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THE TWENTY-FOURTH FERMAT NUMBER IS COMPOSITE

RICHARD E. CRANDALL, ERNST W. MAYER, AND JASON S. PAPADOPOULOS

Abstract. We have shown by machine proof that F24 = 2224
+ 1 is com-

posite. The rigorous Pépin primality test was performed using independently
developed programs running simultaneously on two different, physically sepa-
rated processors. Each program employed a floating-point, FFT-based discrete
weighted transform (DWT) to effect multiplication modulo F24. The final,
respective Pépin residues obtained by these two machines were in complete
agreement. Using intermediate residues stored periodically during one of the
floating-point runs, a separate algorithm for pure-integer negacyclic convolu-
tion verified the result in a “wavefront” paradigm, by running simultaneously
on numerous additional machines, to effect piecewise verification of a saturat-
ing set of deterministic links for the Pépin chain. We deposited a final Pépin
residue for possible use by future investigators in the event that a proper factor
of F24 should be discovered; herein we report the more compact, traditional
Selfridge-Hurwitz residues. For the sake of completeness, we also generated a
Pépin residue for F23, and via the Suyama test determined that the known
cofactor of this number is composite.

1. Computational history of Fermat numbers

It is well known that P. Fermat, in the early part of the 17th century, described
the numbers

Fn = 22n + 1.
Fermat noted that for n = 0, 1, 2, 3, 4 these are all primes, and claimed that the
primality property surely must hold for all subsequent n > 4. In a remarkable
oversight, Fermat did not go on to test the status of F5, even though he could have
done so quite easily using the compositeness test that now bears his name, and
whose later refinement by Euler yielded the key to the rigorous Pépin test for the
Fn. After the discovery of certain small factors of various Fn through the ensuing
centuries, and after the machine-aided work of Selfridge and Hurwitz [28] with the
spectacular resolution of F14 as composite, it was known by the early 1980s that Fn
is composite for all 5 ≤ n ≤ 32, except for the five cases n =20, 22, 24, 28 and 31,
for which the character of Fn remained unresolved [26]. Many of the compositeness
proofs have simply involved direct sieving to find small factors, and there seems to
be no end to such discoveries. For example, in 1997 Taura found a small factor of
F28 [19]. More recently (in fact during preparation of this manuscript,) A. Kruppa
discovered the first known factor of F31, p = 46931635677864055013377, using a
sieving program developed by T. Forbes. (This factor has p − 1 = 233 · 3 · 13 ·
140091319777 and p+ 1 = 2 · 7 · 3352259691276003929527, so could not have been
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found via the p − 1 or p + 1 factorization algorithms, which methods have only
recently come into the realm of feasibility for numbers of this size, as discussed
further in §5.)

Between the early 1980s and the present, massive compositeness tests have es-
tablished that F20 [31], F22 [9, 29], and as reported herein F24 are all composite.
Thus we now know that every Fn with 5 ≤ n ≤ 32 is composite, and the smallest
Fermat number of unknown status is, at the time of this writing, the 8-gigabit
colossus F33. With the rise in distributed computing via the Internet, the pace of
discovery (especially in the area of factoring) has recently accelerated; accordingly,
the current status of known factors and the like is available on the World Wide
Web [19]. More details on the computational issues relevant to Fermat numbers
are presented in [12].

There are at the moment four Fn which are known to be composite but for
which not a single factor is known, namely those with n = 14, 20, 22, 24. The
discovery rate exhibited by these four indices n appears to follow a rule of thumb:
To get from the character-resolution of Fm to that of Fn takes about 3(n − m)
years. Using modern transform-based large-integer multiply algorithms, each unit
increase in index yields an approximately fourfold increase in the number of machine
computations needed for the Pépin test. This scaling thus implies a doubling in
effective computing power approximately every 18 months, and as such appears to
be a corollary to Moore’s Law [23] (which strictly speaking only predicts an increase
in areal complexity of integrated circuitry, although a concomitant speed increase
can be inferred from this.) However, this is misleading, since it neglects significant
algorithmic improvements which have occurred since the resolution of F14. These
are such that whereas the Pépin tests for F20 and F22 required vector supercomputer
hardware in order to be completed in under a year, the two separate floating-point
tests of F24 described in this paper were accomplished on quite modest commodity
microprocessor hardware, and each running on just a single processor. In view
of the enormous leap in size between F24 (5050446 decimal digits, something like
a “book” of digits) and F33 (2585827973 digits, more like a “small library”), it
is difficult to guess what manner of algorithms and machinery will be needed for
Pépin tests on numbers of this and larger size. The rule of thumb of 3(n −m) if
taken seriously would imply a resolution of F33 by about 2025 A.D. We believe that
for such a resolution to occur that soon (barring the discovery of a small factor,
which seems at least equally likely), machinery and algorithms must continue to
improve at a rate comparable to that of the past several decades. As microprocessor
device sizes are currently approaching scales where quantum effects begin to become
appreciable, it seems doubtful that silicon-based hardware will be able to keep pace
with Moore’s Law for much longer, so it may well prove to be the case that F24 will
remain the largest Fermat number resolved by the Pépin test on single-processor
silicon computer hardware. In fact, since it is also reasonable to expect concomitant
improvements in factoring algorithms and implementations thereof, it is not out of
the realm of reasonable possibility that F24 will prove to be the largest Fermat
number whose character is established via Pépin test on any kind of hardware
(although larger numbers will certainly be subjected to Pépin test and Suyama
step in order to test the status of known cofactors, once it becomes feasible to do
so in a reasonably short time frame).

Regarding our computation, we paraphrase the claim of Young and Buell [31]
regarding their calculation for F20, that this is the deepest ever performed for what
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(future cofactor tests aside) amounts to a “one-bit answer.”1 And the bit can be
made explicit: we shall see that the high bit of the final Pépin residue can be
interpreted as a Boolean bit rigorously signaling prime or composite. This is not
to say that F24 is the largest number ever subjected to a direct (nonfactoring)
compositeness test per se: since the conclusion of our Pépin test, several larger
Mersenne numbers have been subjected to two independent Lucas-Lehmer tests—
with the conclusion of composite character—by the GIMPS project [30]; however,
none of the Mersennes was subjected to the much more computationally intensive
additional step of an all-integer verification, as was F24.

It is also the case that at the time of proof for F22, some of the best machin-
ery available was pressed hard for a good fraction of a year, to achieve the proof.
Incidentally in the case of F22, an entirely independent team of J. Carvalho and
V. Trevisan [29] surprised the authors of [9] by announcing shortly after the latter
group’s run a machine proof of the same result, together with identical Selfridge-
Hurwitz residues. The two proofs used different software and machinery, and so
there can be no reasonable doubt that F22 is composite. When we say “no reason-
able doubt” here, we mean certainty up to, say, what might be called “unthinkable”
happenstance, such as space-time-separated coincidence of cosmic rays impingent
on machines causing accidental false proof and accidentally verified false proof. For
example, the probability of two final Pépin residues in the F22 case agreeing because
of random bit-flips at both sites independently is say 2−222

, or about 1/101000000.
During the preparations for our runs of F24 we again reproduced the previous

Selfridge-Hurwitz residues for F22. Because we were unaware of any independent
team also testing F24, we took extreme care to verify our proof, as explained below.
Again (in 1999) the machinery was hard-pressed for months, algorithm refinement
required substantial labor but was well worth the effort, and so on.

To convey an idea of scale, we note that F24 is a number of nearly 17 million
binary bits. Thus it is larger even than the square of the currently largest known
explicit prime 26972593 − 1, found in June of 1999 by N. Hajratwala, G. Woltman,
and S. Kurowski (and verified by D. Willmore using a program written by one of
the authors [22]).2 If F24 had turned out to be prime, it would therefore have
dwarfed all other known primes. But such was not the case. In fact, what appears
to be a reasonable estimate of the “probability” that Fn be prime is attainable via
a straightforward sieve-based argument [21]. Since for n > 1 every prime factor p
of Fn must be of the form

p = 1 + k2n+2,(1)

one may deduce approximate formulae such as

Prob{Fn is prime} ∼ eγ log2(B)
log2(Fn)

∼ eγ log2(B)
2n

,(2)

1This was true at the time the computation was completed, but this record has recently
been broken by the PiHex project [25], which used idle time on over 2000 networked personal
computers in order to compute the one quadrillionth bit of π, a computation which needed an
order of magnitude more computational effort than did the resolution of F24.

2Note added in proof: this record was broken on November 14, 2001, when a GIMPS partici-
pant’s PC flagged 213466917 − 1 as prime; the primality of this number of over 4 million decimal
digits was verified 3 weeks later, again using the same author’s program [17].
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where γ ∼ 0.577... is the Euler constant and B is the current lower bound (e.g., for
n > 20 or so, the upper bound for sieve-based factoring) on prime factors of Fn.3

Since F24 has been sieved by various investigators, in regard to the constraint (1), up
to roughly B ∼ 1020 [20], we obtain a probability less than 10−5 for F24 to be prime.
Incidentally, no matter how one twists and turns, any manner of rough summation
of the given probability on Fn leads us to the conclusion that there are probably
not any more prime Fermat numbers beyond F4, although this argument, even if
probabilistically accurate, of course does not rule out the happenstance that there
may yet be a prime Fermat number lurking in the as-yet untested reaches beyond
our current computational capabilities. We note that Mersenne candidates Mq =
2q−1 with q itself prime also have a special form p = 1+2kq for possible factors, but
even though this leads to a qualitatively similar estimate for the probability of an
individual Mq being prime, we expect to find Mersenne primes with some regularity,
since in a given exponent range there are simply so many more primality candidates
among the numbers for which no explicit factor has been found (all primes pj
in the given exponent range for Mersennes, versus only integer powers of 2 for
the Fermats). More simply, the different expectations for Fermat and Mersenne
numbers result from the fact that

∑
1/2n converges whereas

∑
1/pj diverges.

2. Method of proof

The classical Pépin test for primality asserts that if F = Fn > 3 is a quadratic
nonresidue of an odd prime q, then F is prime if and only if

q(F−1)/2 ≡ −1 (mod F ).(3)

This is really just an Euler pseudoprime test—Pépin’s contribution was to show
that such a test in fact constitutes a rigorous primality test for the Fn. Whereas
Pépin used the seed q = 5, in modern times it is most typical to choose q = 3 (and
in fact the reporting of the Selfridge-Hurwitz residues assumes this is the case), and
compute the final Pépin residue Rn which we define:

Rn = 3(Fn−1)/2 mod Fn,

where by this notation we mean Rn is the least nonnegative residue modulo Fn.
Now the Pépin criterion says that Fn is prime if and only if Rn = Fn−1. In the case
of primality the final Pépin residue Rn is the largest possible binary value 10....0
modulo Fn, so the highest bit position for residues—namely the 22n position—has
a ‘1’ if and only if Fn is prime. We continue herein the tradition of Selfridge and
Hurwitz by reporting the numbers

Rn (mod 235 − 1, 236, 236 − 1),

for use by future investigators in matters of verification. Note that as a quick check,
Fn, n > 5, is composite if the second Selfridge-Hurwitz residue is nonvanishing.
We also stored the complete residue, which will be of use whenever a new factor

3Note that these simple sieve-based arguments can sometimes mislead, as in the case of the
Riesel-Sierpinski problems, where one asks: How many primes occur in the sequences Rk =

{k2n − 1|n > 0} or Sk = {k2n + 1|n > 0}? The probabilistic argument suggests an infinite
number for all nonzero k, but it is well-known that there are in fact no primes at all for some
k. However, the Fermat and Mersenne numbers can be considered subclasses with k = 1 of this
problem where we have sufficient data to justify statistical inferences.
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of F24 is discovered. The value of such permanent storage is based on the Suyama
method for checking compositeness of cofactors [26]. If we can decompose

Fn = fG,

where f is a (not necessarily prime) known factor, then the cofactor G is prime
only if

(R2
n mod Fn) mod G ≡ (3f−1 mod Fn) mod G;

otherwise, G is composite. The point of having the nested mod operations is that
when the product of known prime factors f is a relatively small part of Fn, the
number of modular multiplications needed to calculate 3f−1 mod Fn is much less
than would be required to perform a direct Fermat or Euler pseudoprime test of
the large cofactor G. Additionally, due to the availability of fast discrete weighted
transform (DWT) arithmetic [10], each Fermat-mod multiplication with respect to
Fn is much more efficient than an operation modulo G. It was in just this way that
the hardest cofactors to date, namely of F19 and F21, were established as composite
[9]. Incidentally there is yet another practical use for a permanently stored residue
Rn. First observe that no Fermat number can be a prime power pk, k ≥ 2, because,
as is easily proven, the Diophantine equation

pk − 4n = 1

for k > 1 has no solutions [9]. When a new factor f of an Fn = fG is discovered,
one can further use the stored final Pépin residue Rn to determine whether the
cofactor G is a prime power. As explained in [9], one approach is to calculate

gcd(3fG − 3f , G) = gcd(R2
n − 3f−1, G),

for if this should be 1, then G is neither prime nor a prime power, i.e., one neatly
combines both the Suyama and the prime-power tests into evaluation of a single
gcd.

3. Algorithms

Now we turn to the algorithmic issues, the main idea being to calculate (and
store some subset of) the Pépin residues 32k mod F24. (Readers less interested in
the algorithmic and implementational details of the computations may wish to skip
ahead to §4 at this point.) It is evident that we need to square essentially random
residues of about 224 bits each, a total of 224 − 1 times.

Let us adopt some nomenclature. Denote a residue x modulo Fn by its digits
(in some treatments called a “signal” [10]) {x0, x1, ..., xN−1} in the sense that we
have a generic (i.e. possibly variable-base) expansion

x =
N−1∑
j=0

(
xj

j∏
k=1

Wk

)
,

where the product is taken to be unity if j = 0. Ignoring for the moment the
possibility of x ≡ −1, which case can easily be handled separately in actual imple-
mentation, we see that for the particular case of convolution modulo Fn where the
convolution length N is a power of 2, a constant wordsize

W = 2n/N , 0 ≤ xj < W,

is the most obvious choice, but, as described below, other convolution lengths are
also possible. (These require variable wordsizes, but it will suffice to consider the
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individual wordsizes Wk to be positive-integer powers of two.) Note that floating-
point-based implementations have better controlled error behavior if balanced digits
are used; i.e., one forces4 xj ∈ [−W/2, W/2], this being just one of many enhance-
ments discovered in recent times [10]. Now it is an important fact that integer
multiplication modulo a Fermat number is equivalent to negacyclic convolution
with proper carry [8, 10]. What this means is that for two digit decompositions on
residues x, y, the value of xy mod Fn can be obtained by adjusting the carries in
the negacyclic convolution (x×− y) defined elementwise as:

(x×− y)m =
∑

j+k=m

xjyk −
∑

j+k=N+m

xjyk.

In the case of generating Pépin residues, we only need an “autonegacyclic” convo-
lution, meaning (x×− x), and this leads to important simplifications.

Perhaps surprisingly, there are a good many available methods for effecting a
negacyclic convolution. For our proof, two basic methods were used, the first based
on convolution via floating-point-based fast Fourier transform (FFT), the second
via an all-integer recursive convolution algorithm. Though obvious, it should be
said right off that all these methods have the same computational goal, and only
the pure-integer methods are devoid of round-off problems, so the floating-point
methods, while currently the fastest of the lot, are not rigorous until rendered so,
either by a rigorous worst-case analysis of floating-point roundoff errors (which
is made difficult by the fact that roundoff errors can depend on input, operation,
hardware, and rounding mode), or by all-integer verification, the method used here.
In any event, some kind of independent verification is necessary, irrespective of the
type of arithmetic used, simply to rule out hardware error, which can corrupt both
floating-point and integer computations, especially when such a long chain of depen-
dent calculations is performed. Briefly, the algorithms we used are 1) floating-point
discrete weighted transform (DWT), and 2) Nussbaumer recursive autonegacyclic
all-integer convolution. To complete our compositeness proof for F24 we used es-
sentially two variants of (1) for the floating-point machines, and two variants of (2)
for the integer-based “drones.” The key algorithmic and implementational issues
arising with these two methods are described next.

3.1. Floating-point discrete weighted transform (DWT). The basic method
of calculating an autonegacyclic via DFT (and therefore employing FFT methods)
is well-known [24]: for digit expansion {xj} one can form a DWT via premulti-
plication of the jth input digit by gj , with g a primitive N -th root of (−1), then
calculating the usual DFT-based convolution of the weighted signal and scaling the
outputs by the inverse weights. This is essentially Schönhage-Strassen multiplica-
tion via floating-point FFT [27], but with the signal “weighted” (some authors say
“twisted”) with an appropriate root of (−1) so that the intended convolution is
negacyclic. It is important to note that there are various ways to implement such
a DWT, such as real-signal and folded-complex techniques that effectively halve
complex signal lengths [8]. Note that the original paper describing DWT-based
arithmetic [10] claimed that Fermat-mod DWT requires the base W to be a power

4We allow equality at both extremes, since the IEEE floating-point standard [18] allows a signed
floating-point number ±(x+ 0.5) to be rounded either to ±x or ±(x+ 1), depending on whether
the nonnegative integer x is even or odd, respectively, in order to prevent subtle systematic errors
from creeping into roudoff-sensitive computations.
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of two with an exponent that is itself a power of two, e.g., W = 216, but this in not
in fact necessary. The key insight here is to understand the fundamentally different
nature of Fermat-mod and Mersenne-mod DWT as described in the aforementioned
reference: as already mentioned, Fermat-mod DWT is simply the weighting of the
convolution inputs by appropriate roots of unity so as to effect a negacyclic re-
sult. “Mersenne-mod” DWT, perhaps better referred to as “irrational base” DWT
(IBDWT), on the other hand, uses one of two wordsizes for each digit:

Wk = 2dnk/Ne−dn(k−1)/Ne, k = 1, . . . , N − 1,

and premultiplies the jth term of the input signal by a weight factor which is a
fractional power of 2:

aj = 2dnj/Ne−nj/N , j = 0, . . . , N − 1.

Performing a convolution of this weighted signal and multiplying the outputs by
the inverse weights causes the “folding” which occurs naturally in a (cyclic or ne-
gacyclic) convolution to occur at the nth bit of the underlying multiword integer
without n needing to be a power of two or even to be composite. If the above
weighting is used with a cyclic convolution, then the “folded” terms have positive
sign, and thus one achieves a convolution modulo 2n − 1 without any need for
zero-padding of the input vectors or explicit modular reduction, as are needed for
large-integer arithmetic with respect to a generic modulus. However, there is no rea-
son the variable-base IBDWT cannot be combined with the negacyclic-convolution
input weighting, and thus we can also effect arithmetic modulo 2n + 1 for general
n without the requirement of a specific form for the vector length. Since the maxi-
mum allowable input wordsize for mod-F24 convolution using 64-bit floating-point
arithmetic is only slightly larger than 16 bits, the above general-length convolu-
tion technique was not used in our proof, but it will become useful for convolution
modulo larger Fermat numbers, specifically those for which input wordsizes must
be smaller than 16 bits for accuracy reasons.

For the floating-point scenario, it is useful to embark on a rough derivation of ex-
pected convolution output wordsizes and roundoff error, in order to provide useful
estimates of optimal transform lengths. There have been over the years interesting
attempts at rigorous error bounding, but such bounds tend to be over-conservative
in practice, as one might expect. So for the present we shall not attempt rigorous
error bounds, but rather sketch some plausible heuristics which lead to accuracy
estimates that in fact show close agreement with numerical experiment over a wide
range of transform lengths, and which allow one to make useful predictions, espe-
cially regarding accuracy degradation of floating-point convolutions at very long
vector lengths.

3.1.1. Optimal floating-point convolution length. To estimate how the maximum al-
lowable wordsize (and hence minimum transform length) depends on the algorithm
and the underlying precision, we can make use of random-walk statistics to quantify
the magnitude both of convolution terms and of floating-point errors. We consider
a residue modulo F24 (say) to be a signal of N digits, each digit (word) of size W ;
that is, NW ≈ 224. Let a unit-stepsize (±1) random walk have position x(s) after
s steps. By the Fisher theorem [13],

lim
s→∞

sup
x(s)√

s
2 log log s

= 1,(4)
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where the limit is attained not in some most-probable sense, but in fact with proba-
bility one. The obvious question is, in what sense is an FFT-based autoconvolution
(squaring) for such a signal like a random walk? Using balanced-digit representa-
tion is crucial here, since the inputs to the transform are then essentially random
digits in [−W/2, +W/2]. (The various DWT scale factors and variable-base rep-
resentation of the IBDWT do not change these properties qualitatively.) Now it
might seem simplest to model the O(log2N) passes of the FFT as the discrete
steps of a random walk, but this is problematic because the “stepsize” then in-
creases with each pass. But since the FFT is mathematically equivalent to a DFT,
we can simply consider the simpler DFT, each of whose outputs is the weighted
sum of the N input digits, the weights being simply roots of unity, which (up to
constants of proportionality) do not alter the random-walk statistics, at least as
far as deviation magnitude is concerned. After the forward FFT, using (4), the
most-probable maximum displacement has complex magnitude of order

W

2
· A(N) =

W

2

(
N

2
log logN

)1/2

,(5)

where the function A(N) can be viewed as an amplification factor acting on the
input signal. We then do a pointwise squaring, which squares the above displace-
ment, followed by an inverse transform which amplifies the magnitude of the largest
dyadic squaring output by the same factor A as above, but also divides by the com-
plex transform length N/2. Thus, we obtain a maximum convolution output of
order

W 2

4

(
N

2

)1/2(
log logN

)3/2

.(6)

The average output, on the other hand, has order W 2

4

√
2N
π .

Roundoff error sizes, in contrast to convolution outputs, depend crucially on the
structure of the computation. Were we to do a matrix-multiply DFT, rounding
errors would behave like the convolution terms, i.e., the average error would scale
as O(

√
N). Using forward-FFT/dyadic-square/inverse-FFT, on the other hand,

behaves with respect to relative error like a random walk of O(2 log2N) steps;
hence the average relative error scales as O(

√
log2N) times machine epsilon. This

grows very slowly with increasing N , as does the expected maximum error, which
is O(ε

√
log2N log log log2N). Since the maximum error is an asymptotic quantity

which converges extremely slowly (cf. Exercise VIII.7.9 of [13]) and the “number of
steps” 2 log2N here is generally quite small, it is actually better to use the average
relative error (which settles down much more quickly to its asymptotic behavior) in
estimating maximum wordsize; we thus use the simpler estimate that the maximum
relative error is asymptotic to C

√
log2N), where C is larger than unity but still

expected to be order of unity as long as N is not extremely large.
The input wordsize to the convolution is then limited by the requirement that

the accumulated round-off error must remain small enough to permit one, during
the round-and-propagate-carries phase of each convolution-based multiply, to con-
fidently round each output digit to the nearest integer. For example, if a typical
output digit xj has fractional part (which we define as frac(xj) = |xj − nint(xj)|,
which by definition is in the interval [0, 0.5]) no larger than 0.1 we are safe, but
when fractional parts approach 0.3-0.4 we are dangerously close to an incorrect
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rounding, and a fractional part of 0.5 (especially if it occurs repeatedly) virtually
guarantees that a catastrophic loss of precision has occurred. That is, we require
the expected maximum absolute error in the convolution outputs to be appreciably
less than one, let us say less than one-fourth:

εC
W 2

4

(
N log2N

)1/2(
log logN

)3/2

<
1
4
.(7)

Letting Bmant = − log2 ε be the number of mantissa bits of our floating-point
representation, we have, upon taking the base-2 logarithm of (7),

2 log2 W+log2 C+
1
2
[
log2N + log2 log2N

]
+

3
2
[
log2 log logN

]
<Bmant.(8)

Using IEEE 64-bit precision with Bmant = 53, for a vector length of 220 this
formula predicts a maximum input wordsize of roughly (20 − log2 C) bits, and
taking C = 2 gives a result closely matching the upper limit of roughly 19 bits
yielded by our computational tests. We also tested how well the formula predicts
trends at even longer runlengths (e.g., those relevant to the current smallest Fn
of unknown status); for F31, for example, it predicts that a runlength of 15 · 223

might just be feasible, and a numerical test consisting of 10000 modular squarings
of an F31-sized number indeed produced no warnings about roundoff errors near
0.5 and a residue which matched that of a run at the slightly larger vector length
of 227, whereas a run at length 14 · 223 failed in the first 100 squarings due to
autodetection of fatal roundoff errors. Of course F31 is now known to be composite,
so of greater current relevance is that a runlength of 229 is predicted to be more
than adequate for performing mod-F33 floating-point convolutions. Also of interest
is that maximum allowable wordsize is predicted to drop below 16 bits per input
digit at or just beyond F35, at which point the ability to combine a Fermat-mod
DWT and variable-base IBDWT, and thus to use an average input wordsize only
slightly less than 16 bits, will become very relevant indeed. Neglecting the higher-
order logarithmic terms (and independently of the choice of C), the above estimate
also predicts that for each doubling of the runlength we lose roughly 0.25 bits from
the maximum allowable wordsize, also very close to what is observed in practice,
e.g., from the vast computational experience of the GIMPS project [15].

We thus see that for F24 work a wordsize W = 216 is in fact somewhat smaller
than what is allowable, but the savings resulting from a more aggressive setting of
the runlength (say N = 7·217) are approximately offset by the increased complexity
of the combined negacyclic DWT/IBDWT needed to effect such a nonpower-of-2
runlength convolution. Thus, both of our two independent floating-point proofs
used a runlength of 220. The average fractional error for the code used for wavefront
1 (see §3.1) was ≈ 3.55 × 10−4 (and after climbing from zero to this value during
the first few dozen squarings, deviated from this mean value by less than 5% for the
rest of the run), so a fatal fractional error ≤ 0.5 should, in the absence of hardware
error, occur with a probability corresponding to an event lying some 1400 standard
deviations outside the mean. While not rigorous, this estimate indicates that if
there is to be a fatal error in such a computation, it is overwhelmingly more likely
to be due to a hardware (or software) error than to actual floating-point convolution
roundoff errors.

3.2. FFT Algorithms. From an algorithmic perspective, we shall be considering
the two major approaches to the FFT, the Cooley-Tukey or decimation-in-time
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(DIT) transform, which begins with bit-reversal-reordered input data and outputs
an ordered transform vector, and the Gentleman-Sande or decimation-in-frequency
(DIF) transform, which begins with ordered input data and outputs a bit-reversed
transform vector [7].

In deciding on one’s particular implementation of option (1), one must consider
the important recent discoveries in regard to large-signal FFTs, in particular, the
“parallel” or “four-step” FFT [1, 2, 3, 12], which essentially allows the mapping
of a one-dimensional FFT to a row-column matrix FFT. For various reasons, nei-
ther of the two independently developed floating-point codes used herein does a
standard four-step FFT, although they do have the same aim, namely to allow
for excellent performance of the fundamentally data-nonlocal FFT algorithm on
modern, multilevel-cache-based microprocessor architectures. In this regard, the
most crucial levels of the memory hierarchy are the two closest to the FPU itself,
namely the registers (which can be viewed as a level-zero “L0 cache”) and the on-
chip data (L1) cache. It is desirable to do as many operations as possible on the
data while they are in registers, which naturally leads to higher-radix FFTs, and
to move data, especially ones that are widely separated in terms of their indices,
in and out of memory with as few L1 cache conflicts as possible, i.e., to minimize
thrashing. This requires above all that one carefully consider data access patterns,
not only in terms of absolute locations in linear memory, but also how these map
to the much smaller high-speed data caches of the processor.

FFT Algorithm 1, used by the second author (EWM) in his proof,5 is essen-
tially the so-called “ping-pong” FFT algorithm described in [12], with several en-
hancements, the most crucial being (i) padding of the data arrays to prevent large
power-of-two strides, which are known to lead to cache thrashing, and (ii) higher-
radix FFT passes to reduce the number of passes through the data. Beyond these
basic measures, several additional optimization opportunities were exploited. In
our test of F24, the complex transform length was N = 219, and each squaring be-
gan with ordered input data, did a forward DIF transform using the set of radices
{8, 16, 16, 16, 16}, a dyadic squaring of the (now bit-reversed) output data, followed
by an inverse DIT transform using radices {16, 16, 16, 16, 8} and a rounding-and-
carry-propagation step. The combination of DIF and DIT transforms avoids the
need for any explicit bit-reversal reordering, which, although not overwhelming,
can consume 10-20% of the execution time in a single-FFT (i.e., DIF or DIT used
for both the forward and inverse transform) implementation. Moreover, this time
fraction tends to increase rather than decrease with N (even though the relative
arithmetic operation count decreases), as bit-reversal is difficult to do in a cache-
friendly way, even with array padding. The reason we reverse the order of the
radices (which is necessary for coprime radices, but not for power-of-two transform
lengths) in doing the inverse transform is related to one final optimization stategy
permitted by the above-described data movement scheme. Whenever a radix-R
DIT pass is preceded by a radix-R DIF pass (or vice versa) with few or no interven-
ing operations, one can eschew the gather-scatter phases of the two passes (which
do impose a cost in terms of loads and stores, and thus potential cache misses)
and instead roll the two passes and the intervening operations into a single in-place
pass through the data. During each Pépin squaring, there are two opportunities

5The source code for this implementation is available at http://www.perfsci.com/F24/-

F24floatem.zip.
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for such streamlining: the two passes (final DIF pass, initial DIT pass) bracketing
the dyadic squaring, and the two (final DIT pass, initial DIF pass) bracketing the
carry propagation step. For this to work, however, the radices of the two adjacent
passes must be identical; hence our reversal of the order of radices during the inverse
transform. We also used the right-angle-transform idea described in [10], because
it eliminates the need for real-complex wrapper passes at the end of the forward
and prior to the inverse transform, and thus makes the dyadic squaring step trivial,
even in the presence of bit-reversed data. By exploiting all of the aforementioned
optimization opportunities, the per-squaring machine time on Wavefront machine
1 (a Silicon Graphics Octane workstation with a 250MHz MIPS R10000 micropro-
cessor) was a mere 0.85 seconds, representing a reduction in overall runtime by
a factor of roughly five over a naive (but unfortunately widely used) radix-2-pass
FFT implementation.

FFT Algorithm 2, used by the third author (JSP) in his proof,6 also uses a dis-
crete weighted transform to square numbers modulo F24, and also uses the fully
complex right-angle variant to keep the pointwise squaring simple and avoid com-
plicated real-valued FFTs. The primary goal here is to efficiently use the limited
amount of high-speed storage available to a modern microprocessor. Algorithm
2 begins with Bailey’s 4-step FFT [3, 7], simplified for in-place convolution. As
with Algorithm 1, both DIF and DIT transforms are used, allowing the data to be
processed in-place and in order, and making unnecessary the matrix transposes of
Bailey’s algorithm.

Although both wavefronts use the same style of DWT to effect Fermat-mod
squaring, FFT Algorithm 1 is quite different from FFT Algorithm 2. The former
emphasizes uniform but highly nonlocal data access, whereas the latter tries to load
blocks of data into high-speed memory and keep them there as long as possible.
Whereas Algorithm 1, in its final form, performs 14 passes through its data and
requires an eight-megabyte array for scratch space, Algorithm 2 performs the con-
volution in-place, makes exactly three passes through the residue per squaring and
needs little storage beyond the residue itself. F24-mod squaring requires an FFT
multiply of size 219; Algorithm 2 used a single radix-32 pass to break the problem
into chunks somewhat smaller than the external cache, then processed each chunk
recursively.

Wavefront 2 was a 167-MHz Sun UltraSPARC-1. While the off-chip secondary
cache on this machine can deliver data at high speed, the C compilers available
had a difficult time scheduling code to use it effectively. This limitation meant
that none of the time-critical portions of the code could be entrusted to a C com-
piler, and the final version includes large amounts of hand-written assembly code.
The program used the FFTW library [14] for the first half of the Pépin test and
managing a modular squaring in 1.1 seconds; switching finally to hand-coded FFTs
which overcame the aforementioned limitations in the compilers available for the
UltraSPARC brought that down to just 0.885 seconds per squaring.

3.3. Nussbaumer convolution. This method involves no actual numerical FFTs,
only “symbolic” ones [8]. A negacyclic convolution is built recursively, using smaller
negacyclic ones. The digit size W is entirely flexible; for example, W = 2512 yields

6The source code for this implementation is available at http://www.perfsci.com/F24/-

F24floatjp.zip.
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a signal length of only N = 215, at the expense of size-W ′ multiplications and
additions, where W ′ is slightly larger than W .

Our implementation of option (2), Nussbaumer convolution, is an adaptation of
established software for general integer convolution [8]. Such software has been used
in many disparate domains, ranging from number theory to signal processing, but
was in fact pioneered by J. P. Buhler for the purpose of numerical investigations on
Fermat’s “last theorem” (FLT) [4, 5, 6]. It has been known to Buhler and colleagues
for about a decade that integer convolutions of lengths into the millions are indeed
possible in error-free fashion, on conventional (even by 1980s standards) machinery,
as no floating-point arithmetic is involved. Thus the scheme was a natural choice
for checking the Pépin residues via “drone” machines, as described in Section 4.

Many optimizations are possible beyond the original description of Nussbaumer,
and even beyond the variant so successful for FLT computations. Let us name a
few optimizations, to convey the kind of thinking that improved the speed of proof.
First, the small negacyclics at the bottom recursive level of Nussbaumer can be done
especially fast because they turn out to be autonegacyclics. For example, a length-4
autonegacyclic can be done—amazingly enough—in 3 multiplies and 4 squares, for
an equivalent count of just 5 multiplies, which is very much faster than the näıve 16
multiplies. Second, special FFT structure as discussed next, but as applied to the
symbolic FFTs within Nussbaumer recursion, results in substantial improvement.
Third, there are special ways to combine (or even remove) many transposition
operations and memory motion, to exploit the known cache behavior on certain
machinery. All of these together resulted in an implementation of option (2) that
required around 5 CPU-seconds per squaring on a 500MHz Apple G4 processor, and
comparable but somewhat longer times on similar-frequency Pentium II machinery.
Note that either manifestation on one “wavefront” machine would have required
several years years to complete the proof. As it was, the floating-point option
implementation detailed in the foregoing section needed just 6 CPU-months on
hardware significantly less than cutting-edge. Owing to this order-of-magnitude
speed advantage over the best available all-integer algorithms, the floating-point
machinery emerged as the natural “wavefront” candidate.

4. “Wavefront” generation

In our proof of compositeness we used a method pioneered by C. Norrie [9] on
F22. Elegant in its simplicity, this method is to use fast machines to deposit—at
convenient intervals—the Pépin residues 32k mod F24. Having these in storage for
various k, one may check the deterministic link between, say, the k1-th square and
the k2-th square; the point being that this checking can be done on a relatively slow
(for whatever reason) machine. Thus, a fast “wavefront” machine is expected to
deposit Pépin residues at the highest possible rate, with a host of slower machines,
or “drones,” acting in parallel fashion to test each link in the resulting Pépin chain.

We chose to divide the labors cleanly into: two wavefront machines running the
independently developed floating-point DWT squarers described in the preceding
section and squaring at similar speeds (and thus making fairly frequent cross-checks
convenient to do), and a set of drones each of which ran an integer squarer via
Nussbaumer convolution, each drone beginning with a selected squaring residue—
call it the a-th square—previously deposited by one of the wavefront machines,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THE TWENTY-FOURTH FERMAT NUMBER IS COMPOSITE 1567

then performing a total of (b− a) squarings modulo F24, eventually comparing the
resulting residue with a previously-deposited b-th square.7

Incidentally we cannot resist here a cautionary anecdote about extremely long
computations, which fortunately has a happy ending. The very first complete
Pépin test of F24 was actually carried out by one of us (EWM) in 1998-99, with a
residue that ultimately was shown erroneous by both an alternative floating-point
run and an integer-convolution run. In fact this faulty run was a primary motive
for continued optimization and deployment of our pure-integer algorithm. This
first run was begun in June 1998 and finished in early February 1999, and (not
surprisingly) indicated that F24 was composite. The reason a second run was not
performed in parallel is that this author had access to one fast dedicated machine,
but not to another which could even come close to keeping up with the first. There
was reason to expect that a second fast engine might become available during the
course of the first test, but this did not come to pass, and so a second run (using
an improved version of the code) on the same machine was planned.

During the initial run, the bottom 64 residue bits were saved every 2000th squar-
ing, and when the other two authors of the present joint paper (whose own floating-
point run was then about one-eighth of the way to completion) got the rather sur-
prising news that someone unknown to them had completed an initial test of F24,
they naturally wanted to do some cross-checking against their early residues. This
cross-checking turned up a discrepancy around the 150000-th squaring, and was
eventually traced to a faulty residue file which was subsequently used to restart the
initial run following a power outage during a thunderstorm. The precise source of
the error was a flawed hardware conversion of eight-byte floating residue data to
the 2-byte signed integer form used for the savefile. A previous test run of F22 had
been deliberately interrupted and restarted several times, yielding a correct final
result, but that run had used default 4-byte signed integers for the savefile data.
During preparations for the assault on F24, the 4-byte save format was changed
to 2-byte almost as an afterthought, in order to halve the size of the (then) four-
megabyte savefiles. The resulting code passed all the 1000-squaring self-tests used
for program validation but, in a crucial oversight, was not subjected to a validation
test involving a restart-from-interrupt. The savefiles also did not contain the simple
expedient of a checksum, and the kind of error that occurred (an incorrect 2-byte
integer resulting from conversion of an 8-byte float) was of a kind not detectable by
the extensive round-off-error-related consistency checking built into the program.

In any event, as soon as it became clear that the first result was undoubtedly
erroneous, it was decided to join forces: two floating runs using the separate codes
would execute independently, but with frequent cross-checking of residues mod 264,
and all-integer verification hopefully keeping pace after sufficient hardware was
assembled for that purpose. A second run by EWM using a revised version of
his code was launched in late February, which caught up with JSP’s test in early
summer 1999. Further improvements by JSP to his code meant that, as of late
June 1999 the two floating runs were dispatching squarings at roughly the same
rate, and in fact they finished within days of each other, on 27 and 31 August 1999,
respectively, with exactly matching final residues. The third and final link, the
integer verification, was completed about a month after the second floating run.

7The source code for this implementation is available at http://www.perfsci.com/F24/-

F24int.rcjp.
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5. Conclusions, and comments on the future

We hereby report that F24 is composite, the Selfridge-Hurwitz residues for n = 24
being, in decimal,

R24 ≡

 32898231088 mod 235 − 1
60450279532 mod 236

68627742455 mod 236 − 1.

Furthermore, the lower 64-bit word of the final residue is, in hexadecimal and
decimal respectively:

R24 mod 264 = 17311B7E131E106C16 = 167114716503173130810.

The total elapsed time for the floating-point wavefront machines was about 200
days (either implementation), while as expected about 5− 10 drone machines run-
ning the integer autonegacyclic convolver kept up essentially with the wavefront
speed, and as we imply established integrity for every link in the Pépin chain. We
submit that there can be no doubt that F24 is composite.8

What about the next Fermat number of unknown character? At the time of this
writing that would be F33. It is fair to say that the only hope for resolving the
character of F33 in the near term would be sieving with respect to the form (1) (and
of course that has been tried roughly up to 20 decimal digits for possible factors).
Given the 75-bit factor recently found for F31, which required several CPU-months,
together with the fact that sieving to a given depth is 4 times cheaper for F33 than
it is for F31, it seems one should sieve to a limit of 280 or slightly greater before
expending CPU time on other options. However, it is interesting to consider what
recourse one may have if sieving fails, as it well may, since even a fairly modest
30-digit factor will be out of reach via this route without inordinate computational
effort.

Factors of Fm have the special form k · 2m+2 + 1, so Pollard’s p− 1 method [26]
is the obvious next choice, since even for fairly large factors, k can be quite modest
in size – a 75-bit factor of F33 would have only a 40-bit k, which itself would have a
reasonable likelihood of having no factors larger than 20 bits, in which case it would
be quite likely to be discovered by a concerted p−1 effort, as discussed below. The
odds also are boosted by the fact that for p−1 we do not need the smallest factor to
have a smooth k; rather, we merely need any factor p to have a sufficiently smooth
k. The elliptic curve method (ECM) relies on a similar smoothness property, but
the memory requirements for doing ECM (in particular stage 2) on numbers of this
size are at present too large to make the algorithm practical.9

Here is a brief summary of how the p − 1 method might be applied to a num-
ber the size of F33. First off, we do not consider disk-based transforms for the
large-integer multiplies, since these would simply be too slow, and reliability also is
much lower, as one is no longer dealing with solid-state components as is the case

8For the sake of completeness, we also generated two matching Pépin residues for F23, and
via the Suyama test determined that the known cofactor of this number, F23/(5 · 225 + 1), is
composite.

9One should not rule out any approach until such is known for sure to be inefficient. There
is always the possibility of a parallel Pollard-rho scheme, as enunciated in [11]. In that work it
is explained how the new McIntosh–Tardif factor of F18 could have been found with a number of
machines all effecting a parallel Pollard “rho” scheme.
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when the dataset fits into RAM memory. We also prefer not to deal with mas-
sively parallel implementation, since interprocessor communication then becomes
the dominant factor limiting speed, and efficiency (as measured in total CPU-time)
drops accordingly, especially for fundamentally data-nonlocal algorithms such as
the FFT. Rather, our aim is to establish whether the needed arithmetic can be
performed in the fast RAM memory and a single processor of a high-end worksta-
tion system. If this proves true, one has immediately gained a large boost in stage
2 of the algorithm, since various stage 2 intervals can be split up among as many
uniprocessor machines as are available with sufficient memory and speed for the
computation. The maximum wordsize estimate (8) indicates that an FFT-based
convolution modulo F33 would permit a wordsize of 16 bits, i.e., would require an
input vector of N = 229 64-bit floating-point elements. Using an in-place FFT
scheme, this yields 4 gigabytes (GB) of storage for the convolution data, plus a
small additional amount (on the order of several megabytes) for array padding el-
ements and small tables storing precomputed DWT weights and complex roots of
unity. For the modest stage 1 bounds which would be feasible with a number this
large, an efficient stage 1 implementation could use a precomputed product of all
the stage 1 prime powers, permitting a left-to-right binary exponentiation scheme.
The advantage of the latter is that it can be done entirely in-place, as it needs no
secondary accumulated power to be stored, and uses only modular squarings and
multiplies by the initial seed, the latter being a small scalar. Thus, enough memory
for stage 1 is readily available on workstation-class machinery. Regarding the pro-
cessing time needed, our tests of an advanced-prototype in-place FFT indicate a
time on the order of one minute per modular squaring on a Gigahertz-class proces-
sor. Using the precomputed-primes-product and exponentiation scheme mentioned
previously, this will permit a stage 1 to a prime limit of 500,000 to be run in around
one year of dedicated computation. Even though stage 1 is not parallelizable in the
same fashion as stage 2, this time estimate could be cut appreciably (or a deeper
stage 1 run) by exploiting the symmetric multithreading (SMT) supported by an
increasing percentage of microprocessors, which gains the benefit of a parallel im-
plementation when multiple processors are available, while requiring relatively little
additional code.10 Stage 2, on the other hand, is rather more memory-intensive.
We estimate that the minimum memory needed to perform a reasonably efficient
stage 2 is eight times that needed for stage 1; this permits us to store the current
residue, plus seven small even powers of the stage 1 residue r, e.g., r2, r4, r6, r8,
r10, r12 and r14. Any prime gaps not covered by these precomputed powers would
need additional multiplies, but such gaps (for the stage limits which are feasible for
such large numbers) occur with sufficiently low frequency that they would slow the
computation by only a small amount. For primes on the order of one million the
maximal gap is slightly larger than 100, so even in this worst-case scenario we need
no more than eight multiplies by the above precomputed powers to cover the gap.
Storage of eight F33-length residues in floating-point form needs 32 GB of memory,
an amount which will be available in the near future on high-end compute servers.
Note that even stage 1 of ECM requires on the order of 10 to 15 full-length vectors

10Some early protoypes of such a large-integer multiply implementation appear quite promis-
ing; for example an FFT-based modular multiply of an F24-sized number executed on a 4-processor
workstation in less than one-third the time needed on a single processor of the same type and
speed [16].
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to be stored [32], so to do any ECM work whatsoever will need roughly double this
amount of memory.

Finally, if over the years factoring continues to prove fruitless, interest may
again turn to direct nonfactoring resolution. The fact is, a single FFT-based con-
volution modulo F33 would, on a state-of-the-art workstation, consume around one
CPU-minute, so that the complete Pépin test on our current brands of machinery
would require many millennia. But we have already remarked on the effective rate
of resolution for the Fn, and noted that one cannot estimate such achievements
based on current resources. As gigabit-per-second networking technology becomes
commonplace, massively parallel (MP) computation using large clusters of cheap
commodity-microprocessor-based computers will become the norm for many large
computational tasks, and a clever MP implementation of the Pépin test, perhaps
using many discrete moduli and CRT reconstruction, might bring F33 into reach.
On the basis of these vague heuristics, but more in keeping with the way that com-
putational history has actually evolved, one might expect F33 to be resolved within
the next two or three decades, or at worst, well before the year 2100 A.D.
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