
Proceedings of the Third International Symposium Mathematical & Computational Applications
September 4-6, 2002. Konya, Turkey, pp. 175-182

A GENERAL ALGORITHM FOR THE INVERSE TRANSFORMATION OF
MAP PROJECTIONS USING JACOBIAN MATRICES

Cengizhan Ipbüker1, I.Öztug Bildirici2
1Istanbul Tech. University Faculty of Civil Eng., Div. of Cartography, Maslak Istanbul,

Turkey
2Selcuk University, Faculty of Eng., Dept. of Geodesy & Photogrammetry, Konya,

Turkey
buker@itu.edu.tr, bildirici@selcuk.edu.tr

Abstract- Coordinate transformations refer to mathematical processing that enables overlay
of maps that use different coordinate reference systems, that is, map projections. The
conversion from geographical to plane coordinates is the normal practice in cartography,
which is called forward transformation. The inverse transformation, which yields geographical
coordinates from map coordinates, is a more recent development, due to the need for
transformation between different map projections especially in Geographic Information
Systems (GIS). For the projections that have complex functions for forward transformation
defining the invers projection is not easy. This paper describes a general iteration algorithm to
derive the inverse equations of map projections using Jacobian matrices. The algorithm is
applied to three cartographic projections, namely Aitoff-Hammer, Winkel-Tripel and
Mollweide, which are commonly used for world maps.
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1. INTRODUCTION

The Cartesian coordinates (X,Y) of a point on a map are calculated from latitude (ϕ)
and longitude (λ) using the functions

X = fx(ϕ,λ)
Y = fy(ϕ,λ)
X-axis denotes the Equator positive to the east and Y-axis denotes the central meridian

positive to the north. The functions or equations define a map projection in general. This
conversion or transformation from geographical to plane coordinates is called forward
transformation and is the normal practice in cartography. A frequently occured problem in
cartography is to derive the geographical coordinates from the forward projection equations.
This process is commonly called “inverse mapping”. Although the inverse equations for many
projections are already in existence, in some cases they must be developed [1]. But
developing the inverse equations has sometimes proved difficult due to the complex projection
equations. In this study, a general algorithm is described for the inverse solution of the map
projections using partial derivatives, which could easily be applied to all kinds of projections.
The algorithm is applied to three famous map projections.

2. NEWTON-RAPHSON ITERATION USING JACOBIAN MATRIX

This section derives the geographical latitude and longitude values from the plane
coordinates of a map projection. An iterative algorithm using partial derivatives of the
projection equations is developed for this purpose. The method is based on the solution of
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non-linear equations by inverting the Jacobian matrix of partial derivatives, which is well
known in numerical analysis [2], [3]. The particular solution chosen in this study is a
generalization of the Newton-Raphson iteration method [4].

Consider a point selected on the projection with plane coordinates X and Y (on the map
plane). The problem is to find the geographical coordinates (λ,ϕ) of this point. We define the
vectors Qi+1 and Qi (i=1,2, …) with the elements of geographical coordinates for the iteration
as follows
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where (i) denotes the actual step of the iteration, and ϕi+1 and λ i+1 indicate the
coordinates obtained for the consequent step of the iteration using ϕi and λ i.

A vector F consists of the mapping functions given by
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where;
( ) 0,1 =−= XXf iii λϕ (4)
( ) 0,2 =−= YYf iii λϕ (5)

The iteration procedure can be written in matrix form as follows;
QQQ ∆−=+ ii 1

(6)
where;

FJQ 1−=∆ (7)
The absolute value of (7) is compared with an accuracy level ε
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Here, ε is a convergence value and can be taken as 10-12. If the condition being defined
with equation (8) is realized then the iteration stops. This means (Xi ,Yi) is sufficiently close to
the selected coordinates (X,Y) at this iteration step [5].

Newton’s iteration (6) needs an initial guess Qo composed of initial latitude and
longitude approximating the given X and Y through the forward projection equations The initial
guess is based upon the functions f1 and f2 as defined by equations (4) and (5). These
functions are used to examine the change in Xi and Yi to X and Y, respectively, for a given
assumption of ϕi and λi. Equation (7) is Newton’s correction term. The absolute value of this
term is compared to an accuracy level ε. If the change between Qi and Qi+1 is less than this
convergence value, the iteration stops and the final ϕi and λi solve the inverse problem for the
given X and Y. The matrix of partial derivatives, namely the Jacobian matrix, is defined as
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The inverse of the Jacobian matrix is solved by taking the ratio of the adjoint matrix to
the determinant of the Jacobian matrix,

J
J

J
Det
Adj

=−1 (10)

The adjoint matrix can be written for the two dimensional case as;
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and the determinant of the Jacobian matrix is;
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If we substitute (11) and (12) in (10) we can write;
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Substituting (32) and (16) in (26) and (14) and (15) in (25) we can write

( )
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If we write the matrix elements seperately as a result, then we have [5], [6]:
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3. APPLICATION

The algorithm presented above is applied to the three famous map projections which are
commonly used for mapping the whole world. These are the Aitoff-Hammer projection, the
Winkel Tripel projection and the Mollweide projection. In the sections below, the projection
characteristics are summarized, the forward mapping functions and the partial derivatives of
the Jacobian matrix are given for those selected map projections. The radius of curvature is
assumed as one unit (R=1).

3.1 Aitoff-Hammer Projection

Russian Cartographer David A. Aitoff (1854-1933) devised an elementary but very
appealing modification of one hemisphere of the equatorial aspect of the azimuthal equidistant
projection. The Aitoff projection soon inspired Hammer [7] to invent a world map looking
very much Aitoff's, but maintaining equal area instead, with prominent credit to Aitoff in both
the title and text of Hammer's paper [8].

The projection is presented by Hammer, is an equal-area modified azimuthal projection.
Central meridian is a straight line half the length of the Equator. Other meridians are complex
curves intersecting at the poles, unequally spaced along the Equator and concave toward the
central meridian. Equator is shown as a straight line. Other parallels are complex curves,
unequally spaced along the central meridian and concave toward the nearest pole. The
projection is symmetrical about the central meridian and the Equator.

The forward mapping functions for the Aitoff-Hammer projection are as follows [9],
[10], [11];
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p = +1 2cos cos( / )ϕ λ (23)
The inverse solution for the Aitoff-Hammer projection can be obtained substituting

equations (17) to (22) into equation (15) and (16) [5].

3.2 Winkel Tripel Projection

The Winkel Tripel projection was developed by Oswald Winkel (1873-1953) from
Germany in 1921 averaging the cylindrical equidistant (equirectangular) and Aitoff projections
[12]. Winkel himself applied the German term “Tripel” (in english “triple”), because he
considered it a “compromise of the properties of three elements”-area, angle and distance-
which resulted in a lower distortion distributed uniformly overall [17]. After analyzing the
Winkel Tripel’s distortion characteristics, cartographers have suggested that it is suitable for
whole-world applications [13], [14], [15].

The Winkel Tripel projection is a modified azimuthal projection that is neither conformal
nor equal area, like the Winkel I and II. However, by using L. P. Lee's definitions the Tripel
can also be classified as a Polyconic [16].

The projection functions for the Winkel Tripel projection are presented as follows [9],
[10], [11]:
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ϕ0 is the standard parallel chosen by Winkel as 50°28′ in the equidistant cylindrical
component of the projection [12], [13], [17].

The partial derivatives for these functions are [6], [13], [18].
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The geographical latitude and longitude values can be calculated using the coordinates of
an arbitrary point selected on a map produced in the Winkel Tripel projection by substituting
equations (24), (25), (28), (29), (30), and (31) into equations (15) and (16).

3.3 Mollweide Projection

To introduce a three-dimensional application of the algorithm the Mollweide projection
is selected. This projection is presented by Carl B. Mollweide (1774-1825) from Germany in
1805. It is an equal-area pseudocylindrical projection. Central meridian is a straight line half as
long as the equator. Meridians 90o east and west of the central meridian form a circle and
others are equally spaced semiellipses. Meridians are intersected at the poles and concave
toward the central meridian. Parallels are unequally spaced straight lines, farthest apart near
the equator and perpendicular to the central meridian. The projection is symmetrical about the
central meridian or the equator. Scale is true along latitudes 40°44′ north and south, constant
along any given latitude and same for the latitude of opposite sign.

The projection functions for the Mollweide projection can be written as follows [5], [9],
[10], [11]:
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In this case the Jacobian matrix is
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and the inverse of this jacobian matrix can be written
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The inverse equations for the Mollweide projection [5]
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4. CONCLUSION

For the projections handled in this article forward projection functions are complex. To
derive the inverse projections fuctions, a specific method is required. The algorithm presented
here is  Newton-Rapson iteration with Jacobian matrices. It is applied to three world
projections. It can also be adapted for all cartographic projections in order to derive inverse
equations.

Since the manual calculation using this algortihm is not easy, a computer program is
needed. With such a program, data capture from analog maps produced using the projections
above can be possible. So captured data can also be easily integrated into any GIS system.
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