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Abstract 
Goals capture, at dizerent levels of abstraction, the various 
objectives the system under consideration should achieve. 
Goal-oriented requirements engineering is concerned with 
the use of goals for eliciting, elaborating, structuring, spec- 
ifying, analyzing, negotiating, documenting, and modlfj‘ing 
requirements. This area has received increasing attention 
over the past few years. 
The paper reviews various research efforts undertaken 
along this line of research. The arguments in favor of goal 
orientation are first briefly discussed. The paper then com- 
pares the main approaches to goal modeling, goal specifi- 
cation and goal-based reasoning in the many activities of 
the requirements engineering process. To make the discus- 
sion more concrete, a real case study is used to suggest 
what a goal-oriented requirements engineering method 
may look like. Experience with such approaches and tool 
support are briefly discussed as well. 

1. Introduction 
Goals have long been recognized to be essential compo- 
nents involved in the requirements engineering (RE) pro- 
cess. As Ross and Schoman stated in their seminal paper, 
“requirements definition must say why a system is needed, 
based on current or foreseen conditions, which may be 
internal operations or an external market. It must say what 
system features will serve and satisfy this context. And it 
must say how the system is to be constructed” [Ros77]. 
Many informal system development methodologies from 
the good old times included some form of goal-based analy- 
sis, called context analysiis [Ros77], definition study 
[Hic74], participative analysis [Mun81], and so forth. Typi- 
cally, the current system under consideration is analyzed in 
its organizational, operational and technical setting; prob- 
lems are pointed out and opportunities are identified; high- 
level goals are then identified and refined to address such 
problems and meet the opportunities; requirements are then 
elaborated to meet those goals. Such natural practice has led 
requirements documentation standards to require a specific 
document section devoted to the objectives the system 
should meet (see, e.g., the IEEE-Std-830/1993 standards). 
Surprisingly enough, goals have been largely ignored both 
from the literature on software modeling and specification 

and from the literature on object-oriented analysis (one 
notable exception is [Rub92]). UML advocates sometimes 
confess the need for higher-level abstractions: “In my work, 
I focus on user goals first, and then I come up with use 
cases to satisfy them; by the end of the elaboration period, I 
expect to have at least one set of system interaction use 
cases for each user goal I have identified” [Fow97, p.451). 
The prominent tendency in software modeling research has 
been to abstract programming constructs up to requirements 
level rather than propagate requirements abstractions down 
to programming level [My199]. 
Requirements engineering research has increasingly recog- 
nized the leading role played by goals in the RE process 
[Yue87, Rob89, Ber91, Dar91, My192, Jar93, Zav97bl. 
Such recognition has led to a whole stream of research on 
goal modeling, goal specification, and goal-based reasoning 
for multiple purposes, such as requirements elaboration, 
verification or conflict management, and under multiple 
forms, from informal to qualitative to formal. 
The objective of this paper is to provide a brief but hope- 
fully comprehensive review of the major efforts undertaken 
along this line of research. Section 2 first provides some 
background material on what goals are, what they are useful 
for, where they are coming from, and when they should be 
made explicit in the RE process. Section 3 discusses the 
major efforts in modeling goals in terms of features and 
links to other artefacts found in requirements models. Sec- 
tion 4 reviews the major techniques used for specifying 
goals. Section 5 on goal-based reasoning reviews how goals 
are used in basic activities of the RE process such as 
requirements elicitation, elaboration, verification, valida- 
tion, explanation, and negotiation, and in particular for dif- 
ficult aspects of that process such as conflict management, 
requirements deidealization, and alternative selection. Sec- 
tion 6 then suggests what a goal-oriented RE method may 
look like by enacting it on a real case study of a safety-criti- 
cal train control system. This naturally leads to a brief 
review, in Section 7, of industrial projects in which the use 
of such methods was felt conclusive; the supporting tools 
used in those projects are also briefly discussed there. Sec- 
tion 8 just opens some fairly recent pieces of goal-based 
work beyong requirements engineering. 

2. The background picture 
Reviewing the current state of the art in goal-oriented RE 
would not make much sense without first addressing the 
what, why, where and when questions about this area of 
research. 
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What are goals? 
A goal is an objective the system under consideration should 
achieve. Goal formulations thus refer to intended properties 
to be ensured; they are optative statements as opposed to 
indicative ones, and bounded by the subject matter [Jac95, 
Zav97al. 
Goals may be formulated at different levels of abstraction, 
ranging from high-level, strategic concerns (such as “serve 
more passengers” for a train transportation system or “pro- 
vide ubiquitous cash service” for an ATM network system) 
to low-level, technical concerns (such as “acceleration com- 
mand delivered on time” for a train transportation system or 
“card kept after 3 wrong password entries” for an ATM sys- 
tem). 
Goals also cover different types of concerns: functional con- 
cerns associated with the services to be provided, and non- 
functional concerns associated with quality of service --such 
as safety, security, accuracy, performance, and so forth. 
The system which a goal refers to may be the current one or 
the system-to-be; both of them are involved in the RE pro- 
cess. High-level goals often refer to both systems. The sys- 
tem-to-be is in essence composite; it comprises both the 
software and its environment, and is. made of active compo- 
nents such as humans, devices and software. As opposed to 
passive ones, active components have choice of behavior 
[Fea87, Yue87, Fic921; henceforth we will call them agents. 
Unlike requirements, a goal may in general require the coop- 
eration of a hybrid combination of multiple agents to achieve 
i t  [Dar93]. In a train transportation system, for example, the 
high-level goal of safe transportation will typically require 
the cooperation of on board train controllers, the train track- 
ing system, station computers, the communication infra- 
structure, passengers, and so forth. In an ATM system, the 
goal of providing cash to eligible users will require the coop- 
eration of the ATM software, sensors/actuators, the cus- 
tomer, etc. One of the important outcomes of the RE process 
is the decision on what parts of the system will be automated 
and what parts will not. A goal under responsibility of a sin- 
gle agent in the software-to-be becomes a requirement 
whereas a goal under responsibility of a single agent in the 
environment of the software-to-be becomes an assumption 
[Lam98b, Lam98cl. Unlike requirements, assumptions can- 
not be enforced by the software-to-be; they will hopefully be 
satisfied thanks to organizational norms and regulations, 
physical laws, etc. 

Why are goals needed? 
There are many reasons why goals are so important in the 
RE process. 

Achieving requirements completeness is a major RE con- 
cern.. Goals provide a precise criterion for suflcienr com- 
pleteness of a requirements specification; the specification 
is complete with respect to a set of goals if all the goals 
can be proved to be achieved from the specification and 
the properties known about the domain considered 
[Yue87]. 
Avoiding irrelevant requirements is another major RE con- 
cern. Goals provide a precise criterion for requirements 
pertinence; a requirement is pertinent with respect to a set 

of goals in the domain considered if its specification is 
used in the proof of one goal at least [Yue87]. 
Explaining requirements to stakeholders is another impor- 
tant issue. Goals provide the rationale for requirements, in 
a way similar to design goals in design processes [Moss$ 
Lee911. A requirement appears because of some underly- 
ing goal which provides a base for it [Ros77, Dar91, 
Som971. More explicitly, a goal refinement tree provides 
traceability links from high-level strategic objectives to 
low-level technical requirements. In particular, for busi- 
ness application systems, goals may be used to relate the 
software-to-be to organizational and business contexts 
[Yu93]. 
Goal refinement provides a natural mechanism for struc- 
turing complex requirements documents for increased 
readability. (This at least has been our experience in all 
industrial prjects we have been involved in, see Section 7.) 
Requirements engineers are faced with many alternatives 
to be considered during the requirements elaboration pro- 
cess. Our extensive experience revealed that alternative 
goal refinements provide the right level of abstraction at 
which decision makers can be involved for validating 
choices being made or suggesting other alternatives over- 
looked so far. Alternative goal refinements allow altema- 
tive system proposals to be explored [LamOOc]. 
Managing conflicts among multiple viewpoints is another 
major RE concern [Nus94]. Goals have been recognized to 
provide the roots for detecting conflicts among require- 
ments and for resolving them eventually [Rob89, 
Lam98bl. 
Separating stable from more volatile information is 
another important concern for managing requirements 
evolution. A requirement represents one particular way of 
achieving some specific goal; the requirement is therefore 
more likely to evolve, towards another way of achieving 
that same goal, than the goal itself. The higher level a goal 
is, the more stable it will be. Others have made that same 
observation [Ant94]. It turns out that different system ver- 
sions often share a common set of high-level goals; the 
current system and the system-to-be correspond to altema- 
tive refinements of common goals in the goal refinement 
graph, and can therefore be integrated into one single goal 
model (see Section 3). 
Last but not least, goals drive the identification of require- 
ments to support them; they have been shown to be among 
the basic driving forces, together with scenarios, for a sys- 
tematic requirements elaboration process [Dar91, Rub92, 
Dar93, Ant98, Dub98, KaiOO, LamOOc]. We will come 
back to this in Sections 5 and 6. 

Where are goals coming from? 
Goal identification is not necessarily an easy task [Lam95, 
Ant98, Hau98, Ro1981. Sometimes they are explicitly stated 
by stakehokders or in preliminary material available to 
requirements engineers. Most often they are implicit so that 
goal elicitation has to be undertaken. 
The preliminary analysis of the current system is an impor- 
tant source for goal identification. Such analysis usually 
results in a list of problems and deficiencies that can be for- 
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mulated precisely. Negating those formulations yields a first 
list of goals to be achieved by the system-to-be. 
In our experience, goals can also be identified systematically 
by searching for intentional keywords in the preliminary 
documents provided, interview transcripts, etc. [LamOOc]. 
Once a preliminary set of goals and requirements is obtained 
and validated with stakeholders, many other goals can be 
identified by refinement and by abstraction, just by asking 
HOW and WHY questions about the goalsh-equirements 
already available, respectively [Lam95, LamOOc 1. 
More sophisticated techniques for goal refinement and 
abstraction (notably, from scenarios) will be reviewed in 
Section 5. Other goals are identified by resolving conflicts 
among goals or obstacles to goal achievement, see Section 5 
too. 
A common misunderstanding about goal-oriented 
approaches is that they are inherently top-down; this is by no 
means the case as it  should hopefully be clear now from the 
discussion above. 

When should goals be made explicit? 
It is generally argued that goal models are built during the 
early phases of the RE process [Dar93, Yu97, Dub981. The 
basis for the argument is the driving role played by goals in 
that process; the soonest a goal is identified and validated, 
the best. This does not imply any sort of waterfall-like 
requirements elaboration process, however. As requirements 
"implement" goals much the same way as programs imple- 
ment design specifications, there is some inevitable inter- 
twining of goal identification and requirements elaboration 
[Lam95, Swa821. Goals may thus sometimes be identified 
fairly lately in the RE process --especially when WHY ques- 
tions about technical details or scenarios, initially taken for 
granted, are raised lately in the process. 

3. Modeling goals 
The benefit of goal modeling is to support heuristic, qualita- 
tive or formal reasoning schemes during requirements engi- 
neering (see Section 5) .  Goals are generally modelled by 
intrinsic features such as their type and attributes, and by 
their links to other goals and to other elements of a require- 
ments model. 

Goal types and taxonomies. Goals can be of different types. 
Several classification axes have been proposed in the litera- 
ture. 
Functional goals underlie services that the system is 
expected to deliver whereas non-finctional goals refer to 
expected system qualities such as security, safety, perfor- 
mance, usability, flexibility, customizability, interoperability, 
and so forth [Ke190]. This typology is overly general and can 
be specialized. For example, satisfaction goals are functional 
goals concerned with satisfying agent requests; information 
goals are functional goals concerned with keeping such 
agents informed about object states (Dar931. Non-functional 
goals can be specialized in a similar way. For example, accu- 
racy goals are non-functional goals requiring the state of 
software objects to accurately reflect the state of the corre- 
sponding monitoredcontrolled objects in the environment 

[My192, Dar931 --such goals are often overlooked in the RE 
process; their violation may be responsible for major failures 
[LamOOa]. Pegormance goals are specialized into time and 
space performance goals, the former being specialized into 
response time and throughput goals [Nix93]. Security goals 
are specialized into confidentiality, integrity and availability 
goals [Amo94]; the latter can be specialized in turn until 
reaching domain-specific security goals. A rich taxonomy 
for non-functional goals can be found in [ChuOO]. 
Another distinction often made in the literature is between 
soft goals, whose satisfaction cannot be established in a 
clear-cut sense [My192], and (hard) goals whose satisfaction 
can be established through verification techniques [Dar93, 
Dar961. Soft goals are especially useful for comparing alter- 
native goal refinements and chosing one that contributes the 
"best" to them, see below. 
Another classification axis is based on types of temporal 
behaviour prescribed by the goal. [Dar93]. Achieve (resp. 
cease) goals generate system behaviours, in that they require 
some target property to be eventually satisfied in some future 
state (resp. denied); maintain (resp. avoid) goals retrict 
behaviours, in that they require some target property to be 
permanently satisfied in every future state (resp. denied) 
unless some other property holds. Optimize goals compare 
behaviours to favor those which better ensure some soft tar- 
get property. 
In a similar vein, [Sut93] proposes a classification according 
to desired system states (e.g., positive, negative, alternative, 
feedback, or exception-repair) and to goal level (e.g., policy 
level, functional level, domain level). [Ant941 makes a dis- 
tinction beween objective goals, that refer to objects in the 
system, and adverbial goals, that refer to ways of achieving 
objective goals. 
Goal types and taxonomies are used to define heuristics for 
goal acquisition, goal refinement, requirements derivation, 
and semi-formal consistency/completeness checking [Dar93, 
Sut93, Ant98, ChuOO, AntOl], or to retrieve goal specifica- 
tions in the context of specification reuse [Mas97]. 

Goal attributes. Beside their type, goals can also be intrinsi- 
cally characterized by attributes such as their name and their 
specification (see Section 4). Priority is another important 
attribute that can be attached to goals [Dar93]. Qualitative 
values for this attribute allow mandatory or optional goals to 
be modelled with various degrees of optionality. Priorities 
are often used for resolving conflicts among goals [Rob89, 
Lam98bl. Other goal attributes that have been proposed 
include goal utility and feasibility [Rob89]. 

Goal Links. Many different types of links have been intro- 
duced in the literature to relate goals (a) with each other and 
(b) with other elements of requirements models. Such links 
form the basis for defining goal structures. We discuss inter- 
goal links first, and then links between goals and other ele- 
ments of requirements models such as agents, scenarios, or 
operations. 

Links between goals are aimed at capturing situations where 
goals positively or negatively support other goals. Directly 
borrowed from problem reduction methods in Artificial 

25 1 

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore.  Restrictions apply. 



Intelligence [Ni171], AND/OR graphs may be used to cap- 
ture goal refinement links [Dar91, Dar931. AND-refinement 
links relate a goal to a set of subgoals (called refinement); 
this means that satisfying all subgoals in the refinement is 
sufficient for satisfying the parent goal. OR-refinement links 
relate a goal to an alternative set of refinements; this means 
that satisfying one of the refinements is sufficient for satisfy- 
ing the parent goal. In this framework, a conflict link 
between two goals is introduced when the satisfaction of 
one of them may prevent the other from being satisfied. 
Those link types are used to capture alternative goal refine- 
ments and potential conflicts, and to prove the correctness of 
goal refinements (see Section 5). 
Weaker versions of those link types have been introduced to 
relate soft goals [Rob89, My192, ChuOO] as the latter can 
rarely be said to be satisfied in a clear-cut sense. Instead of 
goal satisfaction, goal satisficing is introduced to express 
that subgoals are expected to achieve the parent goal within 
acceptable limits, rather than absolutely. A subgoal is then 
said to contribute partially to the parent goal, regardless of 
other subgoals; it may contribute positively or negatively. 
The semantic rules are now as follows. If a goal is AND- 
decomposed into subgoals and all subgoals are satisficed, 
then the parent goal is satisficeable; but if a subgoal is denied 
then the parent goal is deniable. If a goal contributes nega- 
tively to another goal and the former is satisficed, then the 
latter is deniable. These rules are used for qualitative reason- 
ing about goal satisficing (see Section 5). 
Beside inter-goal links, goals are in general also linked to 
other elements of requirements models. KAOS introduces 
AND/OR operationalization links to relate goals to the oper- 
ations which ensure them through corresponding required 
pre-, post-, and trigger conditions [Lam98c, LamOOc] (the 
older notion of operationalization [Dar91, Dar931 was 
revised and simplified from practical experience). Others 
have used similar links between goals and operations, e.g., 
[Ant94, Ant98, KaiOO]. In [My192], the inter-goal contribu- 
tion link types are extended to capture the positivehegative 
contribution of requirements to goals; argumentation links 
are also introduced to connect supporting arguments to con- 
tribution links. 
There has been a massive amount of work on linking goals 
and scenarios together --e.g., [Fic92, Dar93, Pot95, Lei97, 
Sut98, Ant98, Hau98, Lam98b, Ro198, KaiOO, AntOl]. The 
obvious reason is that scenarios and goals have complemen- 
tary characteristics; the former are concrete, narrative, proce- 
dural, and leave intended properties implicit; the latter are 
abstract, declarative, and make intended properties explicit. 
Scenarios and goals thus complement each other nicely for 
requirements elicitation and validation. By and large the link 
between a goal and a scenario is a coverage link; the main 
differences between the various modeling proposals lie in 
the fact that a scenario may be type-level or instance-level, 
may be an example or a counter-example of desired behav- 
ior, and may exercise a goal or an obtsacle to goal achieve- 
ment. 
Goal models may also be related to object models as goal 
formulations refer to specific objects, e.g., entities, relation- 
ships or agents [Dar93]. This link type allows pertinent 

object models to be systematically derived from goal models 
[LamOOc] . 
Various proposals have also been made to relate goals to 
agents. In KAOS, responsibility links are introduced to relate 
the goal and agent submodels. A goal may be assigned to 
alternative agents through OR responsibility links; this 
allows altemative boundaries to be explored between the 
software-to-be and its environment. “Responsibility” means 
that the agent is committed to restrict its behavior by per- 
forming the operations it is assigned to only under restricted 
conditions, namely, those prescribed by the required pre-, 
post-, and trigger conditions [Dar93]. This notion of respon- 
sibility derives from [Fea87, Fin871; it is studied in depth in 
[LetOI]. Wish links are also sometimes used in heuristics for 
agent assignment (Dar911; e.g., one should avoid assigning a 
goal to an agent wishing other goals in conflict with that 
goal.. 
In the i* framework [Yu93, Yu971, various types of agent 
dependency links are defined to model situations where an 
agent depends on another for a goal to be achieved, a task to 
be achieved, or a resource to become available. For each type 
of dependency an operator is defined; operators may be com- 
bined to define plans that agents may use to achieve goals. 
The purpose of this modelling is to support various kinds of 
checks such as the viability of an agent’s plan or the fulfii- 
ment of a commitment between agents. Although initially 
conceived for modeling the organizational environment of 
the software-to-be, the TROPOS project is currently aiming 
at propagating this framework to later stages of the software 
lifecycle, notably, for modeling agent-oriented software 
architectures. 
Various authors have also suggested representing the links 
between goals and organizational policies, e.g., [Sib93, 
Fea93, Sut931. 
At the process level, i t  may be useful for traceability purpose 
[Got951 to record which actor owns which goal or some 
view of it  [Lam98b]. 

4. Specifying goals 
Goals must obviously be specified precisely to support 
requirements elaboration, verification/validation, conflict 
management, negotiation, explanation and evolution. 
An informal (but precise) specification should always be 
given to make it precise what the goal name designates 
[Zav97a]. 
Semi-formal specifications generally declare goals in terms 
of their type, attribute, and links (see Section 3). Such decla- 
rations may in general be provided alternatively using a tex- 
tual or a graphical syntax (see, e.g., [Dar98]). In the NFR 
framework [My192], a goal is specified by the most specific 
subtype it is an instance of, parameters that denote the object 
attributes it refers to, and the degree of satisficing/denial by 
child goals. Semi-formal specifications often include key- 
word verbs with some predefined semantics. For example, 
Achieve, Maintain and Avoid verbs in KAOS specify a tempo- 
ral logic pattern for the goal name appearing as parameter 
[Dar93]; they implicitly specify that a corresponding target 
condition should hold some time in the future, always in the 
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future unless some other condition holds, or never in the 
future. The intent is to provide a lightweight alternative to 
full formalization of the goal formulation, still amenable to 
some form of analysis. This basic set has been extended with 
qualitative verbs such as Improve, Increase, Reduce, Make, 
and so forth [Ant98]. In a similar spirit, goals in [Ro198] are 
represented by verbs with different parameters playing dif- 
ferent roles with respect to the verb --e.g., target entities 
affected by the goal, beneficiary agents of the goal achieve- 
ment, resource entities needed for goal achievement, source 
or destination of a communication goal, etc. 
Formal specifications assert the goal formulation in a fully 
formal system amenable to analysis. In KAOS, such asser- 
tions are written in a real-time linear temporal logic heavily 
inspired from [Man92, Koy921 with the usual operators over 
past and future states, bound by time variables; semantically, 
they capture maximal sets of desired behaviors [Dar93, 
LetOl]. The KAOS language is “2-button’’ in that the formal 
assertion layer is optional; it is used typically for critical 
aspects of the system only. 
More formal specifications yield more powerful reasoning 
schemes at the price of higher specification effort and lower 
usability by non-experts; the various techniques briefly 
reviewed here should thus be seen as complementary means 
rather than alternative ones; their suitability may heavily 
depend on the specific type of system being considered. 

5. Reasoning about goals 
The ultimate purpose of goal modelling and specification is 
to suport some form of goal-based reasoning for RE subpro- 
cesses such as requirements elaboration, consistency and 
completeness checking, alternative selection, evolution man- 
agement, and so forth. 

5.1 Goal verification 
One of the benefits of goal-oriented RE is that one can verify 
that the requirements entail the goals identified, and check 
that the set of requirements specified is sufficiently complete 
for the set of goals identified [Yue87]. More precisely, if R 
denotes the set of requirements, As the set of environmental 
assumptions, D the set of domain properties, and G the set of 
goals, the following satisfaction relation must hold for each 
goal g in G:: 

This may be checked informally, or formally if the goal 
specifications and domain properties are formalized. For 
temporal logic specifications one may rely on the proof the- 
ory of temporal logic and use tools such as, e.g., STeP 
[Man96]. 
A lightweight alternative is to use formal refinement patterns 
fo Achieve, Maintain and Avoid goals [Dar96]. Such patterns 
are proved correct and complete once for all; refinements in 
the goal graph are then verified by matching them to one 
applicable pattern from the library. The mathematical proof 
intricacies are thereby hidden. A frequently used pattern is 
the decomposition-by-milestone pattern that refines a parent 
Achieve goal 

R, As, D I= g with R, As, D Id= false 

P-OQ 

into two subgoals: 

where the “0“ temporal operator means “sometime in the 
future”. Another frequently used pattern is the decomposi- 
tion-by-case pattern that refines the same parent Achieve 
goal into three subgoals: 

where the “‘MI‘ temporal operator means “always in the 
future unless”. 
The techniques above can be used for goals that can be said 
to be established in a clear-cut sense. For soft goals, the qual- 
itative reasoning procedure provided by the NFR framework 
is particularly appropriate [My192]. This procedure deter- 
mines the degree to which a goal is satisficeddenied by 
lower-level goals/requirements. A node or link in the goal 
graph is labelled S (satisficed) if it is satisficeable and not 
deniable; D (denied) if it is deniable but not satisficeable; C 
(conflicting) if it is both satisficeable and deniable; and U 
(undetermined) if it is neither satisficeable nor deniable. The 
general idea is to propagate such labels along satisficed links 
bottom-up, from lower-level nodes (i.e. requirements) to 
higher-level nodes (i.e. goals). Additional label values can 
be assigned at intermediate stages of the procedure, namely, 
U+ (inconclusive positive support), U- inconclusive negative 
support, and ? (requiring user intervention to specify an 
appropriate label value). Rules for bottom-up propagation of 
labels are then defined accordingly. A example of applica- 
tion of this framework to performance goals can be found in 
[Nix93]. 

5.2 Goal validation 
Goals can be validated by identifying or generating scenar- 
ios that are covered by them [Hau98]. One may even think of 
enacting such scenarios to produce animations [Hey98]. The 
scenario identification process is generally based on heuris- 
tics [Sut98, Ant981. 
In [And89], plan-based techniques are used to tentatively 
generate scenarios showing that a goal can be achieved with- 
out reaching prohibited conditions. Goals, prohibited condi- 
tions and operations are specified formally by simple state 
predicates. An automated planner first produces a trial sce- 
nario to achieve the goal condition; it then checks for faults 
in the proposed scenario by looking for scenarios achieving 
the prohibited conditions; finally it assists the specifier in 
modifying the set of operations in case faults are found. 
[Fic92] explores this deficiency-driven paradigm further. 
The system is specified by a set of goals, formalized in some 
restricted temporal logic, a set of scenarios, expressed in a 
Petri net-like language, and a set of agents producing 
restricted scenarios to achieve the goals they are assigned to. 
The general approach consists of (a) trying to detect incon- 
sistencies between scenarios and goals, and (b) applying 
operators that modify the specification to remove the incon- 
sistencies. Step (a) is carried out by a planner that searches 
for behaviours leading to some goal violation. The operators 
offered to the analyst in Step (b) encode heuristics for speci- 
fication debugging --e.g., introduce an agent whose respon- 
sibility is to prevent the state transitions that are the last step 

P 2 O R , R = > O Q  

P ~ R  = O  Q ,  P ~ O  R , P S P  WQ 
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in breaking the goal. There are operators for introducing new 
types of agents with appropriate responsibilities, splitting 
existing types, introducing communication and synchroniza- 
tion protocols between agents, weakening idealized goals, 
etc. The repeated application of deficiency detection and 
debugging operators allows the analyst to explore the design 
space and hopefully converge towards a satisfactory specifi- 
cation. 

5.3 Goal-based requirements elaboration 

The technique just sketched above is a first step towards 
making verification/validation contribute to the requirements 
elaboration process. The main reason for goal-oriented RE! 
after all is to let goals help elaborating the requirements sup- 
porting them. A goal-based elaboration typically consists of 
a hybrid of top-down and bottom-up processes, plus addi- 
tional processes driven by the handling of possible abnormal 
agent behaviors, the management of conflicting goals, the 
recognition of analogical situations from which specifica- 
tions can be transposed, and so forth. Note, however, that for 
explanatory purpose the resulting requirements document is 
in general better presented in a top-down way. 

Goallrequirement elicitation by refinement 
An obvious (but effective) informal technique for finding out 
subgoals and requirements is to keep asking HOW questions 
about the goals already identified [Lam95, LamOOc]. 
Formal goal refinement pattems may also prove effective 
when goal specifications are formalized; typically, they help 
finding out subgoals that were overlooked but are needed to 
establish the parent goal. Consider a simple train control sys- 
tem, for example, and the functional goal of train progress 
through consecutive blocks: 

Goal Achieve FrainProgress] 
FormalDef (V t:r Train, b: Block) [On (tr, b) 3 0 On (tr, b+l)] 

A particular case that comes directly to mind is when block 
b+l’s  signal is set to ‘go’. Two subgoals coming naturally to 
mind are the following: 

Goal Achieve [ProgressWhenGoSignaI] 
FormalDef V tr: Train, b: Block 

On (tr, b) A Go[b+1]3 0 On (tr, b+l) 
Goal Achieve [SignalSetToGo] 

FormalDef t/ tr: Train, b: Block 
On (tr, b) 3 0 Go[b+l] 

This tentative refinement matches the decomposition-by- 
case pattem in Section 5.1 and therefore allows the follow- 
ing missing subgoal to be pointed out: 

Goal Maintain VrainWaiting] 
FormalDef V tr: Train, b: Block 

On (tr, b) 3 On (tr, b) W O n  (tr, b+l) 

Another effective way of driving the refinement process is 
based on the determination that an agent candidate to goal 
assignment cannot realize the goal, e.g., because it cannot 
monitor the variables appearing in the goal antecedent or 
control the variables appearing in the goal consequent. 
[LetOl] gives a set of conditions for goal unrealizability; this 
set is proved complete and provides the basis for a rich, sys- 
tematic set of agent-driven refinements tactics for generating 
realizable subgoals and auxiliary agents. 

Goallrequirement elicitation by abstraction 
An obvious (but effective) informal technique for finding out 
more abstract, parent goals is to keep asking WHY questions 
about operational descriptions already available [Lam95, 
LamOOc]. 
More sophisticated techniques have been devised to elicit 
goals from scenarios. Based on a bidirectional coupling 
between type-level scenarios and goal verb templates as dis- 
cussed in Section 4, [Ro198] proposes heuristic rules for 
finding out alternative goals covering a scenario (corre- 
sponding to altemative values for the verb parameters), 
missing companion goals, or subgoals of the goal under con- 
sideration. On a more formal side, [Lam98c] describes an 
inductive learning technique that takes scenarios as exam- 
ples and counterexamples of intended behavior and gener- 
ates goal specifications in temporal logic that cover all the 
positive scenarios and exclude all the negative ones. 
Note also that refinement pattems when applied in the 
reverse way correspond to abstraction patterns that may pro- 
duce more coarse-grained goals. 

Goal operationalization 
A few efforts have been made to support the process of 
deriving pre-, post-, and trigger conditions on software oper- 
ations so as to ensure the terminal goals in the refinement 
process. The principle is to apply derivation rules whose 
premise match the goal under consideration [Dar93, LetOl]. 
Consider, for example, the following goal: 

Goal Maintain [DoorsClosedWhileMoving] 
FormalDef V tr: Train, loc, loc’: Location 

At (tr. loc) A o At (tr, loc’) A loc c> loc’ 
= tr.Doors = ‘closed’ A o (tr.Doors = ‘closed’) 

where the “o“ temporal operator means “in the next state”. 
Applying the following derivation rule 

G:PA(Pl A o P ~ = . Q ~  ~oQ2),DomPre:Pl,DomPost:P2 

ReqPre for G: Q1 , ReqPost for G: Q2 

we derive the following operationalization: 
Operation Move 

Input tr: Train; loc, loc’: Location ; Output At 
DomPre At (tr, loc) A loc <> Ioc’ 
DomPost At (tr, loc’) 
RequiredPre for DoorsClosedWhileMoving: tr.Doors = ’closed‘ 
RequiredPost for DoorsClosedWhileMoving: trDoors = ’closed‘ 

Analogical reuse 
Goal-based specifications can also be acquired by retrieving 
structurally and semantically analog specifications in a 
repository of reusable specification components, and then 
transposing the specifications found according to the struc- 
tural and semantic matching revealed by the retrieval pro- 
cess [Mas97]. 

Obstacle-driven elaboration 
First-sketch specifications of goals, requirements and 
assumptions are often too ideal; they are likely to be violated 
from time to time in the running system due to unexpected 
behaviors of agents. The lack of anticipation of exceptional 
behaviors may result in unrealistic, unachievable and/or 
incomplete requirements. 
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Such exceptional behaviors are captured by assertions called 
obstacles to goal satisfaction. An obstacle 0 is said to 
obstruct a goal G in a domain Dom iff 

(0, DomJ I= -G obstruction 
Dom I=k --, 0 domain consistency 

Obstacles thus need to be identified and resolved at RE time 
in order to produce robust requirements and hence more reli- 
able software. The notion of obstacle was just mentioned in 
[Yue87]. It was elaborated further in [Pot951 where scenarios 
are shown to be a good vehicle for identifying goal obstruc- 
tions. Some heuristics for identifying obstacles can be found 
in [Pot951 and [Ant98]. More formal techniques are 
described in [Lam98a] and then [LamOOa] for: 

the abductive generation of obstacles from goal specifica- 
tions and domain properties, 
the systematic generation of various types of obstacle reso- 
lution, e.g., goal substitution, agent substitution, goal 
weakening, goal restoration, obstacle mitigation, or obsta- 
cle prevention. 

Obstacles can also be resolved at run time in some cases, see 
[Fea98]. 

5.4 Conflict management 
Requirements engineers live in a world where conflicts are 
the rule, not the exception [Eas94]. Conflicts generally arise 
from multiple viewpoints and concerns [Nus94]. They must 
be detected and eventually resolved even though they may 
be temporarily useful for eliciting further information 
[Hun98]. Various forms of conflict are studied in [Lam88b], 
in particular, a weak form called divergence which occurs 
frequently in practice. 

The goals G,, ..., G, are said to be divergent iff there exists a 
non-trivial boundary condition B such that : 

{ B, VI GI, Dom} I= false inconsistency 
{ B, V,* GI, DomJ l=k false minimali9 

(“Non-trivial” means that B is different from the bottom false 
and the complement VI GI). Note that the traditional case 
of conflict, in the sense of logical inconsistency, amounts to 
a particular case of divergence. 
Divergences need to be identified and resolved at RE time in 
order to eventually produce consistent requirements. Formal 
and heuristic techniques are described in [Lam98b] for: 

the abductive generation of boundary conditions from goal 

the systematic generation of various types of divergence 

A qualitative procedure is suggested in [Rob891 for handling 
conflicts. The idea is to detect them at requirements level 
and characterize them as differences at goal level. The user 
of the procedure first identifies the requirements elements 
that correspond to each other in the various viewpoints at 
hand; conflict detection is then carried out by mapping syn- 
tactic differences between the corresponding requirements 
elements to differences in values of variables involved in the 
goals supported by these elements. Conflict resolution is 
attempted next by appealing to compromises (e.g., through 

specifications and domain properties, 

resolution. 

compensations or restriction specialization), or goal substitu- 
tions. Finally, the conflict resolution at goal level is down 
propagated to the requirements level. 

5.5 Goal-based negotiation 
Conflict resolution often requires negotiation. [Boe95] pro- 
poses an iterative 3-step process model for goal-based nego- 
tiation of requirements. At each iteration of a spiral model 
for requirements elaboration, 
(1) all stakeholders involved are identified together with 

their wished goals (called win conditions); 
(2) conflicts between these goals are captured together with 

their associated risks and uncertainties; 
(3) goals are reconciled through negotiation to reach a mutu- 

ally agreed set of goals, constraints, and alternatives for 
the next iteration. 

5.6 Alternative selection 
Which goal refinement should be selected when alternative 
ones are identified? Which agent assignment should be 
selected when alternative ones are identified? This is by and 
large an open problem. There are local tactics of course, such 
as favoring alternatives with less critical obstacles or con- 
flicts, but a systematic approach has not emerged so far in 
the RE literature. 
One promising direction would be to use qualitative reason- 
ing schhemes B la NFR [My1921 to select an alternative 
refinement that contributes the best to the satisficing of soft 
goals related to cost, reliability, performance etc. Multicrite- 
ria analysis techniques could be helpful here. 

6. A goal-oriented RE method in action 
It is now time to demonstrate how some of the techniques 
reviewed above can fit together in a goal-oriented RE 
method. We come back to a case study we have already pre- 
sented in [LamOOc] because it illustrates many of the issues 
raised here; the initial document is unbiased as it comes from 
an independent source involved in the development,; it is 
publically available [BAR991 --unlike most documents from 
the industrial projects we have been involved in; the system 
is a real, complex, real-time, safety-critical one (this allows 
one to suggest that goal-oriented RE is not only useful for 
business applications). The initial document focuses on the 
control of speed and acceleration of trains under responsibil- 
ity of the Advanced Automatic Train Control being devel- 
oped for the San Francisco Bay Area Rapid Transit (BART) 
system. 
We follow the KAOS method [Dar93, Lam95, LamOOc] in 
order to incrementally elaborate four complementary sub- 
models: (1) the goal model, ( 2 )  the object model; (3) the 
agent responsibility model, leading to alternative system 
boundaries; (4) the operation model. The goal refinement 
graph is elaborated by eliciting goals from available sources 
and asking why and how questions (goal elaboration step); 
objects, relationships and attributes are derived from the goal 
specifications (object modeling step); agents are identified, 
alternative responsibility assignments are explored, and 
agent interfaces are derived (responsibility assignment step); 
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operations and their domain pre- and postconditions are 
identified from the goal specifications, and strengthened pre- 
lpostconditions and trigger conditions are derived so as to 
ensure the corresponding goals (operationalization step). 
These steps are not strictly sequential as progress in one step 
may prompt parallel progress in the next one or backtracking 
to a previous one. 
The presentation will be sketchy for lack of space; the inter- 
ested reader may refer to [LetOl] for a much greater level of 
details. 

ServeMorePassengers Minimize[Costs 

Avoid [TrainEntering / 
I ... 

Maintain Maintain mm [WCS-DistBetweenTrains] [TrackSegmentSpeedLimit] 

Figure 1 - Preliminary goal graph for the BART system 

Goal identification from the initial document 
A first set of goals is identified from a first reading of the 
available source [BART991 by searching for intentional key- 
words such as “objective”, “purpose”, “intent”, “concern”, 
“in order to”, etc. A number of soft goals are thereby identi- 
fied, e.g., “ServeMorePassengers”, “NewTracksAdded”, “Mini- 
mize[DevelopmentCosts]”, “Minimize[DistanceBetweenTrains]”, 
“SafeTransportation”, etc. These goals are qualitatively related 
to each other through support links: Contributes (+), Con- 
tributesstrongly (++), Conflicts (-), ConflictsStrongly (- -). 
These weights are used to select among alternatives. Where 
possible, keywords from the semi-formal layer of the KAOS 
language are used to indicate the goal category. The Maintain 
and Avoid keywords specify “always” goals having the tem- 
poral pattem 0 (P + Q) and 0 (P + a), respectively. The 
Achieve keyword specifies “eventually” goals having the 
pattem P 3 0 Q. The “+“ connective denotes logical impli- 
cation; 0 (P -+ Q) is denoted by P 
Figure 1 shows the result of this first elicitation. Clouds 
denote soft-goals, parallelograms denote formalizable goals, 
arrows denote goal-subgoal links, and a double line linking 
arrows denotes an OR-refinement into alternative subgoals. 

Formalizing goals and identifying objects 
The object modeling step can start as soon as goals can be 

Q for short. 

formulated precisely enough. The principle here is to iden- 
tify objects, relationships and attributes from goal specifica- 
tions. Consider, for example, the following goal at the 
bottom of Figure 1: 

Goal Maintain[TrackSegmentSpeedLimit] 
InformalDef A train should stay below the maximum speed 

the track segment can handle. 

FormalDef V tr: Train, s: Tracksegment : 
On(tr, s) 3 tr.Speed < sSpeedLimit 

From the predicate, objects, and attributes appearing in this 
goal formalization we derive the following portion of the 
object model: 

On TI 
Speed: Speedunit - SpeedLimit: Speedunit 

Similarly, the other goal at the bottom of Figure 5 is speci- 
fied as follows: 

Goal Maintain[WCS-DistBetweenTrains] 
InformalDef A train should never get so close to a train in 

front so that if the train in front stops suddenly (e.g., 
derailment) the next train would hit it. 

FormalDef V t r l ,  tr2: Train : 
FoIlowing(tr1, tr2) trl.Loc - tr2.Loc > trl.WCS-Dist 

(The InformalDef statements in those goal definitions are 
taken literally from the initial document; WCS-Dist denotes 
the physical worst-case stopping distance based on the phys- 
ical speed of the train.) This new goal specification allows 
the above portion of the object model to be enriched with Loc 
and WCS-Dist attributes for the Train object together with a 
reflexive Following relationship on it. The formalization of the 
goal Avoid[TrainEnterinClosedGate] in Figure 1 will further 
enrich the object model by elements that are strictly neces- 
sary to the goals considered. Goals thus provide a precise 
driving criterion for  identibing elements of the object model. 

Eliciting new goals through WHY questions 

It is often the case that higher-level goals underpinning goals 
easily identified from initial sources are kept implicit in such 
sources. They may, however, be useful for finding out other 
important subgoals of the higher-level goal that were miss- 
ing for the higher-level goal to be achieved. 
As mentioned before, higher-level goals are identified by 
asking WHY questions about the goals available. 
For example, asking a WHY question about the goal Main- 
tain[WCS-DistBetweenTrains] yields the parent goal Avoid[Train- 
Collision]; asking a WHY question about the goal 
Avoid[TrainEnteringClosedGate] yields a new portion of the goal 
graph, shown in Figure 2. 

In this goal subgraph, the companion subgoal Maintain[Gate- 
ClosedWhenSwitchlnWrongPosition] was elicited formally by 
matching a formal refinement pattern to the formalization of 
the parent goal Avoid[TrainOnSwitchlnWrongPosition], found by 
a WHY question, and to the formalization of the initial goal 
Avoid[TrainEnteringClosedGate] [Dar96, LetOl 1. The dot join- 
ing the two lower refinement links together in Figure 2 
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means that the refinement is (provably) complete. 

Maintain [GateC 
[TrainEnteringClosedCate]/ 

Figure 2 - Enriching the goal graph by WHY elicitation 

Eliciting new goals through HOW questions 
Goals need to be refined until subgoals are reached that can 
be assigned to individual agents in the software-to-be and in 
the environment. Terminal goals become requirements in the 
former case and assumptions in the latter. 
More concrete goals are identified by asking HOW ques- 
tions. For example, a HOW question about the goal Main- 
tainpNCS-DistBetweenTrains] in Figure 1 yields an extension of 
the goal graph shown in Figure 3. 

i 

Figure 3 - Goal refinement 

The formalization of the three subgoals in Figure 3 may be 
used to prove that together they entail the parent goal Main- 
tainpNCS-DistBetweenTrains] formalized before [LetOI]. These 
subgoals need be refined in turn until assignable subgoals 
are reached. A complete refinement tree is given in Annex 1. 

Identifying potential responsibility assignments 
Annex 1 also provides a possible goal assignment among 
individual agents. This assignment seems the one suggested 
in the initial document [BAR99]. For example, the accuracy 
goal Maintain[AccurateSpeed/PositionEstimates] is assignable to 
the TrackingSystem agent; the goal Maintain[SafeTrainResponse- 
ToCommand] is assignable to the OnBoardTrainController agent; 
the goal Maintain[SafeCmdMsg] is assignable to the Speed/ 
AccelerationControlSystem agent. 

It is worth noticing that goal refinements and agent assign- 
ments are both captured by AND/OR relationships. Altema- 
tive refinements and assignments can be (and probably have 
been) explored. For example, the parent goal Maintain[WCS- 
DistBetweenTrains] in Figure 3 may alternatively be refined by 
the following three Maintain subgoals: 

PreceedingTrainSpeed/PositionKnownToFollowingTrain 
SafeAccelerationSasedOnPreceedingTrainSpeed/Position 
NoSuddenStopOfPreceedingTrain 

The second subgoal above could be assigned to the OnBoard- 
TrainController agent. This alternative would give rise to a 
fully distributed system. 
As suggested before, qualitative reasoning techniques in the 
style of [My1991 might be applied to the softgoals identified 
in Figure 1 to help making choices among altematives.. 

Deriving agent interfaces 
Let us now assume that the goal Maintain[SafeCmdMsg] at the 
bottom of the tree in Annex 1 has been actually assigned to 
the Speed/AccelerationControlSystem agent. The interfaces of 
this agent in terms of monitored and controlled variables can 
be derived from the formal specification of this goal (we just 
take its general form here for sake of simplicity): 

Goal Maintain[SafeCmdMsg] 
FormalDef V cm: CommandMessage, t i l , ti2: Trainlnfo 

cm.Sent A cm.TrainlD = t i l  .TrainlD A Followinglnfo (til, ti2) 
3 cm.Accel 5 F (til, ti2) A cm.Speed > G (til) 

To fulfil its responsibility for this goal the Speed/Acceleration- 
Controlsystem agent must be able to eval~rare the goal ante- 
cedent and establish the goal consequent. The agent’s 
monitored variable is therefore Trainhfo whereas its con- 
trolled variables are CommandMessage. Accel and 
CommandMessage. Speed. The latter will in tum become mon- 
itored variables of the OnBoardTrainController agent, by similar 
analysis. The technique for deriving the agent’s monitored 
and controlled variables is fairly systematic, see [LetOl] for 
details. 

Identifying operations 
The operationalization step starts by identifying the opera- 
tions relevant to goals and defining their domain pre- and 
postconditions. Goals refer to specific state transitions; for 
each such transition an operation causing it  is identified; its 
domain pre- and postcondition capture the state transition. 
For the goal Maintain[SafeCmdMsg] formalized above we get, 
for example, 

Operation SendCommandMessage 
input Train (arg tr) 
Output ComandMessage {res cm) 
DomPre cm.Sent 
DomPost cm.Sent A cm.TrainlD = tr.lD 

This definition minimally captures what any sending of a 
command to a train is about in the domain considered; it 
does not ensure any of the goals it  should contribute to. 

Operationalizing goals 
The next operationalization sub-step is to strengthen such 
domain conditions so that the various goals linked to the 
operation are ensured. For goals assigned to software agents, 
this step produces requirements on the operations for the cor- 
responding goals to be achieved. As mentioned before, 
derivation rules for an operationalization calculus are avail- 
able [Dar93, LetOl]. In our example, they yield the follow- 
ing requirements that strengthen the domain pre- and 
postconditions: 
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Operation SendCommandMessage 
Input Train {arg tr), Trainlnfo; Output ComandMsg {res cm} 
DomPre ... ; DomPost ... 
ReqPost for SafeCmdMsg: 

Tracking (til, tr) A Following (til, ti2) 
-+ cm.Acc 5 F (til, ti2) A cm.Speed > G (til) 

ReqTrig for CmdMsgSentlnTime: 
ko sec -, 3 cm2: CommandMessage: 

cm2.Sent A cm2.TrainlD = tr.lD 

(The trigger condition captures an obligation to trigger the 
operation as soon as the condition gets true and provided the 
domain precondition is true. In the example above the condi- 
tion says that no command has been sent in every past state 
up to one half-second [BAR99].) 
Using a mix of semi-formal and formal techniques for goal- 
oriented requirements elaboration, we have reached the level 
at which most formal specification techniques would start. 

Anticipating obstacles 
As mentioned before, goals also provide a basis for early 
generation of high-level exceptions which, if handled prop- 
erly at requirements engineering time, may generate new 
requirements for more robust systems. 
The following obstacles were generated to obstruct the sub- 
goal Achieve[CommandMsgIssuedlnTime]: 

CommandMsgNotlssued, 
CommandMsglssuedLate, 
CommandMsgSentToWrongTrain 

For the companion subgoal Achieve[CommandMsgDeliveredln- 
Time] we similarly generated obstacles such as: 

CommandMsgDeliveredLate, 
CommandMsgCorrupted 

The last companion subgoal Maintain[SafeCmdMsg] may be 
obstructed by the condition 

UnsafeAcceleration, 
and so on. The obstacle generation process for a single goal 
results in a goal-anchored fault-tree, that is, a refinement tree 
whose root is the goal negation. Compared with standard 
fault-tree analysis [Lev95], obstacle analysis is goal-ori- 
ented, formal, and produces obstacle trees that are provably 
complete with respect to what is known about the domain 
[LamOOa]. 
Altemative obstacle resolutions may then be generated to 
produce new or altemative requirements. For example, the 
obstacle CommandMsgSentLate above could be resolved by an 
altemative design in which accelerations are calculated by 
the on-board train controller instead; this would correspond 
to a goal substitution strategy. The obstacle UnsafeAccelera- 
tion above could be resolved by assigning the responsibility 
for the subgoal SafeAccelerationCommanded of the goal Main- 
tain[SafeCmdMsg] to the VitalStationComputer agent instead 
[BART99]; this would correspond to an agent substitution 
strategy. An obstacle mitigation strategy could be applied to 
resolve the obstacle OutOfDateTrainlnfo obstructing the accu- 
racy goal Maintain[AccurateSpeed/PositionEstimates], by intro- 
ducing a new subgoal of the goal Avoid[TrainCollisions], 

. namely, the goal Avoid[CollisionWhenOutOfDateTrainInfo]. This 
new goal has to be refined in tum, e.g., by subgoals requiring 
full braking when the message origination time tag has 

expired. 

Handling conflicts 
The initial BART document suggests an interesting example 
of divergence [BART99, p.131. Roughly speaking, the train 
commanded speed may not be too high, because otherwise it 
forces the distance between trains to be too high, in order to 
achieve the DistancelncreasedWithCornmandedSpeed subgoal of 
the SafeTransportation goal; on the other hand, the com- 
manded speed may not be too low, in order to achieve the 
LimitedAccelerAbove7mphOfPhysicalSpeed subgoal of the 
SmoothMove goal. There seems to be a flavor of divergence 
here. 

Min [Dist 

/ IncreasedWithCmdedSoee Dist-i 
L 

Figure 4 - Conflict in speedacceleration control 

We therefore look at the formalization of the suspect goals: 
Goal Maintain [CmdedSpeedCloseToPhysicalSpeed] 

FormalDef V tr: Train 
tr.AccCM 2 0 

= tr.SpeedcM 5 tr.Speed + f (dist-to-obstacle) 
and 

Goal Maintain [CmdedSpeedAbove7mphOfPhysicalSpeed] 
FormalDef V tr: Train 

tr.AcccM t 0 3 tr.Speedcu > tr.Speed + 7 

These two goals are formally detected to be divergent using 
the techniques described in [Lam98b]. The generated bound- 
ary condition for making them logically inconsistent is 

0 (3 tr: Train) (tr.AcccM 2 0 A f (dist-to-obstacle) 2 7 )  

The resolution operators from [Lam98b] may be used to 
generate possible resolutions; in this case one should keep 
the safety goal as it is and weaken the other conflicting goal 
to remove the divergence: 

FormalDef V tr: Train 
Goal Maintain [CmdedSpeedAbove7mphOfPhysicalSpeed] 

tr.AccCM t 0 = tr.SpeedcM > tr.Speed + 7 
v f (dist-to-obstacle) I 7 

7. Experience and tool support 
The purrpose of this paper is obviously not to deliver an 
experience report. We would just like to mention here that 
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experience with goal-oriented requirements engineering is 
growing significantly, in different domain, different types of 
projects, and different project sizes. For example, Anton and 
colleagues have reported their experience with BPR applica- 
tions [Ant941 and various electronic commerce systems 
[Ant98, AntOl]. Our understanding is that the NFR and i* 
frameworks have been experienced in real settings as well. 
Our KAOS method has been used in 11 industrial projects to 
date. These include the goal-oriented reengineering of a 
complex, unintelligible requirements document for a phone 
system on TV cable; the goal-oriented modeling of a com- 
plex air traffic control application; the goal-oriented engi- 
neering of requirements for a variety of systems such as: a 
copyright management system for a major editor of cartoon 
strips, a management system for a hospital emergency ser- 
vice, a drug delivery management system for a big drug dis- 
tributor, a new information system for a big daily newspaper, 
a web-based job information server, a web-based language 
translation system, and various e-learning systems. To give 
an idea, the copyright management system has 65 goals, 75 
entity types and relationships, 11 agents, and 45 operations; 
the goal-oriented deliverable is 115 pages long. The size of 
the goal refinement graph for the other applications ranges 
from 50 to 100 goals and requirements. 
Those projects could not have been undertaken without tool 
support. Our current GRAIL environment provides a graphi- 
cal editor tightly coupled with a syntax-directed editor, an 
object-oriented specification database server supporting que- 
ries for model analysis, static semantics checkers, view fil- 
tering mechanisms, a HTML generator for model browsing 
in hypertext mode, and various types of report generators. 
Current efforts are devoted to an open, full Java version; the 
plan then is to integrate more formal support such as anima- 
tors, model checkers, test data generators, formal verifica- 
tion tools, and so forth. 

8. Goal orientation beyond RE 
It has been suggested recently that the functional and (espe- 
cially) non-functional goals elaborated in the RE process 
could be used for deriving and refining architectures 
[LamOOc] and for annotating design patterns [ChuOO]. These 
are just preliminary efforts that should be expanded in a near 
future. 

9. Conclusion 
Goal-oriented requirements engineering has many advan- 
tages, some of which were recurrently felt in the aforemen- 
tioned projects, to restate a few of them: 

object models and requirements can be derived systemati- 
cally from goals; 
goals provide the rationale for requirements: 
a goal graph provides vertical traceability from high-level 
strategic concerns to low-level technical details; it allows 
evolving versions of the system under consideration to be 
integrated as alternatives into one single framework; 
goal AND/OR graphs provide the right abstraction level at 
which decision makers can be involved for important deci- 

sions; 

structure for the requirements document; 

alternative system proposals to be explored; 

and complete. 

the goal refinement structure provides a comprehensible 

alternative goal refinements and agent assignments allow 

goal formalization allows refinements to be proved correct 

We hope to have convinced the reader that this area of RE is 
worth pursuing. There are many open issues to work on in 
the future, of course; the reader may refer to [LamOOc] for a 
discussion of them. 
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ANNEX 1: GOAL REFINEMENT TREE AND RESPONSIBILITY ASSIGNMENT IN THE BART SYSTEM 

Maintain I I Maintain I 
SpeedAcceleration [SafeTrainResponse [NoSuddenStop 1 Commanded] 1 1 ToCoy"1 1 1 OtPrecedingTrain] 1 

TrainController 

I Maintain i Estimates] / I  B asedOnSpeed/PositionEstimates] 
[AccurateSpeed/Position [SafeComandToFollowingTrain 

Maintain 

I I I  I 

I 
[DeliveredCmdMsg 

DeliveredInTime] Exercised] 

Infrastructure 

262 

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore.  Restrictions apply. 


