
  

 

 

 

 

 

 

A Feedback-based Decentralised 
Coordination Model for Distributed Open 
Real-Time Systems 

 
 
 

 

www.hurray.isep.ipp.pt 

Technical Report 

HURRAY-TR-120713 

Version:  

Date: 07-24-2012 

Luis Miguel Nogueira 

Luis Miguel Pinho 

Jorge Coelho 
 



Technical Report HURRAY-TR-120713  A Feedback-based Decentralised Coordination Model for 

                                                                  Distributed Open Real-Time Systems 

© IPP Hurray! Research Group 
www.hurray.isep.ipp.pt   

1 
 

A Feedback-based Decentralised Coordination Model for Distributed Open 
Real-Time Systems 
Luis Miguel Nogueira, Luis Miguel Pinho, Jorge Coelho 

IPP-HURRAY! 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8340509 

E-mail:  

http://www.hurray.isep.ipp.pt 

 
Abstract 
Moving towards autonomous operation and management of increasingly complex open distributed real-time systems 
poses very significant challenges. This is particularly true when reaction to events must be done in a timely and 
predictable manner while guaranteeing Quality of Service (QoS) constraints imposed by users, the environment, or 
applications. In these scenarios, the system should be able to maintain a global feasible QoS level while allow- ing 
individual nodes to autonomously adapt under different constraints of resource availability and input quality.This paper 
shows how decentralised coordination of a group of autonomous interdependent nodes can emerge with little 
communication, based on the robust self-organising principles of feedback. Positive feedback is used to reinforce the 
selection of the new desired global service solution, while neg- ative feedback discourages nodes to act in a greedy 
fashion as this adversely impacts on the provided service levels at neighbouring nodes.The proposed protocol is general 
enough to be used in a wide range of scenarios characterised by a high degree of openness and dynamism where co- 
ordination tasks need to be time dependent. As the reported results demon- strate, it requires less messages to be 
exchanged and it is faster to achieve a globally acceptable near-optimal solution than other available approaches. 

 



A Feedback-based Decentralised Coordination Model for

Distributed Open Real-Time Systems

Lúıs Nogueiraa,∗, Lúıs Miguel Pinhoa, Jorge Coelhob

aCISTER Research Centre
School of Engineering (ISEP), Polytechnic Institute of Porto (IPP)

bArtificial Intelligence and Computer Science Laboratory (LIACC-UP)
School of Engineering (ISEP), Polytechnic Institute of Porto (IPP)

Abstract

Moving towards autonomous operation and management of increasingly
complex open distributed real-time systems poses very significant challenges.
This is particularly true when reaction to events must be done in a timely and
predictable manner while guaranteeing Quality of Service (QoS) constraints
imposed by users, the environment, or applications. In these scenarios, the
system should be able to maintain a global feasible QoS level while allow-
ing individual nodes to autonomously adapt under different constraints of
resource availability and input quality.

This paper shows how decentralised coordination of a group of autonomous
interdependent nodes can emerge with little communication, based on the
robust self-organising principles of feedback. Positive feedback is used to
reinforce the selection of the new desired global service solution, while neg-
ative feedback discourages nodes to act in a greedy fashion as this adversely
impacts on the provided service levels at neighbouring nodes.

The proposed protocol is general enough to be used in a wide range of
scenarios characterised by a high degree of openness and dynamism where co-
ordination tasks need to be time dependent. As the reported results demon-
strate, it requires less messages to be exchanged and it is faster to achieve a
globally acceptable near-optimal solution than other available approaches.

Keywords:

∗Corresponding author.
Email addresses: lmn@isep.ipp.pt (Lúıs Nogueira), lmp@isep.ipp.pt (Lúıs Miguel

Pinho), jmn@isep.ipp.pt (Jorge Coelho)

Preprint submitted to Journal of Systems and Software April 18, 2012



Open real-time systems, Self-organising decentralised systems,
Decentralised coordination, Feedback control

1. Introduction

In recent years, many real-time systems have become open to unpre-
dictable operating environments where both system workload and platform
may vary significantly at run time. Open real-time systems allow a mix of
independently developed real-time and non real-time applications to coexist.
As such, the set of applications to be executed and their aggregate resource
and timing requirements are unknown until runtime but, still, a timely an-
swer to events must be provided in order to guarantee a desired level of
performance [1].

This move from self-enclosed to open real-time systems is also one of the
reasons for moving from static to dynamic environments. This calls for a
different and more flexible approach than those typically used for building
fixed-purpose distributed real-time embedded systems [2]. Static resource
allocations might be appropriate for a situation at a single point in time, e.g.
the initial deployment, but quickly become outdated as conditions change.
Thus, the ability to adapt the system’s behaviour at runtime is seen as a
key attribute in a variety of new domains for real-time systems [3, 4, 5].
When reasoning in terms of Quality of Service (QoS) support in dynamic
environments, which implies the establishment of contracts between clients
and service providers, the idea is to design systems using QoS adaptation
and renegotiation techniques and ensuring that, despite the uncertain factors
that trigger the occurrence of changes in the environment, the QoS contracts
remain valid [6].

While our previous work addresses multiple aspects of QoS support in
open real-time systems [6, 7], this paper goes forward by focusing on a novel
approach for coordinating self-adaptive peer nodes required to work cooper-
atively to solve computationally expensive services. Open real-time services
increasingly consist of a set of interacting components that jointly provide
some service to end-users [6, 8, 9]. Components use results produced by
other components, that may be running on other nodes, to produce their
own output and hence are interdependent. This means that a constraint on
one quality or resource parameter at a component can constrain other pa-
rameters at other components [10]. Thus, a service’s global QoS level must

2



be defined as the set of compatible feasible QoS regions provided by all the
interdependent components that compose the service. A feasible QoS region
defines a valid region of output quality that a component can achieve when
provided with sufficient input quality and resource allocation.

In these cases, a distributed system composed by self-adaptive nodes that
optimise their behaviour towards some individual goals may not necessarily
be optimised at a global level, as there is the possibility that conflicting greedy
decisions may lead to interference between the different self-management be-
haviours of nodes, conflicts over shared resources, sub-optimal system per-
formance and hysteresis effects [11]. Coordination is then a key concept
for developing self-adaptive distributed systems [12] and a wide spectrum of
coordination strategies have been proposed [13]. However, these strategies
have typically relied on centralised or consensus-based approaches to glob-
ally adapt the system in a controlled manner. While these may be reasonable
approaches for closed environments, they are not viable for open, dynamic,
and heterogeneous systems [14, 15, 16].

One of the main challenges that an autonomous self-adaptation of indi-
vidual nodes pose when designing a decentralised self-organising system is
that we cannot anticipate the entire set of possible environmental conditions
and their respective adaptation specifications. Components are thus faced
with uncertainty as what, when, and how to adapt to a changing environ-
ment in order to maintain desired system-wide properties [17]. Managing
this uncertainty, and its inevitable complexity, requires a tradeoff between
flexibility and assurance that the critical goals of the system are always met
[18]. This paper discusses these challenges and proposes a decentralised coor-
dination model based on an effective feedback mechanism to reduce the time
and complexity of the needed interactions among nodes until a collective
adaptation behaviour is determined. By exchanging feedback on the desired
self-adaptive actions, nodes converge towards a global solution, even if that
means not supplying their individually best solutions. As a result, each node,
although autonomous, is influenced by, and can influence, the behaviour of
other nodes in the system.

The remainder of this paper is organised as follows. Section 2 discusses
the challenges of binding individual autonomous activities into a collective
acceptable behaviour. Section 3 introduces the CooperatES framework, a
QoS-aware framework that addresses the increasing demands on resources
and performance by allowing computationally expensive services to be co-
operatively executed by temporary coalitions of nodes. Section 4 describes

3



the system model and used notation, followed by a detailed description of
the proposed decentralised coordination model, in Section 5. Section 6 anal-
yses and validates the properties of the proposed model. Section 7 shows
and discusses, based on the results of extensive simulations, the efficiency of
the proposed coordination model to coordinate the self-adaptive behaviour
of autonomous nodes and maintain desirable system-wide properties in de-
centralised cooperative systems with timing constraints. Finally, Section 8
concludes the paper.

2. Self-managed distributed systems

Managing the operation of increasingly complex and uncertain open dis-
tributed systems is a central challenge in real-time systems research [5]. Open
distributed systems have to cope with remoteness of components, concur-
rency, the lack of a global state, asynchrony of state changes, heterogeneity,
autonomous entities, and evolution of their configurations. It is now widely
acknowledged that the needed degree of self-adaptiveness cannot be achieved
without binding independent activities into a collective acceptable behaviour
[19, 20, 21].

A self-adaptive system needs to observe its own behaviour, analyse those
observations, and determine appropriate adaptation actions on one or more
running services. However, as a service adapts and evolves, we face the
problem of preserving an accurate and consistent model of the service’s ar-
chitecture and its constituent parts. Complex interdependencies may exist
among components such that the incorporation of one change can require the
inclusion of several others for the change to work correctly. Dealing with such
changes requires coordination so that the system’s functionality is preserved.
Coordination is then the logic that binds independent activities together into
a collective activity [12].

Consider a distributed video conferencing application where the end-
to-end latency increases due to network congestion. Examples of possible
adaptation actions are reducing security, adding compression in the underly-
ing network protocol, or reducing the picture’s size, colour, or resolution at
the application layer. Without coordination, both layers may independently
make the decision on whether and by how much to adapt, potentially lead-
ing to unnecessary overcorrection. With coordination, however, the overall
change can be more precisely tailored to a particular situation.

4



As another example, consider a mobile device with limited available power
running several adaptive network-based applications. Whenever the battery
level falls below some specified threshold, one of the applications is triggered
to reduce its power consumption by reducing the network interface’s utilisa-
tion. However, as the first application adapts and releases some of its share
of the overall bandwidth, this action may be interpreted independently by
the other applications as an increase in available network bandwidth and
may consequently increase their use of the network. In this case, the request
to utilise available bandwidth is in direct conflict with the initial goal of
reducing power consumption.

As such, adaptation actions within a given host demand the coordination
across local components and layers to avoid inconsistent changes or overreac-
tions in response to the changing environmental conditions [22, 20, 23]. The
problem is exacerbated, however, among interdependent autonomous hosts of
a distributed system, where there is the need to ensure that local individual
adaptation actions will produce a globally acceptable solution [24, 25]. Yet,
coordinating autonomous interdependent runtime adaptations in distributed
environments is not an easy task [26].

Guaranteeing globally optimal adaptation decisions requires a complete
information about the state of all components, an optimal decision policy,
and support for a strong consensus among components on the actions to be
taken. Even when the goal is to reach a near-optimal global solution, coordi-
nation may require complex communication and synchronisation strategies.
This is caused by interdependencies among components, as well as among
components and their execution environment [8, 27, 28, 29].

In several architectures, the monitoring of the system’s state and ex-
ecution of adaptive actions is typically coordinated by a global manager
[30, 31, 28, 32], a centralised component in the distributed system that mon-
itors the state of all components and connectors and coordinates the de-
termined adaptive actions on these components and connectors. While the
use of centralised entities to support rule enforcement and self-managing be-
haviour is a reasonable approach for a closed environment, it has several
disadvantages in open, dynamic, and heterogeneous systems [14, 33]. With
the increasing size and complexity of open distributed systems, the ability to
build self-managed distributed systems using centralised coordination models
is reaching its limits [15], as solutions they produce require too much global
knowledge. Thus, there is a trend towards using decentralised coordination
techniques to establish and maintain system-wide properties over collections

5



of components. How these components should interact in order to collec-
tively solve a problem (and not what they were actually doing) became the
focus of decentralised coordination research.

Georgiadis et al. [28] introduced the notion of a self-organising distributed
system as “one in which components automatically configure their interac-
tions in a way that is compatible with an overall architectural specifica-
tion”. However, although their work describes a software architecture that
organises itself through local architectural constraints, it does not provide
a model for building large decentralised systems, as the coordination model
is consensus-based, requiring components to broadcast local changes to all
other components in order to maintain common views on the system. This is
known to produce communication overhead when establishing an agreement
on changes to the shared model, which limits its scalability [34].

Goldin and Keil [33] describe a system built using a decentralised coor-
dination model as a self-organising system whose system-wide behaviour is
established and maintained solely by the local interactions of its components,
which executes using only a partial view of the system. A commonly cited ex-
ample of a complex distributed system with decentralised control comes from
the world of biology - the socially intelligent colony of ants [35]. Without any
central coordination, the colony displays emergent behaviours (e.g., finding
optimal foraging paths) and structures (e.g., organised piles of dead ants ap-
pear around the nest site). While individual ants do not have a global view
of the colony, intelligent global behaviour and functionality emerges solely
from local interactions.

The benefits of such decentralised approach include the lack of centralised
points of failure or attack [15], improved scalability, as well as a possible evo-
lution of the system through evolving the local rules of their agents [36]. Fur-
thermore, even if decentralised coordination models cannot achieve a strong
consensus on the optimal adaptation actions to execute [37], it is still possible
to achieve near-optimal decision policies through the localised coordination
of components for certain classes of applications [38, 39, 21]. On the other
hand, global solutions are typically accomplished through the exchange of
multiple messages to ensure that all involved nodes make compatible deci-
sion about whether and how to adapt. Also, without proper control, it may
become difficult to predict the exact behaviour of the system taken as a
whole due to the large number of possible non-deterministic ways in which
its components can behave [40].

Control-theoretic approaches have been applied to a number of comput-

6



ing systems [41]. Of particular interest to distributed real-time embedded
systems are, for example, the works reported in [5, 42]. The goal of the
DEUCON algorithm [5] is to enforce, despite significant uncertainties in sys-
tem workloads, the desired CPU utilisations on all the processors in a dis-
tributed system where a task may comprise a chain of subtasks on different
processors. In contrast to the per-processor aggregate utilisation control ap-
proach of DEUCON, the DFCS framework [42] handles independent tasks
via a combination of local QoS level adaptation and task (re)allocation to
support data-driven applications with unpredictable and changing resource
requirements. While we certainly share some concerns with these works,
there are several important differences between our work and those projects.
The CooperatES framework applies global multi-resource utility-based adap-
tation strategies to nodes with a significant degree of autonomy, capable of
cooperatively performing tasks and sharing resources with other nodes.

In autonomic systems, Accord [43] is a component-based programming
model and framework, designed to support the development of autonomic
applications in closed distributed environments that can be managed at run-
time using high-level rules defined by users. The authors identify challenges
inherent in the construction of large-scale autonomic distributed applica-
tions including heterogeneity and dynamism in the availability and state of
components, services and infrastructure. Behaviour rules control the run-
time functional behaviour of autonomic components while interaction rules
control the interactions between components, between components and their
environments, and coordination within an autonomic application. In Accord,
the centralised coordination of the adaptation of workflows is supported by
a composition agent. However, there is no mechanism provided for the auto-
mated evaluation and updating of interaction rules at runtime, and Accord
requires an administrator to manually evaluate the behaviour of the system
and insert/remove/replace the appropriate interaction rules using the config-
uration agent. Accord also supports the definition and execution of decen-
tralised coordination models specified as programmable reactive behaviours
in a tuple-space. A reactive tuple consists of a condition for triggering some
reactive behaviour, the reactive behaviour itself and a guard for defining the
execution semantics of the reactive behaviour. There are no decentralised
coordination models presented, however.

In [21], a collaborative reinforcement learning (CRL) approach is intro-
duced as a decentralised coordination model that can coordinate the adap-
tive behaviour of groups of connected agents for the purpose of establishing

7



system-wide autonomic properties in dynamic and uncertain environments.
CRL models system optimisation problems as a set of discrete optimisation
problems (DOP) that can be initiated at any agent and solved at any agent
in the system. A DOP is defined as the combinatorial optimisation problem
of finding the agent from a discrete set of agents that can solve a particular
problem with the lowest cost. However, CRL assumes agents are homo-
geneous. In today’s open distributed environments, the assumption that
learning agents that join a system are homogeneous is becoming increasingly
unrealistic.

Cholla [23] is a software architecture based on Cactus [44] that supports
coordinated adaptations through separate centralised controllers that are
constructed from composable fuzzy logic rule sets. These adaptation con-
trollers encapsulate the adaptation policy decisions of how and when adap-
tive components react to changes in the environment. The architecture has
its main focus on composing and coordinating control strategies for multiple
adaptive components on a single host and only limited coordination between
hosts is included in the runtime system of Cholla. Coordination among hosts
follows the protocol detailed in [45], a consensus-based model that gathers
information from remote nodes to allow controllers to determine a global
adaptive action. The protocol, however, is unable to handle conflicting con-
trol desires of nodes and independent applications.

The limited applicability of these coordination models to heterogeneous
distributed real-time systems provides the significant motivation for the de-
velopment of a new decentralised coordination model that also reasons about
the duration and overhead of the coordination process. As with all aspects of
the design of distributed real-time systems, the development of a coordina-
tion model is constrained by stringent architectural properties. The proposed
coordination model needs to fit these requirements but, nevertheless, be able
to efficiently handle the challenges of an autonomous adaptation to environ-
mental changing conditions.

Our goal is then to achieve a manageable, efficient, and predictable con-
vergence to a global solution through a regulated decentralised coordination
without overflowing nodes with messages. The next section details the pro-
posed decentralised coordination model. The model is based on an effective
feedback mechanism that reduces the complexity of the needed interactions
among nodes until a collective adaptation behaviour is determined.

8



3. The CooperatES framework

The Cooperative Embedded Systems (CooperatES) framework [6] is pri-
marily focused on open and dynamic environments where new services can
appear while others are being executed, the processing of those services has
associated real-time execution constraints, and component-based services can
be executed by a coalition of neighbour nodes. In [46], we provide a complete
description of the server-based schedulers used in the CooperatES framework,
simultaneously dealing with capacity sharing, stealing and exchanging. Hard
schedulability guarantees can be provided either for independent and interde-
pendent task sets, even when hard and soft real-time tasks do share resources
and exhibit precedence constraints.

The goal of the framework is to enable resource-constrained devices to
solve computationally expensive services by redistributing parts of the ser-
vice onto other devices, forming temporary coalitions for a cooperative service
execution. Each node has a significant degree of autonomy and it is capa-
ble of performing tasks and sharing resources with other nodes. Nodes may
either cooperate because they cannot deal alone with the resource alloca-
tion demands imposed by users and services or because they can reduce the
associated cost of execution by working together.

A service S = {c1, c2, . . . , cn} is considered to be formed by a set of in-
terdependent software components ci. Each component ci ∈ S is an entity
that is defined by its functionality, is able to send and receive messages, is
available at a certain node of the network, and has a set of QoS parameters
that can be changed in order to achieve an efficient resource usage that con-
stantly adapts to the specific constraints of the devices, nature of executing
tasks, and dynamically changing system conditions.

The framework is composed by several modules, as depicted in Figure
1. A detailed description of the framework’s model is outside the scope
of this paper. However, a brief description helps to fully understand the
proposed coordination model to maintain feasible QoS levels in distributed
and dynamic open environments.

Whenever a user wants to execute some QoS-aware service S in a com-
putational device, it requests execution to the framework through the Appli-
cation Interface, thus providing explicit admission control, while abstracting
the underlying middleware and operating system.

Given the heterogeneity of services to be executed, users’ quality prefer-
ences, underlying operating systems, networks, devices, and the dynamics of

9



Figure 1: CooperatES Framework

their resource usages, QoS specification becomes an important issue in the
context of a distributed QoS-aware cooperative service execution framework.
The QoS scheme adopted in the CooperatES framework defines, for each
application domain, its quality dimensions, attributes and values, as well as
relations that map dimensions to attributes and attributes to values [6].

Having a QoS characterisation of a particular application domain, users
and service providers are able to define service requirements and proposals
in order to reach an agreement on service provisioning through a utility
model. Several works associate with each pre-defined QoS level a utility
function that specifies the user’s benefit in obtaining service within those
values [3, 10, 47]. However, it may be clearly infeasible to make the user
specify an absolute utility value for every pre-defined quality choice. While
we want a semantically rich request in order to achieve a service provisioning
closely related to the user’s quality preferences, we also want the user to
actually be able to express personal QoS preferences in a service request. A
more natural and realistic way is to simply impose a service request based
on a qualitative, not quantitative, measure. With a relative decreasing order
on quality dimensions, their attributes, and accepted values, a user is able
to encode the relative importance of the new service’s performance at the
different QoS levels without the need to quantify every quality tradeoff with
absolute values.

Thus, in the CooperatES framework users provide a single specification of
their own range of QoS preferences [Ldesired, Lminimum] in decreasing prefer-
ence order for a complete service S, ranging from a desired QoS level Ldesired

to the maximum tolerable service degradation, specified by a minimum ac-
ceptable QoS level Lminimum, without having to understand the individual

10



components that make up the service. It is assumed that a service can be
executed at varying levels of QoS to achieve an efficient resource usage that
constantly adapts to the specific constraints of devices, nature of executing
tasks and dynamically changing system conditions. We make the reasonable
assumption that the execution modes of services associated with higher QoS
levels require higher resource amounts.

The service request will then be handled by the device’s QoS Provider,
which is composed by the Local Provider and Coalition Organiser compo-
nents. The Local Provider is responsible for determining if a local execu-
tion of the new service is possible within the user’s accepted QoS range,
by executing a local gradient descent anytime QoS optimisation algorithm,
quadratic in the number of tasks and resources and linear in the number of
QoS levels. The goal is to maximise the satisfaction of the new service’s QoS
constraints while minimising the impact on the current QoS of previously ac-
cepted services [6]. Rather than reserving local resources directly, it contacts
the Resource Managers to grant the specific resource amounts requested by
the service. Each Resource Manager is a module that manages a particular
resource, and interfaces with the actual implementation in a particular sys-
tem of the resource controller, such as the network’s device driver, the CPU
scheduler, or even with the software that manages other types of resources
(such as memory).

If the resource demand imposed by the user’s QoS preferences cannot be
locally satisfied, the coalition formation process is handled by the Coalition
Organiser. There will be a set of interdependent components to be collec-
tively executed, resulting from partitioning the resource intensive service.
Correct decisions on service partitioning must be made at runtime when suf-
ficient information about workload and communication requirements become
available [48], since they may change with different execution instances and
QoS preferences of users.

The Coalition Organiser is then responsible for broadcasting each of the
service’s components description along with the user’s allowed QoS range,
evaluating all the received service proposals, and deciding which nodes will
be part of the coalition. The Coalition Organiser interacts directly with
the System Manager to know which nodes are able to participate in the
coalition formation process. Therefore, the System Manager is responsible
for maintaining the overall system configuration, detecting QoS-aware nodes
entering and leaving the network, and managing the coalition’s operation
and dissolution.

11



Every neighbour node able to satisfy the request for executing a compo-
nent ck ∈ S within the user’s allowed QoS values, formulates a service pro-
posal, according to the local anytime QoS optimisation algorithm discussed
above and replies with both its service proposal Pk and its local reward Rk,
resulting from its proposal acceptance. For the remaining of this paper, the
service solution’s reward indicates how close is the offered QoS level to the
user’s desired QoS level, according to the set of tasks being locally executed,
their associated QoS constraints, and quality of received inputs. This dis-
tance is mapped into a value in the interval [0, 1], with 1 being assigned to the
service solution that completely satisfies the user’s desired QoS level Ldesired.
How each node measures its local reward is detailed in [6].

The CooperatES framework differs from other QoS-aware frameworks by
considering, due to the increasing size and complexity of distributed embed-
ded real-time systems, the needed trade-off between the level of optimisation
and the usefulness of an optimal runtime system’s adaptation behaviour.
Searching for an optimal resource allocation with respect to a particular
goal has always been one of the fundamental problems in QoS management.
However, as the complexity of open distributed systems increases, it is also
increasingly difficult to achieve an optimal resource allocation that deals
with both users’ and nodes’ constraints within an useful and bounded time.
Note that if the system adapts too late to the new resource requirements,
it may not be useful and may even be disadvantageous. This idea has been
formalised using the concepts of anytime QoS optimisation algorithms, in
which there are a range of acceptable solutions with varying qualities, adapt-
ing the distributed service allocation to the available deliberation time that
is dynamically imposed as a result of emerging environmental conditions [46].
Nodes start by negotiating partial, acceptable service proposals that are lat-
ter refined if time permits, in contrast to a traditional QoS optimisation
approach that either runs to completion or is not able to provide a useful
solution. At each iteration, the proposed QoS optimisation tries to find a
new feasible set of QoS levels with an increasing utility. This improvement
is larger at the early stages of computation and diminishes over time.

The framework’s anytime coalition formation process enables the selec-
tion of individual nodes that will constitute the best group to satisfy the
user’s QoS requirements. Such selection is based on their own resources and
availability. As such, by best group, we mean the group formed by those
nodes which offer service closer to the user’s desired QoS level. Therefore,
nodes dynamically group themselves into a new coalition, allocating resources

12



to the new service and establishing an initial Service Level Agreement (SLA),
a set of compatible QoS levels provided by all the components ck that com-
pose service S. As a result, each node ni in a coalition commits to output
a specific QoS level Qk

val for a component ck in a service S. Each of these
commitments is represented by a triple (ni, ck, Qk

val).
As an exemplifying scenario, let’s consider a user that imposes a particu-

lar range of QoS levels to a QoS-aware application that captures, compresses
and transmits frames of real-time video to end users, using its resource-
constrained device. Assume that such request originated the dynamic for-
mation of the coalition represented in Figure 2 and whose characteristics are
detailed in the next table. The node receiving the final service is node g (the
user’s node). Recall that the achieved reward with the output QoS level at
each node is a value in the interval [0, 1], with 1 being assigned to the service
solution that completely satisfies the user’s desired QoS level Ldesired.

Node Reward of output QoS Quality of received inputs
a 0.3 ∅
b 0.3 ∅
c 0.3 {(a, 0.3)}
d 0.3 {(b, 0.3)}
e 0.3 {(c, 0.3), (d, 0.3)}
f 0.4 {(e, 0.3)}

For the sake of clarity of presentation, the number of nodes in the coali-
tion is small and each of those nodes is only executing one of the service’s
components. However, such limitations are not present in the framework.
Users encode their own relative importance of the different QoS parameters
for each service and the framework uses this information to determine the
distributed resource allocation that maximises the satisfaction of those con-
straints, which may result in more than one component being executed in
the same node.

Commitments on output QoS levels that originated the selection of nodes
for the coalition formation process must be valid local solutions, in the sense
that assumptions on resource availability for each executed component should
not be mutually inconsistent, and each commitment should satisfy the user’s
acceptable QoS levels at the time it is made. However, assumptions on
resource availability have an associated uncertainty in open dynamic systems

13



Figure 2: Dynamically formed coalition

due to the unpredictable arrival or departure of services. As such, the truth
or falsity of a particular assumption may change, invalidating an existing
commitment, forcing the node to adapt and make a new one.

Furthermore, QoS interdependencies among components of a service S
imply that such autonomous adaptation actions of a node in a coalition
may constraint current commitments at other coalition members. A QoS
dimension Qa is said to be dependent on another dimension Qb if a change
along the dimension Qb will increase the needed resource demand to achieve
the quality level previously achieved along Qa [10]. Thus, the quality of the
produced output of a component ci ∈ S may not only depend on the amount
and type of locally reserved resources but also on the quality of the received
inputs produced by other components.

QoS interdependencies explicitly express dependency relationships exist-
ing over the QoS characteristics of a service. Formally, there is a set of
m QoS attributes Attr = {attr1, attr2, . . . , attrm} of a service S, whose
values are taken from the domains D = {D1, D2, . . . , Dm}, respectively,
and a set of interdependency constraints on their values. The constraint
p(attri, attrj), ∀attri, attrj ∈ Attr is a predicate that is defined on the Carte-
sian product Di ∗Dj, ∀Di, Dj ∈ D. This predicate is true if and only if the
value assignment of these variables satisfies this constraint. Note that there
is no restriction on the form of the predicate. It can be a mathematical
or logical formula or any arbitrary relation defined by a tuple of acceptable
values.

14



As a consequence of these interdependencies, the problem of maintain-
ing a global consistent solution for a service S in the face of conflicting
autonomous adaptation actions of nodes arises. This paper extends the Co-
operatES framework with a feedback-based decentralised coordination model
that reduces the time and complexity of the needed interactions among in-
terdependent nodes of a coalition until a collective adaptation behaviour is
determined. The proposed model is general enough and completely indepen-
dent from how the code to be executed on the original node’s behalf arrives
to the coalition members. It can be assumed that only nodes equipped a
priori with a service’s code blocks respond to a cooperation request, thus
eliminating the need to migrate code at runtime and transfer the service’s
current state.

4. System model

We assume an open distributed system populated by several heteroge-
neous nodes, each with its specific set of resources. Requests for service,
some of them with associated QoS constraints, can appear at any time while
previously accepted services are being executed or terminated. Due to these
characteristics, resource availability is highly dynamic and unpredictable in
advance.

A service S = {c1, c2, . . . , cn} is formed by a set of interdependent soft-
ware components ci. Each service has associated a range of acceptable QoS
levels [Ldesired, Lminimum]. To control the load imposed on system resources
and, hence, guarantee a certain level of QoS, service acceptance and runtime
adaptation must go through online admission control and resource reserva-
tion. Given a node n and a local set of QoS levels σ to be provided, it is
considered that admission control is performed, and that therefore a sys-
tem specific feasibility function (e.g. [49, 3, 50]) determines if a set of QoS
requirements can be met with available resources.

Definition 1.

feasibility(σn) =






true if node n has sufficient resources
to supply the set of QoS levels σ

false otherwise

Proposition 1. Given a node n and a set of QoS levels σ to be satisfied, the
function feasibility(σn) always terminates and returns true if σ is feasible
in n or false otherwise.

15



Thus, for some nodes, there may be a constraint on the type and num-
ber of components they can execute within acceptable QoS levels for their
users. In this context, a cooperative QoS-aware execution of resource inten-
sive services among neighbour nodes seems a promising solution [6]. The
CooperatES framework enables a service to be executed either by a single or
a group of nodes, depending on the capabilities of nodes and on the imposed
quality constraints. In either case, the service is processed in a transparent
way for the user, as users are not aware of the exact distribution used to
solve the computationally expensive services.

Interdependency relationships among components of a service S are rep-
resented as a directed acyclic graph (DAG) GS = (VS, ES), where each vertex
vi ∈ VS represents a component ci ∈ S and a directed edge ei ∈ ES from cj
to ck indicates that ck is functionally dependent on cj.

Since the need for coordination arises from conflict-causing interdepen-
dencies, the feedback-based coordination protocol proposed in Section 5 uses
these interdependencies to determine what, when, and to whom to communi-
cate changes in current commitments. For the sake of simplicity, we present
the following functions in a declarative notation with the same operational
model as a pattern matching-based functional language.

Changes in interdependent commitments are propagated along GS until
a new globally acceptable service solution is found. For that, we define the
paths and the flatten functions. The paths function is a breadth first ap-
proach with cycle checking for determining nodes in paths. Visited nodes are
added to the temporary set T in order to avoid infinite loops. The function
outputs all the nodes in all the possible paths between two interdependent
nodes ni and nj , or ⊥ if there is no path between those two nodes. If there
are more than one path between them, the result is a set of sets, each of
them corresponding to a distinct path. The flatten function is then used to
make the resulting set of sets flat, meaning that all the nodes in these subsets
will now belong to a simplified single set. Later in the paper, we use these
functions in the proposed QoS upgrade and downgrade algorithms.

Given a DAG GS = (VS, ES) and two nodes ni, nj ∈ VS, all the nodes
in the possible paths between ni and nj are obtained as the result of the
function:

16



paths(ni, nj) = flatten(paths(ni, nj, ∅))

paths(ni, nj, T ) = ∅, if ni = nj

paths(ni, nj, T ) = {{ni, nk1} ∪ paths(nk1 , nj, T ∪ {nk1}),
...
{ni, nkn} ∪ paths(nkn , nj, T ∪ {nkn})},
∀nkm ∈ VS, such that (ni, nkm) ∈ ES and nkm /∈ T

paths(ni, nj, T ) = ⊥

Given a set A containing other sets, the function flatten(A) is defined as:

flatten(∅) = ∅
flatten(A) = a ∪ flatten(A \ a), if a ∈ A

Proposition 2. Given a DAG GS = (VS, ES) and two nodes ni, nj ∈ VS,
paths(ni, nj) terminates and returns all the nodes in the possible paths be-
tween ni and nj, ∅ in case ni = nj, or ⊥ in case there is no path between
ni, nj ∈ VS.

Within GS = (VS, ES), we give particular names to three types of compo-
nents. A source component models an input device and is not a consumer
of the output produced by any other component in the service’s DAG. An
user component represents a component that is not a producer of any output
consumed by other components in GS and models a unit to display the global
service’s output in the end-user’s device. Source and user components mark
the limit of a set of components that must be managed in a coordinated
manner. Finally, we call cut-vertex to a node ni ∈ VS , if the removal of that
node divides GS in two separate connected graphs. Cut-vertexes may confine
coordination operations to a subset of GS . Within a feasible QoS region, it
may be possible to maintain the current output quality by compensating for
a decrease in input quality by an increase in the amount of used resources or
vice versa [9].

5. A feedback-based decentralised coordination model

Whenever the output QoS of some component depends not only on the
amount and type of locally reserved resources but also on the quality of the

17



received inputs sent by other components, it must be ensured that a source
component provides a QoS which is acceptable to all consumer components
and lies within the QoS range supported by the source component. This sec-
tion proposes a decentralised, but still manageable, efficient, and predictable
coordination model for open real-time systems.

Coordination involves managing the communication which is necessary
due to the distributed nature of the system and QoS interdependencies among
components. As a consequence of these interdependencies, the coordination
problem becomes one of maintaining a global consistent solution for a ser-
vice S in the face of conflicting autonomous adaptation actions of nodes.
Thus, whenever a node autonomously changes its current commitment for
a particular component ci ∈ S, three questions must be answered: (i) is
communication necessary?; (ii) what needs to be communicated?; and (iii)
to whom should the communication be addressed?. In the next paragraphs,
we outline a set of properties that a coordination protocol needs to enforce
in order to answer these three questions in open and decentralised real-time
systems.

A node’s runtime adaptation to environmental changes can be viewed
as a process of identifying alternative solutions and choosing the feasible
resource allocation that maximises the satisfaction of the set of QoS con-
straints [6]. The new service solution becomes a commitment whenever it
is communicated to its coalition partners. At this point, subsequent nodes
in the coalition’s DAG have the expectation that the commitment will be
met and can use this knowledge in the elaboration of their own commit-
ments. Thus, an ordered sequence of changes in the commitments of nodes
answers the question of when communication is necessary. By ordering com-
mitments according to interdependencies, commitments made by nodes that
supply input for a component ci ∈ S must precede the commitment made by
node ni as only then has ni incorporated the commitments of other nodes as
constraints for its own local resource optimisation.

Coordinating a group of autonomous self-adaptive nodes, particularly in
the presence of several different QoS dimensions of interest [6], has an over-
head. In fact, in highly dynamic systems, the amount of degradation in QoS
due to coordination could outweigh the benefits of adapting the system to
changes. A coordination protocol should, therefore, ensure that the informa-
tion that is exchanged among nodes is as concise as possible. Conciseness
will then determine what should be communicated.

Completeness guarantees that, given a particular interdependency, all

18



dependencies that follow from it can be determined. If the coordination
protocol is not complete, then there is the possibility that inconsistencies
in service provisioning will persist due to interdependencies that remain un-
detected. However, completeness does not guarantee that every detected
interdependency will be a true interdependency. Thus, the set of nodes in-
volved in the coordination process may contain nodes not affected by the
new commitment. Soundness ensures that only true interdependencies will
be detected and that the set of affected nodes is minimal. As such, com-
pleteness and soundness will then determine to whom should messages be
sent.

In nature there is a well-known, pervasive notion that satisfies these de-
sirable properties of coordination and can be successfully applied to decen-
tralised software systems [51]: the notion of feedback. Nature provides plenty
of examples of cooperative self-adaptive and self-organising systems, some of
them are far more complex than distributed systems we design and build
today [52]. These natural systems are often decentralised in such a way that
participants do not have a sense of the global goal, but rather it is the in-
teraction of their local behaviour that yields the global goal as an emergent
property. Typically, when feedback is interpreted as negative feedback, it
will act as a regulator on changes that deviate the system from some optimal
state, whereas feedback perceived as positive will usually trigger adaptation
actions that serve to increase changes in the same direction as the previous
one.

These feedback loops can provide a generic mechanism for self-adaptation
in distributed systems. To achieve this goal, the research community has in-
creasingly explored the extent to which general principles of feedback are
applicable when reasoning about self-adaptive software systems [51]. Never-
theless, to the best of our knowledge, feedback has not yet been adopted as
a specific decentralised mechanism to coordinate the dynamic behaviour of
an interdependent set of autonomous self-adaptive QoS-aware components
working without any central control in open distributed real-time systems.

In the CooperatES framework, each of the components ci ∈ S may ei-
ther have their currently output QoS levels downgraded (until Lminimum is
reached) in order to accommodate new service requests with a higher utility
or upgraded (until Ldesired is reached) on an underutilisation of a particular
coalition member. This implies that the beginning of a coordination process
may either be a reflexive action, in case of a necessary downgrade, or a vol-
untary one, in case of an attempt to upgrade the currently provided QoS

19



level of previously downgraded components.
Affected coalition partners then collect relevant data, both from the com-

mitments of other nodes and from local resource reservations, that reflect the
current state of the system. Subsequently, each involved node analyses the
collected data and takes a decision on whether and how to adapt in order to
reach a global desired state. Finally, to implement the decision, the coalition
acts in a coordinated manner.

More formally, we model a self-managed coalition as a group of nodes that
respond to interdependent changes on the output QoS of their components
according to a decentralised coordination protocol defined by the following
phases:

1. Coordination request. Whenever Qi
val� , the needed downgrade or

desired upgrade of the currently output QoS Qi
val for a component

ci ∈ S, has an impact on the currently output QoS level of other
components cj ∈ S, a coordination request is sent to the affected direct
neighbours in GS.

2. Feedback formulation. Affected direct neighbours recompute their
local set of SLAs using Algorithm 1 in order to formulate the corre-
sponding feedback on the requested adaptation action. If a positive
feedback is formulated, the coordination request is propagated to the
next direct neighbour in GS, until the next cut-vertex nc is reached.
We assume that coalition partners are willing to collaborate in order
to achieve a global coalition’s consistency, even if this might reduce the
utility of their local optimisations. However, a node only agrees with
the requested adaptive action if and only if its new local set of SLAs is
feasible.

3. Coordinated adaptive action. If the requested adaptive action is
accepted by all the affected nodes, the new local set of SLAs is imposed
at each of those coalition members. Otherwise, the currently global QoS
level of service S remains unchanged.

A fundamental advantage of the proposed coordination model is that
both the communication and adaptation overheads depend on the size of
a node’s neighbourhood until a cut-vertex is reached, instead of the entire
coalition. This allows the proposed feedback-based coordination model to
scale effectively to large distributed systems.

Although each individual node has no global knowledge about the coali-
tion and its interdependencies as a whole (only knows to which direct neigh-

20



bour(s) it sends its output), complex coordinated adaptations emerge from
local interactions. Requests for coordination with a node ni ∈ GS may ar-
rive dynamically at any time to any node nj ∈ GS. The formulation of the
corresponding positive or negative feedback at a node nj depends on the
feasibility of the new requested QoS level as a function of the quality of the
new set of inputs Ici for the locally executed component ci and the amount
of locally available resources. Such feasibility is determined by the local QoS
optimisation algorithm detailed in Algorithm 1.

To locally guarantee the coordination request through Algorithm 1, each
node executes a gradient descent QoS optimisation, quadratic in the number
of tasks and resources and linear in the number of QoS levels. The goal is to
locally adapt the set of provided QoS levels in response to a coordination re-
quest and achieve a global consistency in a coalition’s service execution, while
minimising the impact on the current QoS levels of other locally accepted
services. As a result, the solution’s quality associated with the new local set
of SLAs can be lower after the coordination request. However, recall that we
make the assumption that, in cooperative environments, coalition partners
are willing to collaborate in order to achieve a global coalition consistency,
even if this coordination might reduce the global utility of their local QoS
optimisations.

Whenever a coordination request arrives for a service S, the algorithm
starts by maintaining the currently provided QoS levels of other services and
by defining the new SLA for the component ci ∈ S according to the new
quality of its inputs. The goal is to quickly find a feasible solution. If, on the
other hand, QoS degradation is needed to accommodate the new SLA, the
algorithm guides the search for a feasible solution by incrementally selecting
the configuration that minimises the quality decrease of other previously
accepted components, until a feasible solution is found (if it exists) or until
it finds that, even at the lowest acceptable QoS level for each component, the
resource demand imposed by the coordination request is not feasible. Note,
however, that even if an unfeasible solution is determined at some iteration
of the algorithm due to local resource availability, such solution is used to
calculate the next possible solution, minimising the search effort.

When the algorithm terminates, if there are insufficient resources to ac-
commodate the coordination request, a negative feedback is formulated and
sent back in reply. On the other hand, if a positive feedback is formulated,
the coordination request is propagated along the service’s DAG. However,
it may be possible to confine the coordination process to a subset of the

21



Algorithm 1 Feedback formulation
Let each locally running component ci be composed by a set of tasks with an
associated range of n user’s acceptable QoS levels in decreasing preference
order [Ldesired, Lminimum]
Let each Qkj be a finite set of n quality choices for the jth attribute of the
kth QoS dimension, taken from the QoS characterisation of the particular
service’s domain
Let desired, current, and minimum be the indexes that give the respective
value in Qkj

Let Qkj[desired] ≥ Qkj[current] ≥ Qkj[minimum] be the currently provided
level of service for the jth attribute of the kth QoS dimension
Let the granularity of quality decrease for the jth attribute of the kth QoS
dimension from Qkj[current] to Qkj[current + 1] be determined by the
possible values in Qkj

Let σ be the determined set of SLAs, updated at each step of the algorithm

1: Define SLA�
ci as a function on the new input values Ici and the required

output level Qi
val� for component ci

2: Update the current set of SLAs σ {σ ← σ \ SLAci ∪ SLA�
ci}

3: while feasibility(σ) �= TRUE do
4: if there is no task τi being served at Qkj[current] > Qkj[minimum],

for any j attribute of any k QoS dimension then
5: return FALSE
6: end if
7: for each component cd ⊆ σ \ ci do
8: for each task τi ∈ cd do
9: for each jth attribute of any k QoS dimension in τi with value

Qkj[current] > Qkj[minimum] do
10: Downgrade attribute j to the previous possible value

Qkj[current+ 1]
11: Determine the utility decrease of this downgrade
12: end for
13: end for
14: end for
15: Find task τmin whose reward decrease is minimum
16: Define SLA�

cmin
for the component where task τmin belongs, setting

the QoS values of all affected tasks according with the new value
Qkj[current+ 1] for attribute j of the QoS dimension k for task τmin

17: Update the current set of promised SLAs σ {σ ← σ \ SLAcmin ∪
SLA�

cmin
}

18: end while
19: return TRUE

22



service’s DAG, if a cut-vertex is able to maintain its current output quality,
despite the changes on the quality of its inputs. Recall that within a feasible
QoS region, it may be possible to maintain the current output quality by
compensating for a decrease in input quality by an increase in the amount
of used resources or vice versa.

The coordinated adaptive action phase is initiated whenever a global co-
ordination is successful. In this phase, each node commits to produce the
new output quality and allocates the needed resources to achieve it. The re-
source allocation is always possible because sufficient resources were reserved
during the feedback formulation phase. Once resources are allocated, the
node commits to produce the announced output level until either the service
terminates or adaptation occurs.

Decentralised control is then a self-organising emergent property of the
system. By exchanging feedback on the performed self-adaptations, nodes
converge towards a global solution, overcoming the lack of a central coordi-
nation and global knowledge. Negative feedback loops occur when a change
in one coalition member triggers an opposing response that counteracts that
change at other interdependent node along GS. On the other hand, posi-
tive feedback loops promote global adaptations. The snowballing effect of
positive feedback takes an initial change in one node and reinforces that
change in the same direction at all the affected partners, requiring only one
negotiation round between any pair of interdependent nodes. As such, the
uncertain outcome of iterative decentralised control models whose effect may
not be observable until some unknowable time in the future is not present in
the proposed regulated coordination model.

Note that the normal operation of nodes continues in parallel with the
coordination request and feedback formulation phases. Every time a node
recomputes its set of local SLAs, promised resources are pre-reserved until
the global negotiation’s outcome is known (or a timeout expires) but the
currently provided QoS levels only actually change at the coordinated adap-
tive action phase, as a result of a successful global coordination, avoiding
race conditions that could overcommit resources. Due to the environment’s
dynamism, more than one coalition member can give origin to a coordinated
adaptation process that spans multiple nodes at a given time. As discussed
above, such coordination requests can either be caused by a downgrade or an
upgrade of a node’s current commitment for a component ci ∈ S. Even with
multiple simultaneous coordinated global adaptations for the same service S,
only one of those will succeed since, due to local resource limitations, only

23



the minimum globally requested SLA will be accepted by all coordination
participants. In order to manage these simultaneous negotiations, every ne-
gotiation has a unique identifier, generated by the requesting node. For the
sake of clarity of presentation, this negotiation identifier is absent from the
algorithms, functions, and proofs in this paper.

There is one downside of pre-reserving resources to avoid overcommit-
ments when two or more upgrades are being handled over the same subset
of nodes concurrently. It is possible that some of them be unnecessarily re-
jected, a problem known as distributed livelock. While handling distributed
livelocks is an important issue, it is outside the scope of the work presented in
this paper. Solving this livelock on the CooperatES framework can easily be
done by expressing preferences or priorities among services and employ, for
instance, a Criticality-Based Back-Off retry scheme [53]. Under this scheme,
an aborted upgrade request will make another upgrade request again, after
a waiting time based on its importance/criticality level.

5.1. The feedback-based coordination model in action

Let us consider the coalition presented earlier in Section 3 detailed in
Figure 2. Assume that node a has now the sufficient resources to upgrade
the output QoS level for component c1 ∈ S to a new QoS level with a
reward for the user of 0.4. It propagates that intention to node c, its direct
neighbour in GS. Assume that node c, through the execution of Algorithm
1 determines that it is able to follow the proposed upgrade, even with node
d keeping its output QoS. Based on the positive feedback, the coordination
request is propagated to the next direct neighbour in GS, node e.

Assume that the cut-vertices e and f are also able to follow the proposed
upgrade. Since all the involved nodes in the path to the end-user’s device
were queried and the conjunction of their efforts results in a upgraded QoS
level being delivered to the user, the entire coalition reaches the new global
state represented in Figure 3 and whose characteristics are detailed in the
next table.

24



Figure 3: Coordinated QoS upgrade

Node Reward of output QoS Quality of received inputs
a 0.4 ∅
b 0.3 ∅
c 0.4 {(a, 0.4)}
d 0.3 {(b, 0.3)}
e 0.4 {(c, 0.4), (d, 0.3)}
f 0.5 {(e, 0.4)}

In another scenario, assume that the cut-vertex e has no sufficient avail-
able resources to follow the proposed upgrade (for instance, due to limi-
tations imposed by the amount of remaining battery life). Then, all the
previous nodes (a and c) that were pre-reserving resources for the upgrade,
are informed to stay in their previous respective QoS levels, as their effort is
useless. In this case, the global coalition state remains the same, as the one
presented in Figure 2.

Lets now consider a needed downgrade of the output QoS level at one
coalition member. Assume that the coalition is at the global state represented
in Figure 3 and that node b is forced to change its output QoS for a new
level with reward 0.1 for the user. A coordination request is sent to node
d, its direct neighbour in GS. Now, suppose that the cut-vertex d cannot
compensate this degraded output and is also forced to downgrades its output
QoS for a new level with reward 0.1. Then, the coordination request is
propagated to d’s direct neighbour in GS, node e.

25



Figure 4: Coordinated compensated downgrade

Now, assume that the cut-vertex e in GS, even with a reduced input qual-
ity from node d, is able to keep its current QoS level, rewarded with 0.4,
by compensating the reduced input quality with an increased local resource
usage. In this case, the coordination request is restricted to the subgraph
between node b and node e and the coalition reaches the new global state
represented in Figure 4. The list of the properties follows

Node Reward of output QoS Quality of received inputs
a 0.4 ∅
b 0.1 ∅
c 0.4 {(a, 0.4)}
d 0.1 {(b, 0.1)}
e 0.4 {(c, 0.4), (d, 0.1)}
f 0.5 {(e, 0.4)}

6. Properties of the proposed decentralised coordination model

In this section we analyse the most important properties of the proposed
feedback-based decentralised coordination model. Although a node is only
aware of its nearest neighbours in a coalition, in this section, we deal with
the complete interdependency graph to prove that all the conducted actions

26



are correctly propagated until the final result is determined. We start with
some auxiliary definitions and proofs.

Lemma 1 (Correctness of feedback formulation). Algorithm 1 always
terminates and returns true if the new required set of SLAs for outputting
the QoS level Qi

val� at component ci is feasible or false otherwise.

Proof 1. Termination comes from the finite number of tasks τi being exe-
cuted in node ni and from the finite number of the k QoS dimensions and
j attributes being tested. The number of QoS attributes being manipulated
decreases until a task τi is configured to be served at its lowest admissible QoS
level Qkj[n], thus leading to termination.

Correctness comes from the heuristic selection of the QoS attribute to
downgrade at each iteration of the algorithm. Thus, after a finite number of
steps the algorithm either finds a new set of feasible SLAs that complies with
the coordination request or returns false if, even when all tasks are configured
to be served at their lowest requested QoS level, the requested SLA for a
component ci cannot be supplied.

Remark 1. Given a node ni, a component ci, the set of local SLAs σ =
{SLAc0 , . . . , SLAcp} for the p locally executed components, Qi

val� as the new
requested QoS level for ci, and Ici = {(nj, cj, Q

j
val), . . . , (nk, ck, Qk

val)} as the
set of QoS levels given as input to ci, for the remaining of this section
and for the sake of clarity, we refer to Algorithm 1 applied to node ni as
test feasibility(ni, ci, Qi

val� , Ici)

Given a connected graph GS = (VS, EW ), such that the component ci ∈ S
is being processed by node ni ∈ VS, and Ici = {(nj, cj, Q

j
val), . . . , (nk, ck, Qk

val)}
as the current set of QoS inputs of ci, and given T as the set of changed QoS
inputs in response to the coordination request, the function update(I, T )
updates I with the elements from T :

update(∅, T ) = ∅
update(I, T ) = {(ni, ci, Qi

val�)} ∪ update(I \ (ni, ci, Qi
val), T ), if (ni, ci, Qi

val) ∈ I
and (ni, ci, Qi

val�) ∈ T
update(I, T ) = {(ni, ci, Qi

val)} ∪ update(I \ (ni, ci, Qi
val), T ), if (ni, ci, Qi

val) ∈ I
and (ni, ci, Qi

val�) /∈ T

27



Proposition 3. Given two sets I and T , both with elements of the form
(ni, ci, Qi

val), update(I,T) terminates and returns a new set with the elements
of I such that whenever (ni, ci, Qi

current) ∈ I and (ni, ci, Qi
new) ∈ T the pair

stored in the returned set is (ni, ci, Qi
new).

Given a node ni and a component ci, we define the function get input qos(ni, ci)
as returning the set of elements (nj, cj, Q

j
val), where each of these elements

represents a component cj being executed at node nj with an output QoS
level of Qj

val used as an input of the component ci at node ni.

6.0.1. Coordinating upgrades
Given the connected graph GS = (VS, ES) with a set of cut-vertices CS and

an end-user node nu receiving the final outcome of the coalition’s processing
of service S, whenever a node ni ∈ VS is able to upgrade the output QoS of a
component ci ∈ S to a new QoS level Qi

val� , subsequent nodes in the coalition
respond to this upgrade request according to Algorithm 2.

Algorithm 2 Coordinating upgrades
1: temp := ni

2: U := ∅
3: for each nc ∈ CS ∪ {nu} do
4: if upgrade(temp, nc,GS, Q

tmp
val� ) = (TRUE, T ) then

5: temp := nc

6: U = U ∪ T
7: else
8: U = ∅
9: return

10: end if
11: end for
12: for each (ni, Qi

val�) ∈ U do
13: Set the new QoS level Qi

val� for component ci ∈ S
14: end for

Given the connected graph GS = (VS, ES) with a set of cut-vertices CS and
the subgraph that connects node ni to next cut-vertex nc ∈ CS , the function
upgrade(ni, nc,GS, Qi

val�) is defined by:

28



function upgrade(ni, nc,GS, Qi
val�)

T := {(ni, ci, Qi
val�)}

for each nj ∈ paths(ni, nc) \ {ni} do
S := update(get input qos(ni, ci), T )
if test feasibility(nj, cj, Q

j
val� , S) = TRUE then

T := T ∪ {(nj, Q
j
val�)}

end if
end for
S := update(get input qos(nc, cc), T )
if test feasibility(nc, cc, Qc

val� , S) = TRUE then
return (TRUE, T )

end if
return (FALSE, ∅)

Lemma 2. Given the connected graph GS = (VS, ES) with a set of cut-
vertices CS and the subgraph that connects node ni to next cut-vertex nc ∈ CS
and a new upgraded QoS level value Qi

val�, the call to upgrade(ni, nc,G, Qi
val�)

terminates and returns true if nc is able to output a new QoS level Qc
val� or

false otherwise.

Proof 2. Since V is a finite set, and since by Proposition 2 paths terminates,
and by Proposition 3 update terminates, the number of iterations is finite due
to the finite number of elements in the path. Thus, upgrade terminates.

For any element nj in the path between ni and nc, the new required QoS
level Qj

val� is tested and, by Lemma 1, the upgrade is possible if and only if
the new local set of SLAs is feasible. After considering all nodes in the path,
the upgrade function returns true and the set of nodes able to upgrade, if node
nc is able to upgrade to Qc

val�, or false otherwise. Thus, the result follows by
induction on the length of the set of elements in the paths between ni and nc.

Theorem 1 (Correctness of Upgrade). Given the connected graph G =
(V , E) representing the QoS interdependencies of a service S being executed
by a coalition of nodes, such that nu ∈ V is the end-user node receiving
the service at a QoS level Qval, whenever a node ni announces an upgrade
to Qi

val�, Algorithm 2 changes the set of SLAs at nodes in G such that nu

receives S upgraded to the QoS level Qu
val� or does not change the set of local

SLAs at any node and nu continues to receive S at its current QoS level Qu
val.

29



Proof 3. Termination comes from the finite number of elements in C ∪ nu

and from Lemma 2.
Algorithm 2 applies the function upgrade iteratively to all nodes in the

subgraph starting with ni and finishing in nu. The base case is when there are
no cut-vertices and there is only one call to upgrade. It is trivial to see that
the result of upgrade will consist in true and a set of nodes that will upgrade
for the new QoS level Qj

val� or false and an empty set and, by Lemma 2, it is
correct. The remaining cases happen when there are one or more cut-vertices
between ni and nu. Here, upgrade will be applied to all subgraphs starting in
ni and finishing in nu. Each of these subgraphs are sequentially tested. Only
if all of them can be upgraded will service S be delivered to node nu at the
new upgraded QoS level Qu

val�. The result follows by induction in the number
of cut-vertices.

6.0.2. Coordinating downgrades
Given the connected graph GS = (VS, ES) with a set of cut-vertices CS

and an end-user node nu receiving the final outcome of the coalition’s pro-
cessing of service S, whenever a node ni ∈ VS is forced to downgrade the
output quality of a component ci ∈ S from its current QoS level of Qi

val to
a downgraded QoS level Qi

val� , subsequent nodes in the coalition respond to
this downgrade request according to Algorithm 3.

Algorithm 3 Coordinating downgrades
1: temp := ni

2: for each nc ∈ CS ∪ {nu} do
3: if downgrade(temp, nc,GS, Q

tmp
val� ) = FALSE then

4: temp := nc

5: else
6: Downgrade was compensated and nc continues to output Qc

val

7: break
8: end if
9: end for

Given the connected graph GS = (VS, ES) with a set of cut-vertices CS and
the subgraph that connects node ni to next cut-vertex nc ∈ CS , the function
downgrade(ni, nc,GS, Qi

val�) is defined by:

30



function downgrade(ni, nc,GS, Qi
val�)

T := {(ni, Qi
val�)}

for each nj ∈ paths(ni, nc) \ {ni} do
D := update(get input qos(nj, cj), T )
if test feasibility(nj, cj, Q

j
val, D) = TRUE then

T := T ∪ {(nj, Qval)}
else
set qos level(nj, cj, Q

j
val�)

end if
end for
D := update(get input qos(nc, cc), T )
if test feasibility(nc, cc, Qc

val, D) = TRUE then
return TRUE

else
for each nj ∈ paths(ni, nc) \ {ni} do
set qos level(nj, cj, Q

j
val�)

end for
return FALSE

end if

Lemma 3. Given the connected graph GS = (VS, ES) with a set of cut-
vertices CS, the subgraph that connects node ni to next cut-vertex nc ∈ CS , and
a new downgraded QoS level value Qi

val�, the call to downgrade(ni, nc,GS, Qi
val�)

terminates and returns true if nc is able to keep its current output level Qc
val

or false otherwise.

Proof 4. Since VS is a finite set, and since by Proposition 2, paths termi-
nates, and by Proposition 3 update terminates, the number of iterations is
finite due to the finite number of elements in the path. Thus, downgrade
terminates.

For any element nj in the possible paths between ni and nc, it is tested
if that node, given its new set of inputs Icj , can continue to output its cur-

rent QoS level Qj
val. After considering all j nodes in the possible paths, the

downgrade function returns true, if node nc is able to continue to output
Qc

val, or sets all the j previous nodes in the possible paths between ni and nc

to the downgraded QoS level Qj
val� and returns false. Again the result follows

by induction on the length of the set of elements in the paths between ni and
nc.

31



Theorem 2 (Correctness of Downgrade). Given the connected graph GS =
(VS, ES) representing the QoS interdependencies of a service S being executed
by a coalition of nodes such that nu ∈ VS is the end-user node receiving S
at the QoS level Qu

val, whenever a node ni is forced to downgrade the output
quality of a component ci ∈ S from its current QoS level of Qi

val to a degraded
QoS level Qi

val�, Algorithm 3 changes the set of SLAs at nodes in GS such
that nu continues to receive S at its current QoS level Qu

val or sets all nodes
to a degraded QoS level of Qj

val�.

Proof 5. Termination comes from the finite number of elements in CS ∪ nu

and from Lemma 3.
The correctness trivially follows by the correctness of Lemma 3 and by

induction on the number of elements in CS ∪ {nu}.

6.1. Number of exchanged messages

Given the formalisation of upgrades and downgrades of the currently
supplied QoS level for a service S, here we analyse the number of exchanged
messages in such coordination operations. We start with some definitions.

Definition 2. Given a directed graph G = (V , E), the in-degree of a node
ni ∈ V is the number of edges that have ni as their destination.

Definition 3. Given a directed graph G = (V , E), the out-degree of a node
ni ∈ V is the number of edges that have ni as their starting node.

Whenever an upgrade to a new QoS level Qi
val� is requested by a node ni,

if the next cut-vertex nc in G cannot supply the requested upgrade, then all
the precedent nodes between ni and nc are kept in their currently supplied
feasible QoS level Qj

val. Thus, the number of needed messages is given by the
number of edges in the paths between the ni and nc where it was determined
that the requested upgrade was not possible. On the other hand, if the
upgrade is possible, the number of needed messages is twice the number of
edges between ni and the end-user node nu. This is because an upgrade is
only possible after all the involved nodes are queried and the conjunction of
their efforts results in a upgraded QoS level being delivered to nu.

Whenever, due to resource limitations, a node ni announces a downgrade
to Qi

val� , the next nodes in the sub-graph from ni to the next cut-vertex nc

try to compensate the downgraded input quality in order to keep outputting

32



the previous QoS level Qj
val. When the cut-vertex nc is reached two scenarios

may occur. In the first one, the cut-vertex cannot compensate the service
degradation, although some of its precedent nodes may. In this case, all the
precedent nodes are informed that they can downgrade their current QoS
level to Qj

val� since their compensation effort is useless. Note that, in the
worst case, this can be propagated until the final node nu is reached and
all the coalition members will downgrade their current QoS level. As such,
in the worst case, a message is sent from each node to its adjacent ones
and a reply is received, which demands a total number of messages of two
times the number of edges between ni and nu. On the other hand, in the
second possible scenario, some cut-vertex nc may be able to compensate the
downgraded input quality and continue to output is current QoS level Qc

val.
In this case, the coordination process is restricted to the subgraph between
ni and nc. As such, coordination messages are exchanged in this subgraph
only.

Thus, in the worst case, the maximum number of exchanged messages in
a coordination operation is given by Equation 1.

�

n∈V

(out degree(n) + in degree(n)) (1)

7. Evaluation

We have conducted extensive simulations in order to evaluate the perfor-
mance of the proposed decentralised feedback-based coordination model in
highly dynamic open scenarios. The objective was to show that it can be ef-
ficiently used to coordinate the self-adaptive behaviour of autonomous nodes
and maintain desirable system-wide properties in decentralised cooperative
systems with timing constraints.

The key concepts underlying the proposed feedback-based coordination
model have been prototyped and evaluated using an application that cap-
tures, compresses and transmits frames of real-time video to end users, which
may use a diversity of end devices and have different sets of QoS require-
ments. The application is composed by a set of source components to collect
the data, compression components to gather and compress the data sent
from multiple sources, transmission components to transmit the data over
the network, decompression components to convert the data into the user’s

33



specified format, and a user component to display the data in the end user’s
device.

An important requirement for the experiments was to introduce a high
variability in the characteristics of the considered topologies of the randomly
generated coalitions. The characteristics of end devices and their more pow-
erful neighbour nodes was randomly generated, creating a distributed het-
erogeneous environment. At randomly selected end devices, multiple new
service requests with random ranges of acceptable QoS levels and lifetimes
were generated, dynamically imposing different amounts of load and resource
availability. The non-equal partition of resources imposed to nodes affected
the ability of some nodes to singly execute all of the application’s components
and has driven nodes to a coalition formation for a cooperative service execu-
tion, using the anytime coalition formation and service proposal formulation
algorithms of [6].

At each simulation run, the number of simultaneous nodes in the system
varied from 10 to 100, from which a coalition is dynamically formed at each
new service request, while the number of simultaneous users varied from 1
to 20. Each node was running a prototype implementation of the Cooper-
atES framework [54], with a fixed set of mappings between requested QoS
levels and resource requirements. The code bases needed to execute each of
the streaming application’s units was loaded a priori in all the nodes. After
a coalition was dynamically determined, a varying number of QoS interde-
pendencies among the application’s components was randomly generated,
creating topologies with different degrees of complexity.

The performance of the proposed decentralised feedback-based coordina-
tion protocol was compared to representative examples of classical method-
ologies that rely on centralised [31] or consensus-based [23] approaches to
establish and maintain system-wide properties, and are implemented using
techniques such as group communication protocols that ensure that all coali-
tion members receive all messages sent to the group in the same total order
or centralised configuration managers that monitor the state of all compo-
nents and connectors and coordinate the determined adaptive actions on
these components and connectors in dynamic software architectures.

The reported results were observed from multiple and independent sim-
ulation runs, with initial conditions and parameters, but different seeds for

34



the random values1 used to drive the simulations, obtaining independent and
identically distributed variables. The mean values of all generated samples
and their standard deviation were used to produce the charts, with a confi-
dence level of 99,9% associated to each confidence interval.

The first study compared the total number of messages that had to be
exchanged among nodes when using the three coordination approaches until
a global adaptation solution was determined. Since the number of exchanged
messages among nodes increases proportionally with the number of interde-
pendent nodes in a coalition, the coordination model should help a coalition
to globally adapt in a coordinated manner with a minimal number of mes-
sages. The average results of all simulation runs for different coalition sizes
are plotted in Figure 5.

Figure 5: Number of exchanged messages

As expected, all three coordination approaches require more messages to
be exchanged as the complexity of the service’s topology increases. Neverthe-
less, it is clearly noticeable that the number of exchanged messages until all
a global adaptation solution is determined is strongly affected by the chosen
coordination model. As the reported results show, the proposed decentralised
feedback-based coordination model outperforms the other evaluated coordi-
nation approaches, minimising the number of exchanged messages among

1The random values were generated by the Mersenne Twister algorithm [55].

35



nodes, particularly with higher levels of complexity of the evaluated topolo-
gies.

In several application scenarios characterised by a high degree of openness
and dynamism, coordination tasks need to be time dependent since handling
time is necessary to specify (and enforce) given levels of quality of service [6].
A second study measured the needed average time from the moment a node
announced a change in its output QoS level for a particular component until
the outcome of the global adaptation process was determined. The obtained
results are plotted in Figure 6.

Figure 6: Needed time for a global coordinated adaptation

Clearly, the choice of a coordination model also has an impact on the
needed time to determine a globally acceptable solution in all the evaluated
topologies, with varying degrees of complexity. Not only the proposed de-
centralised feedback-based coordination model is faster than the other two
approaches but also has tighter bound, a consequence of the model’s guar-
antees on the exact behaviour of the coalition taken as a whole due to the
deterministic way in which nodes can behave on a coordination request.

A decentralised coordination model should not only reduce message pass-
ing costs and guarantee a timely convergence to ensure that real-time con-
straints are met, but also guarantee an eventual convergence to a near-
optimal service solution. It is known that guaranteeing globally optimal
adaptation decisions requires a complete knowledge about the state of all

36



components, typically relying on centralised approaches to globally adapt
the system in a controlled manner. On the other hand, optimal decentralised
control is known to be computationally intractable [37]. Thus, it is important
to measure the impact of the proposed feedback-based coordination model
on the quality of the achieved solution.

In this sense, a third study measured how far from the optimal solution,
determined with an optimal centralised approach with complete knowledge,
was the global adaptation solution resulting from the proposed feedback-
based decentralised coordination model. The utility of both solutions was
measured as an weighted sum of the differences between the user’s preferred
values and the determined values after the local QoS optimisation on each
node [6].

The results were plotted in Figure 7 and normalised to the utility of the
solution’s determined by the optimal centralised approach. The study was
divided in two categories: (i) when the average amount of available resources
per node is greater than the average amount of resources demanded by the
services being executed; and (ii) when the average amount of resources per
node is smaller than the average amount of demanded resources. Thus, in
the first scenario, QoS upgrade coordinations are more likely to occur when a
service leaves the system, while in the second, nodes have a higher probability
of needing to downgrade the quality of previously accepted services in order
to accept new ones.

It is clearly noticeable, in both scenarios and for varying degrees of topol-
ogy complexity, that a near-optimal service solution’s quality can be achieved
when using the proposed feedback-based coordination model, despite its sim-
pler approach and absence of global system knowledge. We are confident that
the proposed feedback-based coordination model can be successfully tested
and used in a variety of domains, from large-scale grid computing systems
to small-scale wireless and sensor networks, where power usage and radio
transmission usage should be minimised.

8. Conclusions

The engineering of self-organising decentralised systems is a major chal-
lenge, particularly if predictability and timeliness are desired. Autonomous
distributed self-adaptive systems are highly context-dependent. Whenever
a component’s context changes it has to decide whether or not it needs to

37



Figure 7: Relative solution’s utility

adapt. Whenever it decides to adapt, this may prompt the need for coor-
dination activities that ensure a globally acceptable solution for the entire
distributed service.

This paper addressed this challenge and proposed a decentralised coordi-
nation model based on an effective feedback mechanism to reduce the time
and complexity of the needed interactions among nodes until a collective
adaptation behaviour is determined. Feedback is formulated at each affected
coalition member as a result of a local anytime QoS adaptation process that
evaluates the feasibility of the new requested service solution. This way,
positive feedback is used to reinforce the selection of the new desired global
service solution, while negative feedback will act as a regulator on changes
that deviate the system from some near-optimal state.

The proposed approach aims to be general enough to be used in a wide
range of scenarios characterised by a high degree of openness and dynamism
where coordination tasks need to be time dependent. As the reported results
demonstrate, the proposed feedback-based coordination model requires less
messages to be exchanged and it is faster to achieve a globally acceptable
near-optimal solution.

We plan to extend this work in several ways. One direction is to extend
the coalition formation algorithm of the CooperatES framework so that a
coalition’s formation can be post-adjusted while the service is being executed

38



in response to several internal and external events. The decentralised coor-
dination of such adjustment process poses an interesting research question
that we plan to investigate. We believe that further research can yield valu-
able additional insights about when and what kinds of communication are
most critical and which communication policies are most effective in various
domains.

Another direction is to support the notions of computational trust and
reputation models. In this paper, there is an assumption that every node
in the system is trusted. However, in open distributed systems this will
not always be the case. Future developments of the proposed decentralised
coordination model involve the development of local trust models of nodes
that have been encountered in the past. The proposed model would then
take into account the trust models when determining the collective adapta-
tion behaviour and mechanisms could be developed to adjust the advertised
feedback to take a neighbouring node’s trust profile into account.

Acknowledgments

This work was supported by the CooperatES project, ref. PTDC/EIA/71624/
2006, funded by national funds (3599 - PPCDT) through the FCT-MCTES
(Portuguese Foundation for Science and Technology)

References

[1] J. A. Stankovic, Real-time and embedded systems, in: The Computer
Science and Engineering Handbook, CRC Press, 1997, pp. 1709–1724.

[2] V. Subramonian, G. Deng, C. Gill, J. Balasubramanian, L.-J. Shen,
W. Otte, D. C. Schmidt, A. Gokhale, N. Wang, The design and perfor-
mance of component middleware for qos-enabled deployment and con-
figuration of dre systems, Journal of Systems and Software 80 (2007)
668–677.

[3] T. F. Abdelzaher, E. M. Atkins, K. G. Shin, Qos negotiation in real-time
systems and its application to automated flight control, IEEE Transac-
tions on Computers, Best of RTAS ’97 Special Issue 49 (11) (2000)
1170–1183.

[4] P. Li, B. Ravindran, Proactive qos negotiation in asynchronous real-time
distributed systems, Journal of Systems and Software 73 (2004) 75–88.

39



[5] X. Wang, D. Jia, C. Lu, X. Koutsoukos, DEUCON: Decentralized end-
to-end utilization control for distributed real-time systems, IEEE Trans-
actions on Parallel and Distributed Systems 18 (7) (2007) 996 –1009.

[6] L. Nogueira, L. M. Pinho, Time-bounded distributed qos-aware ser-
vice configuration in heterogeneous cooperative environments, Journal
of Parallel and Distributed Computing 69 (6) (2009) 491–507.

[7] L. Nogueira, L. Pinho, J. Coelho, Flexible and dynamic replication
control for interdependent distributed real-time embedded systems, in:
Distributed, Parallel and Biologically Inspired Systems, Vol. 329 of
IFIP Advances in Information and Communication Technology, Springer
Boston, 2010, pp. 66–77.

[8] F. Kon, R. H. Campbell, Dependence management in component-based
distributed systems, IEEE Concurrency 8 (1) (2000) 26–36.

[9] M. Shankar, M. de Miguel, J. W. S. Liu, An end-to-end qos management
architecture, in: Proceedings of the 5th IEEE Real-Time Technology and
Applications Symposium, IEEE Computer Society, Washington, DC,
USA, 1999, pp. 176–191.

[10] R. Rajkumar, C. Lee, J. Lehoczky, D. Siewiorek, A resource allocation
model for qos management, in: Proceedings of the 18th IEEE Real-Time
Systems Symposium, IEEE Computer Society, 1997, p. 298.

[11] A. Friday, N. Davies, K. Cheverst, Utilising the event calculus for policy
driven adaptation on mobile systems, in: Proceedings of the 3rd Inter-
national Workshop on Policies for Distributed Systems and Networks,
IEEE Computer Society, Washington, DC, USA, 2002, p. 13.

[12] D. Gelernter, N. Carriero, Coordination languages and their significance,
Communications of the ACM 35 (2) (1992) 96–107.

[13] G. A. Papadopoulos, F. Arbab, Coordination models and languages,
Tech. rep., Centre for Mathematics and Computer Science, Amsterdam,
The Netherlands (1998).

[14] T. Kielmann, Designing a coordination model for open systems, in: Pro-
ceedings of the 1st International Conference on Coordination Languages
and Models, 1996, pp. 267–284.

40



[15] A. Montresor, H. Meling, Ö. Babaoglu, Toward self-organizing, self-
repairing and resilient distributed systems, in: Future Directions in Dis-
tributed Computing, 2003, pp. 119–126.

[16] R. Khare, R. N. Taylor, Extending the representational state transfer
(REST) architectural style for decentralized systems, in: Proceedings of
the 26th International Conference on Software Engineering, 2004, pp.
428–437.

[17] T. De Wolf, G. Samaey, T. Holvoet, D. Roose, Decentralised auto-
nomic computing: Analysing self-organising emergent behaviour using
advanced numerical methods, in: Proceedings of the 2nd International
Conference on Autonomic Computing, 2005, pp. 52 –63.

[18] J. Kramer, J. Magee, Self-managed systems: an architectural challenge,
in: Proceedings of the International Conference on Software Engineer-
ing, Workshop on the Future of Software Engineering, 2007, pp. 259–268.

[19] P. Bridges, W.-K. Chen, M. Hiltunen, R. Schlichting, Supporting co-
ordinated adaptation in networked systems, in: Proceedings of the 8th
Workshop on Hot Topics in Operating Systems, Oberbayern, Germany,
2001, p. 162.

[20] C. D. Gill, J. M. Gossett, D. Corman, J. P. Loyall, R. E. Schantz,
M. Atighetchi, D. C. Schmidt, Integrated adaptive qos management in
middleware: A case study, Real-Time Systems 29 (2-3) (2005) 101–130.

[21] J. Dowling, S. Haridi, Decentralized Reinforcement Learning for the On-
line Optimization of Distributed Systems, I-Tech Education and Pub-
lishing, Vienna, Austria, 2008, Ch. in Reinforcement Learning: Theory
and Applications, pp. 142–167.

[22] B. Li, K. Nahrstedt, A control-based middleware framework for quality-
of-service adaptations, IEEE Journal on Selected Areas in Communica-
tions 17 (9) (1999) 1632–1650.

[23] P. G. Bridges, M. A. Hiltunen, R. D. Schlichting, Cholla: A framework
for composing and coordinating adaptations in networked systems, IEEE
Transactions on Computers 58 (11) (2009) 1456–1469.

41



[24] G. Allen, T. Dramlitsch, I. Foster, N. T. Karonis, M. Ripeanu, E. Seidel,
B. Toonen, Supporting efficient execution in heterogeneous distributed
computing environments with cactus and globus, in: Proceedings of the
2001 ACM/IEEE conference on Supercomputing, 2001, pp. 52–52.

[25] B. Ensink, V. Adve, Coordinating adaptations in distributed systems,
in: Proceedings of the 24th International Conference on Distributed
Computing Systems, Tokyo, Japan, 2004, pp. 446–455.

[26] T. W. Malone, K. Crowston, The interdisciplinary study of coordination,
ACM Computing Surveys 26 (1) (1994) 87–119.

[27] M. Clarke, G. S. Blair, G. Coulson, N. Parlavantzas, An efficient compo-
nent model for the construction of adaptive middleware, Lecture Notes
in Computer Science 2218 (2001) 160–178.

[28] I. Georgiadis, J. Magee, J. Kramer, Self-organising software architec-
tures for distributed systems, in: Proceedings of the 1st Workshop on
Self-healing systems, 2002, pp. 33–38.

[29] K. Whisnant, Z. T. Kalbarczyk, R. K. Iyer, A system model for dy-
namically reconfigurable software, IBM Systems Journal 42 (1) (2003)
45–59.

[30] R. Allen, R. Douence, D. Garlan, Specifying and analyzing dynamic soft-
ware architectures, in: Proceedings of the 1st International Conference
on Fundamental Approaches to Software Engineering, Lisbon, Portugal,
1998, pp. 21–37.

[31] D. Garlan, B. Schmerl, Model-based adaptation for self-healing systems,
in: Proceedings of the 1st Workshop on Self-healing Systems, 2002, pp.
27–32.

[32] J. S. Bradbury, J. R. Cordy, J. Dingel, M. Wermelinger, A survey of self-
management in dynamic software architecture specifications, in: Pro-
ceedings of the 1st ACM SIGSOFT Workshop on Self-managed systems,
ACM, New York, NY, USA, 2004, pp. 28–33.

[33] D. Goldin, D. Keil, Toward domain-independent formalization of indi-
rect interaction, in: Proceedings of the 13th IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative En-

42



terprises, IEEE Computer Society, Washington, DC, USA, 2004, pp.
393–394.

[34] R. Van Renesse, K. P. Birman, W. Vogels, Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and
data mining, ACM Transactions on Computer Systems 21 (2) (2003)
164–206.

[35] M. Dorigo, G. D. Caro, The ant colony optimization meta-heuristic,
New ideas in optimization (1999) 11–32.

[36] J. Holland, Hidden Order: How Adaptation Builds Complexity (Helix
Books), Addison Wesley Publishing Company, 1998.

[37] T. De Wolf, T. Holvoet, Towards autonomic computing: agent-based
modelling, dynamical systems analysis, and decentralised control, Pro-
ceedings of the IEEE International Conference on Industrial Informatics
(2003) 470–479.

[38] M. Jelasity, A. Montresor, O. Babaoglu, A modular paradigm for build-
ing self-organizing peer-to-peer applications, in: In Engineering Self-
Organising Systems, G. Di Marzo Serugendo, Springer, 2004, pp. 265–
282.

[39] I. Dusparic, V. Cahill, Research issues in multiple policy optimization
using collaborative reinforcement learning, in: Proceedings of the 2007
International Workshop on Software Engineering for Adaptive and Self-
Managing Systems, IEEE Computer Society, Washington, DC, USA,
2007, p. 18.

[40] G. D. M. Serugendo, Autonomous Systems with Emergent Behaviour,
Idea Group, Inc., Hershey-PA, USA, 2006, Ch. Handbook of Research
on Nature Inspired Computing for Economy and Management, pp. 429–
443.

[41] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, Y. Lu, Feedback perfor-
mance control in software services, Control Systems, IEEE 23 (3) (2003)
74 – 90.

43



[42] T. He, J. A. Stankovic, M. Marley, C. Lu, Y. Lu, T. Abdelzaher, S. Son,
G. Tao, Feedback control-based dynamic resource management in dis-
tributed real-time systems, Journal of Systems and Software 80 (2007)
997–1004.

[43] H. Liu, M. Parashar, S. Hariri, A component-based programming model
for autonomic applications, in: Proceedings of the First International
Conference on Autonomic Computing, 2004, pp. 10–17.

[44] C. S. D. The University of Arizona, The cactus project, Available at
http://www.cs.arizona.edu/projects/cactus/.

[45] W.-K. Chen, M. A. Hiltunen, R. D. Schlichting, Constructing adaptive
software in distributed systems, in: Proceedings of the 21st International
Conference on Distributed Computing Systems, 2001, pp. 635–644.

[46] L. Nogueira, L. M. Pinho, A capacity sharing and stealing strategy for
open real-time systems, Journal of Systems Architure 56 (4-6) (2010)
163–179.

[47] C. Li, L. Li, Utility-based qos optimisation strategy for multi-criteria
scheduling on the grid, Journal of Parallel and Distributed Computing
67 (2) (2007) 142–153.

[48] C. Wang, Z. Li, Parametric analysis for adaptive computation offload-
ing, in: Proceedings of the ACM SIGPLAN 2004 Conference on Pro-
gramming Language Design and Implementation, ACM Press, 2004, pp.
119–130.

[49] L. Nogueira, Time-bounded adaptive quality of service management
for cooperative embedded real-time systems, Ph.D. thesis, University
of Porto (2009).

[50] J. Park, M. Ryu, S. Hong, Deterministic and statistical admission con-
trol for qos-aware embedded systems, Journal of Embedded Computing
1 (2005) 57–71.

[51] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, M. Shaw, Engineering self-adaptive systems
through feedback loops, Software Engineering for Self-Adaptive Systems
(2009) 48–70.

44



[52] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz,
E. Bonabeau, Self-Organization in Biological Systems, Princeton Studies
in Complexity, Princeton University Press, 2002.

[53] J. Huang, Y. Wang, F. Cao, On developing distributed middleware ser-
vices for qos-and criticality-based resource negotiation and adaptation,
Real-Time Systems Journal 16 (1999) 187–221.

[54] C. Maia, L. Nogueira, L. M. Pinho, Experiences on the implementation
of a cooperative embedded system framework: short paper, in: Pro-
ceedings of the 8th International Workshop on Java Technologies for
Real-Time and Embedded Systems, Prague, Czech Republic, 2010, pp.
70–72.

[55] M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator, ACM Trans-
actions on Modeling and Computer Simulation (TOMACS) 8 (1) (1998)
3–30.

45


