
Goal-Oriented Requirements Engineering: A Guided Tour

Axel van Lamsweerde
De‘partement d’lngbnierie Informatique

Universite‘ catholique de Louvain
B-1348 Louvain-la-Neuve (Belgium)

avl@ info.ucl.ac.be

Abstract
Goals capture, at dizerent levels of abstraction, the various
objectives the system under consideration should achieve.
Goal-oriented requirements engineering is concerned with
the use of goals for eliciting, elaborating, structuring, spec-
ifying, analyzing, negotiating, documenting, and modlfj‘ing
requirements. This area has received increasing attention
over the past few years.
The paper reviews various research efforts undertaken
along this line of research. The arguments in favor of goal
orientation are first briefly discussed. The paper then com-
pares the main approaches to goal modeling, goal specifi-
cation and goal-based reasoning in the many activities of
the requirements engineering process. To make the discus-
sion more concrete, a real case study is used to suggest
what a goal-oriented requirements engineering method
may look like. Experience with such approaches and tool
support are briefly discussed as well.

1. Introduction
Goals have long been recognized to be essential compo-
nents involved in the requirements engineering (RE) pro-
cess. As Ross and Schoman stated in their seminal paper,
“requirements definition must say why a system is needed,
based on current or foreseen conditions, which may be
internal operations or an external market. It must say what
system features will serve and satisfy this context. And it
must say how the system is to be constructed” [Ros77].
Many informal system development methodologies from
the good old times included some form of goal-based analy-
sis, called context analysiis [Ros77], definition study
[Hic74], participative analysis [Mun81], and so forth. Typi-
cally, the current system under consideration is analyzed in
its organizational, operational and technical setting; prob-
lems are pointed out and opportunities are identified; high-
level goals are then identified and refined to address such
problems and meet the opportunities; requirements are then
elaborated to meet those goals. Such natural practice has led
requirements documentation standards to require a specific
document section devoted to the objectives the system
should meet (see, e.g., the IEEE-Std-830/1993 standards).
Surprisingly enough, goals have been largely ignored both
from the literature on software modeling and specification

and from the literature on object-oriented analysis (one
notable exception is [Rub92]). UML advocates sometimes
confess the need for higher-level abstractions: “In my work,
I focus on user goals first, and then I come up with use
cases to satisfy them; by the end of the elaboration period, I
expect to have at least one set of system interaction use
cases for each user goal I have identified” [Fow97, p.451).
The prominent tendency in software modeling research has
been to abstract programming constructs up to requirements
level rather than propagate requirements abstractions down
to programming level [My199].
Requirements engineering research has increasingly recog-
nized the leading role played by goals in the RE process
[Yue87, Rob89, Ber91, Dar91, My192, Jar93, Zav97bl.
Such recognition has led to a whole stream of research on
goal modeling, goal specification, and goal-based reasoning
for multiple purposes, such as requirements elaboration,
verification or conflict management, and under multiple
forms, from informal to qualitative to formal.
The objective of this paper is to provide a brief but hope-
fully comprehensive review of the major efforts undertaken
along this line of research. Section 2 first provides some
background material on what goals are, what they are useful
for, where they are coming from, and when they should be
made explicit in the RE process. Section 3 discusses the
major efforts in modeling goals in terms of features and
links to other artefacts found in requirements models. Sec-
tion 4 reviews the major techniques used for specifying
goals. Section 5 on goal-based reasoning reviews how goals
are used in basic activities of the RE process such as
requirements elicitation, elaboration, verification, valida-
tion, explanation, and negotiation, and in particular for dif-
ficult aspects of that process such as conflict management,
requirements deidealization, and alternative selection. Sec-
tion 6 then suggests what a goal-oriented RE method may
look like by enacting it on a real case study of a safety-criti-
cal train control system. This naturally leads to a brief
review, in Section 7, of industrial projects in which the use
of such methods was felt conclusive; the supporting tools
used in those projects are also briefly discussed there. Sec-
tion 8 just opens some fairly recent pieces of goal-based
work beyong requirements engineering.

2. The background picture
Reviewing the current state of the art in goal-oriented RE
would not make much sense without first addressing the
what, why, where and when questions about this area of
research.

1090-705WO1 $10.00 0 2001 EEE 249

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

What are goals?
A goal is an objective the system under consideration should
achieve. Goal formulations thus refer to intended properties
to be ensured; they are optative statements as opposed to
indicative ones, and bounded by the subject matter [Jac95,
Zav97al.
Goals may be formulated at different levels of abstraction,
ranging from high-level, strategic concerns (such as “serve
more passengers” for a train transportation system or “pro-
vide ubiquitous cash service” for an ATM network system)
to low-level, technical concerns (such as “acceleration com-
mand delivered on time” for a train transportation system or
“card kept after 3 wrong password entries” for an ATM sys-
tem).
Goals also cover different types of concerns: functional con-
cerns associated with the services to be provided, and non-
functional concerns associated with quality of service --such
as safety, security, accuracy, performance, and so forth.
The system which a goal refers to may be the current one or
the system-to-be; both of them are involved in the RE pro-
cess. High-level goals often refer to both systems. The sys-
tem-to-be is in essence composite; it comprises both the
software and its environment, and is. made of active compo-
nents such as humans, devices and software. As opposed to
passive ones, active components have choice of behavior
[Fea87, Yue87, Fic921; henceforth we will call them agents.
Unlike requirements, a goal may in general require the coop-
eration of a hybrid combination of multiple agents to achieve
i t [Dar93]. In a train transportation system, for example, the
high-level goal of safe transportation will typically require
the cooperation of on board train controllers, the train track-
ing system, station computers, the communication infra-
structure, passengers, and so forth. In an ATM system, the
goal of providing cash to eligible users will require the coop-
eration of the ATM software, sensors/actuators, the cus-
tomer, etc. One of the important outcomes of the RE process
is the decision on what parts of the system will be automated
and what parts will not. A goal under responsibility of a sin-
gle agent in the software-to-be becomes a requirement
whereas a goal under responsibility of a single agent in the
environment of the software-to-be becomes an assumption
[Lam98b, Lam98cl. Unlike requirements, assumptions can-
not be enforced by the software-to-be; they will hopefully be
satisfied thanks to organizational norms and regulations,
physical laws, etc.

Why are goals needed?
There are many reasons why goals are so important in the
RE process.

Achieving requirements completeness is a major RE con-
cern.. Goals provide a precise criterion for suflcienr com-
pleteness of a requirements specification; the specification
is complete with respect to a set of goals if all the goals
can be proved to be achieved from the specification and
the properties known about the domain considered
[Yue87].
Avoiding irrelevant requirements is another major RE con-
cern. Goals provide a precise criterion for requirements
pertinence; a requirement is pertinent with respect to a set

of goals in the domain considered if its specification is
used in the proof of one goal at least [Yue87].
Explaining requirements to stakeholders is another impor-
tant issue. Goals provide the rationale for requirements, in
a way similar to design goals in design processes [Moss$
Lee911. A requirement appears because of some underly-
ing goal which provides a base for it [Ros77, Dar91,
Som971. More explicitly, a goal refinement tree provides
traceability links from high-level strategic objectives to
low-level technical requirements. In particular, for busi-
ness application systems, goals may be used to relate the
software-to-be to organizational and business contexts
[Yu93].
Goal refinement provides a natural mechanism for struc-
turing complex requirements documents for increased
readability. (This at least has been our experience in all
industrial prjects we have been involved in, see Section 7.)
Requirements engineers are faced with many alternatives
to be considered during the requirements elaboration pro-
cess. Our extensive experience revealed that alternative
goal refinements provide the right level of abstraction at
which decision makers can be involved for validating
choices being made or suggesting other alternatives over-
looked so far. Alternative goal refinements allow altema-
tive system proposals to be explored [LamOOc].
Managing conflicts among multiple viewpoints is another
major RE concern [Nus94]. Goals have been recognized to
provide the roots for detecting conflicts among require-
ments and for resolving them eventually [Rob89,
Lam98bl.
Separating stable from more volatile information is
another important concern for managing requirements
evolution. A requirement represents one particular way of
achieving some specific goal; the requirement is therefore
more likely to evolve, towards another way of achieving
that same goal, than the goal itself. The higher level a goal
is, the more stable it will be. Others have made that same
observation [Ant94]. It turns out that different system ver-
sions often share a common set of high-level goals; the
current system and the system-to-be correspond to altema-
tive refinements of common goals in the goal refinement
graph, and can therefore be integrated into one single goal
model (see Section 3).
Last but not least, goals drive the identification of require-
ments to support them; they have been shown to be among
the basic driving forces, together with scenarios, for a sys-
tematic requirements elaboration process [Dar91, Rub92,
Dar93, Ant98, Dub98, KaiOO, LamOOc]. We will come
back to this in Sections 5 and 6.

Where are goals coming from?
Goal identification is not necessarily an easy task [Lam95,
Ant98, Hau98, Ro1981. Sometimes they are explicitly stated
by stakehokders or in preliminary material available to
requirements engineers. Most often they are implicit so that
goal elicitation has to be undertaken.
The preliminary analysis of the current system is an impor-
tant source for goal identification. Such analysis usually
results in a list of problems and deficiencies that can be for-

250

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

mulated precisely. Negating those formulations yields a first
list of goals to be achieved by the system-to-be.
In our experience, goals can also be identified systematically
by searching for intentional keywords in the preliminary
documents provided, interview transcripts, etc. [LamOOc].
Once a preliminary set of goals and requirements is obtained
and validated with stakeholders, many other goals can be
identified by refinement and by abstraction, just by asking
HOW and WHY questions about the goalsh-equirements
already available, respectively [Lam95, LamOOc 1.
More sophisticated techniques for goal refinement and
abstraction (notably, from scenarios) will be reviewed in
Section 5. Other goals are identified by resolving conflicts
among goals or obstacles to goal achievement, see Section 5
too.
A common misunderstanding about goal-oriented
approaches is that they are inherently top-down; this is by no
means the case as it should hopefully be clear now from the
discussion above.

When should goals be made explicit?
It is generally argued that goal models are built during the
early phases of the RE process [Dar93, Yu97, Dub981. The
basis for the argument is the driving role played by goals in
that process; the soonest a goal is identified and validated,
the best. This does not imply any sort of waterfall-like
requirements elaboration process, however. As requirements
"implement" goals much the same way as programs imple-
ment design specifications, there is some inevitable inter-
twining of goal identification and requirements elaboration
[Lam95, Swa821. Goals may thus sometimes be identified
fairly lately in the RE process --especially when WHY ques-
tions about technical details or scenarios, initially taken for
granted, are raised lately in the process.

3. Modeling goals
The benefit of goal modeling is to support heuristic, qualita-
tive or formal reasoning schemes during requirements engi-
neering (see Section 5) . Goals are generally modelled by
intrinsic features such as their type and attributes, and by
their links to other goals and to other elements of a require-
ments model.

Goal types and taxonomies. Goals can be of different types.
Several classification axes have been proposed in the litera-
ture.
Functional goals underlie services that the system is
expected to deliver whereas non-finctional goals refer to
expected system qualities such as security, safety, perfor-
mance, usability, flexibility, customizability, interoperability,
and so forth [Ke190]. This typology is overly general and can
be specialized. For example, satisfaction goals are functional
goals concerned with satisfying agent requests; information
goals are functional goals concerned with keeping such
agents informed about object states (Dar931. Non-functional
goals can be specialized in a similar way. For example, accu-
racy goals are non-functional goals requiring the state of
software objects to accurately reflect the state of the corre-
sponding monitoredcontrolled objects in the environment

[My192, Dar931 --such goals are often overlooked in the RE
process; their violation may be responsible for major failures
[LamOOa]. Pegormance goals are specialized into time and
space performance goals, the former being specialized into
response time and throughput goals [Nix93]. Security goals
are specialized into confidentiality, integrity and availability
goals [Amo94]; the latter can be specialized in turn until
reaching domain-specific security goals. A rich taxonomy
for non-functional goals can be found in [ChuOO].
Another distinction often made in the literature is between
soft goals, whose satisfaction cannot be established in a
clear-cut sense [My192], and (hard) goals whose satisfaction
can be established through verification techniques [Dar93,
Dar961. Soft goals are especially useful for comparing alter-
native goal refinements and chosing one that contributes the
"best" to them, see below.
Another classification axis is based on types of temporal
behaviour prescribed by the goal. [Dar93]. Achieve (resp.
cease) goals generate system behaviours, in that they require
some target property to be eventually satisfied in some future
state (resp. denied); maintain (resp. avoid) goals retrict
behaviours, in that they require some target property to be
permanently satisfied in every future state (resp. denied)
unless some other property holds. Optimize goals compare
behaviours to favor those which better ensure some soft tar-
get property.
In a similar vein, [Sut93] proposes a classification according
to desired system states (e.g., positive, negative, alternative,
feedback, or exception-repair) and to goal level (e.g., policy
level, functional level, domain level). [Ant941 makes a dis-
tinction beween objective goals, that refer to objects in the
system, and adverbial goals, that refer to ways of achieving
objective goals.
Goal types and taxonomies are used to define heuristics for
goal acquisition, goal refinement, requirements derivation,
and semi-formal consistency/completeness checking [Dar93,
Sut93, Ant98, ChuOO, AntOl], or to retrieve goal specifica-
tions in the context of specification reuse [Mas97].

Goal attributes. Beside their type, goals can also be intrinsi-
cally characterized by attributes such as their name and their
specification (see Section 4). Priority is another important
attribute that can be attached to goals [Dar93]. Qualitative
values for this attribute allow mandatory or optional goals to
be modelled with various degrees of optionality. Priorities
are often used for resolving conflicts among goals [Rob89,
Lam98bl. Other goal attributes that have been proposed
include goal utility and feasibility [Rob89].

Goal Links. Many different types of links have been intro-
duced in the literature to relate goals (a) with each other and
(b) with other elements of requirements models. Such links
form the basis for defining goal structures. We discuss inter-
goal links first, and then links between goals and other ele-
ments of requirements models such as agents, scenarios, or
operations.

Links between goals are aimed at capturing situations where
goals positively or negatively support other goals. Directly
borrowed from problem reduction methods in Artificial

25 1

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

Intelligence [Ni171], AND/OR graphs may be used to cap-
ture goal refinement links [Dar91, Dar931. AND-refinement
links relate a goal to a set of subgoals (called refinement);
this means that satisfying all subgoals in the refinement is
sufficient for satisfying the parent goal. OR-refinement links
relate a goal to an alternative set of refinements; this means
that satisfying one of the refinements is sufficient for satisfy-
ing the parent goal. In this framework, a conflict link
between two goals is introduced when the satisfaction of
one of them may prevent the other from being satisfied.
Those link types are used to capture alternative goal refine-
ments and potential conflicts, and to prove the correctness of
goal refinements (see Section 5).
Weaker versions of those link types have been introduced to
relate soft goals [Rob89, My192, ChuOO] as the latter can
rarely be said to be satisfied in a clear-cut sense. Instead of
goal satisfaction, goal satisficing is introduced to express
that subgoals are expected to achieve the parent goal within
acceptable limits, rather than absolutely. A subgoal is then
said to contribute partially to the parent goal, regardless of
other subgoals; it may contribute positively or negatively.
The semantic rules are now as follows. If a goal is AND-
decomposed into subgoals and all subgoals are satisficed,
then the parent goal is satisficeable; but if a subgoal is denied
then the parent goal is deniable. If a goal contributes nega-
tively to another goal and the former is satisficed, then the
latter is deniable. These rules are used for qualitative reason-
ing about goal satisficing (see Section 5).
Beside inter-goal links, goals are in general also linked to
other elements of requirements models. KAOS introduces
AND/OR operationalization links to relate goals to the oper-
ations which ensure them through corresponding required
pre-, post-, and trigger conditions [Lam98c, LamOOc] (the
older notion of operationalization [Dar91, Dar931 was
revised and simplified from practical experience). Others
have used similar links between goals and operations, e.g.,
[Ant94, Ant98, KaiOO]. In [My192], the inter-goal contribu-
tion link types are extended to capture the positivehegative
contribution of requirements to goals; argumentation links
are also introduced to connect supporting arguments to con-
tribution links.
There has been a massive amount of work on linking goals
and scenarios together --e.g., [Fic92, Dar93, Pot95, Lei97,
Sut98, Ant98, Hau98, Lam98b, Ro198, KaiOO, AntOl]. The
obvious reason is that scenarios and goals have complemen-
tary characteristics; the former are concrete, narrative, proce-
dural, and leave intended properties implicit; the latter are
abstract, declarative, and make intended properties explicit.
Scenarios and goals thus complement each other nicely for
requirements elicitation and validation. By and large the link
between a goal and a scenario is a coverage link; the main
differences between the various modeling proposals lie in
the fact that a scenario may be type-level or instance-level,
may be an example or a counter-example of desired behav-
ior, and may exercise a goal or an obtsacle to goal achieve-
ment.
Goal models may also be related to object models as goal
formulations refer to specific objects, e.g., entities, relation-
ships or agents [Dar93]. This link type allows pertinent

object models to be systematically derived from goal models
[LamOOc] .
Various proposals have also been made to relate goals to
agents. In KAOS, responsibility links are introduced to relate
the goal and agent submodels. A goal may be assigned to
alternative agents through OR responsibility links; this
allows altemative boundaries to be explored between the
software-to-be and its environment. “Responsibility” means
that the agent is committed to restrict its behavior by per-
forming the operations it is assigned to only under restricted
conditions, namely, those prescribed by the required pre-,
post-, and trigger conditions [Dar93]. This notion of respon-
sibility derives from [Fea87, Fin871; it is studied in depth in
[LetOI]. Wish links are also sometimes used in heuristics for
agent assignment (Dar911; e.g., one should avoid assigning a
goal to an agent wishing other goals in conflict with that
goal..
In the i* framework [Yu93, Yu971, various types of agent
dependency links are defined to model situations where an
agent depends on another for a goal to be achieved, a task to
be achieved, or a resource to become available. For each type
of dependency an operator is defined; operators may be com-
bined to define plans that agents may use to achieve goals.
The purpose of this modelling is to support various kinds of
checks such as the viability of an agent’s plan or the fulfii-
ment of a commitment between agents. Although initially
conceived for modeling the organizational environment of
the software-to-be, the TROPOS project is currently aiming
at propagating this framework to later stages of the software
lifecycle, notably, for modeling agent-oriented software
architectures.
Various authors have also suggested representing the links
between goals and organizational policies, e.g., [Sib93,
Fea93, Sut931.
At the process level, i t may be useful for traceability purpose
[Got951 to record which actor owns which goal or some
view of it [Lam98b].

4. Specifying goals
Goals must obviously be specified precisely to support
requirements elaboration, verification/validation, conflict
management, negotiation, explanation and evolution.
An informal (but precise) specification should always be
given to make it precise what the goal name designates
[Zav97a].
Semi-formal specifications generally declare goals in terms
of their type, attribute, and links (see Section 3). Such decla-
rations may in general be provided alternatively using a tex-
tual or a graphical syntax (see, e.g., [Dar98]). In the NFR
framework [My192], a goal is specified by the most specific
subtype it is an instance of, parameters that denote the object
attributes it refers to, and the degree of satisficing/denial by
child goals. Semi-formal specifications often include key-
word verbs with some predefined semantics. For example,
Achieve, Maintain and Avoid verbs in KAOS specify a tempo-
ral logic pattern for the goal name appearing as parameter
[Dar93]; they implicitly specify that a corresponding target
condition should hold some time in the future, always in the

252

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

future unless some other condition holds, or never in the
future. The intent is to provide a lightweight alternative to
full formalization of the goal formulation, still amenable to
some form of analysis. This basic set has been extended with
qualitative verbs such as Improve, Increase, Reduce, Make,
and so forth [Ant98]. In a similar spirit, goals in [Ro198] are
represented by verbs with different parameters playing dif-
ferent roles with respect to the verb --e.g., target entities
affected by the goal, beneficiary agents of the goal achieve-
ment, resource entities needed for goal achievement, source
or destination of a communication goal, etc.
Formal specifications assert the goal formulation in a fully
formal system amenable to analysis. In KAOS, such asser-
tions are written in a real-time linear temporal logic heavily
inspired from [Man92, Koy921 with the usual operators over
past and future states, bound by time variables; semantically,
they capture maximal sets of desired behaviors [Dar93,
LetOl]. The KAOS language is “2-button’’ in that the formal
assertion layer is optional; it is used typically for critical
aspects of the system only.
More formal specifications yield more powerful reasoning
schemes at the price of higher specification effort and lower
usability by non-experts; the various techniques briefly
reviewed here should thus be seen as complementary means
rather than alternative ones; their suitability may heavily
depend on the specific type of system being considered.

5. Reasoning about goals
The ultimate purpose of goal modelling and specification is
to suport some form of goal-based reasoning for RE subpro-
cesses such as requirements elaboration, consistency and
completeness checking, alternative selection, evolution man-
agement, and so forth.

5.1 Goal verification
One of the benefits of goal-oriented RE is that one can verify
that the requirements entail the goals identified, and check
that the set of requirements specified is sufficiently complete
for the set of goals identified [Yue87]. More precisely, if R
denotes the set of requirements, As the set of environmental
assumptions, D the set of domain properties, and G the set of
goals, the following satisfaction relation must hold for each
goal g in G::

This may be checked informally, or formally if the goal
specifications and domain properties are formalized. For
temporal logic specifications one may rely on the proof the-
ory of temporal logic and use tools such as, e.g., STeP
[Man96].
A lightweight alternative is to use formal refinement patterns
fo Achieve, Maintain and Avoid goals [Dar96]. Such patterns
are proved correct and complete once for all; refinements in
the goal graph are then verified by matching them to one
applicable pattern from the library. The mathematical proof
intricacies are thereby hidden. A frequently used pattern is
the decomposition-by-milestone pattern that refines a parent
Achieve goal

R, As, D I= g with R, As, D Id= false

P-OQ

into two subgoals:

where the “0“ temporal operator means “sometime in the
future”. Another frequently used pattern is the decomposi-
tion-by-case pattern that refines the same parent Achieve
goal into three subgoals:

where the “‘MI‘ temporal operator means “always in the
future unless”.
The techniques above can be used for goals that can be said
to be established in a clear-cut sense. For soft goals, the qual-
itative reasoning procedure provided by the NFR framework
is particularly appropriate [My192]. This procedure deter-
mines the degree to which a goal is satisficeddenied by
lower-level goals/requirements. A node or link in the goal
graph is labelled S (satisficed) if it is satisficeable and not
deniable; D (denied) if it is deniable but not satisficeable; C
(conflicting) if it is both satisficeable and deniable; and U
(undetermined) if it is neither satisficeable nor deniable. The
general idea is to propagate such labels along satisficed links
bottom-up, from lower-level nodes (i.e. requirements) to
higher-level nodes (i.e. goals). Additional label values can
be assigned at intermediate stages of the procedure, namely,
U+ (inconclusive positive support), U- inconclusive negative
support, and ? (requiring user intervention to specify an
appropriate label value). Rules for bottom-up propagation of
labels are then defined accordingly. A example of applica-
tion of this framework to performance goals can be found in
[Nix93].

5.2 Goal validation
Goals can be validated by identifying or generating scenar-
ios that are covered by them [Hau98]. One may even think of
enacting such scenarios to produce animations [Hey98]. The
scenario identification process is generally based on heuris-
tics [Sut98, Ant981.
In [And89], plan-based techniques are used to tentatively
generate scenarios showing that a goal can be achieved with-
out reaching prohibited conditions. Goals, prohibited condi-
tions and operations are specified formally by simple state
predicates. An automated planner first produces a trial sce-
nario to achieve the goal condition; it then checks for faults
in the proposed scenario by looking for scenarios achieving
the prohibited conditions; finally it assists the specifier in
modifying the set of operations in case faults are found.
[Fic92] explores this deficiency-driven paradigm further.
The system is specified by a set of goals, formalized in some
restricted temporal logic, a set of scenarios, expressed in a
Petri net-like language, and a set of agents producing
restricted scenarios to achieve the goals they are assigned to.
The general approach consists of (a) trying to detect incon-
sistencies between scenarios and goals, and (b) applying
operators that modify the specification to remove the incon-
sistencies. Step (a) is carried out by a planner that searches
for behaviours leading to some goal violation. The operators
offered to the analyst in Step (b) encode heuristics for speci-
fication debugging --e.g., introduce an agent whose respon-
sibility is to prevent the state transitions that are the last step

P 2 O R , R = > O Q

P ~ R = O Q , P ~ O R , P S P WQ

253

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

in breaking the goal. There are operators for introducing new
types of agents with appropriate responsibilities, splitting
existing types, introducing communication and synchroniza-
tion protocols between agents, weakening idealized goals,
etc. The repeated application of deficiency detection and
debugging operators allows the analyst to explore the design
space and hopefully converge towards a satisfactory specifi-
cation.

5.3 Goal-based requirements elaboration

The technique just sketched above is a first step towards
making verification/validation contribute to the requirements
elaboration process. The main reason for goal-oriented RE!
after all is to let goals help elaborating the requirements sup-
porting them. A goal-based elaboration typically consists of
a hybrid of top-down and bottom-up processes, plus addi-
tional processes driven by the handling of possible abnormal
agent behaviors, the management of conflicting goals, the
recognition of analogical situations from which specifica-
tions can be transposed, and so forth. Note, however, that for
explanatory purpose the resulting requirements document is
in general better presented in a top-down way.

Goallrequirement elicitation by refinement
An obvious (but effective) informal technique for finding out
subgoals and requirements is to keep asking HOW questions
about the goals already identified [Lam95, LamOOc].
Formal goal refinement pattems may also prove effective
when goal specifications are formalized; typically, they help
finding out subgoals that were overlooked but are needed to
establish the parent goal. Consider a simple train control sys-
tem, for example, and the functional goal of train progress
through consecutive blocks:

Goal Achieve FrainProgress]
FormalDef (V t:r Train, b: Block) [On (tr, b) 3 0 On (tr, b+l)]

A particular case that comes directly to mind is when block
b+l’s signal is set to ‘go’. Two subgoals coming naturally to
mind are the following:

Goal Achieve [ProgressWhenGoSignaI]
FormalDef V tr: Train, b: Block

On (tr, b) A Go[b+1]3 0 On (tr, b+l)
Goal Achieve [SignalSetToGo]

FormalDef t/ tr: Train, b: Block
On (tr, b) 3 0 Go[b+l]

This tentative refinement matches the decomposition-by-
case pattem in Section 5.1 and therefore allows the follow-
ing missing subgoal to be pointed out:

Goal Maintain VrainWaiting]
FormalDef V tr: Train, b: Block

On (tr, b) 3 On (tr, b) W O n (tr, b+l)

Another effective way of driving the refinement process is
based on the determination that an agent candidate to goal
assignment cannot realize the goal, e.g., because it cannot
monitor the variables appearing in the goal antecedent or
control the variables appearing in the goal consequent.
[LetOl] gives a set of conditions for goal unrealizability; this
set is proved complete and provides the basis for a rich, sys-
tematic set of agent-driven refinements tactics for generating
realizable subgoals and auxiliary agents.

Goallrequirement elicitation by abstraction
An obvious (but effective) informal technique for finding out
more abstract, parent goals is to keep asking WHY questions
about operational descriptions already available [Lam95,
LamOOc].
More sophisticated techniques have been devised to elicit
goals from scenarios. Based on a bidirectional coupling
between type-level scenarios and goal verb templates as dis-
cussed in Section 4, [Ro198] proposes heuristic rules for
finding out alternative goals covering a scenario (corre-
sponding to altemative values for the verb parameters),
missing companion goals, or subgoals of the goal under con-
sideration. On a more formal side, [Lam98c] describes an
inductive learning technique that takes scenarios as exam-
ples and counterexamples of intended behavior and gener-
ates goal specifications in temporal logic that cover all the
positive scenarios and exclude all the negative ones.
Note also that refinement pattems when applied in the
reverse way correspond to abstraction patterns that may pro-
duce more coarse-grained goals.

Goal operationalization
A few efforts have been made to support the process of
deriving pre-, post-, and trigger conditions on software oper-
ations so as to ensure the terminal goals in the refinement
process. The principle is to apply derivation rules whose
premise match the goal under consideration [Dar93, LetOl].
Consider, for example, the following goal:

Goal Maintain [DoorsClosedWhileMoving]
FormalDef V tr: Train, loc, loc’: Location

At (tr. loc) A o At (tr, loc’) A loc c> loc’
= tr.Doors = ‘closed’ A o (tr.Doors = ‘closed’)

where the “o“ temporal operator means “in the next state”.
Applying the following derivation rule

G:PA(Pl A o P ~ = . Q ~ ~oQ2),DomPre:Pl,DomPost:P2

ReqPre for G: Q1 , ReqPost for G: Q2

we derive the following operationalization:
Operation Move

Input tr: Train; loc, loc’: Location ; Output At
DomPre At (tr, loc) A loc <> Ioc’
DomPost At (tr, loc’)
RequiredPre for DoorsClosedWhileMoving: tr.Doors = ’closed‘
RequiredPost for DoorsClosedWhileMoving: trDoors = ’closed‘

Analogical reuse
Goal-based specifications can also be acquired by retrieving
structurally and semantically analog specifications in a
repository of reusable specification components, and then
transposing the specifications found according to the struc-
tural and semantic matching revealed by the retrieval pro-
cess [Mas97].

Obstacle-driven elaboration
First-sketch specifications of goals, requirements and
assumptions are often too ideal; they are likely to be violated
from time to time in the running system due to unexpected
behaviors of agents. The lack of anticipation of exceptional
behaviors may result in unrealistic, unachievable and/or
incomplete requirements.

254

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

Such exceptional behaviors are captured by assertions called
obstacles to goal satisfaction. An obstacle 0 is said to
obstruct a goal G in a domain Dom iff

(0, DomJ I= -G obstruction
Dom I=k --, 0 domain consistency

Obstacles thus need to be identified and resolved at RE time
in order to produce robust requirements and hence more reli-
able software. The notion of obstacle was just mentioned in
[Yue87]. It was elaborated further in [Pot951 where scenarios
are shown to be a good vehicle for identifying goal obstruc-
tions. Some heuristics for identifying obstacles can be found
in [Pot951 and [Ant98]. More formal techniques are
described in [Lam98a] and then [LamOOa] for:

the abductive generation of obstacles from goal specifica-
tions and domain properties,
the systematic generation of various types of obstacle reso-
lution, e.g., goal substitution, agent substitution, goal
weakening, goal restoration, obstacle mitigation, or obsta-
cle prevention.

Obstacles can also be resolved at run time in some cases, see
[Fea98].

5.4 Conflict management
Requirements engineers live in a world where conflicts are
the rule, not the exception [Eas94]. Conflicts generally arise
from multiple viewpoints and concerns [Nus94]. They must
be detected and eventually resolved even though they may
be temporarily useful for eliciting further information
[Hun98]. Various forms of conflict are studied in [Lam88b],
in particular, a weak form called divergence which occurs
frequently in practice.

The goals G,, ..., G, are said to be divergent iff there exists a
non-trivial boundary condition B such that :

{ B, VI GI, Dom} I= false inconsistency
{ B, V,* GI, DomJ l=k false minimali9

(“Non-trivial” means that B is different from the bottom false
and the complement VI GI). Note that the traditional case
of conflict, in the sense of logical inconsistency, amounts to
a particular case of divergence.
Divergences need to be identified and resolved at RE time in
order to eventually produce consistent requirements. Formal
and heuristic techniques are described in [Lam98b] for:

the abductive generation of boundary conditions from goal

the systematic generation of various types of divergence

A qualitative procedure is suggested in [Rob891 for handling
conflicts. The idea is to detect them at requirements level
and characterize them as differences at goal level. The user
of the procedure first identifies the requirements elements
that correspond to each other in the various viewpoints at
hand; conflict detection is then carried out by mapping syn-
tactic differences between the corresponding requirements
elements to differences in values of variables involved in the
goals supported by these elements. Conflict resolution is
attempted next by appealing to compromises (e.g., through

specifications and domain properties,

resolution.

compensations or restriction specialization), or goal substitu-
tions. Finally, the conflict resolution at goal level is down
propagated to the requirements level.

5.5 Goal-based negotiation
Conflict resolution often requires negotiation. [Boe95] pro-
poses an iterative 3-step process model for goal-based nego-
tiation of requirements. At each iteration of a spiral model
for requirements elaboration,
(1) all stakeholders involved are identified together with

their wished goals (called win conditions);
(2) conflicts between these goals are captured together with

their associated risks and uncertainties;
(3) goals are reconciled through negotiation to reach a mutu-

ally agreed set of goals, constraints, and alternatives for
the next iteration.

5.6 Alternative selection
Which goal refinement should be selected when alternative
ones are identified? Which agent assignment should be
selected when alternative ones are identified? This is by and
large an open problem. There are local tactics of course, such
as favoring alternatives with less critical obstacles or con-
flicts, but a systematic approach has not emerged so far in
the RE literature.
One promising direction would be to use qualitative reason-
ing schhemes B la NFR [My1921 to select an alternative
refinement that contributes the best to the satisficing of soft
goals related to cost, reliability, performance etc. Multicrite-
ria analysis techniques could be helpful here.

6. A goal-oriented RE method in action
It is now time to demonstrate how some of the techniques
reviewed above can fit together in a goal-oriented RE
method. We come back to a case study we have already pre-
sented in [LamOOc] because it illustrates many of the issues
raised here; the initial document is unbiased as it comes from
an independent source involved in the development,; it is
publically available [BAR991 --unlike most documents from
the industrial projects we have been involved in; the system
is a real, complex, real-time, safety-critical one (this allows
one to suggest that goal-oriented RE is not only useful for
business applications). The initial document focuses on the
control of speed and acceleration of trains under responsibil-
ity of the Advanced Automatic Train Control being devel-
oped for the San Francisco Bay Area Rapid Transit (BART)
system.
We follow the KAOS method [Dar93, Lam95, LamOOc] in
order to incrementally elaborate four complementary sub-
models: (1) the goal model, (2) the object model; (3) the
agent responsibility model, leading to alternative system
boundaries; (4) the operation model. The goal refinement
graph is elaborated by eliciting goals from available sources
and asking why and how questions (goal elaboration step);
objects, relationships and attributes are derived from the goal
specifications (object modeling step); agents are identified,
alternative responsibility assignments are explored, and
agent interfaces are derived (responsibility assignment step);

255

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

operations and their domain pre- and postconditions are
identified from the goal specifications, and strengthened pre-
lpostconditions and trigger conditions are derived so as to
ensure the corresponding goals (operationalization step).
These steps are not strictly sequential as progress in one step
may prompt parallel progress in the next one or backtracking
to a previous one.
The presentation will be sketchy for lack of space; the inter-
ested reader may refer to [LetOl] for a much greater level of
details.

ServeMorePassengers Minimize[Costs

Avoid [TrainEntering /
I ...

Maintain Maintain mm [WCS-DistBetweenTrains] [TrackSegmentSpeedLimit]

Figure 1 - Preliminary goal graph for the BART system

Goal identification from the initial document
A first set of goals is identified from a first reading of the
available source [BART991 by searching for intentional key-
words such as “objective”, “purpose”, “intent”, “concern”,
“in order to”, etc. A number of soft goals are thereby identi-
fied, e.g., “ServeMorePassengers”, “NewTracksAdded”, “Mini-
mize[DevelopmentCosts]”, “Minimize[DistanceBetweenTrains]”,
“SafeTransportation”, etc. These goals are qualitatively related
to each other through support links: Contributes (+), Con-
tributesstrongly (++), Conflicts (-), ConflictsStrongly (- -).
These weights are used to select among alternatives. Where
possible, keywords from the semi-formal layer of the KAOS
language are used to indicate the goal category. The Maintain
and Avoid keywords specify “always” goals having the tem-
poral pattem 0 (P + Q) and 0 (P + a), respectively. The
Achieve keyword specifies “eventually” goals having the
pattem P 3 0 Q. The “+“ connective denotes logical impli-
cation; 0 (P -+ Q) is denoted by P
Figure 1 shows the result of this first elicitation. Clouds
denote soft-goals, parallelograms denote formalizable goals,
arrows denote goal-subgoal links, and a double line linking
arrows denotes an OR-refinement into alternative subgoals.

Formalizing goals and identifying objects
The object modeling step can start as soon as goals can be

Q for short.

formulated precisely enough. The principle here is to iden-
tify objects, relationships and attributes from goal specifica-
tions. Consider, for example, the following goal at the
bottom of Figure 1:

Goal Maintain[TrackSegmentSpeedLimit]
InformalDef A train should stay below the maximum speed

the track segment can handle.

FormalDef V tr: Train, s: Tracksegment :
On(tr, s) 3 tr.Speed < sSpeedLimit

From the predicate, objects, and attributes appearing in this
goal formalization we derive the following portion of the
object model:

On TI
Speed: Speedunit - SpeedLimit: Speedunit

Similarly, the other goal at the bottom of Figure 5 is speci-
fied as follows:

Goal Maintain[WCS-DistBetweenTrains]
InformalDef A train should never get so close to a train in

front so that if the train in front stops suddenly (e.g.,
derailment) the next train would hit it.

FormalDef V t r l , tr2: Train :
FoIlowing(tr1, tr2) trl.Loc - tr2.Loc > trl.WCS-Dist

(The InformalDef statements in those goal definitions are
taken literally from the initial document; WCS-Dist denotes
the physical worst-case stopping distance based on the phys-
ical speed of the train.) This new goal specification allows
the above portion of the object model to be enriched with Loc
and WCS-Dist attributes for the Train object together with a
reflexive Following relationship on it. The formalization of the
goal Avoid[TrainEnterinClosedGate] in Figure 1 will further
enrich the object model by elements that are strictly neces-
sary to the goals considered. Goals thus provide a precise
driving criterion for identibing elements of the object model.

Eliciting new goals through WHY questions

It is often the case that higher-level goals underpinning goals
easily identified from initial sources are kept implicit in such
sources. They may, however, be useful for finding out other
important subgoals of the higher-level goal that were miss-
ing for the higher-level goal to be achieved.
As mentioned before, higher-level goals are identified by
asking WHY questions about the goals available.
For example, asking a WHY question about the goal Main-
tain[WCS-DistBetweenTrains] yields the parent goal Avoid[Train-
Collision]; asking a WHY question about the goal
Avoid[TrainEnteringClosedGate] yields a new portion of the goal
graph, shown in Figure 2.

In this goal subgraph, the companion subgoal Maintain[Gate-
ClosedWhenSwitchlnWrongPosition] was elicited formally by
matching a formal refinement pattern to the formalization of
the parent goal Avoid[TrainOnSwitchlnWrongPosition], found by
a WHY question, and to the formalization of the initial goal
Avoid[TrainEnteringClosedGate] [Dar96, LetOl 1. The dot join-
ing the two lower refinement links together in Figure 2

256

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

means that the refinement is (provably) complete.

Maintain [GateC
[TrainEnteringClosedCate]/

Figure 2 - Enriching the goal graph by WHY elicitation

Eliciting new goals through HOW questions
Goals need to be refined until subgoals are reached that can
be assigned to individual agents in the software-to-be and in
the environment. Terminal goals become requirements in the
former case and assumptions in the latter.
More concrete goals are identified by asking HOW ques-
tions. For example, a HOW question about the goal Main-
tainpNCS-DistBetweenTrains] in Figure 1 yields an extension of
the goal graph shown in Figure 3.

i

Figure 3 - Goal refinement

The formalization of the three subgoals in Figure 3 may be
used to prove that together they entail the parent goal Main-
tainpNCS-DistBetweenTrains] formalized before [LetOI]. These
subgoals need be refined in turn until assignable subgoals
are reached. A complete refinement tree is given in Annex 1.

Identifying potential responsibility assignments
Annex 1 also provides a possible goal assignment among
individual agents. This assignment seems the one suggested
in the initial document [BAR99]. For example, the accuracy
goal Maintain[AccurateSpeed/PositionEstimates] is assignable to
the TrackingSystem agent; the goal Maintain[SafeTrainResponse-
ToCommand] is assignable to the OnBoardTrainController agent;
the goal Maintain[SafeCmdMsg] is assignable to the Speed/
AccelerationControlSystem agent.

It is worth noticing that goal refinements and agent assign-
ments are both captured by AND/OR relationships. Altema-
tive refinements and assignments can be (and probably have
been) explored. For example, the parent goal Maintain[WCS-
DistBetweenTrains] in Figure 3 may alternatively be refined by
the following three Maintain subgoals:

PreceedingTrainSpeed/PositionKnownToFollowingTrain
SafeAccelerationSasedOnPreceedingTrainSpeed/Position
NoSuddenStopOfPreceedingTrain

The second subgoal above could be assigned to the OnBoard-
TrainController agent. This alternative would give rise to a
fully distributed system.
As suggested before, qualitative reasoning techniques in the
style of [My1991 might be applied to the softgoals identified
in Figure 1 to help making choices among altematives..

Deriving agent interfaces
Let us now assume that the goal Maintain[SafeCmdMsg] at the
bottom of the tree in Annex 1 has been actually assigned to
the Speed/AccelerationControlSystem agent. The interfaces of
this agent in terms of monitored and controlled variables can
be derived from the formal specification of this goal (we just
take its general form here for sake of simplicity):

Goal Maintain[SafeCmdMsg]
FormalDef V cm: CommandMessage, t i l , ti2: Trainlnfo

cm.Sent A cm.TrainlD = t i l .TrainlD A Followinglnfo (til, ti2)
3 cm.Accel 5 F (til, ti2) A cm.Speed > G (til)

To fulfil its responsibility for this goal the Speed/Acceleration-
Controlsystem agent must be able to eval~rare the goal ante-
cedent and establish the goal consequent. The agent’s
monitored variable is therefore Trainhfo whereas its con-
trolled variables are CommandMessage. Accel and
CommandMessage. Speed. The latter will in tum become mon-
itored variables of the OnBoardTrainController agent, by similar
analysis. The technique for deriving the agent’s monitored
and controlled variables is fairly systematic, see [LetOl] for
details.

Identifying operations
The operationalization step starts by identifying the opera-
tions relevant to goals and defining their domain pre- and
postconditions. Goals refer to specific state transitions; for
each such transition an operation causing it is identified; its
domain pre- and postcondition capture the state transition.
For the goal Maintain[SafeCmdMsg] formalized above we get,
for example,

Operation SendCommandMessage
input Train (arg tr)
Output ComandMessage {res cm)
DomPre cm.Sent
DomPost cm.Sent A cm.TrainlD = tr.lD

This definition minimally captures what any sending of a
command to a train is about in the domain considered; it
does not ensure any of the goals it should contribute to.

Operationalizing goals
The next operationalization sub-step is to strengthen such
domain conditions so that the various goals linked to the
operation are ensured. For goals assigned to software agents,
this step produces requirements on the operations for the cor-
responding goals to be achieved. As mentioned before,
derivation rules for an operationalization calculus are avail-
able [Dar93, LetOl]. In our example, they yield the follow-
ing requirements that strengthen the domain pre- and
postconditions:

257

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

Operation SendCommandMessage
Input Train {arg tr), Trainlnfo; Output ComandMsg {res cm}
DomPre ... ; DomPost ...
ReqPost for SafeCmdMsg:

Tracking (til, tr) A Following (til, ti2)
-+ cm.Acc 5 F (til, ti2) A cm.Speed > G (til)

ReqTrig for CmdMsgSentlnTime:
ko sec -, 3 cm2: CommandMessage:

cm2.Sent A cm2.TrainlD = tr.lD

(The trigger condition captures an obligation to trigger the
operation as soon as the condition gets true and provided the
domain precondition is true. In the example above the condi-
tion says that no command has been sent in every past state
up to one half-second [BAR99].)
Using a mix of semi-formal and formal techniques for goal-
oriented requirements elaboration, we have reached the level
at which most formal specification techniques would start.

Anticipating obstacles
As mentioned before, goals also provide a basis for early
generation of high-level exceptions which, if handled prop-
erly at requirements engineering time, may generate new
requirements for more robust systems.
The following obstacles were generated to obstruct the sub-
goal Achieve[CommandMsgIssuedlnTime]:

CommandMsgNotlssued,
CommandMsglssuedLate,
CommandMsgSentToWrongTrain

For the companion subgoal Achieve[CommandMsgDeliveredln-
Time] we similarly generated obstacles such as:

CommandMsgDeliveredLate,
CommandMsgCorrupted

The last companion subgoal Maintain[SafeCmdMsg] may be
obstructed by the condition

UnsafeAcceleration,
and so on. The obstacle generation process for a single goal
results in a goal-anchored fault-tree, that is, a refinement tree
whose root is the goal negation. Compared with standard
fault-tree analysis [Lev95], obstacle analysis is goal-ori-
ented, formal, and produces obstacle trees that are provably
complete with respect to what is known about the domain
[LamOOa].
Altemative obstacle resolutions may then be generated to
produce new or altemative requirements. For example, the
obstacle CommandMsgSentLate above could be resolved by an
altemative design in which accelerations are calculated by
the on-board train controller instead; this would correspond
to a goal substitution strategy. The obstacle UnsafeAccelera-
tion above could be resolved by assigning the responsibility
for the subgoal SafeAccelerationCommanded of the goal Main-
tain[SafeCmdMsg] to the VitalStationComputer agent instead
[BART99]; this would correspond to an agent substitution
strategy. An obstacle mitigation strategy could be applied to
resolve the obstacle OutOfDateTrainlnfo obstructing the accu-
racy goal Maintain[AccurateSpeed/PositionEstimates], by intro-
ducing a new subgoal of the goal Avoid[TrainCollisions],

. namely, the goal Avoid[CollisionWhenOutOfDateTrainInfo]. This
new goal has to be refined in tum, e.g., by subgoals requiring
full braking when the message origination time tag has

expired.

Handling conflicts
The initial BART document suggests an interesting example
of divergence [BART99, p.131. Roughly speaking, the train
commanded speed may not be too high, because otherwise it
forces the distance between trains to be too high, in order to
achieve the DistancelncreasedWithCornmandedSpeed subgoal of
the SafeTransportation goal; on the other hand, the com-
manded speed may not be too low, in order to achieve the
LimitedAccelerAbove7mphOfPhysicalSpeed subgoal of the
SmoothMove goal. There seems to be a flavor of divergence
here.

Min [Dist

/ IncreasedWithCmdedSoee Dist-i
L

Figure 4 - Conflict in speedacceleration control

We therefore look at the formalization of the suspect goals:
Goal Maintain [CmdedSpeedCloseToPhysicalSpeed]

FormalDef V tr: Train
tr.AccCM 2 0

= tr.SpeedcM 5 tr.Speed + f (dist-to-obstacle)
and

Goal Maintain [CmdedSpeedAbove7mphOfPhysicalSpeed]
FormalDef V tr: Train

tr.AcccM t 0 3 tr.Speedcu > tr.Speed + 7

These two goals are formally detected to be divergent using
the techniques described in [Lam98b]. The generated bound-
ary condition for making them logically inconsistent is

0 (3 tr: Train) (tr.AcccM 2 0 A f (dist-to-obstacle) 2 7)

The resolution operators from [Lam98b] may be used to
generate possible resolutions; in this case one should keep
the safety goal as it is and weaken the other conflicting goal
to remove the divergence:

FormalDef V tr: Train
Goal Maintain [CmdedSpeedAbove7mphOfPhysicalSpeed]

tr.AccCM t 0 = tr.SpeedcM > tr.Speed + 7
v f (dist-to-obstacle) I 7

7. Experience and tool support
The purrpose of this paper is obviously not to deliver an
experience report. We would just like to mention here that

258

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

experience with goal-oriented requirements engineering is
growing significantly, in different domain, different types of
projects, and different project sizes. For example, Anton and
colleagues have reported their experience with BPR applica-
tions [Ant941 and various electronic commerce systems
[Ant98, AntOl]. Our understanding is that the NFR and i*
frameworks have been experienced in real settings as well.
Our KAOS method has been used in 11 industrial projects to
date. These include the goal-oriented reengineering of a
complex, unintelligible requirements document for a phone
system on TV cable; the goal-oriented modeling of a com-
plex air traffic control application; the goal-oriented engi-
neering of requirements for a variety of systems such as: a
copyright management system for a major editor of cartoon
strips, a management system for a hospital emergency ser-
vice, a drug delivery management system for a big drug dis-
tributor, a new information system for a big daily newspaper,
a web-based job information server, a web-based language
translation system, and various e-learning systems. To give
an idea, the copyright management system has 65 goals, 75
entity types and relationships, 11 agents, and 45 operations;
the goal-oriented deliverable is 115 pages long. The size of
the goal refinement graph for the other applications ranges
from 50 to 100 goals and requirements.
Those projects could not have been undertaken without tool
support. Our current GRAIL environment provides a graphi-
cal editor tightly coupled with a syntax-directed editor, an
object-oriented specification database server supporting que-
ries for model analysis, static semantics checkers, view fil-
tering mechanisms, a HTML generator for model browsing
in hypertext mode, and various types of report generators.
Current efforts are devoted to an open, full Java version; the
plan then is to integrate more formal support such as anima-
tors, model checkers, test data generators, formal verifica-
tion tools, and so forth.

8. Goal orientation beyond RE
It has been suggested recently that the functional and (espe-
cially) non-functional goals elaborated in the RE process
could be used for deriving and refining architectures
[LamOOc] and for annotating design patterns [ChuOO]. These
are just preliminary efforts that should be expanded in a near
future.

9. Conclusion
Goal-oriented requirements engineering has many advan-
tages, some of which were recurrently felt in the aforemen-
tioned projects, to restate a few of them:

object models and requirements can be derived systemati-
cally from goals;
goals provide the rationale for requirements:
a goal graph provides vertical traceability from high-level
strategic concerns to low-level technical details; it allows
evolving versions of the system under consideration to be
integrated as alternatives into one single framework;
goal AND/OR graphs provide the right abstraction level at
which decision makers can be involved for important deci-

sions;

structure for the requirements document;

alternative system proposals to be explored;

and complete.

the goal refinement structure provides a comprehensible

alternative goal refinements and agent assignments allow

goal formalization allows refinements to be proved correct

We hope to have convinced the reader that this area of RE is
worth pursuing. There are many open issues to work on in
the future, of course; the reader may refer to [LamOOc] for a
discussion of them.

Acknowledgment. Discussions with Robert Darimont and
Emmanuel Letier were a permanent source of inspiration and con-
frontation of some of the issues raised in this paper; they were in
particular instrumental in developing KAOS specifications for var-
ious non-trivial systems, including the one outlined here [LetOl]. I
am also grateful to the KAOSGRAIL crew at CEDITI for using
some of the ideas presented here in industrial projects and provid-
ing regular feedback, among others, Emmanuelle Delor, Philippe
Massonet, and Andre Rifaut. All the people whose work is men-
tioned in this paper had some influence on it in some way or
another (whether they recognize and like it or not!).

References
[Am0941 E.J. Amoroso, Fundamentals of Computer Security. Prentice-Hall,

1994.
[And891 J.S. Anderson and S. Fickas, “A Proposed Perspective Shift: View-

ing Specification Design as a Planning Problem”, Proc. 5th Intl. Work-
shop on Sofnvure Spec(fication arid Design, IEEE, 1989, 17’7-184.

[Ant941 A.I. Anton, W.M. McCracken, and C. Potts, “Goal Decomposition
and Scenario Analysis in Business Process Reengineering, Proc.
CAISE’94, LNCS 8 1 I , Springer-Verlag. 1994, 94- 104.

[Ant981 A.I. Anton and C. Potrs, “The Use of Goals to Surface Require-
ments for Evolving Systems”, Proc. ICSE-98: 20th Intrnationul Con-
ference on Srfnvvare Enginering, Kyoto, April 1998.

[AntOl] A.I. Anton, R. Carter, A. Dagnino, J. Dempster and D.F. Siege,
“Deriving Goals from a Use-Case Based Requirements Specification”,
Requirements Engineering Journal, Vol. 6, 2001, 63-13.

[BAR991 Bay Area Rapid Transit District, Advance Automated Train Con-
trol System, Case Study Description. Sandia National Labs, http://
www.hcecs.sandia.gov/bart.htm.

[Ber91] V. Berzins and Luqi, Sojmare Engineering with Abstractions. Add-
ison-Wesley, 1991.

[Boe95] B. W. Boehm, P. Bose, E. Horowitz, and Ming June Lee, “Soft-
ware Requirements Negotiation and Renegotiation Aids: A Theory-W
Based Spiral Approach”, Proc. ICSE-I 7 - I7th Intl. Conf: on Software
Engineering, Seattle, 1995, pp. 243-253.

[ChuOO] L. Chung, B. Nixon, E. Yu and J. Mylopoulos, Non+tnctional
requirements in sofiwure engineering. Kluwer Academic, Boston,
2000.

[Dar91] A. Dardenne, S. Fickas and A. van Lamsweerde, “Goal-Directed
Concept Acquisition in Requirements Elicitation”, Proc. IWSSD-6 - 6th
Intl. Workshop on Sofmure Specficatinn and Design, Como, 1991, 14-
21.

[Dar93] A. Dardenne, A. van Lamsweerde and S. Fickas, “Goal-Directed
Requirements Acquisition”, Science of’ Computer Programming, Vol.
20, 1993,3-50.

[Dar96] R. Darimont and A. van Lamsweerde, “Formal Refinement Pat-
terns for Goal-Driven Requirements Elaboration”, Proc. FSEV -
Fourth ACM SIGSOFT Symp. oti the Foundations of Software Enyi-
neering, San Francisco, October 1996, 179- 190.

259

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

[Dar98]R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde,
“GRAIL/KAOS: An Environment for Goal-Driven Requirements Engi-
neering’’, Proc. ICSE’9R - 20th Intl. Conf: on Suftware Engineering,
Kyoto, April 1998, vol. 2 , 58-62. (Earlier and shorter version found in
Proc. ICSE’97 - 19th Intl. Conj: on Software Engineering, Boston, May
1997,612-613.)

[Dub981 E. Dubois, E. Yu and M. Petit, “From Early to Late Formal
Requirements: A Process-Control Case Study”, Proc. IWSSD ’98 - 9th
Intemational Workshop on Software Specification and Design, Isobe,
IEEE CS Press, April 1998, 34-42.

[Dwy99] M.B. Dwyer, GS. Avrunin and J.C. Corbett, “Patterns in Property
Specifications for Finite-State Verification”, Proc. ICSE-99: 21th Intr-
national Conference on Sofiware Enginering, Los Angeles, 4 11-420.

[Eas94] S. Easterbrook, “Resolving Requirements Conflicts with Com-
puter-Supported Negotiation”. In Requirements Engineering: Social
and Technical Issues, M. Jirotka and J. Goguen (Eds.), Academic Press,
1994,41-65.

[Fea87] M. Feather, “Language Support for the Specification and Develop-
ment of Composite Systems”, ACM Trans. on Programming Lungiitrges
and Systems 9(2), Apr. 87, 198-234.

[Fea93] M. Feather, “Requirements Reconnoitering at the Juncture of
Domain and Instance”, Proc. RE’93 - I s t Intl. IEEE Symp. on Require-
menfs Engineering, Jan. 1993,73-77.

[Fea98] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard, “Rec-
onciling System Requirements and Runtime Behaviour”. Proc.
IWSSD’98 - 9th Internationfil Workshop on Sofhvare Specification imd
Design, Isobe, IEEE CS Press, April 1998.

[Fic92] S. Fickas and R. Helm, “Knowledge Representation and Reasoning
in the Design of Composite Systems”, IEEE Trans. on Sqfhvcrre Engi-
neering, June 1992,470-482.

[Fin871 A. Finkelstein and C. Potts, “Building Formal Specifications Using
Structured Common Sense”, Proc. IWSSD-4 - 4th International Work-
shop on Software Specification and Design (Monterey, Ca.), IEEE,
April 1987, 108-113.

[Fow97] M. Fowler, UML Distilled. Addison-Wesley, 1997.
[Got951 0. Gotel and A. Finkelstein, “Contribution Structures”, Proc.

RE’95 - 2nd Intl. IEEE Symp. on Requirenients Engineering, York,
IEEE, 1995, 100-107.

[GroOl] D. Gross and E. Yu, “From Non-Functional Requirements to
Design through Patterns”, Requirements Engineering Journal Vol. 6,

[Hat1981 P. Haumer, K. Pohl, and K. Weidenhaupt, “Requirements Elicita-
tion and Validation with Real World Scenes”, IEEE Truns. on Sqfwiire.
Engineering, Special Issue on Scenario Management, December 1998,
1036-1054.

[Hey981 P. Heymans and E. Dubois, “Scenario-Based Techniques for Sup-
porting the Elaboration and the Validation of Formal Requirements”,
Requirements Engineering Journal Vol. 3 No. 3-4, 1998, 202-2 18.

[Hic74]G.F. Hice, W.S. Turner, and L.F. Cashwell, System Development
Methodology. North Holland, 1974.

[Hun981 A. Hunter and B. Nuseibeh, “Managing Inconsistent Specifica-
tions: Reasoning, Analysis and Action”, ACM Transactions on Soft-
ware Engineering and Methodology, Vol. 7 No. 4. October 1998, 335-
367.

[Jac95] M. Jackson, Software Requirements & Specifications - A Lexicon
of Practice, Principles and Pejudices. ACM Press, Addison-Wesley,
1995.

[la1931 M. Jarke and K. Pohl, “Vision-Driven Requirements Engineering”,
Proc. IFIP WG8. I Working Conference on Injormation System Devel-
opment Process, North Holland, 1993, 3-22.

[KaiOO] H. Kaindl, “A Design Process Based on a Model Combining Sce-
narios with Goals and Functions”, IEEE Trans. on Systems, Man and
Cybernetic, Vol. 30 No. 5, September 2000, 537-55 I .

[Ke190] S.E. Keller, L.G Kahn and R.B. Panara, “Specifying Software

2001, 18-36.

Quality Requirements with Metr ia” , in Tutorial: System and Software
Requirements Enginering, R.H. Thayer and M. Dorfman, Eds., IEEE
Computer Society Press, 1990, 145-163.

[Koy92] R. Koymans, SpeciJying message passing und time-critical swtems
with temporal logic, LNCS 65 I , Springer-Verlag. 1992.

[Lam951 A. van Lamsweerde, R. Darimont, and Ph. Massonet, “Goal-
Directed Elaboration of Requirements for a Meeting Scheduler: Prob-
lems and Lessons Learnt“, Proc. RE’95 - 2nd Intf. IEEE Symp. on
Requirements Engineering, March 1995, 194-203.

[Lain98a] A. van Lamsweerde and E. Letier, “Integrating Obstacles in Goal-
Driven Requirements Engineering”, Proc. ICSE-98: 20th Intrnutiorral
Cotfermce on Sofhvare Enginering, Kyoto, April 1998.

[Lam98b] A. van Lamsweerde, R. Darimont and E. Letier, “Managing Con-
flicts in Goal-Driven Requirements Engineering”, IEEE Truns. on Sot’
ware. Engineering, Special Issue on Inconsistency Management in
Software Development, November 1998.

[Lam98c] A. van Lamsweerde and L. Willemet, “Inferring Declarative
Requirements Specifications from Operational Scenarios”, IEEE Trurrs.
ON SofiYare. Engineering. Special Issue on Scenario Management,
December 1998, 1089-1 114.

[LamOOa] A. van Lamsweerde and E. Letier, “Handling Obstacles in Goal-
Oriented Requirements Engineering”, IEEE Transactions on Software
Engineering, Special Issue on Exception Handling, 2000.

[LamOOb] A. van Lamsweerde, “Formal Specification: a Roadmap”. In The
Future ofSoftware Engineering, A. Finkelstein (ed.), ACM Press, 2000.

[LamOOc] A. van Lamsweerde, “Requirements Engineering in the Year 00:
A Research Perspective”. Invited Keynote Paper, Proc. ICSE’2000:
22nd Internrrtiorrul Conference on Sofhvtrre Enginerring, ACM Press,
2000, pp. 5-19.

[Lee911 1. Lee, “Extending the Potts and Bruns Model for Recording
Design Rationale”, Proc. ICSE-13 - 13th Irrtl. Con/: on Sofhvure E ~ i g i -
neering, IEEE-ACM, 1991. 114-125.

[Lei971 J.C. Leite, G. Rossi, F. Balaguer, V. Maiorana, G. Kaplan, G. Hadad
and A. Oliveiros, “Enhancing a Requirements Baseline with Scenar-
ios”, Reqitirements Engineering Jmirrrul Vol. 2 No. 4, 1997. 184- 198.

[LetOl] E. Letier, Rerrwrrirrg ubout Agents in Goul-Oriented Requirements
Engineering. Ph. D. Thesis, University of Louvain. May 2001.

[Lev951 N. Leveson, Sufewtire - System Sufen find Computers. Addison-
Wesley, 1995.

[Man921 Z. Manna and A. Pnueli, The Temporal Logic ofReuctive und Cori-
current Systems, Springer-Verlag. 1992.

[Man961 Z. Manna and the STep Group, “STeP: Deductive-Algorithmic
Verification of Reactive and Real-Time Systems”, Proc. CAV’96 - 8th
Intl. Conf: on Cr~mputer-Aided Vrrifi‘cution, LNCS I 102, Springer-Ver-
lag, July 1996.4 15-4 18.

[Mas971 P. Massonet and A. van Lamsweerde, “Analogical Reuse of
Requirements Frameworks”, Proc. RE-97 - 3rd Int. Symp. on Require-
ments Engineering, Annapolis, 1997, 26-37.

[Mos85] J. Mostow, “Towards Better Models of the Design Process”, AI
Magazine, Vol. 6, 1985, pp. 44-57.

[Mung I] E. Munford, “Participative Systems Design: Structure and
Method”, Systems, Objectives, Solurions. Vol. I , North-Holland, 198 I ,
5- 19.

[My1921 Mylopoulos, J., Chung, L., Nixon, B. , “Representing and Using
Nonfunctional Requirements: A Process-Oriented Approach‘, IEEE
Trans. on Sojware. Engineering, Vol. 18 No. 6, June 1992, pp. 483-497.

[My1991 J. Mylopoulos, L. Chung and E. Yu, “From Object-Oriented to
Goal-Oriented Requirements Analysis”, Communications of the ACM,
Vol. 42 No. I , January 1999, 31-37.

[Nil7 I] N.J. Nilsson, Problem Solving M e t h d s in Artificial Intelligence.
McGraw Hill, 1971.

[Nix931 B. A. Nixon, “Dealing with Performance Requirements During the
Development of Information Systems”, Proc. RE’93 - 1st Intl. lEEE
Symp. on Requirements Engineering, Jan. 1993,42-49.

260

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

[Nus941 B. Nuseibeh, J. Kramer and A. Finkelstein, “A Framework for
Expressing the Relationships Between Multiple Views in Requirements
Specifications”, IEEE Transactions on Software Engineering, Vol. 20
No. 10, October 1994,760-773.

[Par951 D.L. Parnas and J . Madey, “Functional Documents for Computer
Systems”, Science of Computer Programming, Vol. 25, 1995,41-61.

[Pot941 C. Potts, K. Takahashi and A.I. Anton, “Inquiry-Based Require-
ments Analysis”, IEEE Software, March 1994, 21-32.

[Pot951 C. Potts, “Using Schematic Scenarios to Understand User Needs”,
Proc. DIS’95 - ACM Symposium on Designing interactive Systems:
Processes, Practices and Techniques, University of Michigan, August
1995.

[Rob891 Robinson, W.N., “Integrating Multiple Specifications Using
Domain Goals”, Proc. IWSSD-5 - 5th h t l . Workshop on Software Spec-
ification and Design, IEEE, 1989, 219-225.

[Ro198] C. Rolland, C. Souveyet and C. Ben Achour, “Guiding Goal Model-
ing Using Scenarios”, IEEE Trans. on Sofware. Engineering, Special
Issue on Scenario Management, December 1998, 1055-107 I .

[Ros77] D.T. Ross and K.E. Schoman, “Structured Analysis for Require-
ments Definition”, IEEE Transactions on Software Engineering,’ Vol. 3,

[Rub921 K.S. Rubin and A. Goldberg, “Object Behavior Analysis”, Com-

[Som97] 1. Sommerville and P. Sawyer, Requirements Engineering: A Good

,

NO. 1, 1977, 6-15.

munications of the ACM Vol. 35 No. 9, September 1992,48-62.

Practice Guide. Wiley, 1997.
[Sut93] A. Sutcliffe and N. Maiden, “Bridging the Requirements Gap: Poli-

cies, Goals and Domains”, Proc. IWSSD-7 - 7th Intl. Workshop on Sufi-
ware Specification and Design, IEEE, 1993.

[Sut98] A. Sutcliffe, “Scenario-Based Requirements Analysis”, Require-
ments Engineering Journal Vol. 3 No. I , 1998, 48-65.

[Swa82] W. Swartout and R. Baker, “On the Inevitable Intertwining of
Specification and Implementation”, Communications of the ACM, Vol.
25 No. 7, July 1982,438-440.

[Yue87] K. Yue, “What Does It Mean to Say that a Specification is Com-
plete?”, Proc. IWSSD-4, Fourth Internationul Workshop on Software
Specification and Design, Monterey, 1987.

[Yu93] E.S.K. Yu, “Modelling Organizations for Information Systems
Requirements Engineering”, Proc. REP3 - 1st Intl Symp. on Require-
ments Engineering, IEEE, 1993, 34-4 I .

[Yu97] E. Yu, “Towards Modeling and Reasoning Support for Early-Phase
Requirements Engineering”, Proc. RE-97 - 3rd Int. Symp. on Require-
ments Engineering, Annapolis, 1997, 226-235.

[Zav97a] P. Zave and M. Jackson, “Four Dark Corners of Requirements
Engineering”, ACM Transactions on Software Engineering and Meth-
odology, 1997, 1-30,

[Zav97b] P. Zave, “Classification of Research Efforts in Requirements
Engineering”, ACM Computing Surveys, Vol. 29 No. 4, 1997, 3 15-32 I .

26 1

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

ANNEX 1: GOAL REFINEMENT TREE AND RESPONSIBILITY ASSIGNMENT IN THE BART SYSTEM

Maintain I I Maintain I
SpeedAcceleration [SafeTrainResponse [NoSuddenStop 1 Commanded] 1 1 ToCoy"1 1 1 OtPrecedingTrain] 1

TrainController

I Maintain i Estimates] / I B asedOnSpeed/PositionEstimates]
[AccurateSpeed/Position [SafeComandToFollowingTrain

Maintain

I I I I

I
[DeliveredCmdMsg

DeliveredInTime] Exercised]

Infrastructure

262

Authorized licensed use limited to: University of Tartu IEL Trial. Downloaded on February 2, 2010 at 08:00 from IEEE Xplore. Restrictions apply.

