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Abstract—This paper proposes a novel bi-velocity discrete 

particle swarm optimization (BVDPSO) approach and extends its 

application to the NP-complete multicast routing problem (MRP). 

The main contribution is the extension of PSO from continuous 

domain to the binary or discrete domain. Firstly, a novel 

bi-velocity strategy is developed to represent possibilities of each 

dimension being 1 and 0. This strategy is suitable to describe the 

binary characteristic of the MRP where 1 stands for a node being 

selected to construct the multicast tree while 0 stands for being 

otherwise. Secondly, BVDPSO updates the velocity and position 

according to the learning mechanism of the original PSO in 

continuous domain. This maintains the fast convergence speed and 

global search ability of the original PSO. Experiments are 

comprehensively conducted on all of the 58 instances with small, 

medium, and large scales in the OR-library (Operation Research 

Library). The results confirm that BVDPSO can obtain optimal or 

near-optimal solutions rapidly as it only needs to generate a few 

multicast trees. BVDPSO outperforms not only several 

state-of-the-art and recent heuristic algorithms for the MRP 

problems, but also algorithms based on GA, ACO, and PSO.  

 
Index Terms—Communication networks, multicast routing 

problem, particle swarm optimization, Steiner tree problem 

I. INTRODUCTION 

ULTICAST routing problem (MRP) has drawn much 

attention worldwide for a number of decades owing to its 
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significance in communication and networking systems [1]. 

MRP is a problem that, given a communication network with a 

source node, a set of destination nodes, a set of intermediate 

nodes, and a set of edges that make the network connected, find 

a tree to connect the source node and all the destination nodes, 

so that the data can be sent to all destination nodes by 

multicasting. Work during recent years’ on research and 

applications have witnessed the significance of MRP in various 

communication networks, providing services such as IPTV, 

distributed data process, internet telephone, interactive 

multimedia conference, and video broadcast [2]. 

An MRP can be treated as an optimization problem. For 

example, its objective can be to minimize delays from the source 

to destinations, crucial to latency-sensitive multicasting. In this 

sense, we can consider the delay of each edge as the cost of the 

edge and optimize the multicast tree with a minimal cost. We 

can also take other network properties as the cost of each edge, 

such as the reserved bandwidth and the utility price [3]. Without 

loss of generality, this paper does not consider the physical 

significance of the cost. Therefore optimizing the cost of MRP is 

also referred to the Steiner tree problem (STP) in graph theory. 

The challenge in solving the MRP or STP lies in that the STP 

is known to be an NP-complete problem [4]. Therefore, 

deterministic algorithms are inapplicable, while approximation 

or nondeterministic algorithms are promising and of practical 

value to solve the MRP [4]. In early years, researchers proposed 

some state-of-the-art greedy heuristic algorithms for STP, such 

as shortest path heuristic (SPH), distance network heuristic 

(DNH), and average distance heuristic (ADH) [5]. In recent 

years, modern heuristics like directed convergence heuristic 

(DCH) [6] and greedy randomized adaptive search procedure 

(GRASP) [7] have also been developed. However, these 

heuristic algorithms appear not promising in constructing an 

optimal multicast tree when the network scale becomes large 

with many nodes and edges. This is because that the greedy 

heuristic algorithms are based on local information, and are 

hence easily trapped in local optima in a complex environment. 

With the development of evolutionary computation (EC), 

many studies have shown that EC algorithms like genetic 

algorithm (GA) [8][9], ant colony optimization (ACO) [10], 

particle swarm optimization (PSO) [11]-[13], and others [14][15] 

are promising to solve various complex optimization problems. 

These also motivate researchers to apply EC algorithms for 
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communication and networking optimization. For example, 

GAs have been reported successful in solving MRP for decades 

[5]. ACO was also reported to solve some kinds of MRP [16]. 

However, the GA and ACO based methods may encounter their 

inherent low convergence speed, which is criticized in the 

communication community on inefficiency in meeting high 

demands of real-time communication services [17]. As an 

efficient EC variant, PSO is featured by its simpler 

implementation and faster convergence speed when compared 

with other EC algorithms, yet offering strong global search 

ability [18]. Therefore, we focus on applying PSO to solve STP, 

which is an MRP without QoS constraints. Wang et al. [19] used 

tree-based scheme to code the solution (particle). However, the 

method needs to code all multicast trees in potential solution, 

making the algorithm complex for implementation. Qu et al. [20] 

have recently proposed to use jumping PSO (JPSO) to solve 

STP. Although they used a discrete PSO, the velocity of original 

PSO was not considered, being inefficient to maintain the 

advantages of original PSO in continuous domain. 

In order to keep the simple implementation and efficiency of 

original PSO in continuous domain, and also to maintain the fast 

convergence speed and global search advantages of PSO, this 

paper extends the origin PSO to the binary domain and 

optimizes MRP by solving STP as a binary optimization 

problem. The solution (particle) is coded as a 0/1 string (whose 

length equals to the number of nodes in the network) where 1 

means a node is selected to construct the multicast tree and 0 

means the node is not selected. Based on this coding scheme, a 

novel bi-velocity discrete PSO (BVDPSO) is proposed for both 

maintaining the search advantages of PSO and matching the 

binary characteristics of MRP. Therefore, BVDPSO is different 

from other existing discrete or binary PSO algorithms that use 

random jumping strategy [20], sigmoid function strategy [21], 

or set-based strategy [22], because it uses a very simple and 

straightforward bi-velocity strategy that utilizes two vectors to 

represent the possibilities of being 0 and 1 respectively for each 

node. Moreover, BVDPSO modifies the velocity and position 

update equations to keep the learning mechanism of original 

PSO in continuous domain. BVDPSO is also different from our 

previous discrete PSO (DPSO) for MRP optimization [23][24], 

as DPSO does not keep the original PSO framework but adds a 

mutation operator to PSO. BVDPSO does not change the PSO 

algorithm structure, but takes the advantages of the ring 

topological structure to avoid local optimal, being still as simple 

as the original PSO. In this paper, BVDPSO is comprehensively 

studied in local networks and rigorously tested for not only 

small or medium scale networks, but also large scale networks 

with a large number of nodes, edges, and destination nodes. 

Therefore, the main contributions of this paper are twofold: 

one is in the algorithm design aspect and the other is in the 

practical application aspect. 

Firstly, the novelty of BVDPSO is that it uses a general 

bi-velocity scheme to make PSO suitable for solving a class of 

binary optimization problem in the discrete domain. More 

importantly, such a bi-velocity scheme makes BVDPSO still as 

simple as the original PSO in continuous domain, and also 

maintains the fast global search behaviors of the PSO. 

Secondly, BVDPSO can overcome the local optimum issue of 

many heuristic algorithms and has much faster speed to find the 

optimal or near-optimal multicast solution than other EC 

algorithms. This can provide researchers and engineers a new 

and practical approach to multicast design in communication 

network. Moreover, to the best of our knowledge, BVDPSO is 

the first EC-based algorithm that is tested on all the 58 problems 

(with small, medium, and large scales) in the OR-library 

(Operation Research Library) [25]. The experimental results can 

provide a baseline for future research on these MRP problems. 

The remainder of the paper is organized as follows. Section II 

formulates the MRP and describes the framework of PSO. 

Section III proposes BVDPSO for optimizing MRP. Section IV 

presents the experimental results and comparisons. Conclusions 

and future work are drawn in Section V. 

II. BACKGROUND OF MRP AND PSO 

A. Formulation of MRP 

To define an MRP, suppose Netw={A, E} is an undirected, 

connected, weighted network where A is the node set and E is 

the edges set. A positive function c(e) is used to denote the cost 

of each edge e in E. The source node s and all multiple 

destination nodes in the network make up the set R={s} D, 

where D stands for the destination nodes set. S=A/R stands for 

the rest nodes (which are also named as the intermediate nodes 

or the Steiner nodes). The functionality of MRP is to send the 

data from the source node (s) to all the destination nodes in the 

set D. Therefore, the objective of MRP is to find a minimal cost 

tree T that connects the source node to all the destination nodes 

through some of the intermediate nodes. 
For T={A*, E*}, where * * *, ,A A E E R A , the objective 

of MRP is formulated as: 

*

* * *Min   min ( ), where  , ,
e E

f T c e A A E E R A    (1) 

B. PSO in Continuous Domain 

PSO is an EC algorithm paradigm that emulates the swarm 

behaviors of birds flocking [17]. Optimizing a N-dimensional 

continuous optimization problem, each particle i has a velocity 

vector Vi=[vi1, vi2, …, viN] and position vector Xi=[xi1, xi2, …, xiN] 

to indicate the current status. Moreover, the particle i keeps its 

personal historical best position vector Pi=[pi1, pi2, …, piN]. The 

best position of all the Pi in the ring topology is regarded as the 

neighborhood local best position Li=[li1, li2, …, liN]. The Vi and 

Xi are initialized randomly and are updated in every generation 

by the guidance of Pi and Li as: 

vij = vij + c1 r1j (pij – xij) + c2 r2j (lij – xij)          (2) 

xij = xij + vij                                   (3) 

where  is the inertia weight linearly decreasing from 0.9 to 0.4 

during the running time. c1 and c2 are acceleration coefficients 

set as 2.0. r1j and r2j are two random values in the range of [0, 1] 

for the jth dimension. 

As the ring topology is not easy to be trapped into local 

optima while can still keep very fast optimization speed [26], it 

is adopted herein. Interested readers can refer to [27][28] for 

enhanced PSOs and [29] for PSO industrial applications. 
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III. BVDPSO 

A. Particle Code 

The MRP can be regarded to find a set of nodes (include the 

source node, all the destination nodes, and some intermediate 

nodes) to construct an optimal multicast tree. Therefore, it is 

natural and intuitive to code the solution as a binary string, 

whose length is the same as the number of total nodes, and all 

the destination nodes are always coded with a bit 1 to indicate 

that they are always in the tree. Moreover, if an intermediate 

node is with value 1, it means that the node is used to construct 

the multicast tree; otherwise, the node is not used to construct 

the tree. Therefore, suppose there are totally N nodes in the 

network, the position code of each particle i is as: 

Xi = [xi1, xi2, …, xiN], where xij=0 or 1                (4) 

while the velocity is coded by a novel bi-velocity fashion as: 
0 0 0 0

1 2 0 1

1 1 1 1

1 2

, , , ,
,  where 0 1, 0 1

, , , ,

i i ij iN

i ij ij

i i ij iN

v v v v
V v v

v v v v
       (5) 

In (5), it is interesting that the jth dimension of the Vi is 

associated with bi-values. The 0

ijv  is the possibility of xij being 0 

and 1

ijv is the possibility of xij being 1. Note that 0

ijv  and 1

ijv  are 

calculated according to the difference between two positions 

(e.g., the Pi and the Xi, or the Li and the Xi), and are independent 

to stand for the possibilities of the xij being 0 and 1. Therefore, 

the sum of 0

ijv and 1

ijv  is unnecessarily equal to 1. 

B. Velocity Update 

When updating the particle’s velocity in BVDPSO, it is 

important to keep the learning concept in original PSO. In our 

implementation of the velocity update in BVDPSO, the same 

equation as (2) is used. However, three modifications are taken 

to fit the 0/1 position code and bi-velocity code in BVDPSO. 

The details are described as follows and given in Fig. 1. 

1) Velocity=Position1–Position2: Suppose that the Position1 

is X1 and the Position2 is X2, our BVDPSO keeps the original 

PSO  learning concept and makes up the Velocity (Vi=X1–X2) by 

considering the difference between X1 and X2 when X2 learns 

from X1. For the jth dimension of Vi, if x1j is b but x2j is not b (b is 

0 or 1), this means that X2 is different from X1 on this jth 

dimension, then the particle X2 should learn from the X1 

(because X1 is the better position). Hence 1b

ijv  and 1 0b

ijv ; if 

x1j is the same as x2j, it means it is unnecessary for X2 to learn 

from X1 on this corresponding dimension, hence 0 1 0ij ijv v . For 

example, if X1=[1,1,1,0,1,0,1,0] and X2=[1,1,1,0,1,1,0,0], then 

1 2

0, 0, 0, 0, 0,1, 0, 0

0, 0, 0, 0, 0, 0,1, 0
iV X X . 

2) Velocity=Coefficient Velocity: This operation is to 

multiply Coefficient , or c r with each element of the current 

Velocity to obtain each element of the final Velocity. As velocity 

is to denote the possibility for the position being 0 and 1, if any 

dimension of the final Velocity is larger than 1, this value is set 

to 1.  Suppose c r=[1.5, 1.8, 0.9, 0.5, 1.2, 1.3, 0.8, 0.5] and 

0,0,0,0,0,1,0,0

0,0,0,0,0,0,1,0
V , then 

0, 0, 0, 0, 0, 1.3, 0, 0 0, 0, 0, 0, 0, 1, 0, 0
( )

0, 0, 0, 0, 0, 0, 0.8, 0 0, 0, 0, 0, 0, 0, 0.8, 0
V c r V . 

3) Velocity=Velocity1+Velocity2: Suppose the Velocity1 and 

Velocity2 are V1 and V2, then Vi=V1+V2 is the final Velocity. The 

jth dimension b

ijv  in the velocity Vi is the same as the larger one 

between 
1

b

jv  and 
2

b

jv , where b=0, 1. For example, suppose 

1

0.2, 0, 0.8, 0.1, 0, 0, 0.5, 0

0.3, 0, 0.1, 0.4, 0, 0, 0, 0.5
V  and 

2

0.4, 0.5, 0.6, 0, 0, 1, 0.3, 0

0.1, 0, 0.9, 0, 0.2, 0, 0.8, 0
V , 

then 
1 2

0.4, 0.5, 0.8, 0.1, 0, 1, 0.5, 0

0.3, 0, 0.9, 0.4, 0.2, 0, 0.8, 0.5
iV V V . 

Procedure Velocity_Update (Xi)
Begin
For j=1 to N Do //Calculate vij= vij+c1r1j(pij–xij)+c2r2j(lij–xij)

//Step 1: Calculate c1r1j(pij – xij)

        If pij==xij Then vp_0=0; vp_1=0;//do not learn
Else If pij==1  Then vp_0=0; vp_1=1;//learn from vpj

1

Else If pij==0  Then vp_0=1; vp_1=0;//learn from vpj
0

c11=c1×random(0,1); vp_0=c11×vp_0; vp_1=c11×vp_1;
//Step 2: Calculate c2r2j(lij – xij)

        If lij==xij Then vl_0=0; vl_1=0; //do not learn
Else If lij==1  Then vl_0=0; vl_1=1; //learn from vlj

1

Else If lij==0  Then vl_0=1; vl_1=0; //learn from vlj
0

c22=c2×random(0,1); vl_0=c22×vl_0; vl_1=c22×vl_1;
//Step 3: Determine the finial velocity

        vij
0=max{ ×vij

0, vp_0, vl_0}; vij
1=max{ ×vij

1, vp_1, vl_1};
    End For
End

 
Fig. 1. The pseudocode of the procedure for velocity update. 

C. Position Update 

When the PSO algorithm works in continuous domain, the 

position update is to add the updated velocity Vi to the current 

position Xi, as (3). However, the position and velocity may not 

be added up directly in discrete domain. In order to keep the 

learning concept of the original PSO, we construct the new 

position by using the strategy as shown in (6): 
0 1

0 1

0 1

0 1

{0,1} if  (  and )

0 if  (  and )

1 if  (  and )

if  (  and )

ij ij

ij ij

ij

ij ij

ij ij ij

rand v v

v v
x

v v

x v v

                          (6) 

With these strategies, the new position pays more attention to 

the new velocity. This can help the particle learn more from the 

exemplars to the learning concept of the original PSO. 

D. Fitness Evaluation 

An important issue in using BVDPSO for MRP optimization 

is how to calculate the fitness of a solution. The solution is a 0/1 

string, indicating which nodes are used to construct the multicast 

tree. The fitness evaluation is to construct a multicast tree 

according to this 0/1 string and then calculate the cost of the tree. 

In order to construct a promising multicast tree with low cost, 

we firstly transform the MRP network into a cost complete 

graph (CCG) based on the Floyd’s algorithm with special data 

structure. Then, based on the CCG and the 0/1 binary string of 

the solution, we can construct the multicast tree by using the 

Prim’s minimum spanning tree (MST) algorithm. However, it is 

necessary to make some modifications to the Prim’s algorithm to 

fit the characteristic of MRP. Moreover, the tree has to be 

pruned in order to delete the leaves which are not the destination 

nodes. The following parts describe the CCG procedure, 

modified Prim’s algorithm, and the prune procedure. 
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1) CCG Procedure: In the CCG procedure, every two nodes 

are connected by the shortest path. It should be noted that some 

of the shortest paths may be ‘indirect’ paths, and the others are 

‘direct’ paths. A ‘direct’ path means that the path exists in the 

original network that connects the two nodes directly. An 

‘indirect’ path means that the path does not directly connect the 

two nodes but via some other nodes. Therefore, we should 

record the very next node of the shortest path that connects any 

two nodes. This can help to restore the path when necessary. 

Fig. 2 gives the pseudocode of the CCG procedure based on 

the Floyd’s algorithm with a data structure. C(i, j) is the input 

data of the CCG procedure to give the cost between nodes i and 

j in the original network. C(i, j)=–1 means nodes i and j are not 

directly connected. The data structure S is used to record the 

shortest path (with minimal cost) that connects any two nodes.  

Specifically, S(i, j).length is the total cost of the path that 

connects nodes i and j. S(i, j).next is the very next node on the 

path from i to j. That is, if the nodes i and j are connected directly, 

S(i, j).next is j and S(j, i).next is i. Otherwise, suppose that the 

shortest path between nodes i and j is (i, k1, k2,…, j), then S(i, 

j).next=k1, S(k1, j).next=k2, and so on. With the help of S(i, 

j).next, we can reconstruct the path between nodes i and j easily. 

Noted that the CCG procedure is only carried out once before 

using BVDPSO to optimize MRP. Therefore, the CCG is the 

pre-process whose results can be used again and again in the 

fitness evaluation procedure during the entire BVDPSO process. 

 
Fig. 2. The pseudocode of the CCG procedure. 

2) Modified Prim’s Algorithm for the MST: As there are direct 

and indirect paths in the CCG, the modified Prim’s algorithm 

prefer the direct paths to the indirect paths when constructing the 

MST T. That is, we try to construct the tree according to the 

nodes with value 1 in the solution string. Therefore, when there 

are both direct and indirect paths connect these nodes to the tree, 

the algorithm selects the shortest direct path even though it may 

be longer than some indirect paths. When there are no direct 

paths, the algorithm selects the shortest indirect path. 

We give an example in Fig. 3 to illustrate the modified Prim’s 

algorithm. Fig. 3(a) is the original network with N1, N8, and N9 

as the destination nodes. Suppose that the particle position is as 

X = [1, 0, 1, 0, 0, 0, 1, 1, 1], denoting that the nodes N1, N3, N7, 

N8, and N9 are used to construct the tree. The modified Prim’s 

algorithm is described as four steps. 

Step 1): Initialize T as an empty tree. We firstly select a 

random destination node into T (the source node is also regarded 

as a destination node). Then, for any other node i with a position 

value 1 in the binary string, record its direct cost D[i] and 

indirect cost I[i] to the tree T. As in Fig. 3(b), we select the 

destination node N1 into the T, and then record the D[i] and I[i] 

for all the other nodes i whose position values are 1. For 

example, D[N3]=3 means that the node N3 connects the T via a 

direct path with cost 3. I[N3]=2 means that the shortest path for 

the node N3 to the T is with cost 2, but have to use node N2 as an 

intermediate node. Herein, we use the word ‘record’ instead of 

‘calculate’ because the cost values have been calculated in the 

CCG procedure which can be used during the entire process. 

Step 2): Select the next nearest node into the tree T. In this 

step, we prefer the direct path to the indirect path even though 

the direct cost may be larger than the indirect cost. For example, 

in Fig. 3(c), the node N3 is selected. However, if there are no 

nodes connect the T via direct path, we select the shortest 

indirect path, e.g., the node N7 is selected in Fig. 3(d). When an 

indirect path is selected, the corresponding intermediate nodes 

are also added into the tree, as shown in Fig. 3(d) where the 

nodes N2, N5, and N6 are added. 

Step 3): Cost update. Once a node has been added to the tree 

(when a direct path is selected) or some nodes have been added 

to the tree (when an indirect path is selected), we have to update 

the direct cost D[i] and the indirect cost I[i] to the tree T of the 

other node i whose position value is 1 in the binary string. For 

example, in Fig. 3(d), both the D[N8] and I[N8] become 4 

because N8 can connect the T directly via N7. Also, both the 

D[N9] and I[N9] become 3 because the direct path connects N5 

and N9 costs 3. Moreover, Fig. 3(e) shows the cost update of the 

N8 after the adding of the N9 into the tree. 

Step 4): Repeat Step 2) and Step 3) until all the destination 

nodes have been added into T. 

3) Prune Procedure: The prune procedure deletes all the 

non-destination leaf nodes in T to reduce the redundancy. The 

procedure is easy to implement: we find out the node i in T that 

has the degree of 1 (the degree of each node can be recorded 

during the above multicast tree constructed process), if i is not a 

destination node, delete it and reduce the degree of node j that 

connects i by 1. Repeat doing this until no non-destination node 

with degree 1 can be found. For example, in Fig. 3(f), the nodes 

N3 and N7 are redundant and can be deleted. After the deletion of 

N7, the node N6 can be also deleted. Therefore, we can obtain the 

finial multicast tree T as Fig. 3(g). 

 
Fig. 3. Illustration of the modified Prim’s algorithm to construct multicast tree. 
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IV. EXPERIMENTS AND COMPARISONS 

A. Problem Instances and Algorithm Settings 

The experiments on the problems of Categories B/C/D in the 

OR-library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/) 

[25] are carried out. The details of the problems are given in 

Table I. The problems are divided into three Categories B/C/D 

that can be regarded as small, medium, and large scale MRP in 

local networks. The OPT is the optimal solution in the library. 

The population size M of BVDPSO is set to 20,  is linearly 

decreasing from 0.9 to 0.4, and c1 and c2 are both set to 2.0. The 

maximum number of generation G is 1250, and therefore there 

are at most 20 1250=25000 fitness evaluations (FEs) each run. 

This is the same as the configurations in previous studies [23]. 

BVDPSO terminates when it finds the global optimum OPT or it 

runs out of the FEs budget. It is should be noted that the number 

of FEs is also the number of generated multicast tree. 

B. Comparisons on Solution Accuracy 

1) Small Scale Problem Instances: We first compare the 

solution accuracy of the results obtained by different algorithms 

on the problems of Category B. The comparisons are based on 

the relative error R that is defined as: 

R%=(Result–OPT)/OPT 100                     (7) 

where the Result is the mean solution of 100 independent runs. 

The R values of the heuristic methods like SPH, DNH, ADH, 

and the GA methods reported in [5] are used here for 

comparisons. The results of ACO are based on the report in [16]. 

The comparisons in Table II show that the traditional 

heuristics are easy to be trapped into local optima and result in 

poor solution accuracy. The R of SPH, DNH, and ADH on some 

problems are even larger than 5%, indicating that the traditional 

heuristic algorithms may not have strong global search ability to 

obtain high accurate solutions. For the EC algorithm, GA and 

BVDPSO can obtain the OPT on all the problems in every run 

and all the relative error values are 0% but ACO can not. 

2) Medium Scale Problem Instances: The experimental 

results of the problems in Category C are compared in Table III. 

These problems are regarded to be more difficult than those in 

Category B because they have more nodes, edges, and 

destination nodes. Herein, 30 independent runs are carried out 

for each problem because of the large computational burden. As 

the results for the Category C problems are not available in [5] 

or relevant literature for the heuristics like SPH, DNH, or ADH, 

they are not used in the comparisons. Instead, we compare 

BVDPSO with recent heuristics DCH [6] and GRASP [7], and 

JPSO for multicast routing (JPSOMR) [20]. The results reported 

in [6] for DCH and the results reported in [20] for GRASP and 

Table I The Details of Steiner Tree Problems 

No. |N| |E| |D| OPT No. |N| |E| |D| OPT No. |N| |E| |D| OPT

B01 50 63 9 82 C01 500 625 5 85 D01 1000 1250 5 106

B02 50 63 13 83 C02 500 625 10 144 D02 1000 1250 10 220 

B03 50 63 25 138 C03 500 625 83 754 D03 1000 1250 167 1565

B04 50 100 9 59 C04 500 625 125 1079 D04 1000 1250 250 1935

B05 50 100 13 61 C05 500 625 250 1579 D05 1000 1250 500 3250

B06 50 100 25 122 C06 500 1000 5 55 D06 1000 2000 5 67

B07 75 94 13 111 C07 500 1000 10 102 D07 1000 2000 10 103

B08 75 94 19 104 C08 500 1000 83 509 D08 1000 2000 167 1072

B09 75 94 38 220 C09 500 1000 125 707 D09 1000 2000 250 1448

B10 75 150 13 86 C10 500 1000 250 1093 D10 1000 2000 500 2110 

B11 75 150 19 88 C11 500 2500 5 32 D11 1000 5000 5 29 

B12 75 150 38 174 C12 500 2500 10 46 D12 1000 5000 10 42

B13 100 125 17 165 C13 500 2500 83 258 D13 1000 5000 167 500

B14 100 125 25 235 C14 500 2500 125 323 D14 1000 5000 250 667

B15 100 125 50 318 C15 500 2500 250 556 D15 1000 5000 500 1116

B16 100 200 17 127 C16 500 12500 5 11 D16 1000 25000 5 13

B17 100 200 25 131 C17 500 12500 10 18 D17 1000 25000 10 23

B18 100 200 50 218 C18 500 12500 83 113 D18 1000 25000 167 223 

     C19 500 12500 125 146 D19 1000 25000 250 310 

     C20 500 12500 250 267 D20 1000 25000 500 537

Table II Comparisons on Solution Accuracy (R%) of Different Algorithms on the Problems of Category B 

Methods B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11 B12 B13 B14 B15 B16 B17 B18 Average R

SPH 0 0 0 5.08 0 0 0 0 0 4.65 2.27 0 7.88 2.55 0 3.15 3.82 1.83 3.95% 

DNH 0 8.43 1.45 8.47 4.92 4.92 0 0 2.27 13.95 2.27 0 6.06 1.28 2.2 7.87 5.34 4.59 2.04% 

ADH 0 0 0 5.08 0 0 0 0 0 4.65 2.27 0 4.24 0.43 0 0 3.05 0 0.96% 

GA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0% 

ACO 0 0 0 0 0 NA NA 0 0 1.63 1.14 NA 1.39 0.13 0 4.72 NA 3.44 NA 

BVDPSO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0% 

Table III Comparisons on Solution Accuracy (R%) of Different Algorithms on the Problems of Category C 

Methods C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

DCH 3.5 23.6 7.16 6.02 1.25 14.06 18.62 9.03 7.21 2.92 15.92 13.04 11.24 10.21 4.31 18.18 27.77 10.31 15.06 7.11

GRASP 0 0 0.9 1.8 0.5 0 0 1.7 1 0.3 1.9 0.9 1.7 1.5 0.1 3.6 4.4 4.4 3.7 0.9 

GA 0 0 0.5 0.44 0.1 0 0 1.14 1.27 0.38 0 0.43 1.36 1.42 1.04 2.73 1.11 4.78 5 2.02

DPSO 0 0 0.05 0.02 0 0 0 0.18 0.3 0.14 0.31 0 0.97 0.56 0.16 3.64 2.22 2.65 0.96 0 

JPSOMR 1.2 3.5 0.9 0.4 0 0 0.7 0.1 0.5 0.1 0.9 0 0.2 0.3 0 9.1 1.1 2.4 1.4 0 

BVDPSO 0 0 0 0 0 0 0 0.20 0.42 0.13 0 1.23 2.02 0.78 0 8.79 1.67 1.30 0.87 0.06

Average R over all the 20 instances: DCH: 11.33%; GRASP: 1.47%; GA: 1.45%; DPSO: 0.61%; JPSOMR: 1.14%; BVDPSO: 0.87% 

Table IV Comparisons on Solution Accuracy (R%) of Different Algorithms on the Problems of Category D 

Methods D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

DCH 9.43 12.72 7.92 5.58 1.78 29.85 29.12 9.7 6.76 2.79 27.58 14.28 10.8 7.64 4.03 15.38 26.08 18.83 17.41 6.89

GA 0 0 0.86 0.87 0.4 0 0 2.2 1.86 0.77 0 0 2.26 2.5 1.33 0 0 6.68 6.94 2.42

BVDPSO 0 0 0.03 0.06 0.05 0 0 0.92 0.94 0.29 0 0 1.78 0.87 0.36 0 0 3 1.55 0.04

Average R over all the 20 instances: DCH: 13.23%; GA: 1.45%; BVDPSO: 0.49% 
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JPSOMR are directly used. Moreover, the results of DPSO 

using mutation and the results of GA that are available in the 

literature [23] are adopted for comparison. It should be noted 

that JPSOMR and DPSO are both discrete PSO variants. 

Comparing BVDPSO with these discrete PSOs is interesting in 

evaluating the BVDPSO performance in discrete optimization. 

It can be observed from Table III that BVDPSO yields the 

best performance on 11 (C01-C07, C11, C15, C18, and C19) out 

of the 20 problems. DCH, GRASP, and GA often fail to produce 

good results on these hard problems. Even though DPSO can 

obtain the best results on some of the problems, it works well by 

using a mutation-like operation and by introducing a new 

parameter into the PSO paradigm. This makes DPSO a little 

difficult to use [23]. For JPSOMR, the average R over all the 20 

problems is 1.14%, beaten by BVDPSO with average R=0.87%. 

By observing the results in Category C, BVDPSO offers very 

good performance and outperforms other algorithms in general. 

3) Large Scale Problem Instances: The problems in Category 

D are also solved by BVDPSO, and the results are compared 

with those obtained by DCH and GA in Table IV. The problems 

in Category D are all very difficult because the networks are 

large with thousands of nodes and edges. The results of DCH are 

reported in [6]. As no EC results on these problems are available 

in the literature, e.g., the JPSOMR only tested on Category B/C 

problems, herein we implement GA and compare with 

BVDPSO. The data for GA and BVDPSO are the mean results 

of 10 independent runs. Herein the parameter configurations for 

GA are set with a population size of 50, the maximal generation 

number of 500, using a one-point crossover and a bit mutation 

with the crossover and mutation probabilities 0.7 and 0.04 

respectively, as recommended in [5][23]. 

The results show that the DCH heuristic fails to obtain the 

OPT on all the 20 problems. For the EC algorithms, both GA 

and BVDPSO can obtain the OPT on problems D01, D02, D06, 

D07, D11, D12, D16, and D17. These problems, however, are 

relative simple because they are all with small number of 

destination nodes, e.g., 5 or 10 destination nodes. However, 

when the problems become more complex with larger number of 

destination nodes, e.g., more than 100, or even as many as 500, 

GA is always trapped into local optima and results in larger R 

values. On contrast, BVDPSO can still obtain very good results 

or near-optimal solutions, resulting in smaller R values. 

BVDPSO performs best over all the 20 problems, with average 

R=0.49%, while GA is with average R=1.45%. Moreover, for 

BVDPSO, 8 results are 0, 4 results are smaller than 0.1%, none 

of the results is larger than 2%. On contrast, 6 results obtained 

by GA are larger than 2%, and 2 results are even larger than 6%. 

The results demonstrate the strong global search ability and 

good performance of BVDPSO in solving large scale problems. 

C. Comparisons on Convergence Speed 

In order to verify the advantages of the proposed BVDPSO in 

convergence speed when solving MRP, we compared the mean 

FEs to obtain the OPT by BVDPSO and some other EC 

algorithms like GA [5] and DPSO [23] in Table V, Table VI, and 

Table VII for the problems of Category B, C, and D, 

respectively. The FEs values for GA and DPSO on the problems 

of Category B and C are reported in [23] and are directly used 

here for comparisons. In these tables, the mean FEs value is 

considered only on the runs that can obtain the OPT. However, 

if an algorithm fails totally to obtain the OPT on the problem, the 

result is indicated by the symbol ‘-’ in the table. The mean FEs 

can indicate the convergence speed. Generally, we can say that 

an algorithm has faster convergence speed if it can obtain the 

OPT with fewer FEs. That is, obtain the optimal solution by 

generating fewer multicast tree. 

The results in Tables V&VI show that BVDPSO is faster than 

GA to obtain the OPT of all problems in Categories B/C, and are 

faster than DPSO on most of these problems. In average, 

BVDPSO used only 111.72 average FEs to obtained the OPT 

over all the 18 Category B problems, fewer than that of DPSO 

(141) and much fewer than that of GA (725). As some 

algorithms totally fail to obtain OPT on some problems in 

Category C, we calculated the average FEs over the problem 

instances (C01-C03, C05-C07, C10-C12, C16, and C17) that all 

the algorithms successfully solve. Results show that BVDPSO is 

faster than both DPSO and GA nearly 10 times. 

The results in Table VII for the problems of Category D show 

that BVDPSO uses fewer FEs than GA to obtain the OPT if they 

both can, i.e., on the problems D01, D02, D06, D07, D11, D12, 

D16, and D17. However, on some of the problems, none of the 

algorithms can obtain the OPT, which are not presented in the 

table. This may be caused by the difficulty of the Category D 

problems whose networks are with lots of nodes and a large 

amount of edges. Nevertheless, BVDPSO can still obtain the 

OPT solution on the problems D03, D04, D05, and D20 

sometimes where GA totally fails. From the comparisons, 

BVDPSO is not only robust to obtain the global optimum, but 

also is with much faster convergence speed. 

Table V  Comparisons on Convergence Speed on the Problems of Category B 

No. GA DPSO BVDPSO No. GA DPSO BVDPSO

B01 105 42 41.6 B10 780 72 97 

B02 160 54 56.6 B11 585 142 104.2 

B03 100 52 43.8 B12 260 144 159.4 

B04 120 82 85.8 B13 1100 468 101.8 

B05 130 50 67 B14 4020 342 99.2 

B06 515 258 227.4 B15 1380 94 88 

B07 275 42 43.4 B16 885 110 143 

B08 185 48 47.6 B17 925 144 238.2 

B09 275 56 61.8 B18 1250 338 305.2 

Average FEs over B01-B18: GA=725, DPSO=141, BVDPSO=111.72

Table VI  Comparisons on Convergence Speed on the Problems of Category C 

No. GA DPSO BVDPSO No. GA DPSO BVDPSO

C01 380 66 72.67 C11 1410 12090 268.67 

C02 815 204 183.33 C12 3535 4156 781.11 

C03 15430 4706 644 C13 - - - 

C04 - 5902 733.33 C14 - - 4000 

C05 17970 806 725.33 C15 - 21280 2654.67 

C06 1615 3160 138.67 C16 2940 12780 360 

C07 3255 3774 253.33 C17 2450 11944 491.30 

C08 - 20502 1820 C18 - - 3440 

C09 - - 7513.33 C19 - 24826 2555 

C10 18980 20648 4505 C20 - 4388 2100 

Average FEs over C01-C03, C05-C07, C10-C12, C16, and C17: 

GA=6252.73, DPSO=6757.64, BVDPSO=765.77

Table VII Comparisons on Convergence Speed on the Problems of Category D 

No. GA 
BVD- 

PSO
No. GA 

BVD- 

PSO 
No. GA 

BVD- 

PSO

D01 1180 102 D05 - 2006.67 D12 595 360 

D02 1260 138 D06 960 200 D16 555 356

D03 - 1437.78 D07 2780 310 D17 1230 554 

D04 - 1553.33 D11 3170 356 D20 - 2426.67

Average FEs over D01, D02, C06, D07, D11, D12, D16, and C17: GA=1466.25, BVDPSO=297 
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D. Analysis of BVDPSO Parameters 

In this subsection, the performance related parameters , c1, 

and c2 are investigated because they can affect the algorithm 

performance but have light influences on the computational 

burden. Moreover, the computational burden related parameters 

M and G are investigated because they affect both algorithm 

performance and computational burden. 

1) Performance Related Parameters: Herein we undertake 

investigations based on the Category C problems. For 

investigating the inertia weight , we fix c1 and c2 as 2.0. For 

investigating the acceleration coefficients c1 and c2, the  is set 

linearly decreasing from 0.9 to 0.4. The results are presented in 

Fig. 4. As the R values of different problems have different 

ranges, we only give the results of some problems that are in 

similar ranges. The results of  show that the R values get 

smaller as  increases for most of the problems. This may be 

due to that larger  can increase the diversity to maintain better 

global search. However, when  is set to be 1.0 or larger, the 

results are much poorer, which are not plotted in the figure due 

to the out of range.  Moreover, the common setting for  (i.e., 

linearly decreasing from 0.9 to 0.4) performs best on most of the 

problems. The results of c1 and c2 show that the standard value 

2.0 helps BVDPSO work best on most of the problems. 

Therefore, the results demonstrate the advantages that the 

standard settings for  and c1/c2 in the continuous PSO are still 

effective and optimal in our proposed discrete BVDPSO. 
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Fig. 4. Parameters analysis on  and c1/c2. 

2) Computational Burden Related Parameters: Herein, we 

make further investigation on the influences of M and G based 

on the problems of C09 and C14. All the experiments are 

implemented in the VC++ 6.0, and run on a PC with Pentium IV 

2.8 GHz CPU and 256MB memory. 

The experimental results are plotted in Fig. 5. The 

investigation includes the population size M of 20, 50, and 100; 

and the maximal generations G of 500, 1250, and 2500, making 

up 9 combinations. In the figure, the R value and the CPU time 

are the average values of 30 independent runs for each 

combination. It can be observed that the solution accuracy gets 

better and better as the M or the G increase. However, the mean 

CPU time also increases as the M increases or the G increases. 

Therefore, the trade-off should be determined between the 

solution accuracy and the computational burden. 
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Fig. 5. Parameter analysis on G and M. 

The figure also reveals an interesting observation that 

BVDPSO with a larger M always outperforms the one with a 

smaller M because of the larger population diversity, whilst 

BVDPSO with larger a G may sometimes does not perform 

better than the one with small a G because of random noise. 

From the experimental results in Fig. 5 and Section IV-B, it can 

be observed that setting the number of particles to a small value 

as M=20 is sufficient for most of the problems (e.g., all the 

problems in Category B and many problems in Categories C/D). 

Setting M=50 should be promising for very difficult problems, 

e.g., with node number up to 500 or higher. If higher solution 

accuracy is required, setting M=100 would be a good choice. 

E. Network Simulation Results 

We use the networks simulator 2 (NS-2) to further evaluate 

the multicast tree optimized by BVDPSO in this subsection. 

NS-2 is a simulator that can test the performance of any given 

network topology by simulating the network traffic [30]. In the 

simulation, we adopt two network topology cases. In Case 1, we 

artificially conduct a network topology whose links are with 

10Mb bandwidth and with a random delay within [1ms, 10ms]. 

When we configure this network into graph for BVDPSO 

optimization, the cost of each edge is set to the same as the delay 

of the corresponding link. In Case 2, the C15 problem is used as 

the network topology. As the cost of each edge is a random 

value in [1, 10], when we configure the C15 network for NS-2, 

we set the delay of each link with the value the same as the cost, 

while the bandwidth of each link with the value as the result of 

(11–cost). The network topology of Case 1 is given in Fig. 6. 
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Fig. 6. Network topology of Case 1 and the different multicast trees. 

In the simulation, we use distance vector multicast routing 

protocol (DVMRP) provided by NS-2 to enable the multicast 

function. For performance evaluation and comparison, we also 

input the multicast trees optimized by GA and BVDPSO into 

NS-2 for simulation. Therefore, three multicast approaches 

DVMRP, GA, and BVDPSO are evaluated and compared based 

on Case 1 and Case 2 in the NS-2 environments. 

We use constant bit rate (CBR) traffic with 512 bytes packet 

size for the multicast traffic. The packet rate is set as 1Mb, 2Mb, 

4Mb, 8Mb, 16Mb, and 32Mb to emulate different traffic loads. 

We compare the network performance of the three multicast 

routing approaches by the packet loss metric and the average 

delay metric. For a CBR packet sent from the source, if it can 

reach all the destination nodes, it is regarded as a successful 

packet. This way, the packet loss ratio can be calculated. For any 

successful CBR packet, we can also obtain the time from the 

source to any destination node. We consider the maximal time to 

one of the destination node as the delay of the packet. This way, 
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we can obtain the average delay of all the successful packets. 

The packet loss ratio and average delay of different multicast 

routing approaches under different traffic loads are compared in 

Fig. 7. Note that in Case 1, the GA approach can obtain the same 

multicast tree as BVDPSO does, as indicated in Fig. 6. In this 

sense, their network performance is the same in this case and is 

therefore presented by the same curves in Figs. 7. 

Fig. 7 shows that none of the three approaches lose packets 

when the traffic load is light (e.g., no more than 4Mb) except 

that DVMRP has slight packet loss ratio on Case 1. With the 

increasing of the traffic load, all the approaches are affected and 

more packets are lost. However, GA and BVDPSO can always 

do better than DVMRP while BVDPSO can always does better 

than GA, as indicating in the Fig. 7 that BVDPSO losses the 

least packets while DVMRP losses the most packets. Fig. 7 

further shows that the average delay of BVDPSO is always less 

than those of DVMRP and GA. These results demonstrate that 

BVDPSO has advantages in obtaining promising multicast tree 

that transfer information from the source to all the destinations 

faster and more reliable than both DVMRP and GA do. 
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Fig. 7. Packet loss ratio and average delay under different traffic loads. 

V. CONCLUSION 

A bi-velocity discrete particle swarm optimization has been 

developed in this paper to optimize MRP in communication 

networks. This proposed BVDPSO algorithm is motivated by 

the considerations of providing a simple and yet efficient 

method for solving MRP with higher solution accuracy than 

traditional heuristics and also with faster convergence speed 

than existing EC methods, providing the researchers a new and 

practical method for multicast in communication network. 

The effectiveness and efficiency of BVDPSO have been 

demonstrated by comparing it with 9 other algorithms on all the 

Categories B/C/D problems in the OR-library. The results show 

that BVDPSO can obtain better solutions with higher accuracy 

than the heuristic methods and with faster convergence speed 

than the GA and previous PSO based methods. This makes 

contributions to the communication and networking community 

by providing a new multicast design method that can obtain 

optimal or near-optimal solutions to MRP very rapidly by 

generating very few multicast trees. 

For future research, we plan to investigate the performance of 

BVDPSO in solving the MRP with practical QoS constraints 

and multiple objectives like other industrial problems [31][32]. 

For example, we can also take into account the average delay of 

all destination nodes as another optimization objective. We can 

also take the delay and the link bandwidth as QoS constraints. 

As PSO has potentials in solving constrained problems [33] and 

multi-objective optimization problems [34], the proposed 

BVDPSO is promising to be extended to solve the constrained 

and multi-objective MRP problems. The dynamic routing 

characteristics of MRP can also be considered [35]. Moreover, 

the proposed novel bi-velocity strategy offers a simple and 

general technique for BVDPSO to solve a class of binary 

optimization in our future work.  
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