
Templates for Misuse Case Description

Guttorm Sindre1, Andreas L. Opdahl2

1 Dept of Computer and Information Science, Norwegian Univ. of Science and Technology
guttorm@idi.ntnu.no

2 Dept of Information Science, Univ. of Bergen, Norway
andreas@ifi.uib.no

Abstract. Use cases have proven helpful for eliciting, communicating and docu-
menting requirements. But whereas functional requirements are well supported,
use cases provide less support for working with extra-functional requirements,
such as security requirements. With the advent of e-commerce applications, se-
curity and other extra-functional requirements are growing in importance. In an
earlier paper, the authors have introduced the concept of misuse cases – in-
verted use cases to denote functions that should not be possible to perform in a
system. In this paper, security related misuse cases are elaborated in further de-
tail through a discussion of templates for their textual description. Keywords:
Use cases, scenarios, requirements, extra-functional requirements, secu-
rity.

1 Introduction

Use cases [1], [2], [3] have proven helpful for the elicitation of, communication about
and documentation of requirements [4], [5], [6], [7]. Many stakeholders feel more com-
fortable with descriptions of activity paths than less operational SRS’s focusing on
"The system shall..." requirements. The explicit focus on "actors" (which are really
roles) further aids communication with end-users, and simple and intuitive diagrams
may provide nice overviews of system functionality.

But there are also problems with use case based approaches to requirements engi-
neering [2], [8], [9], [10]. Important requirements may be missed because of over-
simplified assumptions about the problem domain, and there are often premature de-
sign decisions, especially concerning the user interface. Partly, this may be due to
problems with the process followed in the particular projects studied. But there are
also intrinsic problems with use cases, in particular they are not equally suited for all
kinds of requirements.

A use case typically describes the interaction between user and system to achieve
some wanted function. Thus, use cases are good for working with so-called functional
requirements, but not necessarily with extra-functional ones, such as security require-
ments [11], [12]. These will seldom be stated directly by the stakeholders, who rather
have concerns about what should not happen in the system [13], [14]. Use cases, by
their nature, concentrate on what the system should do, and have less to offer when
describing the opposite. But system behavior that should be avoided is also behavior,
which could potentially be investigated through use cases. This motivated the exten-
sion of use case concepts proposed in [11]:
• A misuse case is the inverse of a use case, a function that the system should not

allow. In more detail it might be defined as a completed sequence of actions which
results in loss for the organization or some specific stakeholder.

• A mis-actor is the inverse of an "actor", someone who – intentionally or acciden-
tally – initiates misuse cases and whom the system should not support in doing so.

Apart from suggesting these concepts, [11] mainly looked at notation, as shown in
Figure 1. This figure depicts part of the functionality for an e-commerce system. Mis-
use cases are shown as inverted use cases, and mis-actors similarly as inverted actors.

Figure 1: Misuse depicted as “inverted” use cases.

Customer

Operator

CrookRegister
customer

Browse
catalog

Flood
system

Steal
card info

Order
goods

Change
password

includes

extends

Obtain
passwd

Enforce
password

regime

extends
prevents

Encrypt
message

prevents

includes

includes

Monitor
system

detects

Log on
includes

includes

detects

Block
repeated

registrations

extends

prevents

includes

Tap com-
munication

includes

includes

There may be various relations between ordinary use cases and misuse cases. First,
there can be an "includes" or "extends" relation from a misuse-case to an ordinary use
case, showing that some function for ordinary use is utilized for misuse. This will often
be the case. For instance, a denial of service (DoS) attack need not include illegal ac-
tions, just flooding the system with a heavy burden of publicly available registration
requests. Two other relations were introduced in [11], "prevents" and "detects", which
go from ordinary use cases to misuse cases, to indicate functions that prevent or de-
tect misuse. Because of the important relations between use and misuse, it is useful to
depict them in the same diagram. Then, a clear difference in notation is needed to
avoid confusion, as provided by the given proposal.

However, as stated in [3], use case diagrams only give an overview -- the essence
of use case modeling is in the textual representation. The topic of this paper is to move
on to a discussion of the textual representation of misuse cases. There are many topics
that need to be dealt with in that respect -- style, content, method guidelines etc. In
this paper we restrict ourselves to discussing templates for the textual representation
of misuse cases. Some might say that a discussion of method guidelines for writing
good activity paths would be more important than looking at templates covering all
kinds of extra information that goes into the use case. Our motivation for starting out
with templates, though, is as follows:
• If any kind of experiment is going to be done (for instance with students writing

misuse cases), most of these will prefer to have clear information about the format
of the documentation produced.

• A template may in itself help to write clear and simple paths. If other kinds of in-
formation (assumptions, preconditions, …) can be placed in separate fields, the
writers are less likely to clutter the paths themselves with such complicating infor-
mation.

 The rest of the paper is structured as follows: Section 2 reviews some templates for
normal use cases. Section 3 then discusses adaptations of these templates to capture
misuse cases. Section 4 outlines a method for using the new templates. Section 5 dis-
cusses the feasibility of the approach and its relation to other work. Section 6 con-
cludes the paper.

2 Templates for use cases

Various templates have been suggested for the textual description of use cases. Kulak
and Guiney [5] suggests a template consisting of the following parts:
• Use Case Name: A simple, intuitive name that uniquely identifies the use case.
• Iteration: Facade, filled, focused, finished - denoting how refined the description is.
• Summary: One or two sentences describing the interaction.
• Basic course of events: The steps that the actors and the system go through to

accomplish the goal of this use case. This is "the most common path taken", where
no errors occur and the goal of the use case is reached.

• Alternative paths: Less common paths than the basic course.

• Exception paths: Paths taken when errors occur.
• Extension points: Steps in the use case from where extending use cases diverge.
• Triggers: The entry criteria for the use case, i.e., what initiates it.
• Assumptions: Conditions assumed true for normal execution of the use case. But

contrary to preconditions, assumptions cannot be guaranteed by the system itself.
• Preconditions: Conditions that must be true before the use case can be performed.
• Postconditions: What will be true when the use case is completed. According to [5],

this should cover any alternative path, but not necessarily every exception path.
• Related business rules: Use cases describe the system boundary in an operational

manner. This can be coupled to more declarative business rules.
• Author and Date.
The template suggested by Cockburn [3] has some interesting deviations from the
above, although the most evident fields are overlapping. Most notably, some extra
fields are introduced:
• Primary actor: The user who initiates or performs the major actions in the use case.
• Scope: The scope of modeling, e.g., the entire business or just the planned comput-

erized information system.
• Level: What level of abstraction this use case is on. This can be, e.g., summary,

user goal, or sub-function.
• Stakeholders and interests: Listing the various stakeholders and what their motiva-

tions are.
• Technology and Data variations list: These are for various ways to do the same

thing (e.g., successfully paying by cash, check or credit card). Kulak and Guiney
use alternate paths for this. In Cockburn’s view, there is an advantage in not having
to write full paths for all such variations. Besides, one does not have to selecting
e.g. one payment method as the “normal” one if really all three are ok.

The template suggested by the Rational Unified Process [15] contains many of the
same entries. Its basic form runs 1. Use Case Name, 1.1 Brief Description, 1.2 Actors,
1.3 Triggers; 2. Flow of events, 2.1 Basic Flow, 2.2 Alternative Flows, 2.2.1 Condition 1,
(what to do), 2.2.2 Condition 2 ..., etc.; 3. Special Requirements, 3.1 Platform ..., ...; 4.
Preconditions, 5. Postconditions, 6. Extension Points. As can be seen, this is quite
similar to Kulak and Guiney's template. The most notable deviation is the inclusion of a
section for special requirements, such as platform requirements. The RUP template has
been criticized (e.g., by [3]) for cluttering the use case description with excessive num-
bering of the various sections.

There are several other templates for use cases, but for the purpose of misuse cases
it is not necessary to look at all these – the goal here is not to decide what is the best
use case template, but to get a first overview of what template fields will be useful for
misuse cases.

3 Adaptations for misuse cases

Some items that are common to all the three above-mentioned templates are obviously
relevant for misuse cases, such as Name, Summary, Author, Date, and Basic Path (the
normal path of action taken, ending with success for the mis-user / failure for the sys-
tem). These will be included in our template without further discussion. For other items
that also seem relevant, there are discrepancies between the templates we looked at in
the previous section. Hence, some discussion is mandated:

Extensions/alternative paths/exceptional paths: Here Kulak and Guiney have three
fields (alternative paths, exception paths, and extension points.) According to their
definition, exception paths are paths where some error occurs, whereas alternative
paths are paths where everything proceeds normally. Cockburn partly covers the
alternate paths with his Technology and Data Variations List, but in a more abstract
manner. Cockburn's approach has an advantage in avoiding premature design consid-
erations. But for misuse cases it may be of particular interest exactly to highlight spe-
cific technologies or extreme data values that can be exploited. Exceptions/extensions
are also meaningful for use cases, representing the various ways in which misuse is
prevented or detected, cf. fig. 1. All in all, we suggest the following fields here:

• Alternative paths: Various ways the misuse can be done.
• Capture points: Options for how the misuse may be prevented and/or deteced at

particular steps.
• Extension points: Optional paths may be included in the misuse case in some situa-

tions. These will be options taken by the mis-user, for instance to hack around hin-
drances, whereas capture points work against the mis-user.

Name: Obtain Password
Summary: A crook obtains and later misuses operator passwords for the e-shop by tapping messages sent
through a compromised network host during operator log on.
Author: David Jones
Date: 2001.02.23.

Basic path:
bp0 A crook has hacked a network host computer and installed an IP packet sniffer (step bp0-1.) All

sequences of messages sent through the compromised host and which contain strings like 'Logon', 'User
name', 'Password', 'passwd' etc. are intercepted and analysed further (step bp0-2 and extension point e1.)
In this way, the crook collects (likely) user names and passwords along with the IP addresses of the
computers they are valid on (step bp0-3.) The crook - possibly much later - uses the user name and
password to gain illegal operator access to the e-shop computer (step bp0-4.)

Alternative paths:
ap1 The crook has operator privileges on the network host. No hacking of the network computer is necessary

(changes step bp0-1.)
ap2 The crook has not penetrated a network host, but instead intercepts messages sent through the telephone

system from the e-shop operator's home (changes step bp0-1.)
ap3 Instead of home phone, the crook intercepts messages sent from the e-shop operator's portable devices

(changes step bp0-1.)

Capture points:
cp1 The password does not work because it has been changed (in step bp0-4.)
cp2 The password does not work because it is time dependent (in step bp0-4.)
cp3 The password does not work because it is different for different IP addresses (in step bp0-4.)
cp4 Operator logon to the e-shop is only possible from certain IP addresses (in step bp0-4.)
cp5 Communication tapping (in step bp0-2) is not possible (perhaps because the communication is

encrypted.)

Extension points:
ep1 Includes misuse case "Tap communication" (in step bp0-2.)

Table 1: Detailed misuse case description, part 1.

Several options can be mentioned in the same field, for instance known or suggested
options and routines for dealing with the misuse. A detailed description of how this is
done will often be more of a design task, though.

Conditions: Here, Kulak and Guiney have three somewhat related fields: Triggers
(entry criteria, what initiates the use case), Assumptions (conditions which must be

true but which cannot be guaranteed by the system itself) and Preconditions (which
can be ensured by the system itself.) The trigger field is needed to take care of situa-
tions where something else than the primary actor initiates the use case. For misuse
this may be interesting, e.g., in connection with viruses triggered by timing. The fields
Assumptions and Preconditions are useful for misuse cases in much the same manner
as for ordinary use cases. When it comes to postconditions, Kulak and Guiney has
this one field, whereas Cockburn has more, distinguishing between minimal guarantees

Triggers: tr1 Always true, i.e., this can happen at any time.

Preconditions:
pc1 The system has a special user 'operator' with extended authorities.
pc2 The system allows the operator to log on over the network.

Assumptions:
as1 The operator uses the network to log on to the system as operator (for all paths.)
as2 The operator uses his home phone line to log on to the system as operator (for ap2.)
as3 The operator uses his home phone line to log on to the system as operator (for ap3.)

Worst case threat (postcondition):
wc1 The crook has operator authorities on the e-shop system for an unlimited time, i.e., she is never caught.

Capture guarantee (postcondition):
cg1 The crook never gets operator authorities on the e-shop system.

Related business rules:
br1 The role of e-shop system operator shall give full privileges on the e-shop system, the e-shop system
computer and the associated local network host computers.
br2 Only the role of e-shop system operator shall give the privileges mentioned in br1.

Potential misuser profile: Highly skilled, potentially host administrator with criminal intent.

Stakeholders and threats:
sh1 e-shop

• reduced turnover if misuser uses operator access to sabotage system
• lost confidence if security problems get publicized (which may also be the misuser’s intent)

sh2 customer
• loss of privacy if misuser uses operator access to find out about customer’s shopping habits
• potential economic loss if misuser uses operator access to find credit card numbers

Scope: Entire business and business environment.
Abstraction level: Mis-user goal. Precision level: Focussed.

Table 2: Detailed misuse case description, part 2.

and success guarantees. For misuse cases, it may be useful to distinguish between
guarantees for the misuser and guarantees for the system/stakeholders. All in all we
end up with the following fields relating to conditions:
• Trigger: The condition that initiates the misuse case. In many cases, this may just

be the predicate True, indicating that some danger is permanently present.
• Assumptions: This condition describes those states of the system's environment

that make the misuse case possible.
• Preconditions: This condition describes those states of the system that make the

misuse case possible.
• Worst case threat: Describes the outcome if the misuse succeeds. If the misuse

case has alternative paths, this condition will often be or contain a disjunction to
describe slight variations in the outcome.

• Prevention guarantee: Describes the guaranteed outcome whatever prevention path
is followed. If no prevention path is followed, one might alternatively formulate a
wanted prevention guarantee, expressing what one would want the system to
achieve with respect the attempted misuse, but without stating how.

• Detection guarantee: Describes the guaranteed outcome whatever detection path is
followed. As above, one might also make this a wanted detection guarantee.

• Related business rules: This is interesting for misuse cases, just as for use cases. It
is useful to see exactly what business rules are broken by each misuse case, and
possibly discover situations where the business rules themselves are too weakly
formulated, thus opening for misuse.

These various fields may be useful for further security analysis and prioritization of
use cases. For instance, assume that the project team has decided that the system
should support some easy-to-implement and nice-to-have (but not strictly necessary)
use case UC1. But what if UC1 has overlapping assumptions and/or preconditions
with a really dangerous misuse case MUC1 and is the only use case with such
overlap. If so, MUC1 could be prevented quite easily if UC1 was not implemented.
Then, the full cost of UC1 is a lot bigger than the mere resources for its implementa-
tion, as one must also add the potential cost of MUC1 happening, or perhaps of some
expensive countermeasures to MUC1.

Other fields: The remaining fields of our suggested template can be discussed some-
what more briefly:
• Iteration: Obviously, there is a need also for both superficial and more detailed

descriptions. The best thing to do is probably to use the same levels as you do for
normal use cases.

• Misuser profile: Cockburn has the field Primary actor, normally associated with a
certain role in the organization. For a misuse-case the primary mis-actor may be a to-
tally unknown. Nevertheless, the field can be useful for stating whatever there is to
state about the mis-actor. For instance, some kinds of misuse are most likely to be
performed by intent whereas other may happen accidentally. Some require insiders
or people with high technical skill, others not.

• Scope: This field represents the scope of modeling, e.g., an entire business, an
information system of users and computers, or just the computerized information

system. All these scopes are important. The defenses against misuse attempts may
be of a physical or organizational nature, in addition to designing security into the
computerized information system. The computerized system is no more secure than
its physical and organizational environment.

• Level: This field indicates what level of abstraction a use case is on. This can be
e.g., summary, user goal, or sub-function. Misuse cases can be specified at several
levels of abstraction just like normal use cases.

• Stakeholders and Risks: For normal use cases, Cockburn calls this field
Stakeholders and Interests. On an abstract level, risks could simply be described
textually. With more ambition one might try to quantify misuse likelihoods and
costs. Here, conventional risk and hazard analysis techniques would come into
play, but that is beyond the scope of this paper. The interplay between such more
formal analyses and misuse cases is thus left to further work.

• Technology and data variations: This list makes it possible to mention some varia-
tions without giving a path for each of them. E.g., a misuser may access the system
either through a PC web browser or a WAP phone, but apart from detailed actions
related to the particular equipment, the misuse steps in these two cases will be the
same. In this case it may feel unnecessary to list two separate paths for this, instead
the various equipment may simply be listed.

 4 Method issues

We have suggested a template with quite a number of fields, which will often seem
over-elaborate early on, when one is just trying to get an overview of various use- and
misuse cases. However, the template is just a suggestion for fields that a misuse case
description should contain in its finished state. Along the way, most of the fields
would not be mandatory. Just like a use case, a misuse case could be presented with
only a name and brief description, along the lines of the "casual" version suggested in
[3] or the "facade" iteration suggested in [5], allowing for what is traditionally called
specification freedom [17]. Something more about sequencing:
1. First concentrate on the normal actors and the main use cases requested by these,

i.e., the services that the users want. The motivation for this is quite simple: If there
is nothing to use, there is nothing to misuse — hence it would be difficult to start
with misuse cases.

2. Then introduce the major misuse cases, i.e., threats that are likely, and mis-actors
who might be behind these threats.

3. Investigate the potential relations between misuse cases and use cases, in terms of
potential “includes”-relations. This step is quite important since many threats to a
system can be achieved through normal system functionality, as for instance with
DoS attacks.

We do not generally recommend early investigation of prevents or detects relations,
especially not step descriptions of these, which would easily lead to premature design
decisions. This is actually the nice thing about misuse cases — it makes possible, so

to speak, requirements capture in "negative space". With only positive use cases at
hand, the modeler would have to model countermeasures directly. With misuse cases
one can simply state that "this is something that must be avoided" and then leave it to
more detailed analysis and design to decide how. A valuable input to this decision
would be various known or suggested defenses listed in the “capture points” field of
our template, which could then be analyzed more thoroughly for coverage and cost
[18].

Most of our discussion here suggests that misuse case analysis will be used early
on in the development process. But it might also be an idea to redo misuse case analy-
sis on a more detailed level after the system’s security defenses have been chosen (or
preferably, tentatively chosen) – this may provide an opportunity to paper test the
choice of defenses and try to find weaknesses. As stated in [12], when some defenses
are introduced, potential attackers will look for other openings – and may find some
where it was quite unsuspected. Applying misuse case analysis on several levels of
abstraction and at several stages during the development process may increase the
chance of eliminating such unpleasant surprises.

 5 Discussion

The proposed template for detailing misuse cases supports representation of informa-
tion relevant for security considerations during requirements determination. The pro-
posed approach could also be helpful in the early elicitation of security requirements
in several other ways:
• Early focus on security. Security issues are often considered a design-level — and

sometimes even a programming-level — issue. This is unfortunate, because the re-
quirements stage is where the appropriate security issues can be identified, ana-
lyzed and balanced against one another.

• User/customer assurance. End-users and management of the procuring organization
may not be able to discuss the technical details of security threats and countermea-
sures. But they will have security concerns. Seeing these captured by misuse cases
will reassure them that the problem is actually being dealt with.

• User/customer awareness. Security is as much about organizational routines as
technical defenses, and even the best defense will fail if the awareness about secu-
rity threats is low. Misuse cases can help to keep more of the discussion about se-
curity in a format that end-users may understand, and thus learn from.

• Analyst creativity. Security analysts need to be as creative as potential computer
criminals (or as authorized users making unforeseen mistakes!) to identify the rele-
vant threats beforehand. We believe that the explicit writing of misuse cases can
stimulate such creativity.

• Traceability. If countermeasures are described as first-class requirements, one eas-
ily misses out on the motivation for these countermeasures. The explicit registering
of misuse cases can show why a certain defense was introduced in the system,
which will help later maintenance and redesign in the face of changing threats.

• Requirements organization. A major problem in managing extra-functional require-
ments is how to organize the requirements document and relate functional and ex-
tra-functional requirements to one another. Misuse cases solve this problem for a
large class of extra-functional requirements. As mentioned previously, one may de-
tect that a use case has the same assumptions and preconditions as a misuse case.
This is a clear hint to investigate whether that use case is strictly necessary. Such
analysis might resemble the use of root requirements in [18].

• Transition to object-oriented design. An additional advantage is that the applica-
tion of use cases also for security-intensive systems, makes it possible to build on
all the ongoing work providing transitions between this and object-oriented design

• Uniform handling of functional and extra-functional requirements. As mentioned in
the introduction, misuse cases are applicable and useful for dealing with a larger
class of extra-functional requirements. Security requirements are only one example.
Extra-functional requirements dealing with safety, availability and robustness all
state what should not happen and therefore fall into this class. As a consequence,
misuse cases offer a uniform way of handling them. This is significant, because a
major obstacle to dealing with extra-functional requirements is their inherent diver-
sity, which calls for a broad array of techniques to be used, but which makes the re-
sulting requirements document difficult to organize and comprehend.

There are several methods that somehow utilize use cases or scenarios in requirements
capture, for instance [20], [21], [22], [23]. On the other hand, methods for security re-
quirements engineering have traditionally not been use case based, e.g., [24]. In [25]
there is a discussion of using scenarios for developing secure e-commerce systems,
but not suggesting any concept resembling the misuse case. Hence, this is believed to
be a novel concept, and our investigations indicate that it can be a quite useful exten-
sion to the repertoire of the requirements engineer.

But misuse case analysis alone makes no requirements engineering technique.
Methods such as the ones referred to above have many years of work behind them
and are a lot more detailed than our misuse case analysis with respect to method
guidelines and tool support. We only look at misuse analysis where other methods
address scenarios/use cases and goal structures in general. Moreover, this paper has
only looked at templates for misuse cases, while the quality of what is entered in the
various fields may be more important, in particular what is entered in the basic and
alternative paths. The issue of how to write good misuse case paths has not at all been
discussed here. Hence, what we have proposed so far must be elaborated with further
method guidelines for writing good activity paths, e.g., inspired by [2], [3], [26], [27] for
normal use cases, as well as integrated with more full-fledged RE methods such as the
ones mentioned in the previous paragraph.

 6 Conclusions and further work

 Use case diagrams are often good for eliciting functional requirements, but not so
good for security requirements, which relate to activities not wanted in the system. We

have provided a diagram notation and a textual template for misuse cases. The ap-
proach has been tested on several small examples and is used in ongoing research
investigating the use of security patterns in requirements work. However, misuse
cases must now be evaluated in an industrial setting. We think the proposed approach
is well suited for such evaluations:
• The approach is close to standard UML use case diagrams, which are already heav-

ily used in industry.
• Security requirements are increasingly important with the advent of e-commerce,

and problems with use cases here will thus be an industrial problem.
As the discussion has revealed, many template fields used for normal use cases are
relevant for misuse cases, too, and probably, much methodology for use cases can be
adapted to misuse cases. Interesting further work will be to integrate misuse case
analysis with other use case based and goal based RE approaches. Other interesting
directions to pursue are integration with more traditional techniques for risk analysis
and costing, which have been popular in security and safety engineering. Safety might
be an interesting direction to widen the application of misuse cases – again to describe
things that should not happen in a system. As stated by [28] a better integration be-
tween informal and formal techniques is needed to make progress in safety analysis.
Anyway, it should be noted that misuse cases is not intended as a standalone tech-
nique to solve security (or safety) problems by itself – it must be integrated with other
RE techniques and a more formal analysis. However, we believe that misuse cases
have advantages when it comes to communication with end-users, and can thus en-
hance other techniques.
.

References

1. I. Jacobson et al., Object-Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992.

2. L. L. Constantine and L. A. D. Lockwood, Software for Use: A Practical Guide to the Mod-
els and Methods of Usage-Centered Design, ACM Press, 1999.

3. A. Cockburn, Writing effective use cases, Addison-Wesley, 2001.
4. J. Rumbaugh, “Getting Started: Using use cases to capture requirements”, Journal of Object-

Oriented Programming, September 1994, pp. 8-23.
5. D. Kulak and E. Guiney, Use Cases: Requirements in Context, ACM Press, 2000.
6. M. Arnold et al., "Survey on the Scenario Use in Twelve Selected Industrial Projects", tech-

nical report, RWTH Aachen, Informatik Berichte, Nr. 98-17, 1998.
7. K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, "Scenario Usage in System Develop-

ment: A Report on Current Practice", IEEE Software, 15(2): 34-45, March/April 1998.
8. A. I. Antón, J. H. Dempster, and D. F. Siege, “Deriving Goals from a Use Case Based Re-

quirements Specification for an Electronic Commerce System”, Proc. REFSQ’2000.
9. J. Arlow, “Use Cases, UML Visual Modelling and the Trivialisation of Business Require-

ments”, Requirements Engineering Journal, 3(2):150-152, 1998.

10. S. Lilly, “Use Case Pitfalls: Top 10 Problems from Real Projects Using Use Cases”, Proc.
TOOLS-USA’99, pp.174-183, 1-5 Aug 1999.

11. G. Sindre and A. L. Opdahl, "Eliciting Secutiry Requirements by Misuse Cases", Proc.
TOOLS Pacific 2000, pp 120-131, 20-23 Nov 2000.

12. C. P. Pfleeger, Security in Computing, Prentice-Hall, 1997.
13. G. Kotonya and I. Sommerville, Requirements engineering: Processes and Techniques,

Wiley, 1997.
14. P. Loucopoulos and V. Karakostas, Systems Requirements Engineering, McGraw-Hill,

1995.
15. P. Kruchten: The Rational Unified Process – an Introduction, Addison-Wesley, 2000.
16. R. Wirfs-Brock, "Designing Scenarios: Making the Case for a Use Case Framework", Small-

talk Report, November-December 1993.
17. P.E. London and M.S. Feather, “Implementing specification freedoms”, Readings in Artifi-

cial Intelligence and Software Engineering, pp. 285-305, Morgan Kaufmann, 1986.
18. C. Irvine, T. Levin, “Toward a Taxonomy and Costing Method for Security Services”, Proc.

ACSAC’99, Phoenix AZ, 6-10 Dec 1999.
19. W. N. Robinson, S. Pawlowski, “Surfacing Root Requirements Interactions from Inquiry

Cycle Requirements Documents”, Proc. ICRE’98, Colorado Springs, 6-10 Apr, 1998.
20. A. I. Antón, “Goal-Based Requirements Analysis”, Proc. ICRE’96, pp. 136-144, 1996.
21. N. Maiden, S. Minocha, K. Manning, and M. Ryan, “CREWS-SAVRE: Systematic Scenario

Generation and Use”, Proc. ICRE’98, pp.148-155, 1998.
22. C. Potts, “A ScenIC: “A Strategy for Inquiry-Driven Requirements Determination”, Proc.

RE’99.
23. C. Rolland, C. Souveyet, and C. Ben Achour, “Guiding Goal Models Using Scenarios”,

IEEE Transactions on Software Engineering, 24(12): 1055-1071, Dec 1998.
24. J. Kirby Jr, M. Archer, C. Heitmeyer, “SCR: A Practical Approach to Building a High

Assurance COMSEC System”, Proc. ACSAC’99, Phoenix AZ, 6-10 Dec 1999.
25. A. I. Antón, J. B. Earp, ”Strategies for Developing Policies and Requirements for Secure

Electronic Commerce Systems”, Proc. 1st ACM Workshop on Security and Privacy in E-
Commerce, Athens, 1-4 Nov 2000.

26. C. Ben Achour, C. Rolland, N. A. M. Maiden, C Souveyet, "Guiding Use Case Authoring:
Results from an Empirical Study", Proc. RE'99, Limerick, Ireland, 1999.

27. K. Cox, K. Phalp, M. Shepperd: "Comparing Use Case Writing Guidelines", Proc.
REFSQ'2001, Interlaken, Switzerland, 2001.

28. R. R. Lutz, “Software Engineering for Safety: A Roadmap”, in A. Finkelstein (ed.): The
Future of Software Engineering, ACM Press, 2000.

