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The Jamaican athlete Usain Bolt broke the 100m men’s World Record in the final of the Olympic 
Games in Beijing, 16th August 2008 with a time of 9.69s, and again at the IAAF World Championships 
in Berlin, 16th August 2009 with a time of 9.58s.  We can presume these widely publicised times were 
recorded accurately, but we can gather very little information from these figures other than the 
average speeds were 10.32 ms-1 (37.15 kph) and 10.44 ms-1 (37.58 kph).  Of course we know that 
when the gun went off and the clock started that the runner’s shoes were still in contact with the 
starting blocks, and so both displacement and velocity were zero at time t=0s.  We also know that 
the acceleration at that time must have been positive!  Fortunately there are web-sites with some 
athletes’ so-called `split times’ – i.e. the times elapsed when the runner passes each 10m or 20m 
mark, but we don’t know how accurately these were recorded.  Here are the splits at 10m gaps. 
 

Bolt 10 20 30 40 50 60 70 80 90 100 

2008 1.83 2.87 3.78 4.65 5.5 6.32 7.14 7.96 8.79 9.69 

2009 1.89 2.88 3.78 4.64 5.47 6.29 7.10 7.92 8.75 9.58 

 
Obviously we can represent the data as a scatter plot, and try fitting various kinds of functions to 
model the data, starting with a linear one. 
 

  
 
Here we use a Lists & Spreadsheet page to store the 2008 data in lists dist and time, and to perform 
a linear regression of dist against time, with the resulting function stored as f1(x).  On a Graphs & 
Geometry page we can draw the scatter plot and the graph of the function.  We can see that this is 
quite wildly inaccurate at time t=0s, where the predicted displacement is nearly -8m!  The slope of 
the graph is constant, which would mean the athlete was running at a constant velocity of just under 
11ms-1, even at the start when t=0s.  So we can start looking for a more sophisticated model. 
 
The general shape of the scatter plot suggests that a fitted function should have an inflection 
somewhere just after half-way – so we would not expect a quadratic to be a good fit either, but let’s 
check it out to see.  The displacement at time t=0s is now predicted to be -2.45m.  To find the 
velocity at (0,-2.45) we can construct a Tangent to the graph y=f2(x) and measure its Slope.  This 
gives an initial velocity of 7.54 ms-1.  This time we can see that the slopes are continually increasing, 
suggesting he was accelerating throughout the race. 
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With a cubic regression we should at least get an inflection. In fact we get a remarkably high value 
for the correlation coefficient.  This time the predicted initial displacement is down to -0.276m and 
initial velocity is down to 3.78ms-1 – but still not a plausible model.   
 

  
 
If we want to force the cubic to pass through (0,0) we know it will be of the form: 
f4(x) = ax3 + bx2 + cx = (ax2 + bx + c)x  and so we omit (0,0) from the regression, and perform a 
quadratic regression on (t,d/t) for the other 10 times t and distances d.  Then the cubic will be 
defined by f5(x) = x.f4(x).  We now have a good fit, with an inflection, but we still have an initial 
positive velocity of 3.78ms-1 at t=0s.  You can try the next improvement if you like.  To force the 
initial velocity to be zero as well, the cubic must not just have its constant coefficient zero, but also 
the coefficient of x as well.  So you can you try the same technique, but this time fitting a linear 
regression to the (t,d/t2) data for the 10 non-zero splits.   



    
 
Obviously you can try similar techniques to use quartic regression to fit the data, and also to force 
the quartic to have desired initial conditions.  TI-Nspire does not have polynomial regression beyond 
degree four, but you can easily build your own regression solver using matrices.  The 6x6 matrix m 
has elements such as sx7 which is the sum of the column x7 containing the 7th powers of the data 
column x.  The 11 in the bottom right corner corresponds to the number of data points being fitted. 
The 6x1 matrix n used to find the 6x1 coefficient matrix cf has elements such as sx3y which is the 
sum of the elements in x3y, the product of the columns x3 and y. 
 

  
 

   



The elements of cf = m-1.b are stored as the coefficients of the regression quintic: a, b, c, d, e, f. 
 

 
This quintic (degree 5 polynomial) 
model very nearly fits the initial 
conditions:  
   initial displacement = 0.001m,    
   velocity = 1.02ms-1. 
 
 
So that concludes the review of the 
various curve fitting techniques we 
need: a mixture of statistical 
regression with polynomials with 
initial conditions determined by some 
simple models from dynamics. 
 
 

 
It looks, then, that our “best buy should be a fifth degree polynomial constrained to have the initial 
conditions that displacement (i.e. intercept) and velocity (i.e. slope) are zero at t=0s.  We thus have 4 
coefficients to determine from cubic regression on distance/time2 for the ten non-zero times.  
 
So the choice of best model looks like f(x) = ax5+bx4+cx3+dx2 where a=-0.004, b=0.089, c=-0.86 and 
d=4.27.  There is certainly high correlation.  

     
 
In order to study how close a fit we have, we can 
compute percentage errors at each split time, using 
f(time) to produce the predicted distances covered.  
The maximum percentage error is 1%, which, 
considering the data were given to 2 decimal places, 
seems pretty close. 
 
Now we have an explicit formula for the displacements, 
we can also obtain models for the velocity (quartic) and 
acceleration (cubic).   
 



Displacement graph:  f8(x)   = ax5+bx4+cx3+dx2 
Velocity graph:  f9(x)   = 5ax4+4bx3+3cx2+2dx 

 Acceleration graph: f10(x) = 20ax3+12bx2+6cx+2d. 
 
Here we see from the acceleration graph that the cubic has a minimum at the point AI1, a maximum 
at AI2 and a zero at AZ.  These correspond to the inflections at VI1, VI2, and the maximum at VM on 
the velocity time graph.  The area under the velocity-time graph has been measured using the TI-
Nspire (numerical) Integral function and gives 99.2m as the distance travelled.  
 

    
 
    

     
 
So what has that analysis told us about the way Bolt won the Olympic final in 2008?  Well it suggests 
that his acceleration was greatest at the time of leaving the blocks (8.54 ms-2 just short of 1g!), and 
that he continued to accelerate smoothly, but at a decreasing rate, until making a slight kick just 
under halfway (after about 5 s). He hit his maximum speed of 12.85ms-1 at just about the ¾ mark 
(after 7.37s).  More surprisingly it suggests he was slowing down considerably (i.e. negative 
acceleration) at the end.  If he could have sustained his maximum speed for the last two seconds, 
what do you think would have been World Record time instead of 9.69s?  How can you account for 
this slowing down? 
 
Well the answer lies in watching the race, e.g. the video clip at http://www.vimeo.com/1590363 
where you can see that he completely broke away from the field and even thumped his chest in 
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triumph before crossing the line. So we might presume that in a closely contested race the final 
deceleration would not be nearly as significant as it was in this 2008 Olympic final – where it was the 
Gold Medal rather than the World Record which must have been uppermost in Bolt’s mind.  So 
maybe the graphs for Bolt’s 2009 run tell a different story?  Perhaps you can find a video clip to 
compare?  Try finding data for other significant 100m races and see if there is a similar acceleration 
pattern. 
 
Remember that all we have done here is to fit some graphs to some data.  We have assumed that 
the graphs should be smooth, and chosen between just a few simple types of model – polynomials 
of orders 1 to 5.  In fact the movement of a sprinter is really quite complex with different parts of the 
body moving in quite different ways.  It also happens in discrete steps – Bolt takes about 45 I think!  
When a foot hits the ground there is a braking effect followed by a propulsion effect followed by a 
spell in the air as a projectile.  We have made no attempt to match our models to any physical or 
biomechanical explanations of how the movement might be modelled.  We now have more 
sophisticated recording devices, such as high speed cameras and radar speed guns, but as with any 
scientific equipment they need to be carefully calibrated to compensate for inaccuracies through 
e.g. perspective and parallax.  So while there are many papers on the subject of sprinting there still 
seems to be a lack of good, reliable published data on the distance, velocity and acceleration in the 
early stage (to 25m say) and certainly very few graphs!   
 
An exception is the textbook “An introduction to biomechanics for sport and exercise” by James 
Watkins where on page 211 we find a composite graph for the displacement, velocity and 
acceleration time graphs for a male junior international 100m sprinter – and the acceleration 
certainly looks cubic (although there is no explicit mention of this).  The inflection appears to be 
coincident with the zero, so it shows a steady decrease in acceleration from about 6 ms-2 to -1.5 ms-2 
with a maximum velocity of about 10.5 ms-1 after 6.4s with a finishing velocity of 8.2 ms-1.   
 
In order to derive information about velocity, Watkins 
employs a fairly standard approach: that of calculating 
the average velocity in each split by change of distance 
divided by change in time. He suggests: “Since the 
average speed-time data represents average speeds, 
each data point is plotted at the midpoint of the 
corresponding time interval.”  
 
We can easily calculate average velocities and mid-split 
times using a spreadsheet to check the suggestion. 
While that is certainly the case when the distance-time 
graph is linear, we do now have the means of testing out 
how accurate or not it is for a general continuous and 
smooth model, such as a cubic or quintic.   
 
On the left is a test-bed for what is known as the “mean-value theorem” in calculus.  PQ is an 
interval on the x-axis, R is the mid-point of PQ and S is a point on PQ.  The corresponding points on 
the cubic function illustrated are A, B, M, T.  The slope of the chord (or secant) AB is measured.  The 
theorem states that if the function is continuous and smooth (differentiable) on PQ then there is at 
least one point S on PQ for which the tangent at T is parallel to the chord AB.  So here is an example 
where there is clearly an error in assuming S must always be at the midpoint R. 
    



     
 
In the picture on the right we have illustrations of three different splits: the 2nd, 6th and 10th.  In the 
2nd split the mid-point is an over-estimate by 0.04s, in the 6th split the velocity is pretty well constant 
and so the mid-point assumption is valid, and in the 10th split the mid-point is an underestimate by 
about 0.03s.  Watkins is by no means the only author not to identify an apparent cubic.   In fact a 
recent paper by di Prampero and others in the Journal of Experimental Biology analyses velocity-
time data recorded by a radar speed-gun, and fits a very strange model to it!  
 
The speed–time curves were then fitted by an exponential function (Chelly and Denis, 2001; Henry, 

1954; Volkov and Lapin, 1979):  where s(t) is the modelled running 
speed, smax the maximal velocity reached during the sprint, and  the time constant. They state that: 
“Actual speed was accurately described by: s(t)=10.0*(1–e–t/1.42). The maximal speed smax was 10.0 
ms–1. Since the exponential model described the actual running speeds accurately, the instantaneous 
forward acceleration a(t) was then calculated from the first derivative of s(t): 

 
This is plotted as a function of the distance d(t) of the run, as obtained from the time integral of s(t): 

 
 Their study used student athletes, so we need a 
larger value of smax e.g. 12.9 for Bolt 2008 and we 
can play with the time constant , e.g. 1.5.  
Comparing their velocity model with ours we can 
see that it gives a good fit for the first split, but 
that’s all – and that we now have the horizontal line 
y = smax as an asymptote, so the sprinter would 
never slow down. 

 
We can plot a scattergram of acceleration 
against distance, and graph acceleration 
against distance using parametric graphing. 
Again, comparing their acceleration model 
with ours we see that while we can make a 
reasonable fit in the first split, their 
acceleration model has an asymptote (y = 0). 
 



Of course there are many different ways of 
curve fitting, and of smoothing data.  One 
common way is to use pieces of different 
functions to model different phases of the 
motion, but to ensure that the pieces join 
together as smoothly as possible at the common 
points.  Such techniques are known as “splines” 
after the `flexi-curve’ device used by 
draughtsmen to create smooth curves e.g. in 
ship design.  You might like to explore for 
yourself how to fit splines smoothly together.  
The figure shows a function consisting of three 
quadratic pieces joining smoothly at B and E 
where they share the same tangent.  Does the 

shape of ABCDE seem familiar?  For the sorts of reasons we have met in this article, cubic splines 
have been pretty well the market choice in computer graphics for a long time, but interestingly the 
sophisticated science data-logging and video analysis software called COACH from the Amstel 
Institute of the University of Amsterdam, and the professional biomechanics video analysis software 
called QUINTIC both make extensive use of 5th degree splines i.e. quintics.  
 
Well, we’ve nearly reached the finishing line, but not quite! We haven’t told the complete story of 
the 100m sprint.  No athlete actually leaves the blocks at the precise moment the starting gun is 
fired.  In fact they all leave at different times depending on their reaction times, and Bolt is known 
not to have the fastest reaction time by any means.  If we had good steady video of the start we 
could measure the reaction time for ourselves, but otherwise we have to make do with secondary 
data found from the Internet.  There seems to be general agreement that Bolt’s delay in setting off 
in Beijing was about 0.165s.  Can you apply the techniques of this article to see if reducing split times 
by the reaction time makes any substantial change to the modelling process or its conclusions?   
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