using
this strategy also enables the CG tensor to be evaluated at any time step during
the integration interval .t0; tf / with minimal effort. This can be advantageous if
the CG tensor is to be evaluated early for trajectories that leave the fluid domain
before the full integration interval is reached. This is common with velocity data
coming from modeling or measurement over a truncated domain. But moreover,
some LCS detection strategies require certain criteria to be evaluated on the fly as
integration proceeds. This need also motivated updating tracers synchronously for
each integration step, which is consistent with maintaining efficient data flow in
our pipeline, Sect. 2. That is, the pipeline is most efficient if all upstream requests
require the same velocity data loaded in memory. We note however that velocity data
is loaded into GPU memory only every time a new velocity data file is needed, not
every integration time step. Figure 2 shows the runtime comparison of the single-
kernel code and split-kernel code. It can be seen that split-kernel strategy executes
in roughly 30 % less time for all by very small seed grid sizes.

We use an efficient local cell search strategy for unstructured grids [27]. We
have demonstrated that this method outperforms other cell search methods we have
tested such as the structured auxiliary mesh approach, and VTK’s Kd-tree and Oct-
tree methods. This method is designed for tetrahedral grids (or triangular grids
in 2D). Therefore, other grid topologies of velocity data that might need to be
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Fig. 2 Runtime comparison between a single-kernel RK4 time step implementation and a split-
kernel RK4 time step implementation. Graphs plot the percent decrease in runtime of the split
kernel implementation from that of the single kernel implementation. Runs were performed on
both the 2D and 3D unstructured data examples described below

processed are tetrahedralized using built in VTK functionality as a preprocessing
step in the Reader filter. This enables a single, efficient cell search algorithm to be
used, which alleviates the need to develop and optimize different interpolation and
integration kernels for different velocity grid topologies. However the tradeoff is that
piece-wise linear representation using a tetrahedral grid may degrade interpolation
accuracy when the native CFD grid has higher order elements.

3.2 Performance

Most of the processing time for the CG tensor field computation is spent inside
the velocity field interpolation function. This function gets called one or more
times each integration step for each trajectory update. Efficiency of this function
is a main determinant of computational time. The interpolation function is mainly
dependent on the grid topology of the velocity data, e.g. interpolation on Cartesian
grids differs in strategy and performance than interpolation on unstructured grids.
Different kernels were developed to handle interpolation on different grid types.
The efficient cell search algorithm for tetrahedralized unstructured grid data that
is used readily facilitates spatial interpolation as described in [27]. We present
results for four different grid types considered: 2D Cartesian, 3D Cartesian, 2D
unstructured, 3D unstructured. Specifically, the example applications include the
double-gyre flow [29], which has become a standard test case for LCS computations
(2D Cartesian); the 3D Rayleigh-Bénard convection cell [17] (3D Cartesian); a
coronary stenosis model [28] (2D unstructured); and an abdominal aortic aneurysm
(AAA) model [3] (3D unstructured). These examples are shown in Fig. 3.

Figure 4 plots the performance results from the GeForce and Tesla GPUs. The
values plotted are the runtimes on the respective GPU normalized by the serial CPU
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Fig. 3 Snapshots of the flow fields and LCS from the four applications used for performance
testing, clockwise from upper-left: double gyre [29]; vascular stenosis [28]; abdominal aortic
aneurysm [3]; Rayleigh-Bénard convection [17]

runtime, which gives the speedup over serial CPU processing. The CPU used was
an Intel Core i7-3770 Ivy Bridge 3.5 GHz processor and the implementation was
FlowVC [25], which was written in C. We observed up to roughly 70� speedup
for computations on the 2D Cartesian data down to roughly 12� speed up for 3D
unstructured grid data. As expected, the Tesla K20 yields higher speedup due to a
higher number of streaming multiprocessors. The AAA velocity data was specified
on an unstructured tetrahedral grid of 1.01 million elements. Unstructured velocity
grids up to several million elements were tested and yielded similar speedup results
as the AAA model.

We note that we achieved significant performance improvement by properly
coalescing tracer grid arrays, which is common practice, whereby nearby threads
processed tracer data coalesced in memory. We did not notice any improvement of
performance by sorting velocity field data arrays. This is because as the trajectories
of the seed grid evolve, trajectories with nearby indices in memory (and hence
locally processed on the GPU) do not necessarily require velocity data that is
localized in space. A recent solution to this problem was proposed by Chen and Hart
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a b

c d

Fig. 4 Speedup of particle trajectory computation on a GeForce GTX 670 GPU and a Tesla
K20 GPU compared to serial processing on an Intel Core i7-3770 CPU. All computations were
performed using double precision for floating point variables. (a) 2D Cartesian. (b) 3D Cartesian.
(c) 2D unstructured. (d) 3D unstructured

[6], which reorganizes particles into spatially coherent bundles as they are advected
to improve memory coherence and shared-memory GPU performance.

3.3 Verification

Computations performed on the GPU were verified against existing CPU code that
has been extensively used and tested, FlowVC. We present verification data from
the 2D Cartesian and 3D unstructured grid applications, as these cases represent
the extrema in results from the four examples considered. For each application we
released several thousand tracers in the domain and integrated their trajectories for
the nominal minimum time needed for LCS computation. Specifically, we chose this
time based on the AAA model, and scaled the other integration times by the nominal
edge size xl divided by the mean velocity magnitude hu.x; t/i at peak flow. This
defines a characteristic time scale similar to use of the CFL number. This ensured
that all cases were integrated over roughly the same number of elements in their
respective domains. We performed these computations using the GPU and CPU
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codes on the GeForce GTX 670 and Intel Core i7-3770. The average error was
defined by computing of the L2 norm of the differences in tracer locations over time
between the two runs, and averaging over all tracers as follows

eD.t/ D 1

N

NX

iD1

��xDG
i .t/ � xDC

i .t/
�� ;

where N is the number of trajectories, xDG
i .t/ is the trajectory of tracer i computed

on the GPU using double precision floating point numbers, xDC
i .t/ is the trajectory

of tracer i computed on the CPU using double precision floating point numbers,
and xDG

i .0/ D xDC
i .0/. In all applications the error stayed below 1 � 10�10,

indicating that both GPU and CPU implementations were performing equivalent
tracer trajectory computation.

Single precision calculation can be several times faster than the double precision
calculation, however accuracy may be unacceptable. The results generated using
a single precision floating point GPU implementation were compared against the
double precision CPU results. As described above, the average L2 norm of the error
in trajectories of several thousand tracers was computed from a single precision
GPU run and a double precision CPU run as

eS.t/ D 1

N

NX

iD1

��xSG
i .t/ � xDC

i .t/
�� ;

where xSG
i .t/ is the trajectory of tracer i computed on the GPU using single

precision for floating point variables. For the 2D Cartesian data, we noticed fairly
acceptable errors in tracer trajectories and subsequent LCS computation. However,
for the more complex 3D unstructured grid data, we notice unacceptable degradation
in accuracy, e.g. to a point where noticeable degradation of the FTLE field occurred.
The errors ed .t/ and es.t/ are plotted against integration time for these two cases in
Fig. 5 using the NVIDIA GeForce GTX 670 GPU.

Because the plots in Fig. 5 represent averages over many tracers, some tracer
trajectories may deviate to far greater extent than the mean values shown. Indeed,
in the AAA flow, some tracers were advected to different arterial branches based
on these errors, which has important consequences for that application. Not
surprisingly, errors can be worse near LCS due to inherent sensitivity to initial
conditions at these locations, which can be problematic for accurate LCS detection.
In addition, while we consider the double precision CPU results as a baseline for
comparison, this does not imply that these results represent the “true” trajectories.
The double precision CPU computations are subject to normal truncation and round-
off errors. However, since double precision computation represents the de facto
method for minimizing numerical error, and since no application considered nor
of practical importance has a closed-form analytic solution, this was deemed an
appropriate baseline for comparison.
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a b

Fig. 5 Error between single precision (solid line) and double precision (dashed line) GPU
computations compared to a double precision CPU computations versus integration time for the
double gyre flow (left) and AAA flow (right). Integration times have been normalized and the value
of 1.0 approximately represents the nominal minimum integration time needed to compute LCS
for each application. (a) 2D Cartesian. (b) 3D unstructured

4 Discussion

We have developed a modular pipeline for LCS computation that is capable of
loading a wide variety of fluid mechanics data, and that can be easily interfaced
with ParaView for visualization of LCS computational results alongside other flow
visualization tools. This pipeline was designed to be modular and flexible so that
modifications and additions can be made with minimal effort.

As the LCS method has gained considerable popularity in the past few year,
there have been several developments to improve computation and visualization of
LCS. Strategies have been devised so that tracer seeding can be adapted to cluster
sampling of the flow map near LCS for improved detection [8,16,21,22]. Also, since
vector field interpolation is computationally intensive, strategies have also been
developed to locally approximate the flow map [5], which can be beneficial when
time series of tracer grids are considered. As well, trajectory computations obtained
in a hierarchical manner have been considered for efficient FTLE computation [11].
We note that sampling the flow map (gradient) needs to be highly resolved in
space but not necessarily time for LCS computations. That is, sampling in space
is driven by LCS identification methods; mainly computation of the flow map
gradient or subsequently the CG tensor field. Sampling time is done primarily for
visualizing the evolution of the structures. Regardless of the strategy of sampling
or interpolating the flow map or its derivative over the fluid domain, this process
can be parallelized since advection of tracers can be performed for the most part
independently. Because of this high degree of parallelism, and the fact the LCS
are typically used for desktop postprocessing and flow visualization, many-core
implementation on a single workstation is desirable, as opposed to a visualization
cluster, which are less accessible.
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Jimenez and Vankerschaver [13] discussed the computation and visualization
of FTLE by GPGPU using CUDA. They also made their source code publicly
available [12]. Their implementation was, by their own admission, naive since it
only could handle FTLE computation for analytically defined vector fields. This
greatly reduced memory accesses that, as discussed above, are the bottleneck in
computing FTLE fields using GPU processing in practical applications. Garth
et al. [8] and Hlawatsch et al. [11] leveraged GPU processing for FTLE computation
as well, though these papers did not discuss details of their implementation or
performance results as this was not a main focus. The recent paper by Conti
et al. [7] described FTLE computation for bluff body flows using OpenCL, which
allows implementation on mixed architectures, e.g. AMD’s accelerated processing
units. Their implementation was specialized to remeshed vortex methods for bluff
body flows that involve mesh-particle interpolations previously tailored for GPU
implementation [20]. They were able to achieve around one order magnitude
speedup compared to serial CPU implementation, similar to what we observed here.
However, their application was specialized to a particular flow problem. Most LCS
computation is performed as a post processing step on fluid velocity field data. Since
this is the most common and general scenario, it was the one which we developed
our framework around, consistent with the design specification of our LCS pipeline.

We considered application to 3D flow and flow on unstructured grids, as [7, 13]
reported performance results for 2D flows on structured grids. As shown and
discussed above, we have run this implementation to integrate millions of tracers
on velocity grids with several million element. This represents a reasonable limit
for most LCS applications. For significantly larger velocity field grids, or tracer
grids, one will overflow the global memory for the GPU. We generally noticed
peak performance when kernels were kept within register memory bounds. This
required each trajectory update to be divided into a series of kernels. Therefore,
kernels were very short. Because of the way data is processed through our pipeline,
we perform synchronous integration between the tracers. We believe this has
advantages for LCS detection as well. For example, in truncated domains, which
represent the vast majority of fluid mechanics data, tracers leave the domain before
the finite time interval being considered for flow map computation. But perhaps
more importantly, one may want to have access to the CG tensor at various times.
Most LCS criteria are a one parameter family dependent on the chosen integration
window. Using one integration window may identify a manifold as an LCS, but
another integration window may not. Similarly, a manifold may satisfy one LCS
criterion but not the other for a particular integration time. Therefore, having access
to this information enables implementation of methods that may depend on how
strain rate or direction changes over the integration time parameter. Or alternatively,
schemes that adaptively sample the flow map based on CG tensor information may
need sequential access to this information.

While this pipeline can function as a stand alone program, it can also be
compiled as libraries to be used with ParaView. Such integration provides a natural
platform for visualizing not only LCS computations, but also integrating these
results with other existing flow visualization tools provided by this programs, and
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also GPU-based visualization techniques available. Indeed, LCS as a collection of
codimension one surfaces are rarely useful in understanding the flow. Knowledge
of these manifolds must be integrated with other knowledge of the flow to gain
fundamental insight into the flow topology, and these platforms provide significant
capability in this regard.

Acknowledgements This work was supported by the National Science Foundation, award number
1047963.
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