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Preface

These lecture notes are intended for an advanced astroplo@irse on Stellar Structure and Evolu-
tion given at Utrecht University (NS-AP434M). Their goaltsprovide an overview of the physics
of stellar interiors and its application to the theory ofllstestructure and evolution, at a level appro-
priate for a third-year Bachelor student or beginning Mastadent in astronomy. To a large extent
these notes draw on the classical textbook by Kippenhahn &é&ke(1990; see below), but leaving
out unnecessary detail while incorporating recent asysighl insights and up-to-date results. At
the same time | have aimed to concentrate on physical insighér than rigorous derivations, and
to present the material in a logical order, following in ptmé very lucid but somewhat more basic
textbook by Prialnik (2000). Finally, 1 have borrowed sordeds from the textbooks by Hansen,
Kawaler & Trimble (2004), Salaris & Cassissi (2005) and theant book by Maeder (2009).

These lecture notes are evolving and | try to keep them uptt tfayou find any errors or incon-
sistencies, | would be grateful if you could notify me by ehf@iR.Pols@uu.nl).

Onno Pols
Utrecht, September 2009
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Physical and astronomical constants

Table 1. Physical constants in cgs units (CODATA 2006).

gravitational constant G 6.6743x 108 cmigls?
speed of light in vacuum ¢ 2.99792458< 10°cm st
Planck constant h 6.626 069x 102" erg s
radiation density constant a 7.56578x 10 erg cnT® K™

Stefan-Boltzmann constanto = ac 5.67040x 10°° erg cnt? s 1 K™
Boltzmann constant 1.380650x 10716 erg K1
electron volt 1602176 5% 10712 erg

electron charge 4.80326x 1010 esu

1.44000x 10" eV cm
9.109382x 1028 g
1.6605388x 10724 g
16726216x 1024 g
1.6749272x 1024 ¢

6.644 656 2x 1024 g

electron mass
atomic mass unit
proton mass
neutron mass
a-particle mass

33332%°2~%

Table 2. Astronomical constants, mostly from the Astronomical Afraa (2008).

Solar mass M, 1.9884x10%3¢g

GM, 1.32712442x 10% cmd 52
Solar radius R 6.957x 109 cm
Solar luminosity L, 3.842x 10 erg st
year yr 315576x 10" s
astronomical unit AU #495978 71x 10'® cm
parsec pc $85678x 10'8 cm




Chapter 1

Introduction

This introductory chapter sets the stage for the coursebantly repeats some concepts from earlier
courses on stellar astrophysics (e.g. the Utrecht first-gearselntroduction to stellar structure and
evolutionby F. Verbunt).

1.1 Introduction

Thegoal of this course on stellar evolution can be formulated asvad:

to understand the structure and evolution of stars, and thxsiervational properties
using known laws of physics

This involves applying and combining ‘familiar’ physicoofn many diferent areas (e.g. thermody-
namics, nuclear physics) under extreme circumstanceh taigperature, high density), which is part
of what makes studying stellar evolution so fascinating.

What exactly do we mean by a ‘star'? A useful definition for pugpose of this course is as follows:
a star is an object that

o radiates energy from an internal source
¢ is bound by its own gravity

This definition excludes objects like planets and cometsalbge they do not comply with the first
criterion. In the strictest sense it also excludes brownrésyavhich are not hot enough for nuclear
fusion, although we will briefly discuss these objects. (Fbeond criterion excludes trivial objects
that radiate, e.g. glowing coals).

Animportant implication of this definition is that stars magolve(why?). A star is born out of an
interstellar (molecular) gas cloud, lives for a certain ammtoof time on its internal energy supply, and
eventually dies when this supply is exhausted. As we shal]lasecond implication of the definition
is that stars can have only a limited range of masses, betw@dnand~100 times the mass of the
Sun. Thdife and deattof stars forms the subject matter of this course. We will dnigfly touch on
the topic ofstar formation a complex and much less understood process in which théepnstio be
solved are mostly very ffierent than in the study of stellar evolution.



1.2 Observational constraints

Fundamental properties of a star include thass M(usually expressed in units of the solar mass,
My = 1.99 x 10°3q), theradius R(often expressed iR, = 6.96 x 10'°cm) and thduminosity L,
the rate at which the star radiates energy into space (oReressed irL, = 3.84 x 10°3ergs). The
gffective temperaturedf is defined as the temperature of a blackbody with the samegefiax at the
surface of the star, and is a good measure for the tempeiaittiie photosphere. From the definition
of effective temperature it follows that

L=4rRPoTS; (1.1)

In addition, we would like to know thehemical compositiomf a star. Stellar compositions are
usually expressed as mass fractiofiswherei denotes a certain element. This is often simplified
to specifying the mass fractiorns (of hydrogen),Y (of helium) andZ (of all heavier elements or
‘metals’), which add up to unity. Another fundamental prdpés therotation rateof a star, expressed
either in terms of the rotation peridéy; or the equatorial rotation velocity.

Astronomical observations can yield information abousthuindamental stellar quantities:

e Photometric measuremenygld the apparent brightness of a star, i.e. the energy #ogived
on Earth, in diferent wavelength bands. These are usually expressed astudagh e.g.B,
V, |, etc. Flux ratios or colour indiceBB(- V, V — |, etc.) give a measure of théfective
temperature, using theoretical stellar atmosphere maaelsr empirical relations. Applying
a bolometric correction (which also dependsTag) yields the apparent bolometric fluksgl
(in ergstcm2).

e In some cases thdistance dto a star can be measured, e.g. from the parallax. The Hipparc
satellite has measured parallaxes with 1 milliarcsec aoyuof more than 10stars. The lumi-
nosity then follows fromL = 4x d?f,o;, and the radius from eq. (1.1) if we have a measure of
Tesr

¢ Anindependent measure of thifeetive temperature can be obtained frioterferometry This
technique yields the angular diameter of a star if it iffisiently extended on the sky, i.e. the
ratio # = R/d. Together with a measurement &f, this can be seen from eq. (1.1) to yield
chgﬁ = fpol/6°. This technique is applied to red giants and supergiantselflistance is also
known, a direct measurement of the radius is possible.

e Spectroscopwt suficiently high resolution yields detailed information abthe physical con-
ditions in the atmosphere. With detailed spectral-lineysig using stellar atmosphere models
one can determine the photospheric properties of a starfibetive temperature and surface
gravity (g = GM/R?, usually expressed as gy surface abundances of various elements (usu-
ally in terms of number density relative to hydrogen) and asuee of the rotation velocity
(VegSini, wherei is the unknown inclination angle of the equatorial plane).atldition, for
some stars the properties of teellar wind can be determined (wind velocities, mass loss
rates). All this is treated in more detail in the Master ceura Stellar Atmospheres

e The most important fundamental property, the mass, canmohdasured directly for a single
star. To measure stellar masses one nbedsy starsshowing radial velocity variations (spec-
troscopic binaries). Radial velocities alone can onlyd/imlasses up to a factor sirwherei is
the inclination angle of the binary orbit. To determine dbsomass values one needs informa-
tion oni, either from a visual orbit (visual binaries) or from the peace of eclipses (eclipsing
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binaries). In particular for so called double-lined ediygsbinaries, in which the spectral lines
of both stars vary, it is possible to accurately measure th@masses and radii (with 1-2 % ac-
curacy in some cases) by fitting the radial-velocity curved the eclipse lightcurve. Together
with a photometric or, better, spectroscopic determimabb T also the luminosity of such
binaries can be measured with high accuracy, independéheafistance. For more details see
the Master course oRinary Stars

All observed properties mentioned above are surface ptiegerTherefore we needtheory of
stellar structureto derive the internal properties of a star. However, somectliwindows on the
interior of a star exist:

¢ neutrinos which escape from the interior without interaction. Sq fae Sun is the only (hon-
exploding) star from which neutrinos have been detected.

e oscillations i.e. stellar seismology. Many stars oscillate, and theigfiency spectrum contains
information about the speed of sound waves inside the startterefore about the interior
density and temperature profiles. This technique has pedvitcurate constraints on detailed
structure models for the Sun, and is now also being appliedher stars.

The timespan of any observations is much smaller than astéditime: observations are like
snapshots in the life of a star. The observed properties aidividual star contain no (direct) infor-
mation about its evolution. The diversity of stellar prapes (radii, luminosities, surface abundances)
does, however, depend on how stars evolve, as well as onsittiproperties (mass, initial composi-
tion). Properties that are common to a large number of starst gorrespond to long-lived evolution
phases, and vice versa. By studying samples of stars sallistve can infer the (relative) lifetimes
of certain phases, which provides another important caiméton the theory of stellar evolution.

Furthermore, observations of samples of stars revealinexarelations between stellar properties
that the theory of stellar evolution must explain. Most inrtpot are relations between luminosity and
effective temperature, as revealed by Hertzsprung-Russell diagrgnand relations between mass,
luminosity and radius.

1.2.1 The Hertzsprung-Russell diagram

The Hertzsprung-Russell diagram (HRD) is an important todest the theory of stellar evolution.
Fig. 1.1 shows the colour-magnitude diagram (CMD) of staithe vicinity of the Sun, for which the
Hipparcos satellite has measured accurate distancesisTdnisexample of &olume-limitedsample

of stars. In this observers’ HRD, the absolute visual magietMy is used as a measure of the
luminosity and a colour index® - V or V — |) as a measure for thdfective temperature. It is left
as an exercise to identify various types of stars and ewlythases in this HRD, such as the main
sequence, red giants, the horizontal branch, white dweids,

Star clusters provide an even cleaner test of stellar eéeoluiThe stars in a cluster were formed
within a short period of time (a few Myr) out of the same molleceloud and therefore share the same
age and (initial) chemical compositidnTherefore, to first-order approximation only the mass \&arie
from star to star. A few examples of cluster CMDs are givenim E.2, for a young open cluster (the
Pleiades) and an old globular cluster (M3). As the cluster iagreases, the most luminous main-
sequence stars disappear and a prominent red giant braddfodamontal branch appear. To explain
the morphology of cluster HRDs atftlrent ages is one of the goals of studying stellar evolution.

1The stars in a cluster thus consitute a so-cadiiedple stellar population Recently, this simple picture has changed
somewhat after the discovery of multiple populations in ynstar clusters.
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Figure 1.2. Colour-magnitude diagrams of a young open cluster, M45Rtb@des, left panel), and a globular
cluster, M3 (right panel).
1.2.2 The mass-luminosity and mass-radius relations

For stars with measured masses, radii and luminositiesh{nary stars) we can plot these quantities
against each other. This is done in Fig. 1.3 for the companeihtiouble-lined eclipsing binaries for
which M, RandL are all measured witl§ 2% accuracy. These quantities are clearly correlated, and
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Figure 1.3. Mass-luminosity (left) and mass-radius (right) relatiémscomponents of double-lined eclipsing
binaries with accurately measurét] RandL.

especially the relation between mass and luminosity is tight. Most of the stars in Fig. 1.3 are
long-lived main-sequence stars; the spread in radii forsembetween 1 andN, results from the
fact that several more evolved stars in this mass range atsfysthe 2% accuracy criterion. The
observed relations can be approximated reasonably welbleplaws:

LM  and R« MY (1.2)

Again, the theory of stellar evolution must explain the &xige and slopes of these relations.

1.3 Stellar populations

Stars in the Galaxy are divided intofi#irent populations:

e Population I; stars in the galactic disk, in spiral arms amdrélatively young) open clusters.
These stars have agesl0® yr and are relatively metal-ricizZ(~ 0.5 — 1Z)

e Population II: stars in the galactic halo and in globulastéus, with ages 10'°yr. These stars
are observed to be metal-poa ¢ 0.01- 0.12;).

An intermediate population (with intermediate ages andatheities) is also seen in the disk of the
Galaxy. Together they provide evidence for #feemical evolutiorof the Galaxy: the abundance
of heavy elementsZ) apparently increases with time. This is the result of cleainénrichment by
subsequent stellar generations.

The study of chemical evolution has led to the hypothesis ‘Bopulation III’ consisting of the
first generation of stars formed after the Big Bang, contejnonly hydrogen and helium and no
heavier elements (‘metal-freeZ, = 0). No metal-free stars have ever been observed, probakelyadu
the fact that they were massive and had short lifetimes aiukigenriched the Universe with metals.
However, a quest for finding their remnants has turned up nvany metal-poor stars in the halo,
with the current record-holder having an iron abundaKgg= 4 x l(TGXFe@.

5



1.4 Basic assumptions

We wish to build a theory of stellar evolution to explain thieservational constraints highlighted
above. In order to do so we must make some basic assumptions:

e stars are considered to Bmlatedin space, so that their structure and evolution depend amly o
intrinsic properties (mass and composition). For most single staifseiGalaxy this condition
is satisfied to a high degree (compare for instance the radithee Sun with the distance to its
nearest neighbour Proxima Centauri, see exercise 1.2)ekkwfor stars in dense clusters, or
in binary systems, the evolution can be influenced by intemaavith neighbouring stars. In
this course we will mostly ignore these complicatirfeets (many of which are treated in the
Master course oBinary Stars.

o stars are formed withlmomogeneous compositicareasonable assumption since the molecular
clouds out of which they form are well-mixed. We will oftensasne a so-called ‘quasi-solar’
composition K = 0.70,Y = 0.28 andZ = 0.02), even though recent determinations of solar
abundances have revised the solar metallicity dows $00.013. In practice there is relatively
little variation in composition from star to star, so thaetimitial mass is the most important
parameter that determines the evolution of a star. The ceitiqo, in particular the metallicity
Z, is of secondary influence but can have importdfaats especially in very metal-poor stars
(see§ 1.3).

e spherical symmetrywhich is promoted by self-gravity and is a good approximratior most
stars. Deviations from spherical symmetry can arise if nentral forces become important
relative to gravity, in particular rotation and magnetiddie Although many stars are observed
to have magnetic fields, the field strength (even in highly metiged neutron stars) is always
negligible compared to gravity. Rotation can be more imgrastand theotation ratecan be
considered an additional parameter (besides mass and sdimppdetermining the structure
and evolution of a star. For the majority of stars (e.g. the)She forces involved are small
compared to gravity. However, some rapidly rotating staesseen (by means of interferome-
try) to be substantially flattened.

1.5 Aims and overview of the course
In the remainder of this course we will:
¢ understand the global properties of stars: energeticsiarestales

o study the micro-physics relevant for stars: the equaticstaite, nuclear reactions, energy trans-
port and opacity

¢ derive the equations necessary to model the internal steicof stars
e examine (quantitatively) the properties of simplified Isteinodels

e survey (mostly qualitatively) how stars offtBrent masses evolve, and the endpoints of stellar
evolution (white dwarfs, neutron stars)

¢ discuss a few ongoing research areas in stellar evolution
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Suggestions for further reading

The contents of this introductory chapter are also largelyeced by Chapter 1 ofRearnik, which
provides nice reading. (Be aware, however, that the lowdrofithe mass-luminosity relation shown
in Fig. 1.6 is wrong, it has a slope that is too large!)

Exercises

1.1 Evolutionary stages

In this course we use many concepts introduced in the inttoty astronomy classes. In this exercise
we recapitulate the names of evolutionary phases. Duriadetiures you are assumed to be familiar
with these terms, in the sense that you are able to explain thgeneral terms.

We encourage you to useskkorL & OsrLIE, Introduction to Modern Astrophysicer the book of the
first year course (¥kBunt, Het leven van sterrgrto make a list of the concepts printeditalic with a
brief explanation in your own words.

(a) Figure 1.1 shows the location of stars in the solar neagitod in the Hertzsprung-Russel dia-
gram. Indicate in Figure 1.1 where you would find:

main-sequence stars, neutron stars,

the Sun, black holes,

red giants, binary stars,

horizontal branch stars, planets,

asymptotic giant branch (AGB) stars, pre-main sequenas sta
centrals star of planetary nebulae, hydrogen burning stars
white dwarfs, helium burning stars.

(b) Through which stages listed above will the Sun evolvettffam in chronological order. Through
which stages will a massive star evolve?

(c) Describe the following concepts briefly in your own ward®u will need the concepts indicated
with * in the coming lectures.

ideal gas*, Jeans mass,

black body, Schwarzschild criterion,

virial theorem?, energy transport by radiation,

first law of thermodynamics*, energy transport by convattio
equation of state, pp-chain,

binary stars, CNO cycle,

star cluster, nuclear timescale*,

interstellar medium, thermal or Kelvin-Helmholtz timelsta
giant molecular clouds, dynamical timescale*

1.2 Basic assumptions
Let us examine the three basic assumptions made in the tbéstgilar evolution:

(a) Stars are assumed to be isolated in spa€he star closest to the sun, Proxima Centauri, is 4.3
light-years away. How many solar radii is that? By what fastare the gravitational field and
the radiation flux diminished? Many stars are formed in @tstind binaries. How could that
influence the life of a star?

(b) Stars are assumed to form with a uniform compositdfhat elements is the Sun made of? Just
after the Big Bang the Universe consisted almost purely afrbgen and helium. Where do all
the heavier elements come from?



()

Stars are assumed to be spherically symmetrithy are stars spherically symmetric to a good
approximation? How would rotatiorffect the structure and evolution of a star? The Sun rotates
around its axis every 27 days. Calculate the ratio of is th@rifagal acceleratiora over the
gravitational acceleratiog for a mass element on the surface of the Sun. Does rotatiareimde

the structure of the Sun?

1.3 Mass-luminosity and mass-radius relation

(2) The masses of stars are approximately in the rar@@\d, < M < 100M,. Why is there an

(b)

()

(d)

upper limit? Why is there a lower limit?

Can you think of methods to measure (1) the mass, (2) ttieisaand (3) the luminosity of a
star? Can your methods be applied for any star or do theynegpéecial conditions. Discuss your
methods with your fellow students.

Figure 1.3 shows the luminosity versus the mass (lef)tae radius versus the mass (right) for
observed main sequence stars. We can approximate a maissitpnand mass-radius relation
by fitting functions of the form

x y
G

Estimatex andy from Figure 1.3.

Which stars live longer, high mass stars (which have nfioed or low mass stars? Derive an
expression for the lifetime of a star as a function of its mégs

[Hints: Stars spend almost all their life on the main seqednarning hydrogen until they run
out of fuel. First try to estimate the life time as functiontbe mass (amount of fuel) and the
luminosity (rate at which the fuel is burned).]

1.4 The ages of star clusters

The stars in a star cluster are formed more or less simultasigby fragmentation of a large molecular
gas cloud.

(@)
(b)

(c)

In figure 1.2 the H-R diagrams are plotted of the stars m different clusters. Which cluster is
the youngest?

Think of a method to estimate the age of the clusterspdiswith your fellow students. Estimate
the ages and compare with the results of your fellow students

(*) Can you give an error range on your age estimates?



Chapter 2

Mechanical and thermal equilibrium

In this chapter we apply the physical principles of mass eoraion, momentum conservation and
energy conservation to derive three of the fundamentadbstsiructure equations. We shall see that
stars are generally in a state of almost complatehanical equilibriumwhich allows us to derive

and apply the importantirial theorem We consider the basic stellar timescales and see that most
(but not all) stars are also in a state of energy balancedctidkrmal equilibrium

2.1 Coordinate systems and the mass distribution

The assumption of spherical symmetry implies that all intgphysical quantities (such as density
pressureP, temperaturd’, etc) depend only on one radial coordinate. The obviousdinate to use
in a Eulerian coordinate system is the radius of a spherteal,s (€ 0...R).

In an evolving star, all quantities also depend on timmit this is not explicitly noted in the
following: a derivatived/dr (or d/dm) should be taken to mean the partial derivative with resfmect
the space coordinate, at constant time.

The principle of mass conservation (assuming a steady, stategnoring a time-varying mass
flow) yields the masgmof a spherical shell of thicknesl at radiusr (see Fig. 2.1) as

dm=pdV = pdnr’dr = c:j—r;n = 4nr?p. (2.1

Note thato = p(r) is not known a priori, and must follow from other conditioasd equations. The
differential form of the above equation is therefore the firstAmental equation of stellar structure.
Integration yields the masg(r) inside a spherical shell of radius

i
m(r) = f Anr?pdr’. (2.2)
0

Sincem(r) increases monotonically outward, we can alsora@¢ as our radial coordinate, instead
of r. Thismass coordinateoften denoted asy or simply m, is a Lagrangian coordinate that moves
with the mass shells:

r
m:=m = f 4nr?pdr’ (Me0...M) (2.3)
0

It is often more convenient to use a Lagrangian coordinateead of a Eulerian coordinate. The mass
coordinate is defined on a fixed interval,€ 0... M, as long as the star does not lose mass. On the
other hand depends on the time-varying stellar radRsFurthermore the mass coordinate follows
the mass elements in the star, which simplifies many of the terivatives that appear in the stellar
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m-+dm

P(r+dr) N\,

Figure 2.1. Mass shell inside a spherically symmetric
star, at radius and with thicknesdr. The mass of the
shell isdm = 4rr?p dr. The pressure and the gravita-
tional force acting on a cylindrical mass element are
dr also indicated.

evolution equations (e.g. equations for the compositidvg.can thus write all quantities as functions
ofm,i.e.r =r(m), p = p(m), P = P(m), etc.
Using the coordinate transformation—» m, i.e.

d d dr
the first equation of stellar structure becomes in terms ettiordinatem:
dr 1
- - 25
dm  4arlp (2:5)

2.1.1 The gravitational field

Recall that a star is a self-gravitating body of gas, whiclplies that gravity is the driving force
behind stellar evolution. In the general, non-sphericalecdhe gravitational acceleratighcan be
written as the gradient of the gravitational potentgak —V®, where® is the solution of the Poisson
equation

V2 = 4nGp.

Inside a spherically symmetric body, this reduceg te: |g] = d®/dr. The gravitational acceleration

at radiusr and equivalent mass coordinatds then given by
Gm

Spherical shells outsideapply no net force, so thaonly depends on the mass distribution inside

the shell at radius. Note thatg is the magnitude of the vect@rwhich points inward (toward smaller

r orm).

2.2 The equation of motion and hydrostatic equilibrium

We next consider conservation of momentum inside a starlNegton’s second law of mechanics.
The net acceleration on a gas element is determined by thefaiirforces acting on it. In addition to
the gravitational force considered above, forces resaihfthe pressure exerted by the gas surround-
ing the element. Due to spherical symmetry, the pressuoe$oscting horizontally (perpendicular to
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the radial direction) balance each other and only the predsuces acting along the radial direction
need to be considered. By assumption we ignore other fonetsrtight act inside a star (Sect. 1.4).
Hence the net acceleration="0r /0t of a (cylindrical) gas element with mass

dm=pdrdS (2.7
(wheredr is its radial extent andS is its horizontal surface area, see Fig. 2.1) is given by
idm=-gdm+ P(r)dS - P(r + dr)dS. (2.8)

We can writeP(r + dr) = P(r) + (dP/dr) - dr, hence after substituting eqgs. (2.6) and (2.7) we obtain
the equation of motiorior a gas element inside the star:

_Gm_1dP
r2  pdr’

(2.9)

Writing the pressure gradient in terms of the mass coordimety substituting eqg. (2.5), the equation
of motion is

f=———4m’—. (2.10)

Hydrostatic equilibrium  The great majority of stars are obviously in such long-liygthses of
evolution that no change can be observed over human lifstifi@is means there is no noticeable
acceleration, and all forces acting on a gas element inkiEstar almost exactly balance each other.
Thus most stars are in a state of mechanical equilibrium lvisienore commonly calletlydrostatic
equilibrium (HE).

The state of hydrostatic equilibrium, setting="0 in eq. (2.9), yields the secondfidirential
equation of stellar structure:

dpP Gm
ar = —r—zp, (2.11)
or with eq. (2.5)
dP Gm

A direct consequence is that inside a star in hydrostatidlibum, the pressure always decreases
outwards.

Egs. (2.5) and (2.12) together determine thechanical structuref a star in HE. These are
two equations for three unknown functions rof(r, P andp), so they cannot be solved without a
third condition. This condition is usually a relation beeweP andp called theequation of state
(see Chapter 3). In general the equation of state dependsedemperaturd as well, so that the
mechanical structure depends also on the temperaturédigin inside the star, i.e. on its thermal
structure. In special cases the equation of state is indimm¢rof T, and can be written aB =
P(o). In such cases (known as barotropes or polytropes) the aneztl structure of a star becomes
independent of its thermal structure. This is the case fatendwarfs, as we shall see later.
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Estimates of the central pressure A rough order-of-magnitude estimate of the central presssan
be obtained from eq. (2.12) by setting

dP Psui=Pe _Pc 1
dm M M’ 2
which yields

2GM?
Pe~ ——— 2.13

For the Sun we obtain from this estimd®g ~ 7 x 10°dyn/cm? = 7 x 10° atm.
A lower limit on the central pressure may be derived by wgtey. (2.12) as

dP  Gmdm _ d(sz) Gn?

& = ad dr -~ dr\an) o
and thus
d Gn? Gn?

The quantity¥(r) = P+ Gn?/(8ar%) is therefore a decreasing functionrofAt the centre, the second
term vanishes because « r3 for smallr, and hence?(0) = P.. At the surface, the pressure is
essentially zero. From the fact thHtmust decrease withit thus follows that

1 GM?
8t R
In contrast to eq. (2.13), this is a strict mathematical ltegalid for any star in hydrostatic equilibrium
regardless of its other properties (in particular, regesdlof its density distribution). For the Sun we
obtainP; > 4.4 x 10" dyn/cm?. Both estimates indicate that an extremely high centradqume is
required to keep the Sun in hydrostatic equilibrium. Réalisolar models show the central density
to be 24 x 107 dyn/cn?.

Pc > (2.15)

2.2.1 The dynamical timescale

We can ask what happens if the state of hydrostatic equilibris violated: how fast do changes
to the structure of a star occur? The answer is provided byethmtion of motion, eq. (2.9). For
example, suppose that the pressure gradient that supperssar against gravity suddenly drops. All
mass shells are then accelerated inwards by gravity: thetstds to collapse in “free fall”. We can
approximate the resulting (inward) acceleration by

If R = N R
N — T~ 4| —
T2 |F

wherery is the free-fall imescale that we want to determine. Siate= g ~ GM/R? for the entire
star, we obtain

R [R
THN\EN /m‘ (2.16)

Of course each mass shell is accelerated affardnt rate, so this estimate should be seen as an
average value for the star to collapse over a distadc&his provides one possible estimate for the
dynamical timescalef the star. Another estimate can be obtained in a similar byagssuming that
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gravity suddenly disappears: this gives the timescaleh@ioutward pressure gradient to explode the
star, which is similar to the time it takes for a sound waveréwel from the centre to the surface of
the star. If the star is close to HE, all these timescales hhweait the same value given by eq. (2.16).
Since the average densjty= 3M/(47R%), we can also write this (hydro)dynamical timescale as

, R3 1 -1/2
Tdyn =~ m r5 (Gﬁ) . (217)

For the Sun we obtain a very small valuergf, ~ 1600 sec or about half an hour (0.02 days). This
is very much smaller than the age of the Sun, which is 4.6 Gy a@r5 x 10 sec, by 14 orders of
magnitude. This result has several important consequdacése Sun and other stars:

¢ Any significant departure from hydrostatic equilibrium shbvery quickly lead to observable
phenomena: either contraction or expansion on the dynérimascale. If the star cannot
recover from this disequilibrium by restoring HE, it shouldéd to a collapse or an explosion.

e Normally hydrostatic equilibrium can be restored after atulibance (we will consider this
dynamical stabilityof stars later). However a perturbation of HE may lead to &stle oscil-
lations on the dynamical timescale. These are indeed abdémthe Sun and many other stars,
with a period of minutes in the case of the Sun. Eq. (2.173 tedlthat the pulsation period is a
(rough) measure of the average density of the star.

e Apart from possible oscillations, stars are extremely e€lts hydrostatic equilibrium, since
any disturbance is immediately quenched. We can therelbfident that eq. (2.12) holds
throughout most of their lifetimes. Stars do evolve and hezdfore not completely static, but
changes occur very slowly compared to their dynamical tcakes Stars can be said to evolve
quasi-statically i.e. through a series of near-perfect HE states.

2.3 The virial theorem

An important consequence of hydrostatic equilibrium is i@l theorem which is of vital impor-
tance for the understanding of stars. It connects two inapbrinergy reservoirs of a star and allows
predictions and interpretations of important phases iretlwution of stars.

To derive the virial theorem we start with the equation fodiostatic equilibrium eq. (2.12). We
multiply both sides by the enclosed volure= %nr3 and integrate ovem:

M M
dP Gm
4_.3 1
sar’—dm= -3 —dm 2.18
fo3’” dm 3fo r (2:18)

The integral on the right-hand side has a straightforwangsal interpretation: it is thgravitational
potential energyof the star, i.e. the energy required to assemble the starihgibbg matter from
infinity,

M
G
E@,,=—f0 dem (2.19)

The left-hand side of eq. (2.18) can be integrated by parts:
Ps Vs
f VdP=[V - P - f PdVv (2.20)
P 0
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wherec and s denote central and surface values. The first term vanishezubeV = 0 at the centre
and the pressure practically vanishes at the surfg@,) ~ 0. Combining the above equations we
obtain

Vs
—3[ PdV = Eg, (2.21)
0
or, sincedV = dm/p,
M
0o P

This is the general form of the virial theorem, which will peovaluable later. It tells us that that the
average pressure needed to support a star in HE is equ%li@,/v. In particular it tells us that a
star that contracts quasi-statically (that is, slowly egioto remain in HE) must increase its internal
pressure, sincley,| increases while its volume decreases.

The virial theorem for an ideal gas The pressure of a gas is related to its internal energy. We wil
show this in Ch. 3, but for the particular case of an ideal nimméc gas it is easy to see. The pressure
of an ideal gas is given by

P =nkT = 2 kT, (2.23)
pmy

wheren = N/V is the number of particles per unit volume, gnés mass of a gas particle in atomic
mass units. The kinetic energy per particleyis %kT, and the internal energy of an ideal monatomic

gas is equal to the kinetic energy of its particles. The ir@kenergy per unit mass is then
3kT 3P

U= —-—— = ——. 224

2umy  2p ( )

We can now interpret the left-hand side of the virial theokep 2.22) a#(P/p)dm = :% fudm:
%Eim, whereEj is the total internal energy of the star. The virial theoremahn ideal gas is therefore

Eint = _%Egr (2.25)

This important relation establishes a link between theitadwnal potential energy and the internal
energy of a star in hydrostatic equilibrium that consistanfideal gas. (We shall see later that the
ideal gas law indeed holds for most stars, at least on the sejonence.) The virial theorem tells
us that a more tightly bound star must have a higher intemelgy, i.e. it must béotter. In other
words, a star that contracts quasi-statically must getehottthe process. The full implications of this
result will become clear when we consider the total energy sthr in a short while.

Estimate of the central temperature Using the virial theorem we can obtain an estimate of the
average temparature inside a star composed of ideal gagravigational energy of the star is found
from eq. (2.19) and can be written as
GM?
Egr = —r—— (2.26)
wherea is a constant of order unity (determined by the distributaimrmatter in the star, i.e. by
the density profile). Using eq. (2.24), the internal enerfiyhe star isEin; = 3k/(umy) [ Tdm =
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%k/(ymu)T_M, whereT is the temperature averaged over all mass shells. By thal #ireorem we
then obtain

— aumy GM

T= 3k R (2.27)
Takinga ~ 1 andu = 0.5 for ionized hydrogen, we obtain for the Slin~ 4 x 1(PK. This is the
average temperature required to provide the pressure shadded to keep the Sun in hydrostatic
equilibrium. Since the temperature in a star normally deeseoutwards, it is also an approximate
lower limit on the central temperature of the Sun. At thesaepgeratures, hydrogen and helium are
indeed completely ionized. We shall see thiatz 10’ K is high enough for hydrogen fusion to take
place in the central regions of the Sun.

The virial theorem for a general equation of state Also for equations of state other than an ideal
gas a relation between pressure and internal energy exisish we can write generally as

U= oo, (2.28)
Jo

We have seen above that= % for an ideal gas, but it will turn out (see Ch. 3) that this iidraot
only for an ideal gas, but for all non-relativistic partisleOn the other hand, if we consider a gas of
relativistic particles, in particular photons (i.e. raita pressure)g = 3. If ¢ is constant throughout
the star we can integrate the left-hand side of eq. (2.21ptaim a more general form of the virial
theorem:

Eint = _%‘/J’Egr (2.29)

2.3.1 The total energy of a star

The total energy of a star is the sum of its gravitational ptisd energy, its internal energy and its
kinetic energyExin (due to bulk motions of gas inside the star, not the thermaians of the gas
particles):

Etot = Egr + Eint + Exin. (2.30)

The star is bound as long as its total energy is negative.

For a star in hydrostatic equilibrium we can &, = 0. Furthermore for a star in HE the virial
theorem holds, so th&y, andEiy; are tightly related by eq. (2.29). Combining egs. (2.29) ¢h80)
we obtain the following relations:

- _ - 3 R 1
Etot = Eint + Egr = TElnt = (1- §¢)Egr (2.31)
As long asp < 3 the star is bound. This is true in particular for the impottease of a star consisting
of an ideal gas (eq. 2.25, for which we obtain

Eot = Eint + Egr = — Eint = %Egr <0 (2.32)

In other words, its total energy of such a star equals halfsaofiiavitational potential energy.
From eq. (2.32) we can see that the virial theorem has thewolg important consequences:

¢ Gravitationally bound gas spheres musthmt to maintain hydrostatic equilibrium: heat pro-
vides the pressure required to balance gravity. The morepaotnsuch a sphere, the more
strongly bound, and therefore the hotter it must be.

15



¢ A hot sphere of gas radiates into surrounding space, therefgtar must lose energy from its
surface. The rate at which energy is radiated from the serfatheluminosityof the star. In
the absence of an internal energy source, this energy lostequal the decrease of the total
energy of the start. = —dE;/dt > 0, sincelL is positive by convention.

e Taking the time derivative of eq. (2.32), we find that as a egugence of losing energy:
Egr = —2L <0,
meaning that the staontracts(becomes more strongly bound), and
Eim =L>0,

meaning that the stayets hotter— unlike familiar objects which cool when they lose energy.
Therefore a star can be said to haveegative heat capacityHalf the energy liberated by
contraction is used for heating the star, the other halfd&tad away.

For the case of a star that is dominated by radiation presaurdind thatEj,; = —Eg,, and there-
fore the total energ¥; = 0. Therefore a star dominated by radiation pressure (or rgenerally,
by the pressure of relativistic particles) is only margip&lound. No energy is required to expand or
contract such a star, and a small perturbation would be dntugender it unstable and to trigger its
collapse or complete dispersion.

2.3.2 Thermal equilibrium

If internal energy sources are present in a star due to nuaaations taking place in the interior, then
the energy loss from the surface can be compensated:L,,c = —dE,/dt. In that case the total
energy is conserved and eq. (2.32) tells us fhat= Eint = E@,r = 0. The virial theorem therefore
tells us that bottEj; andEg are conserved as well: the star cannot, for example, cdrdrat cool
while keeping its total energy constant.

In this state, known akermal equilibrium(TE), the star is in a stationary state. Energy is radiated
away at the surface at the same rate at which it is produceditigar reactions in the interior. The
star neither expands nor contracts, and it maintains a aonstterior temperature. We shall see
later that this temperature is regulated by the nucleartigec themselves, which in combination
with the virial theorem act like a stellar thermostat. Magguence stars like the Sun are in thermal
equilibrium, and a star can remain in this state as long akauceactions can supply the necessary
energy.

2.4 The timescales of stellar evolution

Three important timescales are relevant for stellar eumhtassociated with changes to the mechani-
cal structure of a star (described by the equation of moggn2.10), changes to its thermal structure
(as follows from the virial theorem, see also Sect. 4.1) drhges in its composition, which will be
discussed in Ch. 5.

The first timescale was already treated in Sec. 2.2.1: itesd§mamical timescalgiven by
eq. (2.17),

3/2 1/2
R R\2( M,
Tdyn = m =~ 002(%) (V) dayS (233)
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The dynamical timescale is the timescale on which a statsea@ perturbation of hydrostatic equi-
librium. We saw that this timescale is typically of the oraéhours or less, which means that stars
are extremely close to hydrostatic equilibrium.

2.4.1 The thermal timescale

The second timescale describes how fast changes in thedhstmcture of a star can occur. It is
therefore also the timescale on which a star in thermal éxiuiim reacts when its TE is perturbed.
To obtain an estimate, we turn to the virial theorem: we safvan. 2.3.1 that a star without a nuclear
energy source contracts by radiating away its internal@neontent:L = Ejy ~ —2Egr, where the
last equality applies strictly only for an ideal gas. We daustdefine théhermalor Kelvin-Helmholtz
timescaleas the timescale on which this gravitational contractiom@ccur:
M \*Rs L
0}

Here we have used eq. 2.26 6§ with a ~ 1

The thermal timescale for the Sun is aboui & 107 years, which is many orders of magnitude
larger than the dynamical timescale. There is therefore irectdobservational evidence that any
star is in thermal equilibrium. In the late 19th century gtational contraction was proposed as the
energy source of the Sun by Lord Kelvin and, independenylyid&mann von Helmholtz. This led to
an age of the Sun and an upper limit to the age the Earth thatveasflict with emerging geological
evidence, which required the Earth to be much older. Nudieactions have since turned out to be
a much more powerful energy source than gravitational eotitn, allowing stars to be in thermal
equilibrium for most & 99 %) of their lifetimes. However, several phases of stelarution, during
which the nuclear power source is absent offic&nt, do occur on the thermal timescale.

2.4.2 The nuclear timescale

A star can remain in thermal equilibrium for as longs as itslear fuel supply lasts. The associated
timescale is called theuclear timescaleand since nuclear fuel (say hydrogen) is burned into ‘ash’
(say helium), it is also the timescale on which compositibanges in the stellar interior occur.

The energy source of nuclear fusion is the direct conversiasmall fractiony of the rest mass
of the reacting nuclei into energy. For hydrogen fusigry 0.007; for fusion of helium and heavier
elementsp is smaller by a factor 10 or more. The total nuclear energyplugan therefore be written
asEnuc = dMnuc? = ¢ frueMc?, wherefcis that fraction of the mass of the star which may serve as
nuclear fuel. In thermal equilibriurh = Lpyc = Enue, SO We can estimate the nuclear timescale as

Thue = E”“° = ¢fnuCM ~ 1000 M "L@ (2.35)
The last approximate equality holds for hydrogen fusion Btaa like the Sun, with has 70 % of its
initial mass in hydrogen and fusion occurring only in theans 10 % of its mass (the latter result
comes from detailed stellar models). This long timescaleissistent with the geological evidence
for the age of the Earth.

We see that, despite only a small fraction of the mass beiagasle for fusion, the nuclear
timescale is indeed two to three orders of magnitude laiggn the thermal timescale. Therefore the
assumption that stars can reach a state of thermal equitibis justified. To summarize, we have
found:

Thuc > TKH > Tdyn.
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As a consequence, the rates of nuclear reactions deterh@nmate of stellar evolution, and stars may
be assumed to be in hydrostatic and thermal equilibriumuiginout most of their lives.

Suggestions for further reading

The contents of this chapter are covered more extensiveyHapter 1 of Meber and by Chapters 1
to 4 of KippENHAHN & W EIGERT.

Exercises

2.1 Density profile

In a star with mas#1, assume that the density decreases from the center to tlaesas a function of
radial distance, according to

r\2
p=ne1- () | (2.36)
wherep. is a given constant arRlis the radius of the star.

(@) Findm(r).
(b) Derive the relation betweev andR.
(c) Show that the average density of the star.&Q

2.2 Hydrostatic equilibrium

(a) Consider an infinitesimal mass eleméntinside a star, see Fig. 2.1. What forces act on this mass
element?

(b) Newton’s second law of mechanics, or the equation of omgtstates that the net force acting on
a body is equal to its acceleration times it mass. Write ddvenetlquation of motion for the gas
element.

(c) In hydrostatic equilibrium the net force is zero and tlzs glement is not accelerated. Find an
expression of the pressure gradient in hydrostatic equuili.

(d) Find an expression for the central pressBgeby integrating the pressure gradient. Use this to
derive the lower limit on the central pressure of a star inrbgthatic equlibrium, eq. (2.15).

(e) Verify the validity of this lower limit for the case of aastwith the density profile of eq. (2.36).

2.3 The virial theorem
An important consequence of hydrostatic equilibrium ig fhéinks the gravitational potential energy
Egr and the internal thermal energgy,.
(a) Estimate the gravitational enerBy; for a star with mas$/1 and radiuk, assuming (1) a constant
density distribution and (2) the density distribution of é2}36).

(b) Assume that a star is made of an ideal gas. What is thei&inéernal energy per particle for an
ideal gas? Show that the total internal enekgy, is given by:

R
Eint = f (ngT(r))mrrzdr. (2.37)
0 \2pumy

(c) Estimate the internal energy of the Sun by assuming eohskensity and (r) = (T) = %TC ~
10°K and compare your answer to your answer for a). What is théeatxgy of the Sun? Is the
Sun bound according to your estimates?
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It is no coincidence that the order of magnitude Egr andE;n are the same. This follows from hydro-
static equilibrium and the relation is known as the viriaddhem. In the next steps we will derive the
virial theorem starting from the pressure gradient in thefof eq. (2.11).

(a) Multiply by both sides of eq. (2.11) by#® and integrate over the wole star. Use integration by
parts to show that

R R
f 3P 4xr?dr = f @pmrrzdr. (2.38)
0 0

(b) Now derive a relation betwedsy, andEy, the virial theorem for an ideal gas.
(c) (*) Also show that for the average pressure of the star

1Eq

3V’

where V is the volume of the star.

1 R.
®)= G [P amiar = - (2.39)

As the Sun evolved towards the main sequence, it contractddrigravity while remaining close to
hydrostatic equilibrium. Its internal temperature chashffem about 30 000 K to about610°K.

(a) Find the total energy radiated during away this conibact Assume that the luminosity during
this contraction is comparable k@, and estimate the time taken to reach the main sequence.

2.4 Conceptual questions
(a) Use the virial theorem to explain why stars are hot, iaeha high internal temperature and
therefore radiate energy.
(b) What are the consequences of energy loss for the staciedly for its temperature?
(c) Most stars are in thermal equilibrium. What is compeinggfior the energy loss?

(d) What happens to a star in thermal equilibrium (and in bgthatic equilibrium) if the energy pro-
duction by nuclear reactions in a star drops (slowly enooghaintain hydrostatic equilibrium)?

(e) Why does this have a stabilizinffect? On what time scale does the change take place?
(f) What happens if hydrostatic equilibrium is violatedj ey a sudden increase of the pressure.

(g) On whichtimescale does the change take place? Can yewegamples of processes in stars that
take place on this timescale.

2.5 Three important timescales in stellar evolution

(&) The nuclear timescalgyc.

i. Calculate the total mass of hydrogen available for fusiger the lifetime of the Sun, if 70%
of its mass was hydrogen when the Sun was formed, and only I2#blydrogeniis in the
layers where the temperature is high enough for fusion.

ii. Calculate the fractional amount of mass converted imergy by hydrogen fusion. (Refer to
Table 1 for the mass of a proton and of a helium nucleus.)

iii. Derive an expression for the nuclear timescale in saldits, i.e. expressed in termsRfR.,
M/Mg andL /L.

iv. Use the mass-radius and mass-luminosity relations fainmsequence stars to express the
nuclear timescale of main-sequence stars as a functioreahtiss of the star only.

v. Describe in your own words the meaning of the nuclear toaks
(b) The thermal timescaley.

i. Answer gquestion (a) iii, iv and v for the thermal timescaled calculate the age of the Sun
according to Kelvin.
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ii. Why are most stars observed to be main-sequence starsvapds the Hertzsprung-gap
called a gap?

(e) The dynamical timescatgyn.

i. Answer question (a) iii, iv and v for the dynamical timekza

ii. In stellar evolution models one often assumes that stasdvequasi-staticallyi.e. that the
star remains in hydrostatic equilibrium throughout. Why @& make this assumption?

iii. Rapid changes thatare sometimes observed in starsmi&aite that dynamical processes are
taking place. From the timescales of such changes - usustilfations with a characteristic
period - we may roughly estimate the average density of tae $he sun has been observed
to oscillate with a period of minutes, white dwarfs with pets of a few tens of seconds.
Estimate the average density for the Sun and for white dwarfs

(h) Comparison.

i. Summarize your results of the questions above by conmuetihe table below with the
timescale for a 1, 10 and 28, main-sequence star.

| | Tnuc | TKH | Tdyn |

1M, (MS)

10M, (MS)

25M, (MS)

1M, (RG)

ii. For each of the following evolutionary stages indicatewhich timescale they occupre-
main sequence contraction, supernova explosion, coreoggdrburning, core helium burn-
ing.

iii. When the Sun becomes a red giant (RG), its radius wiltéase to 20B, and its luminosity
to 300Q,. Estimatergy, andrky for such a RG.

iv. How large would such a RG have to becomefgy, > txy? Assume both R and L increase
at constant ective temperature.
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Chapter 3

Equation of state of stellar interiors

3.1 Local thermodynamic equilibrium

Empirical evidence shows that in a part of space isolatenh fitwe rest of the Universe, matter and
radiation tend towards a statetbiermodynamic equilibriumThis equilibrium state is achieved when
suficient interactions take place between the material pagi€lcollisions’) and between the pho-
tons and mass patrticles (scatterings and absorptionsucma state of thermodynamic equilibrium
the radiation field becomes isotropic and the photon eneigfyilaltion is described by the Planck
function (blackbody radiation). The statistical disttiloem functions of both the mass particles and
the photons are then characterized by a single temperature

We know that stars are not isolated systems, because théyagti@tion and generate (nuclear)
energy in their interiors. Indeed, the surface temperadfithe Sun is about 6000 K, while we have
estimated from the virial theorem (Sec. 2.3) that the iotelémperature must of the order of “IK.
Therefore stars aneotin global thermodynamic equilibrium. However, it turns thét locally within
a star, a state of thermodynamic equilibritsachieved. This means that within a region much smaller
than the dimensions of a stak(R.), but larger than the average distance between interactibthe
particles (both gas particles and photons), i.e. largar tha mean free path, there is a well-defined
local temperaturaghat describes the particle statistical distributions.

We can make this plausible by considering the mean free paibhiotons:

wherex is the opacity cofficient, i.e. the ffective cross section per unit mass. For fully ionized
matter, a minimum is given by the electron scattering cressien, which iskes = 0.4 cné/g (see
Ch. 4). The average density in the Sumpis 1.4 g/cm?, which gives a mean free path of the order
of {on ~ 1cm. In other words, stellar matter is very opacue to raoimatiThe temperature flierence
over a distancéy, i.e. between emission and absorption, can be estimated as

dT T 10
afph ~ chph ~ Toit ~ 104K

which is a tiny fraction (10'1) of the typical interior temperature of 1&. Using a similar estimate,

it can be shown that the mean free path for interactions letwenized gas particles (ions and
electrons) is several orders of magnitude smaller than Hence a small region can be defined
(a ‘point’ for all practical purposes) which is £pn but much smaller than the length scale over
which significant changes of thermodynamic quantities pbcdihis is calledlocal thermodynamic
equilibrium (LTE). We can therefore assume a well-defined temperatstahition inside the star.

AT =
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Furthermore, the average time between particle intenast{the mean free time) is much shorter
than the timescale for changes of the macroscopic properfitierefore a state of LTE is secured
at all times in the stellar interior. The assumption of ET&nstitutes a great simplification. It
enables the calculation of all thermodynamic propertiethefstellar gas in terms of the local values
of temperature, density and composition, as they change tihe centre to the surface.

3.2 The equation of state

The equation of state (EOS) describes the microscopic piepef stellar matter, for given density
p, temperaturd and compositiorX;. It is usually expressed as the relation between the pressut
these quantities:

P =P(p, T, X) (3.1)

Using the laws of thermodynamics, and a similar equatiorifferinternal energy (o, T, X;), we can
derive from the EOS the thermodynamic properties that aeele@ to describe the structure of a star,
such as the specific heatg andcp, the adiabatic exponenty and the adiabatic temperature gradient
Vad.

An example is the ideal-gas equation of state, which in tleipus chapters we have tacitly
assumed to hold for stars like the Sun:

P=nkT or P=—pT
pumy

In this chapter we will see whether this assumption wasfjadtiand how the EOS can be extended to
cover all physical conditions that may prevail inside a.stére ideal-gas law pertains to particles that
behave according to classical physics. However, both gnambechanical and special relativistic ef-
fects may be important under the extreme physical conditinrstellar interiors. In addition, photons
(which can be described as extremely relativistic parsictan be an important source of pressure.

We can define an ideal grerfectgas as a mixture of free, non-interacting particles. Of seur
the particles in such a gas do interact, so more preciselyegaine that their interaction energies
are small compared to their kinetic energies. In that casdriternal energy of the gas is just the
sum of all kinetic energies. From statistical mechanics arderive the properties of such a perfect
gas, both in the classical limit (recovering the ideal-gas)land in the quantum-mechanical limit
(leading to electron degeneracy), and both in the nonivedat and in the relativistic limit (e.g. valid
for radiation). This is done in Sect. 3.3.

In addition, variousion-idealeffects may become important. The high temperatusesf K) in
stellar interiors ensure that the gas will be fully ionizbdt at lower temperatures (in the outer layers)
partial ionization has to be considered, with importaffitets on the thermodynamic properties (see
Sect. 3.5). Furthermore, in an ionized gdsctrostatic interactionbetween the ions and electrons
may be important under certain circumstances (Sect. 3.6).

3.3 Equation of state for a gas of free particles

We shall derive the equation of state for a perfect gas fraptinciples of statistical mechanics. This
provides a description of the ions, the electrons, as wetaphotons in the deep stellar interior.

IN.B. note the dference between (locaflermodynamic equilibriuniTgadr) = Trad(r) = T(r)) and the earlier defined,
global property othermal equilibrium(E;,; = const, orL = Lyy).
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Let n(p) be the distribution of momenta of the gas particles,ri(@)dp represents the number of
particles per unit volume with momenfae [p... p + dp]. If n(p) is known then the total number
density (number of particles per unit volume), the intereaérgy density (internal energy per unit
volume) and the pressure can be obtained from the followitggrals:

number density n:f n(p)dp 3.2)
0
internal energy density U :f epn(p)dp = n{ep) (3.3)
0
pressure P = %f pVpn(p)dp = 2n(pvp) (3.4)
0

Heree, is the kinetic energy of a particle with momentynandy,, is its velocity. Eq. (3.2) is trivial,
and eq. (3.3) follows from the perfect-gas assumption. Trieequre integral eq. (3.4) requires some
explanation.

Consider a gas af particles in a cubical box with sides of lendth= 1 cm. Each particle bounces
around in the box, and the pressure on one side of the boxsdsuin the momentum imparted by
all the particles colliding with it. Consider a particle Wwimomentunmp and corresponding velocity
coming in at an anglé with the normal to the surface, as depicted in Fig. 3.1. Time thetween two
collisions with the same side is

a2
" vcosd vcosd’

The collisions are elastic, so the momentum transfer isghie momentum component perpendicular
to the surface,

Ap = 2pcosé. (3.5)

The momentum transferred per particle per second and peiscinerefore

Ap
L cog 6. (3.6)

The number of particles in the box with € [p...p+ dp] andé € [6...0 + dd] is denoted as
n(6, p) do dp. The contribution to the pressure from these particlesds th

dP = vp cog6n(g, p)dodp. (3.7)

Figure 3.1. Gas particle in a cubical box with a volume of 1&nEach

)/ collision with the side of the box results in a transfer of nertum; the
pressure inside the box is the result of the collective mdomariransfers of
L =1cm all n particles in the box.
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Since the momenta are distributed isotropically over aledions within a solid angles2 and
the solid angledw subtended by those particles withe [6...6 + df] equals Z sinddd, we have
n(6, p) do = n(p) sinv dg and

dP = vpn(p) cos’ #singdodp. (3.8)
The total pressure is obtained by integrating over all an{fle< 6 < 7/2) and momenta. This results
in eq. (3.4) sincefO"/2 cogdsingdy = fol coggdcosh = 3.

3.3.1 Relation between pressure and internal energy

In general, the particle energies and velocities are retatéheir momenta according to special rela-
tivity:

€ =p’Z+mict, g=e-mé (3.9)
and
de pc
_ e _pC 3.10
Vp ap € ( )

We can obtain generally valid relations between the presand the internal energy of a perfect gas
in the non-relativistic (NR) limit and the extremely relastic (ER) limit:

NR limit: in this case the momenfa< mg so thatep, = e - me& = $p?/mandv = p/m. Therefore
(pv) = (p?/m) = 2(ep) SO that eq. (3.4) yields

P=2U (3.11)

wIiny

ER limit: in this casep > mc so thate, = pcandv = c. Therefore(pv) = (pc) = (ep), and eq. (3.4)
yields

P=1U (3.12)

Wl

These relations are generally true, fory particle(electrons, ions and photons). We will apply
this in the coming sections. As we saw in the previous Chaftterchange fron% to % in the relation
has important consequences for the virial theorem, anchtostability of stars.

3.3.2 The classical ideal gas

Using the tools of statistical mechanics, we can addresotiigen of the ideal-gas law. The mo-
mentum distributiom(p) for classical, non-relativistic particles of massin LTE is given by the
Maxwell-Boltzmanmistribution:

n(p)dp = e P/2KT 472 4 (3.13)

n
(2rmKkT)3/2

Here the exponential factoe ®/T) represents the equilibrium distribution of kinetic eriegy the

factor 4rp? dp is the volume in momentum spacpx(py, pz) for p € [p... p+dp], and the factor
n/(2rmkT)%2 comes from the normalization of the total number densitpposed by eq. (3.2). (You
can verify this by starting from the standard integf§i e dx = % vr/a, and diferentiating once

with respect taa to obtain the integra” e x2dx)
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The pressure is calculated by uswe: p/mfor the velocity in eq. (3.4):

p
%Wf eP /zka4ﬂ'p dp (314)

—ax2

By performing the integration (for this you need tcﬁfdrentlatef x?dxonce more with respect

to a) you can verify that this indeed yields the ideal gas law

[P =nkT] (3.15)

(N.B. This derivation is for a gas afon-relativisticclassical particles, but it can be shown that the
same relatiorP® = nkT is also valid forrelativistic classical particles.)

3.3.3 Mixture of ideal gases, and the mean molecular weight

The ideal gas relation was derived for identical particlésnassm. It should be obvious that for

a mixture of free particles of fierent species, it holds for the partial pressures of eacheoton-
stituents of the gas separately. In particular, it holdsbfoth the ions and the electrons, as long as
guantum-mechanicalffects can be ignored. The total gas pressure is then just theoSpartial
pressures

Pgas= Pion + Pe = 2} Pi + Pe = (Zi i + ng)kT = nkT

wheren; is the number density of ions of eleméntvith massm, = Aim, and charge&e. Thenn; is
related to the density and the mass fractiGrof this element as

n=— and = _—— = 3.16
! A my flion Z A mu HMion mu ( )

which defines the mean atomic mass perign. The partial pressure due to all ions is then

1
Pon = — 2kr= R T (3.17)
Mion My Mion
We have used here the universal gas consRast k/m, = 8.31447x 10’ erg g K. The number

density of electrons is given by
Zi X 1
ne:ZZini=Z'—_'£E—£, (3.18)

which defines thenean molecular weight per free electrap As long as the electrons behave like
classical particles, the electron pressure is thus given by

1
Po= L Ly R o1 (3.19)
He My He

When the gas is fully ionized, we have for hydrogén= A; = 1 while for helium and the most

abundant heavier elemeni/A; ~ % In terms of the hydrogen mass fractignwe then get

2

which for the SunX = 0.7) amounts tq, ~ 1.18, and for hydrogen-depleted gas giyes- 2.
The total gas pressure is then given by

1 1 R
ion e
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where themean molecular weight is given by

1 1 1 Z + 1)X

_:_+_22@' (3.22)

M HMion He i A

It is left as an exercise to show that for a fully ionized gasan be expressed in terms of the mass
fractionsX, Y andZ as

1

N 3.23
2X +3Y + 37 (3.23)

u

if we assume that for elements heavier than helidmy 2Z; ~ 2(Z + 1).

3.3.4 Quantum-mechanical description of the gas

According to quantum mechanics, the accuracy with whichrtigbels location and momentum can
be known simultaneously is limited by Heisenberg’'s undetyaprinciple, i.e.AxAp > h. In three
dimensions, this means that if a particle is located withimlame elemeniV then its localization
within three-dimensional momentum spak¥p is constrained by

AV A3p > hd, (3.24)

The quantityn® defines the volume in six-dimensional phase space of onewmarell. Thenumber
of quantum states a spatial volumé/ and with momentg € [p... p + dp] is therefore given by

Vv
g(p)dp = gsF4ﬂp2dp, (3.25)

wheregs is the number of intrinsic quantum states of the particlg, gpin or polarization.

The relative occupation of the available quantum statepduticles in thermodynamic equilib-
rium depends on the type of particle:

o fermions(e.g. electrons or nucleons) obey the Pauli exclusion iplecwhich postulates that
no two such particles can occupy the same quantum state ratteh of states with energy,
that will be occupied at temperatufeis given by

1

fro(ep) = e KT 4 1 (3.26)

which is always< 1.

e bosonde.g. photons) have no restriction on the number of pagipkr quantum state, and the
fraction of states with energy, that is occupied is

1

fee(ep) = ep—KT _ 1’ (3.27)

which can be> 1.

The actual distribution of momenta for particles in LTE isegi by the product of the occupation
fraction f(ep) and the number of quantum states, given by eq. (3.25). Thatiyu appearing in
egs. (3.26) and (3.27) is the so-callgiemical potential It can be seen as a normalization constant,
determined by the total number of particles in the volumesatgred (i.e., by the constraint imposed
by eq. 3.2).
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Figure 3.2. (left panel) Electron momentum distributiongp) for an electron density afe = 6 x 10?’ cm™
(corresponding tp = 2 x 10* g/cm2 if ue = 2), and for three dferent temperaturesS = 2 x 10’ K (black
lines), 2x10°K (red lines) and 210° K (blue lines). The actual distributions, governed by quammechanics,
are shown as solid lines while the Maxwell-Boltzmann digttions for the samae. and T values are shown
as dashed lines. The dotted ling,x is the maximum possible number distribution if all quantuates with
momentump are occupied. (right panel) Distributions in the lirlit= 0, when all lowest available momenta
are fully occupied. The blue line is for the same density aténleft panel, while the red line is for a density
two times as high.

3.3.5 Electron degeneracy

Electrons are fermions with two spin states, ge.= 2. According to eq. (3.25), the maximum
number density of electrons with momentynallowed by quantum mechanics is therefore
g 8n

Mmax(P) dp = =< 4rpdp = = p“dp. (3.28)
This is shown as the dotted line in Fig. 3.2. The actual moomardistribution of electronse(p) is
given by the product of eq. (3.28) and eq. (3.26). In the re@atwistic limit we havee, = p?/2Mme,
giving
2
h3 eP?/2mkn)—v 4 1

where we have replaced the chemical potential bydggeneracy parameter = u/kT. The value of
Y is determined by the constraint thﬁio ne(p) dp = ne (eq. 3.2).

The limitation imposed by the Pauli exclusion principle me#hat electrons can exert a higher
pressure than predicted by classical physics (eq. 3.19)lluBtrate this, in Fig. 3.2 the momentum
distribution eq. (3.29) is compared to the Maxwell-Boltamalistribution for electrons, eq. (3.13),

ne(p)dp = drp?dp, (3.29)

nue(p) dp = e P*/2MekT 47 2d . (3.30)

_ e
(2rmekT)3/2

The situation shown is for an electron density = 6 x 10?7’ cm3, which corresponds to a mass
density of 2x 10* g/cm3 (assuming a hydrogen-depleted gas with= 2). At high temperatures,
T = 2x 10’ K, the momentum distribution (solid line) nearly coincideih the M-B distribution
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(dashed line): none of the quantum states are fully occupig) < nmax(p) for all values ofp) and
the electrons behave like classical particles. As the teatpe is decreased, e.g. b= 2 x 10°K
(red lines), the peak in the M-B distribution shifts to srealh and is higher (since the integral over
the distribution must equatls). The number of electrons with small valuespéxpected from clas-
sical physicsnus(p), then exceeds the maximum allowed by the Pauli exclusioipte, nmax(p).
These electrons are forced to assume quantum states whtérligthe peak in the distributiong(p)
occurs at highep. Due to the higher momenta and velocities of these electitieselectron gas
exerts a higher pressure than inferred from classical physthis is calledlegeneracy pressurdf
the temperature is decreased even more, e.§. at2 x 10°K (blue lines), the lowest momentum
states become nearly all filled angp) follows nmax(p) until it drops sharply. In this state of strong
degeneracy, further decreaseTothardly changes the momentum distribution, so that the relect
pressure becomes neamdependent of temperature

Complete electron degeneracy

In the limit thatT — 0, all available momentum states are occupied up to a maxivalne, while
all higher states are empty, as illustrated in the right pah&ig. 3.2. This is known asomplete
degeneracyand the maximum momentum is called #ermi momentum g Then we have

8 2
ne(p)=f]—§ for p < pr. (3.31)

ne(p) = 0 for p > pr. (3.32)

The Fermi momentum is determined by the electron densibutiir eq. (3.2), i.efopF Ne(p) dp = Ne,
which yields

3 \13

Pr = h(8_7rne) .

The pressure of a completely degenerate electron gas is asywte compute using the pressure
integral eq. (3.4). It depends on whether the electronsdagivistic or not. In thenon-relativistic
limit we havev = p/mand hence

PF 8 p? 8 h? 3,2/
_1 — 5_ 5/3

Using eq. (3.18) fone this can be written as

(3.33)

5/3

P, - KNR(&) (3.35)
He

whereKng = %(S/n)z/?*mf/g’ = 1.00x 103 [cgs units]. As more electrons are squeezed into the
same volume, they have to occupy states with larger momast#lustrated in Fig. 3.2. Therefore
the electron pressure increases with density, as expréyseqgl. (3.35).

If the electron density is increased further, at some pdiatvelocity of the most energetic elec-
trons, pr/me, approaches the speed of light. We then have to replagep/m by the relativistic
kinematics relation (3.10). In thextremely relativistidimit when the majority of electrons move at
relativistic speeds, we can take- ¢ and

PF 8rc 8rc hc,3,1/3
Pe = 1 fo IO?'ono— p=g(>) n' (3.36)

h3 T 12FT 8
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4/3
P, = KER(&) (3.37)
He

with Ker = 2(3/m)%3m,*® = 1.24 x 105 [cgs units]. In the ER limit the pressure still increases
with density, but with a smaller exponer@ {(nstead ofg). The transition between the NR regime,
eg. (3.35), and the ER regime, eq. (3.37), is smooth and cargressed as a function & pg/mec,
see K&W Chapter 15. Roughly, the transition occurs at a tepgigiven by the conditiorpg ~ mec,
which can be expressed as

3
8r(meC
Prr z/lemug(T) . (3.38)

The relation betweeR. andp for a completely degenerate electron gas is shown in Fig. 3.3

Partial degeneracy

Although the situation of complete degeneracy is only agdeatT = 0, it is a very good approxi-
mation whenever the degeneracy is strong, i.e. when thegatye is sfiiciently low, as illustrated
by Fig. 3.2. It corresponds to the situation when the degamyeparametey > 0 in eq. (3.29). In
that case egs. (3.35) and (3.37) can still be used to cadctilatpressure to good approximation.

The transition between the classical ideal gas situatiehaastate of strong degeneracy occurs
smoothly, and is known gzartial degeneracyTo calculate the pressure the full expression eq. (3.29)
has to be used in the pressure integral, which becomes @hwslicated. The integral then depends
ony, and can be expressed as one of the so-c&éechi-Dirac integrals, see K&W Chapter 15 for
details (the other Fermi-Dirac integral relates to therimi energy densityJ). The situation of
partial degeneracy corresponds/te- 0.

Whenys < 0the classical description is recovered, i.e. eq. (3.260mes the Maxwell-Boltzmann
distribution. In that case/{elP/2mekD-v 4 1) = g (P*/2mekT)+v gnd therefore

Ee’” — e 4 =In __fne
B = 2amkT)32 = S k)32
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This only holds fory < 0, but more generally it can be shown that= y(ne/T%3). We have to
consider (partial) degeneracyif= 0, i.e. if

3/2
. 2(rmekT)¥2

e 3 (3.39)

The limit of strong (almost complete) degeneracy is reachleeinn, is roughly a factor 10 higher.

Importance of electron degeneracy in stars

As a star, or its core, contracts the density may become $otha the electrons become degenerate
and exert a (much) higher pressure than they would if theyawesh classically. Since in the limit of
strong degeneracy the pressure no longer depends on thereome, this degeneracy pressure can
hold the star up against gravity, regardless of the tempezatTherefore a degenerate star does not
have to be hot to be in hydrostatic equilibrium, and it canaimin this state forever even when it
cools down. This is the situation white dwarfs

The importance of relativity is that, when a degeneratelsaomes more compact and the density
increases further, the pressure increases less steeplydeiitsity. This has important consequences
for massive white dwarfs, and we shall see that it implies there is a maximum mass for which
white dwarfs can exist (the Chandrasekhar mass).

We note that although electron degeneracy can be (very)riammtan stars, degeneracy of tlums
is not. Since the ions have mas&e2000 larger than electrons, their momenpa=( v2me) are much
larger at energy equipartition, and the condition (3.39vab(with me replaced bymign) implies
that much higher densities are required at a particular ézatpre. In practice this never occurs:
before such densities are reached the protons in the atamsieirwill capture free electrons, and
the composition becomes one of (mostly) neutrons. Degey@feneutronsdoes become important
when we consider neutron stars.

3.3.6 Radiation pressure

Photons can be treated as quantum-mechanical particlesaig momentum and therefore exert
pressure when they interact with matter. In particular phetardbosonswith gs = 2 (two polarization
states), so they can be described by the Bose-Einsteiat&tsitieq. (3.27). The number of photons is
not conserved, they can be destroyed and created until tdugmmamic equilibrium is achieved. This
means that = 0 in eq. (3.27) and hence

2 1

Photons are completely relativistic with = pc = hv, so in terms of frequency their distribution in
LTE becomes th@lanck functiorfor blackbody radiation:

8t Vv
n(V)dV = g m (341)

Applying egs. (3.2) and (3.3) one can show that the photonbeumensity and the energy density of
radiation are

nphzf n(p)dp=bT3 (3.42)
0
Urag = fo pcr(p)dp=aT* (3.43)
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whereb = 20.3 cn3 K3 anda is the radiation constant

8r°k*
a= ——— =756x10Pergcn3K™
15c x J
Since photons are always extremely relativisBc= U by eq. (3.12) and theadiation pressurds
given by

Prad — %aT4 (344)

Pressure of a mixture of gas and radiation

The pressure inside a star is the sum of the gas pressure diatica pressure,
P = Prag + Pgas= Prad + Pion + Pe.

whereP;4qis given by eq. (3.44) anBjo, by eq. (3.17). In generd, must be calculated as described
in Sect. 3.3.5. In the classical limit it is given by eq. (3,1&8nd in the limits of non-relativistic and
extremely relativistic degeneracy by egs. (3.35) and (3.8¥%pectively. If the electrons are non-
degenerate then the pressure can be written as

R
P=21aT*+ —pT.
M

If the electrons are strongly degenerate their pressurdrdiias over that of the (classical) ions, so in
that cas&Pjon, can be neglected in the total pressure.
The fraction of the pressure contributed by the gas is custibyrexpressed 38, i.e.

Pgas=pP and Praa=(1-8)P. (3.45)

3.3.7 Equation of state regimes

The diferent sources of pressure we have discussed so far dontieaggtiation of state atfierent
temperatures and densities. In Fig. 3.4 the boundariesdestthese regimes are plotted schematically
in the logT, logp plane.

e The boundary between regions where radiation and ideapgesure dominate is defined by
Prad = Pgas giving T/p%3 = 3.2 x 10’u~Y/3 whenT andp are expressed in cgs units. (Verify
this by comparing egs. 3.21 and 3.44.) Thisis a line Withes%)in the logT vs logp plane.

o Similarly, the boundary between the regions dominated bgligias pressure and non-relativistic
degenerate electron pressure can be defindeylyteal = Penr as given by eq. (3.35), giving
T/p?? = 1.21x 10°%u 5™ (again withT andp in cgs units). This is a line with slopgin the
log T-log p plane.

e The approximate boundary between non-relativistic andtikgétic degeneracy is given by
eq. (3.38)p = 9.7 x 10Puc g/cne.

e At high densities the boundary between ideal gas pressdrexdremely relativistic degeneracy
is found by equating egs. (3.21) and (3.37), giviig/® = 1.50x 107 ug ¥ (with T andp in
Cgs units), again a line with slor%

As shown in Fig. 3.4, detailed models of zero-age (that ispdgeneous) main-sequence stars with
masses between 0.1 and 1@ cover the region where ideal-gas pressure dominates tretiequ
of state. This justifies the assumptions made in Ch. 2 whesustsng the virial theorem and its
conseguences for stars, and when estimating temperatuties $tellar interior.
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Figure 3.4. The equation of state for a gas of free particles in theTlplpgp plane. The dashed lines are
approximate boundaries between regions where radiatiesspre, ideal gas pressure, non-relativistic electron
degeneracy and extremely relativistic electron degeyataminate, for a compositio = 0.7 andZ = 0.02.

In the right panel, detailed structure models for homogesenain-sequence stars afl0.100M, have been
added (solid lines). Theld, model is well within the ideal-gas region of the equationtate. In the 0.M,

star electron degeneracy pressure is important, excelpgiauter layers (at low andT). In stars more massive
than 10M,, radiation pressure becomes important, and it dominatéeisurface layers of the 100, model.

3.4 Adiabatic processes

It is often important to consider processes that occur oh sughort (e.g. hydrodynamical) timescale
that there is no heat exchange with the environment; suctepses aradiabatic To derive the
properties of stellar interiors under adiabatic condsiove need several thermodynamic derivatives.
We therefore start from the laws of thermodynamics.

Thefirst law of thermodynamics states that the amount of heat absorbadsipgtem Q) is the
sum of the change in its internal energyJ() and the work done on the systed\ = P6V). The
second lawof thermodynamics states that, for a reversible processciiange in entropy equals the
change in the heat content divided by the temperature. fEnia state variable, unlike the heat
content. For a unit mass (1 gram) of matter the combinatidhese laws can be expressed as

dg=Tds=du+Pdv= du—Ezdp. (3.46)
P

Heredq is the change in heat content, is the change in internal energy € U/p is the specific
internal energy, i.e. per gramg,is the specific entropy (i.e. the entropy per unit mass)\agdl/p is
the volume of a unit mass. Note ttdit anddsare exact dierentials, whereadqis not.

Differential form of the equation of state To compute general expressions for thermodynamic
derivatives such as the specific heats and the adiabati@tiees it is useful to write the equation of
state in dfferential form, i.e.

dP dT do
= = 3.47
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whereyt andy, are defined as

dlogP T (0P
= = —|—= 3.48
AT (8IogT)p’Xi P(@T)p’xi’ (3.48)
dlog P) 0 (8P)
=== == ) 3.49
o (alogp Tx  P\0p/ry 349

The subscripX; means that the composition is held constant as well. In argkaquation of state
xT andy, can depend ol andp themselves, but if they are (approximately) constant thercan
write the equation of state in power-law form:

P = Pgp TXT,

For example, for an ideal gas without radiation we haye= y, = 1, while for a radiation-dominated
gasyT =4 andy, = 0.

3.4.1 Specific heats

The specific heats at constant volueand at constant pressuce for a unit mass of gas follow
from eq. (3.46):

_(d9) _(9u
e ()-8,

_(dg) _(du) _P(dp
o= ), (), )

where a partial derivative taken at constaiig the same as one taken at consjarfor an ideal gas,
withu = U/p = %P/p, we obtain from eq. (3.21) the familiar resuly = %R/p. For a radiation-
dominated gas, eq. (3.43) yields = 4aT3/p. Using thermodynamic transformations and some
algebraic manipulation (see Appendix), it follows quitegrally that the specific heats are related by

P 2
Cp—Cy = — XL (3.52)
oT xp

For an ideal gas this amountsdp — cy = R/u, and thereforep = gR/,u. For a radiation-dominated
gasy, = 0 and hencep — co: indeed, sincé,q only depends oil, a change in temperature cannot
be performed at constant pressure.

The ratio of specific heats is often denotedyas

y_CV_ pToy Xp,

(3.53)

so thaty = 2 for an ideal gas.
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3.4.2 Adiabatic derivatives

The thermodynamic response of a system to adiabatic chasge=asured by the so-callediabatic
derivatives Two of these have special importance for stellar structure

¢ Theadiabatic exponeRty,q measures the response of the pressure to adiabatic compress
expansion, i.e. to a change in the density. It is defined as

_ (dlogP
Yad = (8 |ng)ad (3.54)

where the subscript 'ad’ means that the change is perforrdidatically, that is, at constant
entropy. Ifyaq is constant therP « p”=d for adiabatic changes. As we shall see lajgg is
related to thelynamical stabilityof stars.

e Theadiabatic temperature gradiens defined as

dlogT
Vag = .
ad ( alog P)ad (3.55)

It is in fact another exponent that describes the behavibtineotemperature under adiabatic
compression or expansiof (o« PV if V4 is constant), which turns out to be important for
stability againstonvection

The adiabatic exponent For an adiabatic procesi = 0 in eq. (3.46) and therefore
du= 32 do. (3.56)
P

We have seen in Sect. 3.3.1 that for a perfect gas of freeclmtthe internal energy density is
proportional toP, in both the NR and ER limits. For such a simple system we caretbore write, as
we did in Sect. 2.3,

u=o o (3.57)
Je,

with ¢ a constant (betweegl and 3). If we diferentiate this and substitute into eq. (3.56) we obtain
for an adiabatic change

dP ¢+1do
— = - (3.58)
P ¢ p
Therefore, according to the definition oy (eq. 3.54),
YVad = % (for a simple, perfect gas) (3.59)

2In many textbooks one finds instead the adiabatic exporan,, andI; introduced by Chandrasekhar. They are
defined, and related tgy andV,q, as follows:

_(alogP) 3 I, _(8IogP) 1 r _(alogT) ‘1
1=\ Glogp Jaa T -1 \dlogT /ag dlogp Jad

v 3=
They obey the relation

Vad

B I
[3-1 T,-1
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o for non-relativistic particles (e.g. a classical ideal gas, NR degenerate eteip = % and
thereforeyaq = 2

o for extremely relativistigarticles (e.g. photons, ER degenerate electrgns)3 and therefore
4
Yad = 3

o for a mixture of gas and radiation @ 8 < 1) andor moderately relativistic degenerate elec-
trons, 2 < yaq < 3
For a general equation of state, described by eq. (3.47)camelerive (see Appendix)

P 2

T (3.60)

Yad = Xp +

Thereforey,qis related to the ratio of specific heats (eq. 3.53),= v x,,. They’s are equal ify, = 1
(as in the case of an ideal gas).

The adiabatic temperature gradient By writing eq. (3.54) agiP/P = y,qdp/p for an adiabatic
change, and eliminatindo with the help of eq. (3.47), we obtain a general relation leetwthe
adiabatic temperature gradieWify and the adiabatic exponepty:

Yad — Xp

This gives the following limiting cases:

o for an ideal gas without radiatiof (= 1) we haveyt = x, = 1, which together withyaq = %
givesVaq = £ = 04.

o for a radiation-dominated gag € 0) yt = 4 andy, = 0 so thatVq = %1 = 0.25.

For a general equation of state one has to consider the desgreession fory,g (eq. 3.60) in
eg. (3.61). One can also derive the following relationV¥gg (see Appendix):

P xr
Vag= —— =—. 3.62
ad T Yo ( )

We give some important results without derivations, whiah be found in K&W Chapters 13.2 and
16.3 or in Hansen Chapter 3.7:

o for a mixture of gas and radiation with® 8 < 1, Voq andyaq both depend op and take on
intermediate values, i.e.Zb < Vyq < 0.4.

o for a non-relativistic degenerate gas, we have to conshdgraithough electrons dominate the
pressure, there is a (tiny) temperature dependence due tortlgas which must be taken into
account in calculatingt and thereforév,q. After some manipulation it can be shown that in
this caséVyq = 0.4, as for the ideal classical gas.

o for an extremely relativistic degenerate gas one also hegrtsider that while the electrons are
relativistic, the ions are still non-relativistic. It tusmout that in this limitVaq = 0.5.
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3.5 lonization

We have so far implicitly assumed complete ionization ofdhs, i.e. that it consists of bare atomic
nuclei and free electrons. This is a good approximation instellar interiors, wherd > 1P K
so that typical energiekT are much larger than the energy needed to ionize an atonto ikeock
off a bound electron. In the cooler outer layers of a star, howeve need to consider theartial
ionizationof the elements. In this case quasi-static changes of ttesidaables 4 andT) will lead
to changes in the degree of ionization. This can have a ldfgeten the thermodynamic properties
of the gas, e.g. ofi,g andVg.

In LTE the number densities of ionized and neutral specieslatermined by th8aha equation

nr+1n Uy 2(2rmekT)¥/2
noc U h3
wheren, andn, 1 indicate the number densitiesioéndr + 1 times ionized nuclej is the ionization
potential, i.e. the energy required to remove tith bound electron, and andu,,1 are the partition
functions. The partition functions dependBibut can in most cases be approximated by the statistical
weights of the ground states of the bound species. (Thistiequean be derived from statistical
mechanics, e.g. see K&W Chapter 14.1.)

g /KT (3.63)

3.5.1 lonization of hydrogen

As an example, we consider the simple case where the gasstoosily of hydrogen. Then there
are just three types of particle, electrons and neutral anked hydrogen, withuy = Uy = 2 and
UH+ = Uz = 1. We write their number densities as andng so that

n_+ne _ (2rmekT)3/2 /KT
No h3
whereyy = 13.6eV. The gas pressure is given Byas = (o + N, + ng) KT and the density is
o = (ng + ny) my. Thedegree of ionizatiors defined as

(3.64)

n,
= 3.65
so thatPgascan be written in terms of the degree of ionization
We can then rewrite Saha’s equation as
2 3/2 5/2
S € i (LD S (3.67)

1 - X2 B h3 Pgas

We see that the degree of ionization increases Wjths expected since more atoms are broken up by
the energetic photons. Howeveardecreases with gas pressure (or density) whes kept constant,
because this increases the probability of recombinatioitiwis proportional tan.. From eq. (3.66)
we see that the mean molecular weight 1/(1 + x) decreases as hydrogen becomes ionized (one
atomic mass is divided over two particles).

To estimate theféect on the thermodynamic properties of the gas, we noternttheicase of par-
tial ionization the internal energy has a contribution frtiva available potential energy of recombina-
tion. Per unit volume this contribution is equaltoyy, SO per unit mass it equals yn/p = Xyn/My.
Thus

3Pgas  _xH 3 XH
U==—+X— =31+ X)RT + Xx=—. 3.68
27 —~ 5( ) my (3.68)
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Figure 3.5. The adiabatic temperature gradienhfy plotted against temperature. The left panel shows the
effect of partial ionization for the simple case of a pure hydmgas, for three values of the density 14,0
107 and 108 g/cm?®). When hydrogen is partially ionize®,q is decreased below its ideal-gas value of 0.4.
The circles indicate the points where the degree of iordrati= 0.5, close to the minimum oV,4. As the
density increases, a higher temperature is needed to readaime ionization degree. The right panel shows
how V4 varies with temperature in a detailed stellar model 844, between the surface (at~ 6000K) and
the centre (al ~ 1.5 x 10’ K). Apart from the hydrogen ionization zone around k() a second depression
of V.q around 106K is seen which is due to the firéHe ionization zone. The second He ionization zone is
merged with H ionization because it occurs at similar terapees and densities. Note that the region where
T < 10°K comprises only the outer 1% of the mass of the Sun. (The diditie shows howV,q would vary
with T in this model if the composition were pure hydrogen, as wasrmagd in the left panel.)

A small increase in temperature increases the degree afaton, which results in a large amount of
energy being absorbed by the gas. In other wordssfieeific heabf a partially ionized gas will be
much larger than for an unionized gas, or for a completelyzieshgas (in the latter case= 1 so that
the second term in eq. (3.68) becomes a constant and thergfdevant).

Now consider what happens if the gas is adiabatically cosgmet Starting from neutral hydro-
gen, for whichV,q = 0.4, the temperature initially increases®sc P4, Further compression (work
done on the gas) increasesbut when partial ionization sets in most of this energy goesraising
the degree of ionization (second term of eq. 3.68) and ottlg linto raising the temperature (first
term). In other wordsT increases less strongly with wit, and thereforév,y < 0.4. A detailed
calculation (e.g. see K&W Chapter 14.3) shows that undeéc#ypgonditionsV,q reaches a minimum
value of~ 0.1 whenx ~ 0.5. As the gas becomes almost fully ionizétiq rises back to 0.4. The
variation of V54 with temperature for a pure hydrogen gas is shown in the kfiepof Fig. 3.5 for
different values of the density.

The decrease 4 in partial ionization zones can inducenvectionin the outer layers of stars,
as we shall see in Ch. 4. Similarly it can be shown thgtdecreases in partial ionization zones, from
% tovag ~ 1.2 whenx ~ 0.5. This has consequences for the stability of stars, as wkaba see.
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______________________________ Figure 3.6. Schematic depiction of

the electrostatic potential of an iso-
lated ion (left) and the superposi-
tion of the potentials of neighbour-
ing ions (right). Figure reproduced
from KipPENHANHN & W EIGERT.

3.5.2 lonization of a mixture of gases

In a mixture of gases the situation becomes more complidateduse many, partly ionized species
have to be considered, the densities of which all depend om ether (see e.g. K&W Chapter 14.4-
14.5). However the basic physics remains the same as coadidbove for the simple case of pure
hydrogen. The#ect on the thermodynamic properties is that ¥g,.can show additional deviations
below 0.4 at diterent temperatures, especially where helium (the secarst-abundant element in
stars) is partially ionized. This is illustrated in Fig. B.Bvhich shows the variation d¥,q with
temperature in a homogeneous model for the initial Sun.

3.5.3 Pressure ionization

As p increases indefinitely, the Saha equation gives 0, i.e. ionized gas recombines to form atoms.
This is obviously nonsense at very high density, and beconoesrect when the average distarte
between ions becomes less than an atomic radius. In thigisituithe ionization energy is suppressed
(there are fewer bound excited states; see Fig. 3.6), disiuenown agpressure ionization

Consider the case of hydrogen: the volume per H atoning o thatd = (%”nH)‘W. Pressure
ionization sets in whed < ag = 5x 1072 cm (the Bohr radius). This implies

Ny 2
H %303
orp = nymy 2 3gcnt3. Other elements are pressure-ionized at similar valugiseofiensity, within
an order of magnitude. At densitigs10 g cnt3, therefore, we can again assume complete ionization.
Fig. 3.7 shows the approximate boundary in the density-&gaipre diagram between neutral and
ionized hydrogen according the Saha equatiorpfarl g cnm?, and as a result of pressure ionization
at higher densities.

3.6 Other dfects on the equation of state

3.6.1 Coulomb interactions and crystallization

We have so far ignored thdfect of electrostatic or Coulomb interactions between the ind elec-
trons in the gas. Is this a reasonable approximation, iette interaction energies indeed small
compared to the kinetic energies, as we have assumed in3S&et.

The average distance between gas particles (with rAas$ is d ~ (%n)~Y/® wheren is the
number densityn = p/(Am,). The typical Coulomb energy per particle (with chae is ec ~
Z%€?/d, while the average kinetic energy égn = %kT. The ratio of Coulomb energy to kinetic
energy is usually called the Coulomb paraméterdefined as

_ 2% B 2%€? ( 4Anp
~ dkT kT \3Am,

1/3 2 1/3
Z
= 2275x10° =P (3.69)

I'c A3 T
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Figure 3.7. The equation of state in the
o, T plane for a pure hydrogen gas. The
dotted lines are the borders, also shown
in Fig. 3.4, between regions where ra-
diation, ideal gas and degenerate elec-
trons dominate the pressure. The solid
line shows where the ionization fraction
of hydrogen is 0.5 according to the Saha
equation, and where hydrogen becomes
pressure-ionized at high density. The
dashed lines show where the Coulomb
interaction parametdic equals 1, above
which Coulomb interactions become im-
portant, and wherdc = 170, above
which the ions form a crystralline lat-
tice. Above the dash-dotted line'es

pairs play an important role in stellar in-
teriors.

5 1(
logp (gcnt®)

where in the last equality the numerical factor is in cgs sinitWe see that Coulomb interactions
increase in importance at high densities or low temperatuRoughly, Coulomb interactions start to
become important in stellar interiors whEg > 1.

To estimate the typical value &k in stellar interiors we approximate ~ p = M/(%R®), and

we approximatel' by the average temperature estimated from the virial thepfe~ T ~ %AT”‘J%
(eq. 2.27). Ignoring factors of order unity, we get
-2/3
ZZ (M

The ratioZ?/A*?3 depends on the composition, and represents an averageheveonstituents of
the gas. In stars mostly composed of hydrogkny 1 andZ ~ 1, and we find that in the Sun the
Coulomb energy contributes of the order of 1 % to the partdergies (and hence has a similfeet

on the pressure). We are therefore justified in ignoring Gall interactions in stars similar to or
more massive than the Sun. However, eq. (3.70) shows thawimass stars Coulomb interactions
can start to contribute significantly. This can also be sgecomparing Fig. 3.4 and Fig. 3.7, where
the location of the conditioffc = 1 is indicated in the-T diagram. Detailed models of low-mass
stars need to take thisfect into account. FoM < 103 M, the Coulomb energies dominate. Such
objects are not stars but planets (Jupiter's mass is aboutMg). Calculations of the structure of
planets requires a much more complicated equation of dtatefor stars.

Crystallization

If Tc > 1 the thermal motions of the ions are overwhelmed by the Gohlinteractions. In this
situation the ions will tend to settle down into a conglonteraith a lower energy, in other words
they will form a crystalline lattice. Detailed estimateglicate that this transition takes place at a
critical value ofl'c ~ 170. This condition is also indicated in Fig. 3.4 for a pur@togen gas. In
reality, this situation will never occur in hydrogen-ricteBar interiors, but it can take place in cooling
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white dwarfs (in which the temperature gradually decreasits time while the density remains
constant). White dwarfs are usually composed of carbon amydem, so in this case we have to
take into account the composition which raises the tempezait which the transition occurs (the
‘melting’ temperature) by a facta#?/A2 according to eq. (3.69).

Finally we note that crystallization only occurs in the m@yiwhere the electrons are strongly
degenerate. You may verify that the Coulomb interactiorrggnbetween electrons and iorizef/d)
is always smaller than the typical electron energﬁ//eme). The electrons therefore behave as a free
degenerate gas, even if the ions form a crystalline stractur

3.6.2 Pair production

A very different process can take place at very high temperatures &iyely low densities. A
photon may turn into an electron-positron pair if its enengexceeds the rest-mass energy of the pair,
hy > 2mec?. This must take place during the interaction with a nuclsirs;e otherwise momentum
and energy cannot both be conserved. Pair production td&es at a typical temperatukd ~ hy ~
2mec?, or T ~ 1.2 x 1019K. However, even af ~ 10° K the number of energetic photons in the tail
of the Planck distribution (eq. 3.41) is large enough to pmeda large number ofte™ pairs. The
newly created positrons tend to be annihilated quickly leyitiverse reaction fe+ € — 2y), as a
result of which the number of positrons reaches equilibridra few times 18K, depending on the
electron density, the number of positrons is a significaaxttfon of the number of electrons.

Pair production is similar to an ionization process: anéase in temperature leads to an increase
in the number of particles at the expense of the photon erargy pressure). Therefore pair produc-
tion gives rise to a decrease of the adiabatic gradigyand ofV,g, similar to partial ionization. This
is the main importance of pair production for stellar evilat it affects the stability of very massive
stars in advanced stages of evolution (when their temperabay reach values in excess of K)
and can trigger their collapse.

Suggestions for further reading

The contents of this chapter are also covered by Chapter 7saabid and by Chapters 13 to 16 of
KrpennauN & WEIGERT. HOwever, a more elegant derivation of the equation of statech is also
more consistent with the way it is derived in these lecturesiois given in Chapter 3 of Adsen,
KawaLer & TriMmBLE. Explicit expressions for many of the results that are ongntioned here can be
found in this book.

Exercises

3.1 Conceptual questions
These questions are intended to test your understandirttedettures. Try to answer them without
referring to the lecture notes.

(&) What do we mean blpcal thermodynamic equilibriurfLTE)? Why is this a good assumption
for stellar interiors? What is the filerence between LTE artermal equilibrium(as treated in
Ch. 2)?

(b) Inwhat type of stars does degeneracy become importantPhportant in main-sequence stars?
Is it more important in high mass or low mass MS stars?
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(c) Explain qualitatively why for degenerate matter, thegsure increases with the density.

(d) Why do electrons become relativistic when they are casged into a smaller volume? Why does
the pressure increase less steeply with the density in dsisT

(e) In the central region of a star we find free electrons amg.ioWhy do the electrons become
degenerate first? Why do the ions never become degeneraigciticp?

3.2 Mean molecular weight

Derive a general expression for the mean molecular weighhabnized gas, as a function of composi-
tion X, Y, Z. Assume that, for elements heavier than H, nuclei are coatposequal number of protons
and neutrons, so that the nuclear chaZgis half of the mass numbéy.

3.3 Thep - T plane
Consider a gas of ionized hydrogen. In gheT plane compute the approximate boundary lines between
the regions where:
(a) radiation pressure dominates,
(b) the electrons behave like a classical ideal gas,
(c) the electrons behave like a degenerate gas,

(d) the electrons are relativistically degenerate.

3.4 The pressure of a gas of free particles

In this exercise you will derive some important relatioranfrthis chapter for yourself.

(a) Suppose that the particles in a gas have momenta distilasn(p)dp. Show that the pressure
can be expressed by eq. (3.4).

(b) For classical particles in LTE, the momentum distribatis given by the Maxwell-Boltzmann
distribution, eq. (3.13). Calculate the pressure usind®4). Does the result look familiar?

(c) Show that for a gas of free, non-relativistic partickes- %U (eq. 3.11), wherdJ is the internal
energy density. Show that in the extremely relativisticitii = %U (eq. 3.12).

(d) Electrons are fermions with 2 spin states. Explain whyy tiaximum number of electrons per
volume with momentunp can be written as eq. (3.28).

(e) In the extreme case of complete degenerdicy, 0, the electrons fill up all available quantum
states up to a maximumm, the Fermi momentum. Show that

1
3ne\3
= h|Z=
Pr ( B )
(f) Show that the pressure as function of the density for ametativistic degenerate electron gas can
be written as

X
(2]
He
and derive an expression f&kr andx.

(g) Show that the pressure as function of the density for aremely relativistic degenerate electron
gas can be written as

y
el
He

and derive an expression figg andy.
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(h) Photons are bosons, and the distribution of their moenisrgiven by the Planck function (eq. 3.27).
Show that in this case

Uo T4
(Hint: to derive an expression for the proportionality ctamga, you might want to use Mathe-
matica or a list of standard integrals.)
(i) Now use (c) to show that the radiation pressure is giveRRy= %aT“.

3.5 Adiabatic derivatives

(a) Use the first law of thermodynamics to show that, for alid@s in an adiabatic process,
P o prad (3.71)

and give a value for the adiabatic exponggt
(b) Use the ideal gas law in combination with eq. (3.71) torsHuat

dInT)

—_— =0.4.
dinP

Vad = ( =
adid

(c) The quantityV,gq is referred to as thadiabatic temperature gradientNormally you would use
the term ‘gradient of a quantitj’ for dA/dr, or if you use mass coordinates instead of radius
coordinatesgdX/dm Do you understand why,q can be referred to as a temperature ‘gradient’?

(d) (*) Show that for a mixture of an ideal gas plus radiatithe adiabatic exponentis given by
_32-24p-3p2
)’ad - 24_ Zjﬂ )
whereg = Pgag/ P.
(Hints: write down the equation of state for the mixture iffeliential form as in eq. (3.47), and

expresser andy, in terms of8. Then apply the first law of therrmodynamics for an adiabatic
process.)

(e) (*) Whatis the value ofqin the limit where radiation dominates and where pressureidates?
Does this look familiar?

3.6 lonization dfects

(&) The particles in an ionized gas are charged and theraftdergo electrostatic (Coulomb) inter-
actions. Why can can we nevertheless make the ideal-gasmipien in most stars (i.e. that the
internal energy of the gas is just the sum of the kinetic erergf the particles)? For which stars
do Coulomb interactions have a significaffeet?

(b) Why does the gas in the interior of a star become pressuiged at high densities?

(c) Explain qualitatively why partial ionization leads Yaq < Vagigeas = 0.4, in other words: why
does adiabatic compression lead to a smaller temperattnegise when the gas is partly ionized,
compared to a completely ionized (or unionized) gas?
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