
0278-0046 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TIE.2014.2314075, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

1

Abstract—This paper proposes a novel bi-velocity discrete

particle swarm optimization (BVDPSO) approach and extends its

application to the NP-complete multicast routing problem (MRP).

The main contribution is the extension of PSO from continuous

domain to the binary or discrete domain. Firstly, a novel

bi-velocity strategy is developed to represent possibilities of each

dimension being 1 and 0. This strategy is suitable to describe the

binary characteristic of the MRP where 1 stands for a node being

selected to construct the multicast tree while 0 stands for being

otherwise. Secondly, BVDPSO updates the velocity and position

according to the learning mechanism of the original PSO in

continuous domain. This maintains the fast convergence speed and

global search ability of the original PSO. Experiments are

comprehensively conducted on all of the 58 instances with small,

medium, and large scales in the OR-library (Operation Research

Library). The results confirm that BVDPSO can obtain optimal or

near-optimal solutions rapidly as it only needs to generate a few

multicast trees. BVDPSO outperforms not only several

state-of-the-art and recent heuristic algorithms for the MRP

problems, but also algorithms based on GA, ACO, and PSO.

Index Terms—Communication networks, multicast routing

problem, particle swarm optimization, Steiner tree problem

I. INTRODUCTION

ULTICAST routing problem (MRP) has drawn much

attention worldwide for a number of decades owing to its

Manuscript received August 22, 2013; revised December 3, 2013 and January

28, 2014; accepted February 2, 2014.

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However,

permission to use this material for any other purposes must be obtained from the

IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported in part by the National High-Technology Research

and Development Program (“863” Program) of China under Grand

2013AA01A212, Key Program of National Natural Science Foundation of China

No. 61332002, and National Science Fund for Distinguished Young Scholars No.

61125205. For additional information regarding this paper please contact

Zhi-Hui Zhan, email: zhanzhh@mail.sysu.edu.cn.

M. Shen is with the School of Computer Science, Beijing Information

Science and Technology University, Beijing, China.

Z.-H. Zhan, W.-N. Chen, Y.-J. Gong, and J. Zhang are with Sun Yat-Sen

University, Guangzhou, 510275, China, with the Key Laboratory of Machine

Intelligence and Advanced Computing (Sun Yat-sen University), Ministry of

Education, China, with the Engineering Research Center of Supercomputing

Engineering Software (Sun Yat-sen University), Ministry of Education, China,

and also with the Key Laboratory of Software Technology, Education

Department of Guangdong Province, China.

Y. Li is with the School of Engineering, University of Glasgow, Glasgow

G12 8LT, U.K.

significance in communication and networking systems [1].

MRP is a problem that, given a communication network with a

source node, a set of destination nodes, a set of intermediate

nodes, and a set of edges that make the network connected, find

a tree to connect the source node and all the destination nodes,

so that the data can be sent to all destination nodes by

multicasting. Work during recent years’ on research and

applications have witnessed the significance of MRP in various

communication networks, providing services such as IPTV,

distributed data process, internet telephone, interactive

multimedia conference, and video broadcast [2].

An MRP can be treated as an optimization problem. For

example, its objective can be to minimize delays from the source

to destinations, crucial to latency-sensitive multicasting. In this

sense, we can consider the delay of each edge as the cost of the

edge and optimize the multicast tree with a minimal cost. We

can also take other network properties as the cost of each edge,

such as the reserved bandwidth and the utility price [3]. Without

loss of generality, this paper does not consider the physical

significance of the cost. Therefore optimizing the cost of MRP is

also referred to the Steiner tree problem (STP) in graph theory.

The challenge in solving the MRP or STP lies in that the STP

is known to be an NP-complete problem [4]. Therefore,

deterministic algorithms are inapplicable, while approximation

or nondeterministic algorithms are promising and of practical

value to solve the MRP [4]. In early years, researchers proposed

some state-of-the-art greedy heuristic algorithms for STP, such

as shortest path heuristic (SPH), distance network heuristic

(DNH), and average distance heuristic (ADH) [5]. In recent

years, modern heuristics like directed convergence heuristic

(DCH) [6] and greedy randomized adaptive search procedure

(GRASP) [7] have also been developed. However, these

heuristic algorithms appear not promising in constructing an

optimal multicast tree when the network scale becomes large

with many nodes and edges. This is because that the greedy

heuristic algorithms are based on local information, and are

hence easily trapped in local optima in a complex environment.

With the development of evolutionary computation (EC),

many studies have shown that EC algorithms like genetic

algorithm (GA) [8][9], ant colony optimization (ACO) [10],

particle swarm optimization (PSO) [11]-[13], and others [14][15]

are promising to solve various complex optimization problems.

These also motivate researchers to apply EC algorithms for

Bi-Velocity Discrete Particle Swarm

Optimization and Its Application to Multicast

Routing Problem in Communication Networks

Meie Shen, Zhi-Hui Zhan, Member, IEEE, Wei-Neng Chen, Member, IEEE, Yue-Jiao Gong, Student

Member, IEEE, Jun Zhang, Senior Member, IEEE, and Yun Li, Member, IEEE

M

0278-0046 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TIE.2014.2314075, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

2

communication and networking optimization. For example,

GAs have been reported successful in solving MRP for decades

[5]. ACO was also reported to solve some kinds of MRP [16].

However, the GA and ACO based methods may encounter their

inherent low convergence speed, which is criticized in the

communication community on inefficiency in meeting high

demands of real-time communication services [17]. As an

efficient EC variant, PSO is featured by its simpler

implementation and faster convergence speed when compared

with other EC algorithms, yet offering strong global search

ability [18]. Therefore, we focus on applying PSO to solve STP,

which is an MRP without QoS constraints. Wang et al. [19] used

tree-based scheme to code the solution (particle). However, the

method needs to code all multicast trees in potential solution,

making the algorithm complex for implementation. Qu et al. [20]

have recently proposed to use jumping PSO (JPSO) to solve

STP. Although they used a discrete PSO, the velocity of original

PSO was not considered, being inefficient to maintain the

advantages of original PSO in continuous domain.

In order to keep the simple implementation and efficiency of

original PSO in continuous domain, and also to maintain the fast

convergence speed and global search advantages of PSO, this

paper extends the origin PSO to the binary domain and

optimizes MRP by solving STP as a binary optimization

problem. The solution (particle) is coded as a 0/1 string (whose

length equals to the number of nodes in the network) where 1

means a node is selected to construct the multicast tree and 0

means the node is not selected. Based on this coding scheme, a

novel bi-velocity discrete PSO (BVDPSO) is proposed for both

maintaining the search advantages of PSO and matching the

binary characteristics of MRP. Therefore, BVDPSO is different

from other existing discrete or binary PSO algorithms that use

random jumping strategy [20], sigmoid function strategy [21],

or set-based strategy [22], because it uses a very simple and

straightforward bi-velocity strategy that utilizes two vectors to

represent the possibilities of being 0 and 1 respectively for each

node. Moreover, BVDPSO modifies the velocity and position

update equations to keep the learning mechanism of original

PSO in continuous domain. BVDPSO is also different from our

previous discrete PSO (DPSO) for MRP optimization [23][24],

as DPSO does not keep the original PSO framework but adds a

mutation operator to PSO. BVDPSO does not change the PSO

algorithm structure, but takes the advantages of the ring

topological structure to avoid local optimal, being still as simple

as the original PSO. In this paper, BVDPSO is comprehensively

studied in local networks and rigorously tested for not only

small or medium scale networks, but also large scale networks

with a large number of nodes, edges, and destination nodes.

Therefore, the main contributions of this paper are twofold:

one is in the algorithm design aspect and the other is in the

practical application aspect.

Firstly, the novelty of BVDPSO is that it uses a general

bi-velocity scheme to make PSO suitable for solving a class of

binary optimization problem in the discrete domain. More

importantly, such a bi-velocity scheme makes BVDPSO still as

simple as the original PSO in continuous domain, and also

maintains the fast global search behaviors of the PSO.

Secondly, BVDPSO can overcome the local optimum issue of

many heuristic algorithms and has much faster speed to find the

optimal or near-optimal multicast solution than other EC

algorithms. This can provide researchers and engineers a new

and practical approach to multicast design in communication

network. Moreover, to the best of our knowledge, BVDPSO is

the first EC-based algorithm that is tested on all the 58 problems

(with small, medium, and large scales) in the OR-library

(Operation Research Library) [25]. The experimental results can

provide a baseline for future research on these MRP problems.

The remainder of the paper is organized as follows. Section II

formulates the MRP and describes the framework of PSO.

Section III proposes BVDPSO for optimizing MRP. Section IV

presents the experimental results and comparisons. Conclusions

and future work are drawn in Section V.

II. BACKGROUND OF MRP AND PSO

A. Formulation of MRP

To define an MRP, suppose Netw={A, E} is an undirected,

connected, weighted network where A is the node set and E is

the edges set. A positive function c(e) is used to denote the cost

of each edge e in E. The source node s and all multiple

destination nodes in the network make up the set R={s} D,

where D stands for the destination nodes set. S=A/R stands for

the rest nodes (which are also named as the intermediate nodes

or the Steiner nodes). The functionality of MRP is to send the

data from the source node (s) to all the destination nodes in the

set D. Therefore, the objective of MRP is to find a minimal cost

tree T that connects the source node to all the destination nodes

through some of the intermediate nodes.
For T={A*, E*}, where * * *, ,A A E E R A , the objective

of MRP is formulated as:

*

* * *Min min (), where , ,
e E

f T c e A A E E R A (1)

B. PSO in Continuous Domain

PSO is an EC algorithm paradigm that emulates the swarm

behaviors of birds flocking [17]. Optimizing a N-dimensional

continuous optimization problem, each particle i has a velocity

vector Vi=[vi1, vi2, …, viN] and position vector Xi=[xi1, xi2, …, xiN]

to indicate the current status. Moreover, the particle i keeps its

personal historical best position vector Pi=[pi1, pi2, …, piN]. The

best position of all the Pi in the ring topology is regarded as the

neighborhood local best position Li=[li1, li2, …, liN]. The Vi and

Xi are initialized randomly and are updated in every generation

by the guidance of Pi and Li as:

vij = vij + c1 r1j (pij – xij) + c2 r2j (lij – xij) (2)

xij = xij + vij (3)

where is the inertia weight linearly decreasing from 0.9 to 0.4

during the running time. c1 and c2 are acceleration coefficients

set as 2.0. r1j and r2j are two random values in the range of [0, 1]

for the jth dimension.

As the ring topology is not easy to be trapped into local

optima while can still keep very fast optimization speed [26], it

is adopted herein. Interested readers can refer to [27][28] for

enhanced PSOs and [29] for PSO industrial applications.

0278-0046 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TIE.2014.2314075, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

3

III. BVDPSO

A. Particle Code

The MRP can be regarded to find a set of nodes (include the

source node, all the destination nodes, and some intermediate

nodes) to construct an optimal multicast tree. Therefore, it is

natural and intuitive to code the solution as a binary string,

whose length is the same as the number of total nodes, and all

the destination nodes are always coded with a bit 1 to indicate

that they are always in the tree. Moreover, if an intermediate

node is with value 1, it means that the node is used to construct

the multicast tree; otherwise, the node is not used to construct

the tree. Therefore, suppose there are totally N nodes in the

network, the position code of each particle i is as:

Xi = [xi1, xi2, …, xiN], where xij=0 or 1 (4)

while the velocity is coded by a novel bi-velocity fashion as:
0 0 0 0

1 2 0 1

1 1 1 1

1 2

, , , ,
, where 0 1, 0 1

, , , ,

i i ij iN

i ij ij

i i ij iN

v v v v
V v v

v v v v
 (5)

In (5), it is interesting that the jth dimension of the Vi is

associated with bi-values. The 0

ijv is the possibility of xij being 0

and 1

ijv is the possibility of xij being 1. Note that 0

ijv and 1

ijv are

calculated according to the difference between two positions

(e.g., the Pi and the Xi, or the Li and the Xi), and are independent

to stand for the possibilities of the xij being 0 and 1. Therefore,

the sum of 0

ijv and 1

ijv is unnecessarily equal to 1.

B. Velocity Update

When updating the particle’s velocity in BVDPSO, it is

important to keep the learning concept in original PSO. In our

implementation of the velocity update in BVDPSO, the same

equation as (2) is used. However, three modifications are taken

to fit the 0/1 position code and bi-velocity code in BVDPSO.

The details are described as follows and given in Fig. 1.

1) Velocity=Position1–Position2: Suppose that the Position1

is X1 and the Position2 is X2, our BVDPSO keeps the original

PSO learning concept and makes up the Velocity (Vi=X1–X2) by

considering the difference between X1 and X2 when X2 learns

from X1. For the jth dimension of Vi, if x1j is b but x2j is not b (b is

0 or 1), this means that X2 is different from X1 on this jth

dimension, then the particle X2 should learn from the X1

(because X1 is the better position). Hence 1b

ijv and 1 0b

ijv ; if

x1j is the same as x2j, it means it is unnecessary for X2 to learn

from X1 on this corresponding dimension, hence 0 1 0ij ijv v . For

example, if X1=[1,1,1,0,1,0,1,0] and X2=[1,1,1,0,1,1,0,0], then

1 2

0, 0, 0, 0, 0,1, 0, 0

0, 0, 0, 0, 0, 0,1, 0
iV X X .

2) Velocity=Coefficient Velocity: This operation is to

multiply Coefficient , or c r with each element of the current

Velocity to obtain each element of the final Velocity. As velocity

is to denote the possibility for the position being 0 and 1, if any

dimension of the final Velocity is larger than 1, this value is set

to 1. Suppose c r=[1.5, 1.8, 0.9, 0.5, 1.2, 1.3, 0.8, 0.5] and

0,0,0,0,0,1,0,0

0,0,0,0,0,0,1,0
V , then

0, 0, 0, 0, 0, 1.3, 0, 0 0, 0, 0, 0, 0, 1, 0, 0
()

0, 0, 0, 0, 0, 0, 0.8, 0 0, 0, 0, 0, 0, 0, 0.8, 0
V c r V .

3) Velocity=Velocity1+Velocity2: Suppose the Velocity1 and

Velocity2 are V1 and V2, then Vi=V1+V2 is the final Velocity. The

jth dimension b

ijv in the velocity Vi is the same as the larger one

between
1

b

jv and
2

b

jv , where b=0, 1. For example, suppose

1

0.2, 0, 0.8, 0.1, 0, 0, 0.5, 0

0.3, 0, 0.1, 0.4, 0, 0, 0, 0.5
V and

2

0.4, 0.5, 0.6, 0, 0, 1, 0.3, 0

0.1, 0, 0.9, 0, 0.2, 0, 0.8, 0
V ,

then
1 2

0.4, 0.5, 0.8, 0.1, 0, 1, 0.5, 0

0.3, 0, 0.9, 0.4, 0.2, 0, 0.8, 0.5
iV V V .

Procedure Velocity_Update (Xi)
Begin
For j=1 to N Do //Calculate vij= vij+c1r1j(pij–xij)+c2r2j(lij–xij)

//Step 1: Calculate c1r1j(pij – xij)

 If pij==xij Then vp_0=0; vp_1=0;//do not learn
Else If pij==1 Then vp_0=0; vp_1=1;//learn from vpj

1

Else If pij==0 Then vp_0=1; vp_1=0;//learn from vpj
0

c11=c1×random(0,1); vp_0=c11×vp_0; vp_1=c11×vp_1;
//Step 2: Calculate c2r2j(lij – xij)

 If lij==xij Then vl_0=0; vl_1=0; //do not learn
Else If lij==1 Then vl_0=0; vl_1=1; //learn from vlj

1

Else If lij==0 Then vl_0=1; vl_1=0; //learn from vlj
0

c22=c2×random(0,1); vl_0=c22×vl_0; vl_1=c22×vl_1;
//Step 3: Determine the finial velocity

 vij
0=max{ ×vij

0, vp_0, vl_0}; vij
1=max{ ×vij

1, vp_1, vl_1};
 End For
End

Fig. 1. The pseudocode of the procedure for velocity update.

C. Position Update

When the PSO algorithm works in continuous domain, the

position update is to add the updated velocity Vi to the current

position Xi, as (3). However, the position and velocity may not

be added up directly in discrete domain. In order to keep the

learning concept of the original PSO, we construct the new

position by using the strategy as shown in (6):
0 1

0 1

0 1

0 1

{0,1} if (and)

0 if (and)

1 if (and)

if (and)

ij ij

ij ij

ij

ij ij

ij ij ij

rand v v

v v
x

v v

x v v

 (6)

With these strategies, the new position pays more attention to

the new velocity. This can help the particle learn more from the

exemplars to the learning concept of the original PSO.

D. Fitness Evaluation

An important issue in using BVDPSO for MRP optimization

is how to calculate the fitness of a solution. The solution is a 0/1

string, indicating which nodes are used to construct the multicast

tree. The fitness evaluation is to construct a multicast tree

according to this 0/1 string and then calculate the cost of the tree.

In order to construct a promising multicast tree with low cost,

we firstly transform the MRP network into a cost complete

graph (CCG) based on the Floyd’s algorithm with special data

structure. Then, based on the CCG and the 0/1 binary string of

the solution, we can construct the multicast tree by using the

Prim’s minimum spanning tree (MST) algorithm. However, it is

necessary to make some modifications to the Prim’s algorithm to

fit the characteristic of MRP. Moreover, the tree has to be

pruned in order to delete the leaves which are not the destination

nodes. The following parts describe the CCG procedure,

modified Prim’s algorithm, and the prune procedure.

0278-0046 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TIE.2014.2314075, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

4

1) CCG Procedure: In the CCG procedure, every two nodes

are connected by the shortest path. It should be noted that some

of the shortest paths may be ‘indirect’ paths, and the others are

‘direct’ paths. A ‘direct’ path means that the path exists in the

original network that connects the two nodes directly. An

‘indirect’ path means that the path does not directly connect the

two nodes but via some other nodes. Therefore, we should

record the very next node of the shortest path that connects any

two nodes. This can help to restore the path when necessary.

Fig. 2 gives the pseudocode of the CCG procedure based on

the Floyd’s algorithm with a data structure. C(i, j) is the input

data of the CCG procedure to give the cost between nodes i and

j in the original network. C(i, j)=–1 means nodes i and j are not

directly connected. The data structure S is used to record the

shortest path (with minimal cost) that connects any two nodes.

Specifically, S(i, j).length is the total cost of the path that

connects nodes i and j. S(i, j).next is the very next node on the

path from i to j. That is, if the nodes i and j are connected directly,

S(i, j).next is j and S(j, i).next is i. Otherwise, suppose that the

shortest path between nodes i and j is (i, k1, k2,…, j), then S(i,

j).next=k1, S(k1, j).next=k2, and so on. With the help of S(i,

j).next, we can reconstruct the path between nodes i and j easily.

Noted that the CCG procedure is only carried out once before

using BVDPSO to optimize MRP. Therefore, the CCG is the

pre-process whose results can be used again and again in the

fitness evaluation procedure during the entire BVDPSO process.

Fig. 2. The pseudocode of the CCG procedure.

2) Modified Prim’s Algorithm for the MST: As there are direct

and indirect paths in the CCG, the modified Prim’s algorithm

prefer the direct paths to the indirect paths when constructing the

MST T. That is, we try to construct the tree according to the

nodes with value 1 in the solution string. Therefore, when there

are both direct and indirect paths connect these nodes to the tree,

the algorithm selects the shortest direct path even though it may

be longer than some indirect paths. When there are no direct

paths, the algorithm selects the shortest indirect path.

We give an example in Fig. 3 to illustrate the modified Prim’s

algorithm. Fig. 3(a) is the original network with N1, N8, and N9

as the destination nodes. Suppose that the particle position is as

X = [1, 0, 1, 0, 0, 0, 1, 1, 1], denoting that the nodes N1, N3, N7,

N8, and N9 are used to construct the tree. The modified Prim’s

algorithm is described as four steps.

Step 1): Initialize T as an empty tree. We firstly select a

random destination node into T (the source node is also regarded

as a destination node). Then, for any other node i with a position

value 1 in the binary string, record its direct cost D[i] and

indirect cost I[i] to the tree T. As in Fig. 3(b), we select the

destination node N1 into the T, and then record the D[i] and I[i]

for all the other nodes i whose position values are 1. For

example, D[N3]=3 means that the node N3 connects the T via a

direct path with cost 3. I[N3]=2 means that the shortest path for

the node N3 to the T is with cost 2, but have to use node N2 as an

intermediate node. Herein, we use the word ‘record’ instead of

‘calculate’ because the cost values have been calculated in the

CCG procedure which can be used during the entire process.

Step 2): Select the next nearest node into the tree T. In this

step, we prefer the direct path to the indirect path even though

the direct cost may be larger than the indirect cost. For example,

in Fig. 3(c), the node N3 is selected. However, if there are no

nodes connect the T via direct path, we select the shortest

indirect path, e.g., the node N7 is selected in Fig. 3(d). When an

indirect path is selected, the corresponding intermediate nodes

are also added into the tree, as shown in Fig. 3(d) where the

nodes N2, N5, and N6 are added.

Step 3): Cost update. Once a node has been added to the tree

(when a direct path is selected) or some nodes have been added

to the tree (when an indirect path is selected), we have to update

the direct cost D[i] and the indirect cost I[i] to the tree T of the

other node i whose position value is 1 in the binary string. For

example, in Fig. 3(d), both the D[N8] and I[N8] become 4

because N8 can connect the T directly via N7. Also, both the

D[N9] and I[N9] become 3 because the direct path connects N5

and N9 costs 3. Moreover, Fig. 3(e) shows the cost update of the

N8 after the adding of the N9 into the tree.

Step 4): Repeat Step 2) and Step 3) until all the destination

nodes have been added into T.

3) Prune Procedure: The prune procedure deletes all the

non-destination leaf nodes in T to reduce the redundancy. The

procedure is easy to implement: we find out the node i in T that

has the degree of 1 (the degree of each node can be recorded

during the above multicast tree constructed process), if i is not a

destination node, delete it and reduce the degree of node j that

connects i by 1. Repeat doing this until no non-destination node

with degree 1 can be found. For example, in Fig. 3(f), the nodes

N3 and N7 are redundant and can be deleted. After the deletion of

N7, the node N6 can be also deleted. Therefore, we can obtain the

finial multicast tree T as Fig. 3(g).

Fig. 3. Illustration of the modified Prim’s algorithm to construct multicast tree.

0278-0046 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TIE.2014.2314075, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

5

IV. EXPERIMENTS AND COMPARISONS

A. Problem Instances and Algorithm Settings

The experiments on the problems of Categories B/C/D in the

OR-library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/)

[25] are carried out. The details of the problems are given in

Table I. The problems are divided into three Categories B/C/D

that can be regarded as small, medium, and large scale MRP in

local networks. The OPT is the optimal solution in the library.

The population size M of BVDPSO is set to 20, is linearly

decreasing from 0.9 to 0.4, and c1 and c2 are both set to 2.0. The

maximum number of generation G is 1250, and therefore there

are at most 20 1250=25000 fitness evaluations (FEs) each run.

This is the same as the configurations in previous studies [23].

BVDPSO terminates when it finds the global optimum OPT or it

runs out of the FEs budget. It is should be noted that the number

of FEs is also the number of generated multicast tree.

B. Comparisons on Solution Accuracy

1) Small Scale Problem Instances: We first compare the

solution accuracy of the results obtained by different algorithms

on the problems of Category B. The comparisons are based on

the relative error R that is defined as:

R%=(Result–OPT)/OPT 100 (7)

where the Result is the mean solution of 100 independent runs.

The R values of the heuristic methods like SPH, DNH, ADH,

and the GA methods reported in [5] are used here for

comparisons. The results of ACO are based on the report in [16].

The comparisons in Table II show that the traditional

heuristics are easy to be trapped into local optima and result in

poor solution accuracy. The R of SPH, DNH, and ADH on some

problems are even larger than 5%, indicating that the traditional

heuristic algorithms may not have strong global search ability to

obtain high accurate solutions. For the EC algorithm, GA and

BVDPSO can obtain the OPT on all the problems in every run

and all the relative error values are 0% but ACO can not.

2) Medium Scale Problem Instances: The experimental

results of the problems in Category C are compared in Table III.

These problems are regarded to be more difficult than those in

Category B because they have more nodes, edges, and

destination nodes. Herein, 30 independent runs are carried out

for each problem because of the large computational burden. As

the results for the Category C problems are not available in [5]

or relevant literature for the heuristics like SPH, DNH, or ADH,

they are not used in the comparisons. Instead, we compare

BVDPSO with recent heuristics DCH [6] and GRASP [7], and

JPSO for multicast routing (JPSOMR) [20]. The results reported

in [6] for DCH and the results reported in [20] for GRASP and

Table I The Details of Steiner Tree Problems

No. |N| |E| |D| OPT No. |N| |E| |D| OPT No. |N| |E| |D| OPT

B01 50 63 9 82 C01 500 625 5 85 D01 1000 1250 5 106

B02 50 63 13 83 C02 500 625 10 144 D02 1000 1250 10 220

B03 50 63 25 138 C03 500 625 83 754 D03 1000 1250 167 1565

B04 50 100 9 59 C04 500 625 125 1079 D04 1000 1250 250 1935

B05 50 100 13 61 C05 500 625 250 1579 D05 1000 1250 500 3250

B06 50 100 25 122 C06 500 1000 5 55 D06 1000 2000 5 67

B07 75 94 13 111 C07 500 1000 10 102 D07 1000 2000 10 103

B08 75 94 19 104 C08 500 1000 83 509 D08 1000 2000 167 1072

B09 75 94 38 220 C09 500 1000 125 707 D09 1000 2000 250 1448

B10 75 150 13 86 C10 500 1000 250 1093 D10 1000 2000 500 2110

B11 75 150 19 88 C11 500 2500 5 32 D11 1000 5000 5 29

B12 75 150 38 174 C12 500 2500 10 46 D12 1000 5000 10 42

B13 100 125 17 165 C13 500 2500 83 258 D13 1000 5000 167 500

B14 100 125 25 235 C14 500 2500 125 323 D14 1000 5000 250 667

B15 100 125 50 318 C15 500 2500 250 556 D15 1000 5000 500 1116

B16 100 200 17 127 C16 500 12500 5 11 D16 1000 25000 5 13

B17 100 200 25 131 C17 500 12500 10 18 D17 1000 25000 10 23

B18 100 200 50 218 C18 500 12500 83 113 D18 1000 25000 167 223

 C19 500 12500 125 146 D19 1000 25000 250 310

 C20 500 12500 250 267 D20 1000 25000 500 537

Table II Comparisons on Solution Accuracy (R%) of Different Algorithms on the Problems of Category B

Methods B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11 B12 B13 B14 B15 B16 B17 B18 Average R

SPH 0 0 0 5.08 0 0 0 0 0 4.65 2.27 0 7.88 2.55 0 3.15 3.82 1.83 3.95%

DNH 0 8.43 1.45 8.47 4.92 4.92 0 0 2.27 13.95 2.27 0 6.06 1.28 2.2 7.87 5.34 4.59 2.04%

ADH 0 0 0 5.08 0 0 0 0 0 4.65 2.27 0 4.24 0.43 0 0 3.05 0 0.96%

GA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

ACO 0 0 0 0 0 NA NA 0 0 1.63 1.14 NA 1.39 0.13 0 4.72 NA 3.44 NA

BVDPSO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

Table III Comparisons on Solution Accuracy (R%) of Different Algorithms on the Problems of Category C

Methods C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

DCH 3.5 23.6 7.16 6.02 1.25 14.06 18.62 9.03 7.21 2.92 15.92 13.04 11.24 10.21 4.31 18.18 27.77 10.31 15.06 7.11

GRASP 0 0 0.9 1.8 0.5 0 0 1.7 1 0.3 1.9 0.9 1.7 1.5 0.1 3.6 4.4 4.4 3.7 0.9

GA 0 0 0.5 0.44 0.1 0 0 1.14 1.27 0.38 0 0.43 1.36 1.42 1.04 2.73 1.11 4.78 5 2.02

DPSO 0 0 0.05 0.02 0 0 0 0.18 0.3 0.14 0.31 0 0.97 0.56 0.16 3.64 2.22 2.65 0.96 0

JPSOMR 1.2 3.5 0.9 0.4 0 0 0.7 0.1 0.5 0.1 0.9 0 0.2 0.3 0 9.1 1.1 2.4 1.4 0

BVDPSO 0 0 0 0 0 0 0 0.20 0.42 0.13 0 1.23 2.02 0.78 0 8.79 1.67 1.30 0.87 0.06

Average R over all the 20 instances: DCH: 11.33%; GRASP: 1.47%; GA: 1.45%; DPSO: 0.61%; JPSOMR: 1.14%; BVDPSO: 0.87%

Table IV Comparisons on Solution Accuracy (R%) of Different Algorithms on the Problems of Category D

Methods D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

DCH 9.43 12.72 7.92 5.58 1.78 29.85 29.12 9.7 6.76 2.79 27.58 14.28 10.8 7.64 4.03 15.38 26.08 18.83 17.41 6.89

GA 0 0 0.86 0.87 0.4 0 0 2.2 1.86 0.77 0 0 2.26 2.5 1.33 0 0 6.68 6.94 2.42

BVDPSO 0 0 0.03 0.06 0.05 0 0 0.92 0.94 0.29 0 0 1.78 0.87 0.36 0 0 3 1.55 0.04

Average R over all the 20 instances: DCH: 13.23%; GA: 1.45%; BVDPSO: 0.49%

0278-0046 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TIE.2014.2314075, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

6

JPSOMR are directly used. Moreover, the results of DPSO

using mutation and the results of GA that are available in the

literature [23] are adopted for comparison. It should be noted

that JPSOMR and DPSO are both discrete PSO variants.

Comparing BVDPSO with these discrete PSOs is interesting in

evaluating the BVDPSO performance in discrete optimization.

It can be observed from Table III that BVDPSO yields the

best performance on 11 (C01-C07, C11, C15, C18, and C19) out

of the 20 problems. DCH, GRASP, and GA often fail to produce

good results on these hard problems. Even though DPSO can

obtain the best results on some of the problems, it works well by

using a mutation-like operation and by introducing a new

parameter into the PSO paradigm. This makes DPSO a little

difficult to use [23]. For JPSOMR, the average R over all the 20

problems is 1.14%, beaten by BVDPSO with average R=0.87%.

By observing the results in Category C, BVDPSO offers very

good performance and outperforms other algorithms in general.

3) Large Scale Problem Instances: The problems in Category

D are also solved by BVDPSO, and the results are compared

with those obtained by DCH and GA in Table IV. The problems

in Category D are all very difficult because the networks are

large with thousands of nodes and edges. The results of DCH are

reported in [6]. As no EC results on these problems are available

in the literature, e.g., the JPSOMR only tested on Category B/C

problems, herein we implement GA and compare with

BVDPSO. The data for GA and BVDPSO are the mean results

of 10 independent runs. Herein the parameter configurations for

GA are set with a population size of 50, the maximal generation

number of 500, using a one-point crossover and a bit mutation

with the crossover and mutation probabilities 0.7 and 0.04

respectively, as recommended in [5][23].

The results show that the DCH heuristic fails to obtain the

OPT on all the 20 problems. For the EC algorithms, both GA

and BVDPSO can obtain the OPT on problems D01, D02, D06,

D07, D11, D12, D16, and D17. These problems, however, are

relative simple because they are all with small number of

destination nodes, e.g., 5 or 10 destination nodes. However,

when the problems become more complex with larger number of

destination nodes, e.g., more than 100, or even as many as 500,

GA is always trapped into local optima and results in larger R

values. On contrast, BVDPSO can still obtain very good results

or near-optimal solutions, resulting in smaller R values.

BVDPSO performs best over all the 20 problems, with average

R=0.49%, while GA is with average R=1.45%. Moreover, for

BVDPSO, 8 results are 0, 4 results are smaller than 0.1%, none

of the results is larger than 2%. On contrast, 6 results obtained

by GA are larger than 2%, and 2 results are even larger than 6%.

The results demonstrate the strong global search ability and

good performance of BVDPSO in solving large scale problems.

C. Comparisons on Convergence Speed

In order to verify the advantages of the proposed BVDPSO in

convergence speed when solving MRP, we compared the mean

FEs to obtain the OPT by BVDPSO and some other EC

algorithms like GA [5] and DPSO [23] in Table V, Table VI, and

Table VII for the problems of Category B, C, and D,

respectively. The FEs values for GA and DPSO on the problems

of Category B and C are reported in [23] and are directly used

here for comparisons. In these tables, the mean FEs value is

considered only on the runs that can obtain the OPT. However,

if an algorithm fails totally to obtain the OPT on the problem, the

result is indicated by the symbol ‘-’ in the table. The mean FEs

can indicate the convergence speed. Generally, we can say that

an algorithm has faster convergence speed if it can obtain the

OPT with fewer FEs. That is, obtain the optimal solution by

generating fewer multicast tree.

The results in Tables V&VI show that BVDPSO is faster than

GA to obtain the OPT of all problems in Categories B/C, and are

faster than DPSO on most of these problems. In average,

BVDPSO used only 111.72 average FEs to obtained the OPT

over all the 18 Category B problems, fewer than that of DPSO

(141) and much fewer than that of GA (725). As some

algorithms totally fail to obtain OPT on some problems in

Category C, we calculated the average FEs over the problem

instances (C01-C03, C05-C07, C10-C12, C16, and C17) that all

the algorithms successfully solve. Results show that BVDPSO is

faster than both DPSO and GA nearly 10 times.

The results in Table VII for the problems of Category D show

that BVDPSO uses fewer FEs than GA to obtain the OPT if they

both can, i.e., on the problems D01, D02, D06, D07, D11, D12,

D16, and D17. However, on some of the problems, none of the

algorithms can obtain the OPT, which are not presented in the

table. This may be caused by the difficulty of the Category D

problems whose networks are with lots of nodes and a large

amount of edges. Nevertheless, BVDPSO can still obtain the

OPT solution on the problems D03, D04, D05, and D20

sometimes where GA totally fails. From the comparisons,

BVDPSO is not only robust to obtain the global optimum, but

also is with much faster convergence speed.

Table V Comparisons on Convergence Speed on the Problems of Category B

No. GA DPSO BVDPSO No. GA DPSO BVDPSO

B01 105 42 41.6 B10 780 72 97

B02 160 54 56.6 B11 585 142 104.2

B03 100 52 43.8 B12 260 144 159.4

B04 120 82 85.8 B13 1100 468 101.8

B05 130 50 67 B14 4020 342 99.2

B06 515 258 227.4 B15 1380 94 88

B07 275 42 43.4 B16 885 110 143

B08 185 48 47.6 B17 925 144 238.2

B09 275 56 61.8 B18 1250 338 305.2

Average FEs over B01-B18: GA=725, DPSO=141, BVDPSO=111.72

Table VI Comparisons on Convergence Speed on the Problems of Category C

No. GA DPSO BVDPSO No. GA DPSO BVDPSO

C01 380 66 72.67 C11 1410 12090 268.67

C02 815 204 183.33 C12 3535 4156 781.11

C03 15430 4706 644 C13 - - -

C04 - 5902 733.33 C14 - - 4000

C05 17970 806 725.33 C15 - 21280 2654.67

C06 1615 3160 138.67 C16 2940 12780 360

C07 3255 3774 253.33 C17 2450 11944 491.30

C08 - 20502 1820 C18 - - 3440

C09 - - 7513.33 C19 - 24826 2555

C10 18980 20648 4505 C20 - 4388 2100

Average FEs over C01-C03, C05-C07, C10-C12, C16, and C17:

GA=6252.73, DPSO=6757.64, BVDPSO=765.77

Table VII Comparisons on Convergence Speed on the Problems of Category D

No. GA
BVD-

PSO
No. GA

BVD-

PSO
No. GA

BVD-

PSO

D01 1180 102 D05 - 2006.67 D12 595 360

D02 1260 138 D06 960 200 D16 555 356

D03 - 1437.78 D07 2780 310 D17 1230 554

D04 - 1553.33 D11 3170 356 D20 - 2426.67

Average FEs over D01, D02, C06, D07, D11, D12, D16, and C17: GA=1466.25, BVDPSO=297

0278-0046 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TIE.2014.2314075, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

7

D. Analysis of BVDPSO Parameters

In this subsection, the performance related parameters , c1,

and c2 are investigated because they can affect the algorithm

performance but have light influences on the computational

burden. Moreover, the computational burden related parameters

M and G are investigated because they affect both algorithm

performance and computational burden.

1) Performance Related Parameters: Herein we undertake

investigations based on the Category C problems. For

investigating the inertia weight , we fix c1 and c2 as 2.0. For

investigating the acceleration coefficients c1 and c2, the is set

linearly decreasing from 0.9 to 0.4. The results are presented in

Fig. 4. As the R values of different problems have different

ranges, we only give the results of some problems that are in

similar ranges. The results of show that the R values get

smaller as increases for most of the problems. This may be

due to that larger can increase the diversity to maintain better

global search. However, when is set to be 1.0 or larger, the

results are much poorer, which are not plotted in the figure due

to the out of range. Moreover, the common setting for (i.e.,

linearly decreasing from 0.9 to 0.4) performs best on most of the

problems. The results of c1 and c2 show that the standard value

2.0 helps BVDPSO work best on most of the problems.

Therefore, the results demonstrate the advantages that the

standard settings for and c1/c2 in the continuous PSO are still

effective and optimal in our proposed discrete BVDPSO.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

9

10

11

12

R
(%

)

Inertia Weight

 C01

 C02

 C03

 C04

 C05

 C10

 C11

 C15

 C16

 C20

0.9~0.4 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Acceleration Coefficients c
1
 and c

2

R
(%

)

 C03

 C04

 C08

 C09

 C10

 C15

 C20

Fig. 4. Parameters analysis on and c1/c2.

2) Computational Burden Related Parameters: Herein, we

make further investigation on the influences of M and G based

on the problems of C09 and C14. All the experiments are

implemented in the VC++ 6.0, and run on a PC with Pentium IV

2.8 GHz CPU and 256MB memory.

The experimental results are plotted in Fig. 5. The

investigation includes the population size M of 20, 50, and 100;

and the maximal generations G of 500, 1250, and 2500, making

up 9 combinations. In the figure, the R value and the CPU time

are the average values of 30 independent runs for each

combination. It can be observed that the solution accuracy gets

better and better as the M or the G increase. However, the mean

CPU time also increases as the M increases or the G increases.

Therefore, the trade-off should be determined between the

solution accuracy and the computational burden.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

2.5x10
5

3.0x10
5

C
P

U
 T

im
e

(m
s)

R
(%

)

 R(%)

M=20
500G 2500G

1250G

 CPU Time (ms)

M=50
500G 2500G1250G

M=100
500G 2500G1250G

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

2.5x10
5

3.0x10
5

3.5x10
5

C
P

U
 T

im
e
 (

m
s)

R
(%

)

 R(%)

 CPU Time(ms)

M=20
500G 2500G 1250G

M=50
500G 2500G1250G

M=100
500G 2500G1250G

Fig. 5. Parameter analysis on G and M.

The figure also reveals an interesting observation that

BVDPSO with a larger M always outperforms the one with a

smaller M because of the larger population diversity, whilst

BVDPSO with larger a G may sometimes does not perform

better than the one with small a G because of random noise.

From the experimental results in Fig. 5 and Section IV-B, it can

be observed that setting the number of particles to a small value

as M=20 is sufficient for most of the problems (e.g., all the

problems in Category B and many problems in Categories C/D).

Setting M=50 should be promising for very difficult problems,

e.g., with node number up to 500 or higher. If higher solution

accuracy is required, setting M=100 would be a good choice.

E. Network Simulation Results

We use the networks simulator 2 (NS-2) to further evaluate

the multicast tree optimized by BVDPSO in this subsection.

NS-2 is a simulator that can test the performance of any given

network topology by simulating the network traffic [30]. In the

simulation, we adopt two network topology cases. In Case 1, we

artificially conduct a network topology whose links are with

10Mb bandwidth and with a random delay within [1ms, 10ms].

When we configure this network into graph for BVDPSO

optimization, the cost of each edge is set to the same as the delay

of the corresponding link. In Case 2, the C15 problem is used as

the network topology. As the cost of each edge is a random

value in [1, 10], when we configure the C15 network for NS-2,

we set the delay of each link with the value the same as the cost,

while the bandwidth of each link with the value as the result of

(11–cost). The network topology of Case 1 is given in Fig. 6.

1
0

9

1

4

4

7

Fig. 6. Network topology of Case 1 and the different multicast trees.

In the simulation, we use distance vector multicast routing

protocol (DVMRP) provided by NS-2 to enable the multicast

function. For performance evaluation and comparison, we also

input the multicast trees optimized by GA and BVDPSO into

NS-2 for simulation. Therefore, three multicast approaches

DVMRP, GA, and BVDPSO are evaluated and compared based

on Case 1 and Case 2 in the NS-2 environments.

We use constant bit rate (CBR) traffic with 512 bytes packet

size for the multicast traffic. The packet rate is set as 1Mb, 2Mb,

4Mb, 8Mb, 16Mb, and 32Mb to emulate different traffic loads.

We compare the network performance of the three multicast

routing approaches by the packet loss metric and the average

delay metric. For a CBR packet sent from the source, if it can

reach all the destination nodes, it is regarded as a successful

packet. This way, the packet loss ratio can be calculated. For any

successful CBR packet, we can also obtain the time from the

source to any destination node. We consider the maximal time to

one of the destination node as the delay of the packet. This way,

0278-0046 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TIE.2014.2314075, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

8

we can obtain the average delay of all the successful packets.

The packet loss ratio and average delay of different multicast

routing approaches under different traffic loads are compared in

Fig. 7. Note that in Case 1, the GA approach can obtain the same

multicast tree as BVDPSO does, as indicated in Fig. 6. In this

sense, their network performance is the same in this case and is

therefore presented by the same curves in Figs. 7.

Fig. 7 shows that none of the three approaches lose packets

when the traffic load is light (e.g., no more than 4Mb) except

that DVMRP has slight packet loss ratio on Case 1. With the

increasing of the traffic load, all the approaches are affected and

more packets are lost. However, GA and BVDPSO can always

do better than DVMRP while BVDPSO can always does better

than GA, as indicating in the Fig. 7 that BVDPSO losses the

least packets while DVMRP losses the most packets. Fig. 7

further shows that the average delay of BVDPSO is always less

than those of DVMRP and GA. These results demonstrate that

BVDPSO has advantages in obtaining promising multicast tree

that transfer information from the source to all the destinations

faster and more reliable than both DVMRP and GA do.

0.000

0.001

0.002

0.003

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32Mb

 Case 1: DVMRP

 Case 1: GA/BVDPSO

 Case 2: DVMRP

 Case 2: GA

 Case 2: BVDPSO

P
ac

k
et

 l
o
ss

 r
at

io

16Mb8Mb4Mb2Mb
Traffic load

1Mb
0.02

0.03

0.04

0.05

0.06

0.07

0.08

32Mb16Mb8Mb4Mb2Mb

A
v
er

ag
e

d
el

ay

Traffic load

 Case 1: DVMRP

 Case 1: GA/BVDPSO

 Case 2: DVMRP

 Case 2: GA

 Case 2: BVDPSO

1Mb

Fig. 7. Packet loss ratio and average delay under different traffic loads.

V. CONCLUSION

A bi-velocity discrete particle swarm optimization has been

developed in this paper to optimize MRP in communication

networks. This proposed BVDPSO algorithm is motivated by

the considerations of providing a simple and yet efficient

method for solving MRP with higher solution accuracy than

traditional heuristics and also with faster convergence speed

than existing EC methods, providing the researchers a new and

practical method for multicast in communication network.

The effectiveness and efficiency of BVDPSO have been

demonstrated by comparing it with 9 other algorithms on all the

Categories B/C/D problems in the OR-library. The results show

that BVDPSO can obtain better solutions with higher accuracy

than the heuristic methods and with faster convergence speed

than the GA and previous PSO based methods. This makes

contributions to the communication and networking community

by providing a new multicast design method that can obtain

optimal or near-optimal solutions to MRP very rapidly by

generating very few multicast trees.

For future research, we plan to investigate the performance of

BVDPSO in solving the MRP with practical QoS constraints

and multiple objectives like other industrial problems [31][32].

For example, we can also take into account the average delay of

all destination nodes as another optimization objective. We can

also take the delay and the link bandwidth as QoS constraints.

As PSO has potentials in solving constrained problems [33] and

multi-objective optimization problems [34], the proposed

BVDPSO is promising to be extended to solve the constrained

and multi-objective MRP problems. The dynamic routing

characteristics of MRP can also be considered [35]. Moreover,

the proposed novel bi-velocity strategy offers a simple and

general technique for BVDPSO to solve a class of binary

optimization in our future work.

REFERENCES

[1] A. Sabbah, A. EI-Mougy, and M. Ibnkahla “A survey of networking

challenges and routing protocols in smart grids,” IEEE Trans. Ind. Informt.,

vol. 10, no. 1, pp. 210-221, Feb. 2014.

[2] G. Kandavanam, D. Botvich, S. Balasubramaniam, and C. Kulatunga,

“PaCRAm: Path aware content replication approach with multicast for

IPTV networks,” in Proc. IEEE Globecom, 2010, pp. 1-6.

[3] G. Kandavanam, D. Botvich, S. Balasubramaniam, and B. Jennings, “A

hybrid genetic algorithm/variable neighborhood search approach to

maximizing residual bandwidth of links for route planning,” in Proc. 9th Int.

Conf. Artificial Evolution, 2009, pp. 49-60.

[4] K. Han, Y. Liu, and J. Luo, “Duty-cycle-aware minimum-energy

multicasting in wireless sensor networks,” IEEE/ACM Trans. Netw., vol.

21, no. 3, pp. 910-923, Jun. 2013.

[5] Y. Leung, G. Li, and Z. B. Xu, “A genetic algorithm for the multiple

destination routing problems,” IEEE Trans. Evol. Comput., vol. 2, no. 4, pp.

150-161, Nov. 1998.

[6] C. Shampa, B. Arvind, and R. Aman, “Directed convergence heuristic: A

fast & novel approach to Steiner tree construction,” Int. Conf. Very Large

Scale Integration, 2006, pp. 255-260.

[7] N. Skorin-Kapov and M. Kos, “A GRASP heuristic for the

delay-constrained multicast routing problem,” Telecommun. Syst., vol. 32,

no. 1, pp. 55-69, 2006.

[8] Y. H. Du, J. Fang, and C. Miao, “Frequency-domain system identification

of an unmanned helicopter based on an adaptive genetic algorithm,” IEEE

Trans. Ind. Electron., vol. 61, no. 2, pp. 870-881, Feb. 2014.

[9] S. H. Chung and H. K. Chan, “A two-level genetic algorithm to determine

production frequencies for economic lot scheduling problem,” IEEE Trans.

Ind. Electron., vol.59, no.1, pp. 611-619, Jan. 2012.

[10] Z. H. Zhan, J. Zhang, Y. Li, O. Liu, S. K. Kwok, W. H. Ip, and O. Kaynak,

“An efficient ant colony system based on receding horizon control for the

aircraft arrival sequencing and scheduling problem,” IEEE Trans. Intell.

Transp. Syst., vol. 11, no. 2, pp. 399-412, Jun. 2010.

[11] Y. J. Gong, M. Shen, J. Zhang, O. Kaynak, W. N. Chen, and Z. H. Zhan,

“Optimizing RFID network planning by using a particle swarm

optimization algorithm with redundant reader elimination,” IEEE Trans.

Ind. Informat., vol. 8, no. 4, pp. 900-912, Nov. 2012.
[12] K. Ishaque, and Z. Salam, “A deterministic particle swarm optimization

maximum power point tracker for photovoltaic system under partial

shading condition,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp.

3195-3206, Aug. 2013.
[13] K. Shen, D. Zhao, J. Mei, L. Tolbert, W. Jianze, M. Ban, J. Yanchao, and X.

Cai, “Elimination of harmonics in a modular multilevel converter using

particle swarm optimization based staircase modulation strategy,” IEEE

Trans. Ind. Electron., 2014, in press.

[14] R. B. Godoy, J. Pinto, C. A. Canesin, E. Alves Coelho, and A. Pinto,

“Differential-evolution-based optimization of the dynamic response for

parallel operation of inverters with no controller interconnection,” IEEE

Trans. Ind. Electron., vol. 59, no. 7, pp. 2859-2866, Jul. 2012.
[15] Y. D. Hong, C. S. Park, and J. H. Kim, “Stable bipedal walking with a

vertical center-of-mass motion by an evolutionary optimized central

pattern generator,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp.

2346-2355, May 2014.

[16] G. Singh, S. Das, S. Gosavi, and S. Pujar, “Ant colony algorithms for

Steiner trees: An application to routing in sensor networks,” Recent

Development in Biologically Inspired Computing, pp. 181-206, 2005.

[17] R. J. Wai, J. D. Lee, and K. L. Chuang, “Real-time PID control strategy for

maglev transportation system via particle swarm optimization,” IEEE

Trans. Ind. Electron., vol. 58, no. 2, pp. 629-646, Feb. 2011.

[18] Z. H. Zhan, J. Zhang, Y. Li, and H. Chung, “Adaptive particle swarm

optimization,” IEEE Trans. Syst., Man, and Cybern. B, vol. 39, no. 6, pp.

1362-1381, Dec. 2009.

[19] H. Wang, X. X. Meng, S. Li, and H. Xu, “A tree-based particle swarm

optimization for multicast routing,” Computer Networks, vol. 54, pp.

2775-2786, 2010.

[20] R. Qu, Y. Xu, J. P. Castro, and D. Landa-Silva, “Particle swarm

optimization for the Steiner tree in graph and delay-constrained multicast

0278-0046 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TIE.2014.2314075, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

9

routing problems,” J. Heuristics, vol. 19, no. 2, pp. 317-342, April. 2013.

[21] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle

swarm algorithm,” in Proc. IEEE Int. Conf. Syst., Man, and Cybern., 1997,

pp 4104-4109.

[22] W. N. Chen, J. Zhang, S. H. Chung, W. L. Zhong, W. G. Wu, and Y. H. Shi,

“A novel set-based particle swarm optimization method for discrete

optimization problems,” IEEE Trans. Evol. Comput., vol. 14, no. 2, pp.

278-300, Apr. 2010.

[23] W. L. Zhong, J. Huang, and J. Zhang, “A novel particle swarm

optimization for the Steiner tree problem in graphs,” in Proc. IEEE Congr.

Evol. Comput., 2008, pp. 2465-2472.

[24] Z. H. Zhan and J. Zhang, “Discrete particle swarm optimization for

multiple destination routing problems,” in Proc. EvoWorkshops, 2009, pp.

117–122.

[25] J. E. Beasley, “OR-library: Distributing test problems by electronic mail,” J.

Opl. Res. Soc., vol. 41, no. 11, pp. 1069–1072, 1990.

[26] J. Kennedy and R. Mendes, “Population structure and particle swarm

performance,” in Proc. IEEE Congr. Evol. Comput., 2002, pp. 1671-1676.

[27] Z. H. Zhan, J. Zhang, Y. Li, and Y. H. Shi, “Orthogonal learning particle

swarm optimization,” IEEE Trans. Evol. Comput., vol. 15, no. 6, pp.

832-847, Dec. 2011.

[28] W. N. Chen, J. Zhang, Y. Lin, N. Chen, Z. H. Zhan, H. Chung, Y. Li, and Y.

H. Shi, “Particle swarm optimization with an aging leader and

challengers,” IEEE Trans. Evol. Comput., vol. 17, no. 2, pp. 241-258,2013.

[29] K. Chan, T. Dillon, and E. Chang, “An intelligent particle swarm

optimization for short-term traffic flow forecasting using on-road sensor

systems,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4714-4725, 2013.

[30] L. Han, J. Wang, X. Wang, and C. Wang, “Bypass flow-splitting

forwarding in FISH networks,” IEEE Trans. Ind. Electron., vol. 58, no. 6,

pp. 2197-2204, Jun. 2011.

[31] H. P. Li and Y. Shi, “Network-based predictive control for constrained

nonlinear systems with two-channel packet dropouts,” IEEE Trans. Ind.

Electron., vol. 61, no. 3, pp. 1574-1582, Mar. 2014.

[32] A. F. Zobaa, “Optimal multiobjective design of hybrid active power filters

considering a distorted environment,” IEEE Trans. Ind. Electron., vol. 61,

no. 1, pp. 107-114, Jan. 2014.

[33] Y. Gong, J. Zhang, H. Chung, W. Chen, Z. H. Zham, Y. Li, and Y. Shi, “An

efficient resource allocation scheme using particle swarm optimization,”

IEEE Trans. Evol. Comput., vol. 16, no. 6, pp. 801-816, Dec. 2012.

[34] Z. H. Zhan, J. Li, J. Cao, J. Zhang, H. Chung, and Y. H. Shi, “Multiple

populations for multiple objectives: A coevolutionary technique for

solving multiobjective optimization problems,” IEEE Trans. Cybern., vol.

43, no. 2, pp. 445-463, 2013.

[35] M. Kodialam and T. Lakshman, “Dynamic routing of restorable bandwidth

guaranteed tunnels using aggregated network resource usage information,”

IEEE/ACM Trans. Networking, vol. 11, no. 3, pp. 399-410, Jun. 2003.

Meie Shen received the B.S. degree in industrial

automation from Huazhong University of Science

and Technology, Wuhan, China, in 1986 and M.S.

degree in automatic control from Shenyang

Institute of Automation, Chinese Academy of

Sciences, Shenyang, China, in 1989.

Currently, she is an Associate Professor at the

School of Computer Science in Beijing

Information Science and Technology University.

Her research interests include intelligent

algorithms, automatic control theory and

application.

Zhi-Hui Zhan (SM’09-M’13) received the

Bachelor’s degree and the Ph. D degree in

2007 and 2013, respectively, from the

Department of Computer Science of Sun

Yat-Sen University, Guangzhou, China.

He is currently a lecturer in Sun Yat-sen

University. His current research interests

include particle swarm optimization,

differential evolution, ant colony optimization,

genetic algorithms, and their applications in

real-world problems.

Dr. Zhan’s doctoral dissertation was

awarded the China Computer Federation Outstanding Dissertation in 2013.

Wei-Neng Chen (SM’07-M’12) received the

Bachelor’s degree and the Ph.D. degree from the

Department of Computer Science of Sun Yat-sen

University, Guangzhou, China, in 2006 and 2012,

respectively.

His doctoral dissertation was awarded the China

Computer Federation outstanding dissertation in

2012. He is currently an associate professor with

the School of Advanced Computing, Sun Yat-sen

University. He has published more than 30 papers

in international journals and conferences. His

current research interests include swarm

intelligence algorithms and their applications in real-world applications.

Yue-Jiao Gong (SM’10) received the B.S. degree

in computer science in 2010, from Sun Yat-Sen

University, Guangzhou, China, where she is

currently working toward the Ph.D. degree.

Her current research interests include artificial

intelligence, evolutionary computation, swarm

intelligence, and their applications in design and

optimization of intelligent transportation systems,

wireless sensor networks, and RFID systems.

Jun Zhang (M’02–SM’08) received the Ph.D.

degree from the City University of Hong Kong,

Kowloon, Hong Kong, in 2002.

He is currently a Changjiang Chair Professor

with the School of Advanced Computing, Sun

Yat-sen University. He has published over 100

technical papers in his research areas. His current

research interests include computational

intelligence, cloud computing, high performance

computing, data mining, wireless sensor networks,

operations research, and power electronic circuits.

Dr. Zhang was a recipient of the China

National Funds for Distinguished Young

Scientists from the National Natural Science Foundation of China in 2011 and

the First-Grade Award in Natural Science Research from the Ministry of

Education, China, in 2009. He is currently an Associate Editor of the IEEE

Transactions on Evolutionary Computation, the IEEE Transactions on

Industrial Electronics, and the IEEE Transactions on Cybernetics.

Yun Li (SM’87–M’90) received his B.S. in

electronics science, M. Eng. in electronic

engineering, and Ph.D. in computing and control in

1984, 1987 and 1990, respectively.

During 1989-1990, he was with U.K. National

Engineering Laboratory and Industrial Systems and

Control Ltd. He joined University of Glasgow as

Lecturer in 1991, was Founding Director of

University of Glasgow Singapore during 2011-2013

and Founding Director of the University's

international joint programme with University of

Electronic Science and Technology of China (UESTC) in 2013. He established

IEEE Computer-Aided Control System Design Evolutionary Computation

Working Group and European Network of Excellence in Evolutionary

Computing Workgroup on Systems, Control, and Drives in 1998. He was invited

to Kumamoto University, Japan, as Visiting Professor in 2002 and has been

Visiting Professor to UESTC since 2004. Professor Li is a Chartered Engineer,

has supervised over 20 Ph.D. students and has over 180 publications.

