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Stabilizing Hybrid Data Traffics in Cyber Physical
Systems with Case Study on Smart Grid

Husheng Li, Zhu Han and Ju Bin Song

Abstract— In many cyber physical systems such as smart

grids, communications are of key importance for controlling or

optimizing the operation of physical dynamics. It is possible that

the realtime measurement traffic for controlling the physical

dynamics overlays delay-tolerant queuing data flows such as

Internet service in the same communication infrastructure. The

scheduling of the hybrid system is then important for the perfor-

mance of both realtime control and data throughput. To balance

both controls of the physical dynamics and queuing dynamics,

they are integrated within the same framework of stochastic

optimization, which is solved using approximate algorithm. The

proposed algorithm is then applied in the context of smart

grids and is demonstrated to achieve good performance over

simple scheduling algorithms that are not aware of the physical

dynamics state.

I. INTRODUCTION

In recent years, cyber physical systems (CPS’s) [3] have
received substantial studies due to the wide applications in
practice such as smart grids and robotic networks. In a typical
CPS, sensors are used to monitor physical dynamics, whose
reports are sent to controller(s) to achieve system stability
and manipulate the system state to a desired one. When the
sensors and controllers are not located at the same place,
communications are needed for conveying the reports from
the sensors. When the realtime requirement of monitoring and
control is high, the communication link could be the bottleneck
of the system. Hence, there have been more and more studies
on the communication system design in CPS for the purpose
of realtime control [1] [5] [12].

Many existing studies on the communications in CPS im-
plicitly assume that the communication network serves only
the CPS; e.g., in the advanced metering infrastructure (AMI),
it is usually assumed that the AMI carries only the data of
power consumptions and power price. However, in practice,
such an exclusive usage of the communication network could
be inefficient. Since the data rate of CPS could be time varying
and less than the communication capacity, the communication
network can also be used to convey other data traffics, such
as Internet service, when the data rate requirement of CPS
is below the network capacity. Therefore, there is a pressing
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Fig. 1: An illustration of hybrid traffics.

need to study how to coordinate the CPS traffic and normal
data traffic (or more generally, realtime data traffic for control
and delay-tolerant data traffic), as illustrated in Fig. 1. To our
best knowledge, there have not been studies on this topic,
although there have been extensive studies on delay-tolerant
traffic [11] and some studies on the CPS communication for
control [7]. The problem of resource sharing between CPS
traffic and delay-tolerant traffic has just emerged; however, it is
important for further development of communication systems
and CPS.

On the other hand, there could be both online and offline
data in CPS itself. For example, in the context of commu-
nication network for phasor measurement units (PMUs) in
smart grids, some data needs to be realtime such that the
controllers can take quick actions to stabilize the power grids
upon contingencies; meanwhile, other measurements may need
to be transmitted to some storage centers in an offline manner
for future analysis of system operations. Hence, it is important
to balance both online and offline data traffics.

In this paper, we carry out a first-cut study by assuming
simple (but widely used in theoretical study and practice)
models for both CPS and delay-tolerant data traffic. Our
principle is to formulate the traffic scheduling problem as a
stochastic control problem, in which the physical dynamics
are described using difference equation1. The CPS communi-
cation is modeled as the pattern of physical dynamics in the
framework of hybrid systems [6]; meanwhile the delay-tolerant
traffic is modeled as a constraint of the control in terms of the
Lyapunov drift [11]. Note that the hybrid system framework
for the CPS communication and the Lyapunov drift for delay-

1In this paper, we consider discrete time system. If the system is a
continuous-time one, the physical dynamics can be described using differential
equations.
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Fig. 2: An illustration of the timing structure when M = 5.

tolerant traffic have been studied separately. In this paper, we
are the first to integrate both principles. The stochastic control
problem will be solved by using Dynamic Programming (DP)
and then further simplified using approximations. Then, we
apply the algorithms in the scenario of smart grid.

The remainder of the paper is organized as follows. We in-
troduce the system model in Section II. Then, we formulate the
problem as a stochastic control problem, solve and simplify it
in Section III. Numerical results and conclusions are provided
in Sections IV and V, respectively.

II. SYSTEM MODEL

In this section, we introduce the system model, which
includes the delay-tolerant data network and the CPS. The
timing structure of the system is illustrated in Fig. 2.

A. Communication Network Model
Consider a time slotted communication network in which

each time slot lasts time T
s

. We assume that there are N
time synchronized communication nodes in the network with
L communication links, which can be represented by a graph.
Similarly to most existing literatures, the communication
constraints of the links can also be represented by a graph,
in which each node stands for a communication link and
each edge means that the two incident nodes (thus the two
communication links) cannot be used simultaneously due to
co-channel collision. There are F delay-tolerant data flows.
If a transmission succeeds, a data packet can be conveyed
over a communication link in one time slot. There is no
delay requirement on these data flows. There could be random
transmission errors that are memoryless. We denote by q

fn

the
queue length of flow f at node n. The overall queuing situation
is denoted by a vector q.

Besides supporting the delay-tolerant data flows, the net-
work also supports the operation of a CPS system. For
simplicity, we assume that there is one centralized controller
and one or more sensor in the CPS system2. Note that these
sensors may or may not be co-located with the communi-
cation nodes for delay-tolerant data. The routing paths of
the CPS system have been predetermined. When sensor n
is scheduled and the corresponding communication links for
CPS are activated, we denote by I

n

the set of nodes in the
delay-tolerant communication network that are interfered by
the CPS communication (i.e., they are unable to transmit or

2The generic case of multiple distributed controllers is much more compli-
cated. We will study it in the future.

receive). For simplicity of analysis, we ignore the delay from
the sensors to the controllers, which is reasonable when the
physical dynamics are much slower than the data transmission
time; otherwise the analysis involving controlled dynamics
with delay will be much more complicated. We further assume
that there is no packet drop for the CPS communication; this is
reasonable since the number of bits in each CPS measurement
is usually small and can be protected by strong channel coding.

B. Model of Physical Dynamics
We consider a discrete time model for the CPS system3

in which each time interval lasts t
s

. In each interval, an
observation at the sensor is generated. We assume that t

s

is
smaller than T

s

and M =

Ts
ts

is an integer; i.e., the time for
delivering one data packet can be used to convey M CPS
observation packets.

The dynamics of the CPS system can be written as
⇢

x(k + 1) = Ax(k) +Bu(k) + n(k)
y(k) = Cx(k) +w(k)

, (1)

where x(k) is an N
x

-dimensional system state at observa-
tion period k, u is an N

u

-dimensional action taken by the
controller, y is an N

s

-dimensional observation, n and w are
white random noise with covariance matrices ⌃

nn

and ⌃

ww

,
respectively.

We consider the following quadratic cost function for the
CPS system when the system state history is x(t) and the
actions are u(t):

J
CPS

=

TfMX

k=1

⇥
x

T

(k)Qx(k) + u

T

(k)Pu(k)
⇤
, (2)

where T
f

is the total number of time slots (recall that each
time slot consists of M measurement samples for CPS), Q

and P are both predetermined positive definite matrices.

III. HYBRID TRAFFIC SCHEDULING

In this section, we assume that there is a centralized sched-
uler, which has the information of all current queue lengths q

and the observations on the CPS dynamics F . The scheduling
is carried out for each time slot (i.e., the transmission time
for one delay-tolerant data packet and M CPS observation
packets). Hence, we also call the time slot a scheduling period.
Although such a centralized scheduler is infeasible in practice,
it provides insights for practical scheduling algorithms and an
upper bound of performance, similarly to the study in [11]. We
will first formulate the problem and then propose a scheduling
algorithm.

A. Action and Strategy
The action of the scheduler is to schedule the activities of

different communication links. For the CPS traffic, once a
sensor is selected, the communication links along the path
from the sensor to the controller will completely support

3It is easy to convert a continuous time system from a discrete time one,
given the sampling rate.
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the CPS observation data. If a communication link is not
scheduled for the CPS data, it will be decided whether to
transmit and, if yes, which packet to transmit. Hence, the
action of each communication link (say link j at time slot
t), denoted by a

j

(t), is given by

a
j

(t) =

8
<

:

0, if not scheduled
n, if scheduled for CPS observations
f, if scheduled for delay-tolerant traffic

, (3)

where n is the selected sensor and f is the scheduled flow.
The actions are stacked into an L⇥ 1 vector a.

As we have assumed, the scheduler has the knowledge
s = {F ,q}. We assume that the scheduler has a deterministic
mapping from the system knowledge s to the action a, which
is the strategy of the scheduler and is denoted by ⇡.

B. Problem Formulation

We assume that the scheduling decision is made at the
beginning of each time slot. To characterize the stability of the
delay-tolerant traffics, we define T as the set of the transient
states of the queuing system and the hitting time as

⌧
q

=

⇢
1, if q(t) 2 T, 8t > 0

min{t > 0 : q(t) /2 T} . (4)

According to [11], the queuing system is stable if P (⌧
q

<
1) = 1, 8q.

Then, we formulate the problem as minimizing the expected
cost of the CPS system in (2) under the constraint of a stable
queuing dynamics. Mathematically, it can be written as

min

⇡

E [J
CPS

]

s.t. P (⌧
q

< 1) = 1, 8q, (5)

where the objective function is to minimize the expectation of
the CPS cost function under the constraint of stable queuing
process in the delay-tolerant traffics.

Remark 1: We have the following remarks on the problem
formulation:

• Note that there could be many other policies for the
co-existence of the delay-tolerant data flows and CPS
observation flows. For example, some bandwidth is al-
located to the CPS observation flows such that both
types of flows can be transmitted simultaneously, which
is more similar to frequency division duplexing (FDD).
The rationale of the proposed co-existence scheme, which
is more like time division duplexing (TDD), is that the
CPS observation flows are triggered by only emergency
situations (e.g., kxk becomes large) such that the TDD
style transmission is more efficient.

• Note that the scheduling policy forms a hybrid system,
in which there are two types of system states, namely
the queuing states (discrete) and CPS state (continuous).
The action considered in this paper is discrete. If we also
design the control action u jointly, the action space will
also become hybrid. Hence, we need to use the theory of
hybrid systems to study this scheduling problem.

C. Cost Function

The key challenge of the scheduling algorithm is how to
coordinate the CPS data traffics and the delay-tolerant traffics
(i.e., when to dedicate the corresponding communication links
to the CPS traffic and when to switch back to the delay-tolerant
traffics). Although (5) provides an optimization formulation,
it is difficult to solve directly. Hence, we have to resort to
heuristic approaches.

As indicated in [11], the stability of the queuing system is
dependent on the Laypunov function V (q) that is a nonneg-
ative function of the queuing lengths. As proved in Theorem
3.1 of [11], if there exists an ✏ > 0 such that

E [V (q(t+ 1))� V (q(t))]  �✏, (6)

where V (q(t + 1)) � V (q(t)) is also called the Lyapunov
drift [11], the queuing system is stabilized. Hence, we can
replace the constraint in (5) with the inequality in (6). Since
the scheduler at time 0, given the overall system state s(0),
needs to consider both the CPS cost in the future T

f

time
slots and the Laypunov drift in the next time slot, we can
reformulate the optimization problem in (5) as

min

⇡

E [J
CPS

]

s.t. E [V (q(T
f

))� V (q(0))]  �✏. (7)

Note that the formulation of optimization problem is similar
to the drift-plus-penalty strategy proposed in [9].

We can rewrite the constrained optimization in (7) into an
unconstrained one, which is given by

min

⇡

E [J
CPS

+ �V (q(T
f

))] , (8)

where � > 0 is the Lagrange factor whose determination will
be discussed later.

D. Hybrid System Formulation

The optimization of strategy in order to minimize the cost
function in (8) can be fit into the framework of hybrid systems
[13]. A linear switching system, as a special type of hybrid
systems, has the following dynamics:

⇢
x(k + 1) = A

ikx(k) +B

iku(k) + n(k)
y(k) = C

ikx(k) +w(k)
, (9)

where there are K possible modes of dynamics and i
k

2
{1, ...,K} is the index of the dynamics at time slot k.

In the context of hybrid traffic scheduling in this paper,
the matrices A and B do not change with time since they are
determined by the physical power systems that are not changed
by the scheduling. However, the matrix C, which represents
the measurement procedure, changes with the outcome of
the scheduling. When sensor n is not scheduled, the rows
corresponding to sensor n in matrix C can be considered
as zeros since no observations are provided from the sensor.
Hence, the index of C is determined by the scheduling action
a(t), as illustrated in Fig. 3.
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Fig. 3: An illustration of observation switching.

E. Optimal Scheduling Algorithm
Now, the scheduling problem is converted into the problem

of scheduling the modes of dynamics in a hybrid system. Note
that there have been many studies on the mode scheduling in
hybrid systems; e.g., [10] adopted an integer programming
based approach for continuous time systems. However, these
studies consider only the system dynamics and do not incor-
porate co-existing systems such as the delay-tolerant traffic. In
this paper, we will adopt the framework in [13] for a unified
algorithm. In [13], the mode selection is jointly optimized
with the control action in the framework of linear quadratic
Gaussian (LQG) control, based on the principle of dynamic
programming. The difference of our study is that what we
control is the measurement system (i.e., the matrix C) while
[13] considers the control of matrices A and B (the system
state is assumed to be observed directly in [13]).

1) Cost Within One Scheduling Period: Given an action a

and previous CPS observations F0, we define the expected
minimum cost of CPS within one scheduling period for the
CPS:

Jc(a,F0) = min

u
E

"
MX

s=1

x

T
(k)Qx(s) + u

T
(s)Pu(s)

����a,F0

#

= x

T
1|0S1x1|0 + trace

⇥
S1⌃1|0

⇤

+

MX

k=1

trace
⇥
Sk+1⌃ww + S

⇤
k+1⌃k|k

⇤
, (10)

where the subscript c means CPS, and

S

⇤
k+1 = A

T

S

j+1B
⇥
P+B

T

S

j+1B
⇤�1

B

T

S

j+1A, (11)

and

x1|0 = E [x(1)|F0] , (12)

⌃

k|k and ⌃
k|k�1 are the covariance matrices of the estimation

of x(k), given observations until k and k � 1 respectively, in
the Kalman filtering (the expression can be found in Eq. (23)
in [8]) and S

j

satisfies the following Riccati equation:

S

j

= A

T

S

j+1A�A

T

S

j+1B
⇥
P+B

T

S

j+1B
⇤�1

⇥ B

T

S

j+1A+Q, (13)

and S

M

= Q. Note that the second equation in (10) is cited
from Eq. (24) in [8].

The different terms in (10) can be categorized into two
groups:

• The terms S

k

, S

⇤
k

, x1|0, ⌃
ww

are independent of the
observation matrix C and thus the action a. They can be
computed in advance.

• The matrices ⌃
k|k and ⌃

k|k�1 are determined by the
action a.

Therefore, the cost of the CPS system can also be written as

Jc(a,F0) = trace
⇥
S1⌃1|0

⇤
+

MX

k=1

trace
⇥
S

⇤
k+1⌃k|k

⇤
+ J⇤, (14)

where J⇤ is the remainder of the cost that is independent of
the traffic scheduling.

We can also define the minimum cost of the queuing system,
given the action a and the queuing state q(0); i.e.,

J
q

(a,q) = min

s

E [V (q(1))� V (q(0))] , (15)

where the subscript q stands for queuing and s is the queue
scheduling policy given the queuing state q(0).

2) Dynamic Programming: We define the cost-to-go func-
tion for each scheduling period as

Jt(Ft�1,q(t� 1))

= min

⇡
E

2

4
TfMX

s=(t�1)M+1

h
x

T
(s)Qx(s) + u

T
(s)Pu(s)

i

+�

TfX

r=t

(V (q(r))� V (q(r � 1)))

����Ft�1,q(t� 1)

�
,(16)

where F
t�1 is the observations in time slot t�1 and q(t�1)

is the queuing state in time slot t� 1.
Obviously, when t = T

f

(i.e., the last scheduling period),
we have

J
Tf (FTf ,q) = min

a

J
c

(a,F
Tf ) + J

q

(a,q). (17)

An efficient algorithm to obtain J
Tf is to carry out an exhaus-

tive search for the scheduling of sensor (i.e., for all a), and then
compute J

c

using (10) and compute J
q

(given the remainder of
communication links) using the optimal scheduling algorithm
in pure data networks [11].

Suppose that J
t+1 has been obtained. Then, we can compute

J
t

using the following Bellman’s equation:

J
t

((F
t�1,q(t� 1)))

= min

a

J
c

(a,F
t�1) + J

q

(a,q(t� 1))

+ E [J
t+1(Ft

,q(t))|F
t�1,q(t� 1),a] . (18)

The whole algorithm is summarized in Procedure 1.

F. Suboptimal Scheduling

The challenge of dynamic programming in (18) is how to
evaluate the impact of the action on the expectation of the fu-
ture cost (i.e., the term E [J

t+1(Ft

,q(t))|F
t�1,q(t� 1),a]).
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Procedure 1 Procedure of Computing the Optimal Scheduling
Law

1: for Each possible action do

2: Compute the optimal cost within one scheduling period using
(10).

3: end for

4: Compute JTf using (17)
5: for t = Tf � 1 : �1 : 1 do

6: Use (18) to compute Jt based on Jt+1.
7: Obtain the corresponding scheduling law.
8: end for

1) Representation of History: First, we need to explicitly
express the history F

t

. We can represent F
t

as a 2-tuple
(µ

Mt+1,⌃Mt+1) such that

p
x(Mt+1)(x) /

exp

h
� (x� µ

Mt+1)
T

⌃

�1
Mt+1 (x� µ

Mt+1)

i
. (19)

Then, given F
t

, it is easy to verify

E [J
t+1(Ft

,q(t))|F
t�1,q(t� 1),a]

= E [J
t+1(F⇤

t

(F
t�1,a),q(t))|q(t� 1),a] , (20)

where F⇤
t

(F
t�1,a) is a functional of F

t�1 and a, and the
second expectation is with respect to the randomness of q(t).
The corresponding expectation and variance matrices are given
by

µ
Mt+1 = E [x(Mt+ 1)|F

t�1,a] , (21)

and

⌃

Mt+1 = V ar [x(Mt+ 1)|F
t�1,a] , (22)

which can be computed using Kalman filtering. The details
are omitted due to the limited space.

2) Monte Carlo Evaluation: In (20), we need to evaluate
the expectation over all possible q(t). However, when M is
large, it is difficult to enumerate all possible values of queue
lengths after M time slots. Hence, we can use Monte Carlo
simulations to numerically evaluate the expectation of q(t+1).

3) Quadratic Approximation: Even if we are able to reli-
ably evaluate the expectation, it is still difficult to empirically
evaluate the cost-to-go function J

t+1, since there are un-
countably many states for F

t+1 and infinitely many states for
q(t+1). Similarly to [4], we can use quadratic approximation
for J

t+1. In this paper, we assume

J
t

(F
t

,q(t))) ⇡ x

T

Mt+1⌦t

x

Mt+1 + trace [�
t

⌃

Mt+1]

+ q(Mt+ 1)

T

 

t

q(Mt+ 1), (23)

where ⌦
t

, �
t

and 
t

can be estimated from sufficiently many
realizations of J

t

. The details are omitted due to the limited
space; the case for only x can be found in [4].

G. Adjustment of Lagrange Factor
Note that we fix the value of the Lagrange factor � in

the previous discussion. An improper � may cause too much
weight on either the CPS traffic or the delay-tolerant traffic.
Hence, it is important to find a reasonable value for �.
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Fig. 4: An illustration of the deployment of network nodes,
paths and sensors.

However, we have not found an explicit expression for � due
to the complicated expressions of the objective function and
the constraints.

In this paper, we propose a simple algorithm to adaptively
adjust the Lagrange factor �. Recall that the constraint in the
optimization of scheduling law is the stability of the delay-
tolerant traffic. Hence, we can increase � for the delay-tolerant
traffic if the queues become unstable. The instability of the
queues can be assessed by comparing the queue lengths with
thresholds. Similarly to the congestion control in TCP, we can
multiplicatively increase � when the queues become unstable
and linearly decrease � when the queues are stable.

The details of the algorithm for adjusting the Lagrange
factor � are summarized in Procedure 2.

Procedure 2 Procedure of Adjusting the Lagrange Factor �
1: Initialize �; set thresholds �H and �L, (�H > �L), the scaling

factor ↵ > 1, the decrease step �� > 0 and the minimum �min.
2: for Each scheduling period do

3: if Any queue length is larger than �H then

4: Set � = ↵�.
5: end if

6: if All queue lengths are smaller than �L then

7: Set � = max {�min,�� ��}.
8: end if

9: end for

IV. NUMERICAL RESULTS

In this section, we use numerical simulations to demonstrate
the performance of the proposed scheduling algorithms.

A. Setup
We randomly drop 50 nodes within a 1km⇥1km square.

The maximum distance for communication is 250 meters. We
assume that there are two delay-tolerant data flows (sources:
s1 and s2; destinations: d1 and d2) within the network, and
the shortest path routing is used to establish the flow paths.
An illustration of the network is shown in Fig. 4.

We consider the voltage control in a microgrid with four dis-
tributed energy generators (DEGs). The details of the system
dynamics, which is a 4-dimensional one, can be found in [4].
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Fig. 5: Performance comparison between ADP and round robin
scheduling.

We assume that two wireless sensors are used to monitor the
first two dimensions of the observations respectively, while the
remaining two dimensions can be observed directly (e.g., they
are located at the controller or there is a wired communication
infrastructure for them). The locations of the two sensors are
shown in Fig. 4. If one sensor is scheduled, the nodes within
their interference range (marked by circles in the figure) have
to stop transmitting and receiving. Hence, there are totally four
possible actions for each scheduling period (scheduling or not
for each of the wireless CPS sensors).

B. Performance of ADP
We used the algorithm in Procedure 1 to obtain the

scheduling policy that is aware of the physical system state.
Meanwhile, we tested the performances of the following two
scheduling policies that are not aware of the physical dynamics
state:

• Round-Robin Algorithm: The four actions are taken in
turns.

• Probabilistic Algorithm: Each wireless sensor is activated
with probability ⇢.

The performance of the ADP algorithm in Procedure 1 is
shown for various values of the weighting factor � in Fig. 5.
Only when the Lyapunov drift of queuing is close to zero,
can the queue be stabilized. We observe that the queue is
stabilized when � is larger than 5. The minimum cost of
the physical dynamics is around 15. The performance of the
round-robin scheduling is also shown in Fig. 5. We observe
that it cannot stabilize the queuing dynamics. The performance
of the probabilistic scheduling is shown in Fig. 6, where the
minimum cost under the constraint of queuing stability is about
20 (when ⇢ = 0.1). Hence, we demonstrated the performance
gain of the proposed scheduling algorithm.

C. Adjustment of �
We also tested the algorithm proposed in Procedure 2. Due

to the limited space, we cannot show the trajectory of � which
is similar to the slow start mechanism in TCP. The numerical
simulation shows that the algorithm can adjust � such that
both the CPS and queuing dynamics are stabilized.
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Fig. 6: Performance of probabilistic scheduling without the
awareness of system state.

V. CONCLUSIONS

We have studied the scheduling of hybrid data traffics
serving both the control of CPS and a queuing communication
network. The scheduling has been formulated as a hybrid
system with the constraint of queuing stability. We have
proposed an ADP based algorithm, whose performance gain
over scheduling algorithms unaware of the physical dynamics
state has been demonstrated by numerical simulations in the
context of smart grid.

REFERENCES

[1] J. Bai, E. P. Eyisi, Y. Xue and X. D. Koutsoukos, “Dynamic tuning
retransmission limit of IEEE 802.11 MAC protocol for networked
control systems,” in Proc. of the 1st International Workshop on Cyber-
Physical Networking Systems (CPNS), 2011.

[2] P. E. Caines, Linear Stochastic Systems, Wiley, 1988.
[3] E. Lee, Cyber Physical Systems: Design Challenges. University of Cal-

ifornia, Berkeley Technical Report No. UCB/EECS-2008-8. Retrieved
2008-06-07

[4] H. Li, Z. Han, A. D. Dimitrovski and Z. Zhang, “Data traffic scheduling
for cyber physical systems with application in voltage control of
distributed generations: A hybrid system framework,” accepted by IEEE
Systems Journal, 2013.

[5] X. Liu and A. Goldsmith, “Wireless network design for distributed
contorl,” in Proc. of IEEE Conference on Decision and Control (CDC),
2004.

[6] J. Lunze and F. L. Lararrigue, Handbook of Hybrid Systems Control:
Theory, Tools and Applications, Cambridge Univ. Press, 2009.

[7] R. Mao and H. Li, “An efficient multiple access scheme for voltage
control in smart grid using WiMAX,” in Proc. of IEEE International
Conference on Communications (ICC), 2012.

[8] L. Meier, J. Peschon and R. M. Dressler, “Optimal control of mea-
surement subsystems,” IEEE Trans. on Automatic Control, vol.12, no.5,
pp.528–536, Oct. 1967.

[9] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queuing Systems, Morgan & Claypool, 2010.

[10] C. Seatzu, D. Corona, A. Giua and A. Bemporad, “Optimal control
of continous-time switched affine systems,” IEEE Trans. on Automatic
Control, vol.51, pp.726–741, May 2006.

[11] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queuing systems and scheduling for maximum throughput in multihop
radio networks,” IEEE Trans. Automat. Control, Vol.37, pp.1936-1949,
Dec. 1992.

[12] L. Xiao, M. Johansson, H. Hindi, S. Boyd and A. Goldsmith, “Joint
optimization of communication rates and linear systems,” IEEE Trans.
Automat. Contr., vol.48, pp.148–153, Jan. 2003.

[13] W. Zhang, J. Hu and J. Lian, “Quadratic optimal control of switched
linear stochastic systems,” Systems and Control Letters, vol.59, no.11,
pp.736–744, Nov. 2010.


