
4

Flow Shop Scheduling

CHAPTER CONTENTS

4.1 Introduction
4.2 Minimization of makespan using Johnson’s Rule for (F2 || Cmax) Problem
4.3 Minimization of Makespan for (F3 || Cmax) Problem
4.4 Minimization of makespan for (Fm || Cmax) problems when M > 3
4.5 Permutation Schedules
4.6 Heuristics to be used for minimization of makespan for (Fm || Cmax) Problems

4.6.1 Palmer’s Heuristic
4.6.2 Campbell, Dudek, and Smith (CDS) Algorithm
4.6.3 Nawaz, Enscor, and Ham (NEH) Algorithm

4.7 Branch and Bound Algorithm

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 2

4.1 INTRODUCTION
A flow shop problem exists when all the jobs share the same processing order

on all the machines. In flow shop, the technological constraints demand that the jobs
pass between the machines in the same order. Hence, there is a natural processing
order (sequence) of the machines characterized by the technological constraints for
each and every job in flow shop. Frequently occurring practical scheduling problems
focus on two important decisions:

 The sequential ordering of the jobs that will be processed serially by two or
more machines

 The machine loading schedule which identifies the sequential arrangement
of start and finish times on each machine for various jobs.

Managers usually prefer job sequence and associated machine loading schedules that
permit total facility processing time, mean flow time, average tardiness, and average
lateness to be minimized. The flow shop contains m different machines arranged in
series on which a set of n jobs are to be processed. Each of the n jobs requires m
operations and each operation is to be performed on a separate machine. The flow of
the work is unidirectional; thus every job must be processed through each machine in
a given prescribed order. In other words, if machines are numbered from 1,2,3....m,
then operations of job j will correspondingly be numbered (1,j), (2,j), (3,j),.... (m,j). In
this context, each job has been assigned exactly m operations where as in real
situations a job may have a fewer operations. Nevertheless, such a job will still be
treated as processing m operations but with zero processing times correspondingly.
The general n jobs, m machine flow shop scheduling problem is quite formidable.
Considering an arbitrary sequence of jobs on each machine, there are (n!)m possible
schedules which poses computational difficulties. Therefore, efforts in the past have
been made by researchers to reduce this number of feasible schedules as much as
possible without compromising on optimality condition. Literature on flow shop
process indicates that it is not sufficient to consider only schedules in which the same
job sequence occurs on each machine with a view to achieving optimality. On the
other hand, it is not always essential to consider (n!)m schedules in search for an
optimum. The following two dominance properties will indicate the amount of
reduction possible in flow shop problems.
 Theorem 1

When scheduling to optimize any regular measure of performance in a
static deterministic flow shop, it is sufficient to consider only those schedules
in which the same job sequence exists on machine 1 and machine 2.

 Theorem 2
When scheduling to optimize makespan in the static deterministic

flow shop, it is sufficient to consider only those schedules in which the same

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 3

job sequence exists on machine 1 and 2, and the same job sequence on
machines m-1 and m.

The implications of above dominance can be interpreted as follows:
• For any regular measure of performance, by virtue of the fact that the same

job sequence on the first two machines is sufficient for achieving
optimization, it is (n!)m-1 schedules that constitute a dominant set.

• For makespan problems, by virtue of the fact that the same job sequence on
machine m-1 and m besides on machine 1 and 2 is sufficient for achieving
optimization, it is (n!)m-2 schedules that constitute a dominant set for m > 2.
As defined earlier, a permutation schedule is that class of schedule which
may be completely identified by single permutation of integers. For a flow
shop process, the permutation schedule is therefore, a schedule with the
same job sequence on all machines. Interpreting the above results yet in
another way, it is observed that:

• In a two machine flow shop, permutation schedule is the optimum schedule
with regard to any regular measure of performance.

• In a three machine flow shop, permutation schedule is the optimum schedule
with respect to makespan criterion.

Unfortunately, this second dominance property is confined to makespan only. This
neither extends to other measures of performance nor does it take into account large
flow shops with m > 3. However, no stronger general results than the above two
concerning permutation schedules are available in the literature.

4.2 MINIMIZATION OF MAKESPAN USING JOHNSON’S RULE FOR (F2 || Cmax)
PROBLEM

The flow shop contains n jobs simultaneously available at time zero and to be
processed by two machines arranged in series with unlimited storage in between
them. The processing times of all jobs are known with certainty. It is required to
schedule the n jobs on the machines so as to minimize makespan (Cmax). This
problem is solved by Johnson's non-preemptive rule for optimizing the makespan in
the general two machine static flow shop. This is the most important result for the
flow shop problem which has now become a standard in theory of scheduling. The
Johnson's rule for scheduling jobs in two machine flow shop is given below:
In an optimal schedule, job i precedes job j if:

min {pi1 , pj2} < min {pj1 , pi2}
Where as,

pi1 is the processing time of job i on machine 1 and pi2 is the processing time
of job i on machine 2. Similarly, pj1 and pj2 are processing times of job j on machine 1
and 2 respectively.

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 4

The steps of Johnson's algorithm for constructing an optimal schedule may be
summarized as follows:

Let,
p1j = processing time of job j on machine 1.

 p2j = processing time of job j on machine 2.
Johnson’s Algorithm
Step 1: Form set-I containing all the jobs with p1j < p2j
Step 2: Form set-II containing all the jobs with p1j > p2j
 The jobs with p1j = p2j may be put in either set.
Step 3: Form the sequence as follows:
a) The jobs in set-I go first in the sequence and they go in increasing order of p1j

(SPT)
b) The jobs in set-II follow in decreasing order of p2j (LPT). Ties are broken

arbitrarily.
This type of schedule is referred to as SPT (1)-LPT (2) schedule.

Example 4.1
 Consider the following data presents an instance of F2 || Cmax problem. Find
optimal value of makespan using Johnson’s rule.

Job (j) j1 j2 j3 j4 j5
p1j 5 2 3 6 7
p2j 1 4 3 5 2

Solution:
Step 1:
 Of all jobs; 1 j 5≤ ≤ , only job j2 has p1j < p2j which belong to Set-I = { j2 }
Step 2:
 Jobs j1, j4 and j5 have p1j > p2j which belong to Set-II = { j1, j4 , j5 }
 Job j3 has p1j = p2j, so put it in any set; say set-I. Set-I = { j2 , j3 }
Step 3:

a) Arrange sequence of jobs in set-I according to SPT. Set-I contains j2 and j3 as
members. Process time of job 2 on machine M1 is p12=2. Similarly process
time of job 3 on machine M1 is p13=3. Sequencing jobs j2 and j3 according to
SPT;

 Set-I = { j2 , j3 }
b) Arrange sequence of jobs in set-II according to LPT. Process times of jobs in

set-II are; p21 = 1, p24 = 4 and, p25 = 2. Hence, revised sequence is;
 Set-II = { j4, j5, j1 }

 Optimal sequence; Set-I + Set-II = { j2, j3, j4, j5, j1}

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 5

 The schedule for the optimal sequence is presented in graphical form using
directed graph and Gantt chart. Directed graph also presents the critical path. All the
processes on machine M1 are on critical path. Gantt chart shows idle times on
machine M2.

Figure 4.1 Directed Graph For Optimal Sequence { j2, j3, j4, j5, j1}

Figure 4.2 Gantt chart For optimal sequence { j2, j3, j4, j5, j1}

4.3 MINIMIZATION OF MAKESPAN FOR (F3 || Cmax) PROBLEM

This is the same flow shop problem as defined in two-machine case except
that now there are three machines arranged in series for processing of n jobs in a
prescribed order. Also, by virtue of dominance property number 2 (Theorem 2),
permutation schedule still constitutes a dominant set for optimizing makespan.
However, Johnson's 2-machine algorithm can not be extended to general 3-machine
flow shop. Nevertheless, under special conditions, generalization is possible. In this
regard, if either of the following condition satisfies, the Johnson's 2 machine
algorithm may be extended to the 3-machine flow shop to achieve optimum
makespan.
 Either,

() ()j21j pmaxp min ≥

or

2, 2

4, 6 3, 9 5, 16 2, 23 1, 24

5, 23 7, 18 6, 11 3, 5

Job 2 Job 3 Job 4 Job 5 Job 1

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 6

() ()j2j3 pmaxpmin ≥

In other words, machine 2 is completely dominated by either the first or the
third machine so that no bottleneck could possibly occur on the second machine.
Subject to the above conditions, the optimal scheduling rule is applicable to 3-
machine flow shop

The working procedure is the same as that described in the two machines case
except that the three machines flow shop is reduced to two dummy machine M1’ and
M2

’ such that processing times of job j on machines M1’ and M2’ are (pj1+ pj2) and (pj2
+ pj3) respectively. Johnson's algorithm is then applied to these two dummy machines
to find the optimal job sequence.

Example 4.2

Consider an instance of the F3 || Cmax problem in the following Table.

Job (j) Process time (M1) Process time (M2) Process time (M3)
1 8 2 4
2 5 4 5
3 6 1 3
4 7 3 2

 Find optimal sequence.
Solution:

Check for minimum value of process time on machines M1 and M3. These
times are 5 and 2 respectively. Check maximum time on machine M2 which is 4.
Since min { p1j } >= max { p2j}, the problem can be converted to surrogate 2-machine
problem. The problem data for two surrogate machines M1’ and M2’ is given in the
following table.

Job (j) Process time (M1
’) Process time (M2

’)
1 10 6
2 9 9
3 7 4
4 10 5

Applying Johnson’s Rule;
 Set-I = { j2 }, Set-II = { j1, j4, j3 }
 Optimal sequence = { j2, j1, j4, j3 }

Application of Johnson's algorithm to three machine flow shop problem has
been tested by various authors. Burns and Rooker showed that under the conditions

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 7

pj2 > min (pi1, pi3) for each job j=1,.....n, Johnson's algorithm produces optimal
schedule. Jackson presented a case where all jobs use a common first and third
machine for operation one and three respectively, but for second operation; the
machine differs with each job. Under the conditions he observed that Johnson's
algorithm produces optimal makespan for the 3-machine flow shop problem.

For general flow shops where the condition min {p1j } >= max { p2j} or min
{ p3j } >= max { p2j} is relaxed, Johnson’s algorithm does not necessarily produce
optimum makespan. However, it does provide good starting schedule, which can be
further improved towards optimality through employing various techniques. In this
context, Giglio and Wagner tested the algorithm for the series of the problems
whereby the average makespan of 20 different cases under Johnson's Rule came out
to be the 131.7 as compared to 127.9 for the optimal schedules. Furthermore, in 9
cases the true optimal results were obtained and another 8 results could be made
optimum by interchanging the sequence of two adjacent jobs. Therefore, apparently
Johnson's algorithm seems to produce good starting solutions, which even if not
optimal, possesses the potential of heading towards optimality with reduced efforts.

4.4 MINIMIZATION OF MAKESPAN FOR (Fm || Cmax) PROBLEMS WHEN m > 3

This is a general flow shop scheduling problem where n jobs are to be
scheduled on m machines with all the n jobs available for processing at time zero.
Processing times are deterministic. The problem is an extension of the 3-machine
flow shop but there are no efficient exact solution procedures known. The problem,
looking very simple at the outset, transforms into very complex and formidable one as
the number of the machines exceed 3. Reason being the inherent combinatorial
aspects associated with the general flow shop scheduling. Except for Johnson's
algorithm for the optimizing makespan criterion in a 2 machines static flow shop, no
constructive algorithms exists that take account of optimizing other measures of
performance or tackle the larger flow shops with regard to any measure of
performance. The secret of this lack of success has been exposed through relatively
recent finding that non-preemptive scheduling for flow shop problems is NP-
complete with regard to minimizing makespan or the mean flow time (Garey et al.
[1976]). Similarly with preemptive scheduling, Gonzalez and Sahni [1978] proved
NP-completeness for the makespan criterion. Therefore, even after 36 years of the
pioneering work of Johnson, no optimal strategies could be developed for flow shop
with m > 3.

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 8

4.5 PERMUTATION SCHEDULES

Research on large flow shops puts great emphasis on permutation schedules.
This is because of two reasons. First, the permutation schedules constitute a
significantly smaller set containing n! sequences where as non permutation schedules
consist of (n!)m sequences. Second, despite the fact that for m > 3 permutation
schedules are not dominant, it is not unreasonable to believe that the best permutation
schedules, even if not necessarily optimal, can not be too far away from true
optimum. Hence, the benefit gained through permutation schedule in terms of
significant reduction in number of sequences in a large flow shop is of much more
value than going for a possible true optimum solution at the expense of increased
computational effort and money.

4.6 HEURISTICS FOR MINIMIZATION OF MAKESPAN (Fm || Cmax) PROBLEMS

4.6.1 Palmer’s Heuristic
This heuristic comprises two steps as follows.

Step 1: For n job and m machine static flow shop problem, compute slope Aj for jth

job as follows;

∑
=

−−−=
m

1i
ijj p)}1i2(m{A

Step 2: Order the jobs in the sequence based on descending (decreasing) order of Aj

values.

Example 4.3

Solve F3|| Cmax problem for the data shown in Table using Palmer’s heuristic.

Machines j1 j2 j3 j4

M1 6 8 3 4

M2 5 1 5 4

M3 4 4 4 2

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 9

Solution

∑∑
==

−−−=−−−=
3

11
)}12(3{)}12({

i
ij

m

i
ijj pipimA ,

Table 4.1 Calculation for the job’s slope.

i=1 i=2 i=3

3-(2-1) = 2 3-(2x2-1) = 0 3-(2x3-1) = -2
Job j p1j p2j p3j Aj

1 6 5 4 -4
2 8 1 4 -8
3 3 5 4 2
4 4 4 2 -4

Arranging slope values in descending order; there are two sequences;

Sequence 1 = { j3 , j1, j4 , j2 } Sequence 2 = { j3, j4 , j1 , j2 }

Directed graph for sequence 1 is;

Figure 3.3 Directed graph for seq. { j3 , j1, j4 , j2 }

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 10

Directed graph for sequence 2 is;

Figure 3.4 Directed graph for sequence { j3 , j4, j1 , j2 }

Conclusion: Note the Cmax=26 for both sequences

4.6.2 Campbell, Dudek, and Smith (CDS) Algorithm

The algorithm converts a given n-job m-machine problem (m > 2) into p
number of 2-machine n-job surrogate problems, where p = m-1. Each surrogate
problem is solved using the Johnson rule. The value of Cmax for each surrogate
problem is found using Johnson rule. The sequence of the surrogate problem yielding
minimum value of Cmax after applying Johnson’s rule is selected for scheduling jobs
on the machines.

First step in CDS algorithm is to formulate surrogate problems from the
original problem. Consider a 3-machine 4-job problem as below. The 3-machine will
have two surrogate F2 || Cmax problems.

Table 4.2 Data for 3-machine 4-job Problem.

Jobs M1 M2 M3
j1 P11 P21 P31

j2 P12 P22 P32

j3 P13 P23 P33

j4 P14 P24 P34

4.6.2.1 First Surrogate Problem

In first F2 || Cmax surrogate problem, machine 1 data will comprise 1st column
of original problem. Similarly, machine 2 data will comprise 3rd column of the
original problem as shown under.

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 11

Table 4.4 Data for surrogate machines M1' and M2'
Jobs M1' = M1 M2' = M3

j1 P11 P31

j2 P12 P32

j3 P13 P33

j4 P14 P34

4.6.2.2 Second Surrogate Problem

In second F2 || Cmax surrogate problem, machine M1 data will comprise
summation of 1st and 2nd columns of the original problem. Similarly, machine M2 data
will comprise summation of 2nd and 3rd columns of the original problem.

Table 4.5 Data for surrogate machines M1' and M2'
Jobs M1' = M1+M2 M2' = M2+M3

j1 P11 + P21 P21 + P31
j2 P12 + P22 P22 + P32
j3 P13 + P23 P23 + P33
j4 P14 + P24 P24 + P34

This implies that the surrogate problems data will be in generated as follows:

For k = 1, ……, m-1 and j = 1, ……, n then,

M1' = ∑
k

i
ijP and M2' = ∑

+−=

m

kmi
ijP

1

Where:
M1' = the processing time for the first machine

 M2' = the processing time for the second machine

Example 4.4
Solve F3|| Cmax problem for the data shown in Table using CDS heuristic.

 j1 j2 j3 j4
M1 6 8 3 4
M2 5 1 5 4
M3 4 4 4 2

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 12

Solution:
Since there are three machines in the original problem, two (m-1 =2) surrogate

F2 || Cmax problems will be formed.

i. Surrogate Problem 1
Consider Machine M1 as surrogate machine 1 (M1') and Machine M3 as surrogate

machine 2 (M2') as shown in Table below.

Table 4.6 First 2-machine Surrogate problem data using CDS Heuristic.

 j1 j2 j3 j4

M1' = M1 6 8 3 4

M2' = M3 4 4 4 2

Applying Johnson Rule, Set I = {j3}, set II = {j1, j2, j4} or set II = {j2, j1, j4}.

Hence there are two possible sequences:
Sequence 1 = {j3, j1, j2, j4} and, is given in Table 4.7.

Table 4.7 First sequence obtained and job's processing times.

 j3 j1 j2 j4

M1' = M1 3 6 8 4

M2' = M3 4 4 4 2

Using directed graph, the Cmax calculations are shown in Figure 3.5

Figure 4.5 Directed Graph For Sequence/Schedule {j3, j1, j2, j4}

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 13

Sequence 2 = {j3, j2, j1, j4} and, is given in the Table 4.8.

Table 4.8 Second sequence obtained and job’s processing time.

 J3 j2 j1 j4

M1' = M1 3 8 6 4

M2' = M3 4 4 4 2

Using directed graph, the Cmax calculations are shown in Figure 3.6

Figure 4.6 Directed graph for sequence/schedule {j3, j2, j1, j4}

ii. Surrogate Problem 2
From the problem data in Table, formulate 2-machine problem as under;

Table 4.9 Data for surrogate problem 2

 j1 j2 j3 j4
M1'=M1+M2 11 9 8 8
M2'=M2+M3 9 5 9 6

Applying Johnson rule; Set–I = {j3}, and, Set-II = {j1, j4, j2}. The Johnson
sequence is, therefore, {j3, j1, j4, j2}. The computation of Cmax is shown in Table 4.10

Table 4.10 Cmax calculations using tabular method for sequence: {j3, j1, j4, j2}

Machine j3 j1 j4 j2 C3 C1 C4 C2 Cmax
M1 3 6 4 8 3 9 13 21

M2 5 5 4 1 8 14 18 22
M3 4 4 2 4 12 18 20 26 26

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 14

The Gantt chart for schedule is shown in Figure 4.7

Figure 4.7 Gantt chart for sequence {j3, j1, j4, j2}.

The schedule {j3 , j1 , j4 , j2} is also presented by directed graph as shown in

Figure 4.8

Figure 4.8 Directed graph for schedule {j3, j1, j4, j2}

Conclusion: Minimum Cmax value is 26 using sequence: {j3, j1, j4, j2}

4.6.3 Nawaz, Enscor, and Ham (NEH) Algorithm

Nawaz, Enscor and Ham (NEH) algorithm constructs jobs sequence in
iterative manner. Two jobs having largest values of total process times (called total
work content) are arranged in a partial sequence one by one. The partial sequence
having small value of Cmax is selected for subsequent iteration. Then, next job from
the work content list is picked. This job is alternately placed at all possible locations

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 15

in the partial sequence. This job is permanently placed at the location where it yields
lowest Cmax value for the partial schedule. In a similar fashion, next job from the work
content list is picked, and placed one by one at all possible locations in the partial
sequence to find Cmax value of the partial sequence. This job is permanently placed at
the location where partial sequence has minimum Cmax value. The process is
continued till all jobs from the content list are placed in the partial sequence.
 NEH algorithm is formally described as under;
Step (1)

Find Total work content (Tj) for each job using expression

∑
=

=

=
mi

i
ijj pT

1

Step (2)
 Arrange jobs in a work content list according to decreasing values of Tj
Step (3)
 Select first two jobs from the list, and form two partial sequences by
interchanging the place of the two jobs. Compute Cmax values of the partial sequences.
Out of the two partial sequences, discard the partial sequence having larger value of
Cmax. Call the partial sequence with lower value of Cmax as incumbent sequence
Step (4)
 Pick next job from the work content list, and place it at all locations in the
incumbent sequence. Calculate the value of Cmax for all the sequences.
Step (5)
 Retain the sequence with minimum value of Cmax as incumbent sequence and,
discard all the other sequences.
Step (6)
 If there is no job left in the work content list to be added to incumbent
sequence, STOP. Otherwise go to step (4).

Example 4.5

Solve F3|| Cmax problem for the data shown below using NEH algorithm.

 j1 j2 j3 j4
M1 6 8 3 4
M2 5 1 5 4
M3 4 4 4 2

Solution:
For four jobs, the Tj values are shown in the Table 4.11

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 16

Table 4.11 Calculation for Tj values
 j1 j2 j3 j4

M1 6 8 3 4
M2 5 1 5 4
M3 4 4 4 2
Tj 15 13 12 10

The ordered list of jobs according to decreasing Tj values is; {j1 , j2 , j3 , j4}

Iteration 1

Since jobs j1 and j2 have highest values of Tj, select these two jobs to form
partial schedule. The calculations of Cmax value for partial schedule (j1 , j2 , * , *) are
shown below in Table 4.12. Note Cmax = 19 for the partial schedule (j1 , j2 , * , *).

Table 1 Cmax calculations for partial schedule S12**: (j1, j2, *, *)
 j1 j2 C1 C2 Cmax

M1 6 8 6 14
M2 5 1 11 15
M3 4 4 15 19 19

The calculations of Cmax value for partial schedule (j2 , j1 ,* ,*) are shown

below in Table 4.13. Note Cmax = 23 for the partial schedule (j2 , j1 ,* ,*).

Table 4.13 Cmax calculations for partial schedule S21**: (j2 , j1 , * , *)
 j2 j1 C1 C2 Cmax

M1 8 6 8 14
M2 1 5 9 19
M3 4 4 13 23 23

The makespan (Cmax) values for the partial schedules are;

Table 24.14 Comparison between the two partial sequences

Schedule Cmax
S21**: (j2 , j1 , *, *) 23
S12**: (j1 , j2 , * ,*) 19

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 17

Since value of Cmax is smaller for partial sequence S12**: (j1 , j2 , * , *), we
further investigate this partial schedule. So partial sequence S21**: (j2 , j1 , * , *) is
fathomed and not investigated any more.

Iteration 2

Now job j3 is next in ordered list after jobs j1 and j2 with a Tw value of 12. Job
j3 can be placed at three sequence positions in partial sequence (j1, j2, *, *).

a) Before job j1 as follows: New Partial Sequence , S312*: (j3, j1, j2, *)
b) After job j1 as follows: New Partial Sequence , S132*: (j1, j3, j2, *)
c) After job j2 as follows: New Partial Sequence , S123*: (j1, j2, j3, *)
Calculations of Cmax for sequence, S123*:(j1, j2, j3, *) are shown below in the

following table 4.15.
Table 4.15 Cmax calculations for partial sequence (j1 , j2 , j3 , *)

 j1 j2 j3 C1 C2 C3 Cmax
M1 6 8 3 6 14 17
M2 5 1 5 11 15 22
M3 4 4 4 15 19 26 26

The Gantt chart of the partial schedule S123*:(j1, j2, j3,*) is shown in Figure

Figure 4.8 Gantt chart for the partial sequence S123*: (j1, j2, j3, *)

Note Cmax = 26 for the partial schedule, S123*:((j1, j2, j3,*).

The calculations of Cmax value for this schedule (j3,j1,j2,*) are shown below in
the following table 4.16.

Table 4.16 Cmax calculations for partial schedule (j3 , j1 , j2 , *)
 j3 j1 j2 C3 C1 C2 Cmax

M1 3 6 8 3 9 17
M2 5 5 1 8 14 18
M3 4 4 4 12 18 22 22

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 18

The calculations of Cmax value for the schedule S132*are shown in the
following table 4.17.

Table 34.17 Cmax calculations for partial schedule S132*: (j1, j3, j2, *)
 j1 j3 j2 C1 C3 C2 Cmax

M1 6 3 8 6 9 17
M2 5 5 1 11 16 18
M3 4 4 4 15 20 24 24

A comparison of the three schedules indicate that schedule S312* : (j3, j1, j2,*)

results in minimum Cmax value, as shown in below table 4.18:

Table 4.18 Comparison of the three partial sequences.
Partial Schedule Cmax
S123* (j1, j2, j3, *) 26
S312* (j3, j1, j2, *) 22
S132* (j1, j3, j2,*) 24

Iteration 3
Job j4 is the last job in the ordered list. Using minimum Cmax value partial

schedule from iteration 2, generate four sequences by inserting job j4 at four possible
locations in partial sequence (j3, j1, j2, *) as follows:

a) Before job j3 as follows: New Sequence, S4312: (j4, j3, j1, j2)
b) After job j3 as follows: New Sequence, S3412: (j3, j4, j1, j2)
c) After job j1 as follows: New Sequence, S3142: (j3, j1, j4, j2)
d) After job j2 as follows: New Sequence, S3124: (j3, j1, j2, j4)

The calculations of Cmax value for this schedule (j4, j3, j1, j2) are shown below

in the following table 4.19

Table 4.19 Cmax calculations for schedule (j4, j3, j1, j2)
 j4 j3 j1 j2 C4 C3 C1 C2 Cmax

M1 4 3 6 8 4 7 13 21

M2 4 5 5 1 8 13 18 22

M3 2 4 4 4 10 17 22 26 26

The calculations of Cmax value for this schedule (j3, j4, j1, j2) are shown below

in the following table 4.20

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 19

Table 4.20 Cmax calculations for schedule (j3, j4, j1, j2)
 j3 j4 j1 j2 C3 C4 C1 C2 Cmax

M1 3 4 6 8 3 7 13 21
M2 5 4 5 1 8 12 18 22
M3 4 2 4 4 12 14 22 26 26

The calculations of Cmax value for this schedule (j3, j1, j4, j2) are shown below

in the following table 4.21

Table 4.21 Cmax calculations for schedule (j3, j1, j4, j2)
 j3 j1 j4 j2 C3 C1 C4 C2 Cmax

M1 3 6 4 8 3 9 13 21
M2 5 5 4 1 8 14 18 22
M3 4 4 2 4 12 18 20 26 26

The calculations of Cmax value for this schedule (j3, j1, j2, j4) are shown below

in the following table 4.22

Table 4.22 Cmax calculations for schedule (j3, j1, j2, j4)

 j3 j1 j2 j4 C3 C1 C2 C4 Cmax

M1 3 6 8 4 3 9 17 21

M2 5 5 1 4 8 14 18 25
M3 4 4 4 2 12 18 19 27 27

The comparison of Cmax values for the four schedules is presented below in table 4.23

Table 4.23 Comparison of the four partial sequences
Schedule Cmax

S3124 : (j3, j1, j2, j4) 27
S3124 : (j4, j3, j1, j2) 26
S3412 : (j3, j4, j1, j2) 26
S3142 : (j3, j1, j4, j2) 26

The NEH method yields three alternate schedules with a minimum makespan
of 26. Clearly, NEH provides more elaborate results as compared to CDS or Slope
heuristic.

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 20

The total enumeration tree for NEH method is shown in the figure 4.9 below.

Figure 4.9 Enumeration tree for four-job problem using NEH algorithm.

4.7 BRANCH AND BOUND ALGORITHM

Branch and Bound algorithms have been proposed originally by Ignall and

Schrage [1965] and Lomnicki [1965]. The application of the method to scheduling is
based on the permutations schedules, which have a closed resemblance to a tree
structure. The tree starts from an initial node and the initial or the first node
corresponds to a situation where no jobs have been scheduled. This node has n
branches as there are n possible jobs that can occupy first place in the sequence. From
each of these n nodes, there are (n-1) branches corresponding to the (n-1) possible
jobs that can be placed second in the sequence and so on. Since there are n! possible
sequences, the tree has a total of 1 + n + n(n-1) +...+ n! nodes with each node
representing a partial schedule.

As is obvious from above, the total number of nodes in the sequence is very
large even for small number of jobs. Therefore, the Branch & Bound algorithm works
on the principle of reducing the total number of nodes in search for an optimal
solution. This is accomplished through:

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 21

• Presenting a branching rule to decide as on which node to branch from,
• Presenting an elimination rule which enables to discard a certain node and

all nodes that emanate from it, from further consideration. Elimination of a
certain node means that its partial sequence is dominated by some other
partial sequence.

The Branch & Bound procedure starts from the initial node along the n nodes.
Each time a new node is created, lower bound on makespan is calculated. Node
corresponding to least lower bound is the one from where further branching is
performed. Besides, dominance checks are made for discarding a node from further
consideration. Many researchers have been working on developing sharper bounds
and more powerful dominance conditions so as to shorten search for optimality. In
this regard, Legeweg et al proposes a lower bound based on Johnson's two machines
problem combined with an elimination criterion of Szwarc [1971] to solve quickly
problems upto 50 jobs and 3 machines but the bounds become less reliable and
solution times increase drastically as the number of machines exceed 3.

For any partial sequence Sk represented by a node on branch and bound tree, a
lower bound (LB) for partial sequence Sk is calculated as follows:

LB(k) = max (A1, A2, A3)

Where,

 ∑∑
∈∈

+++=
Uj

3j2j
Uj

1j11)p(pminp(k)CA

}min{pp(k)CA 3j
Uj

2j22 ++= ∑
∈

∑
∈

+=
Uj

3j33 p(k)CA

C1(k), C2(k) and C3(k) are completion times on machines M1, M2 and M3

respectively for partial sequence Sk.

U = Set of unscheduled jobs; jobs not in the partial sequence Sk.

P1j, P2j, P3j are process times of jth job on machines M1, M2 and M3

respectively.

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 22

Example 4.6
Consider following data as an instance of F3 || Cmax problem.

Jobs M1 M2 M3

1 4 6 2

2 3 7 1

3 6 2 5

Apply branch and bound method to find minimum Cmax value.

Solution:
Starting from root node (*,*,*), create three nodes as follows:

Figure 4.10 Branch and Bound Tree with Level 1 Nodes

Level 1 Computations

Calculate LB(1) for partial sequence (1,*,*) as follows:
First , find C1(k), C2(k) and C3(k) as shown below in figure 4.11

Figure 4.11 Directed graph for the partial sequence (1, *, *)

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 23

Note, set U = {j2, j3}. The calculations are shown below.

Table 4.23 Calculation of lower bound for partial Sequence (1,* ,*)

Jobs M1 M2 M3 p2j+p3j p3j
1 4 6 2
2 3 7 1 8 1
3 6 2 5 7 5
 Σp1j= Σp2j= Σp3j= min min
 9 9 6 7 1

20794)p(pminp(k)CA

Uj
3j2j

Uj
1j11 =++=+++= ∑∑

∈∈

201910}min{pp(k)CA 3j

Uj
2j22 =++=++= ∑

∈

18612p(k)CA

Uj
3j33 =+=+= ∑

∈

20)18,20,20max()A,A,Amax()1(LB 321 ===

Similarly, calculate LB(2) for partial sequence (2,*,*) as follows:

 First, find C1(k), C2(k) and C3(k) as shown below in figure 4.12

Figure 4.12 Directed graph for the partial sequence (2, *, *).

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 24

Note, set U = { j1 , j3}. The calculations are shown below.

Table 4.24 Calculation of lower bound for partial Sequence (2, *, *)

Jobs M1 M2 M3 p2j+p3j p3j
1 4 6 2 8 2
2 3 7 1
3 6 2 5 7 5
 Σp1j= Σp2j= Σp3j= min min
 10 8 7 7 2

207103)p(pminp(k)CA

Uj
3j2j

Uj
1j11 =++=+++= ∑∑

∈∈

202810}min{pp(k)CA 3j

Uj
2j22 =++=++= ∑

∈

18711p(k)CA

Uj
3j33 =+=+= ∑

∈

20)18,20,20max()A,A,Amax()2(LB 321 ===

Similarly, calculate LB(3) for partial sequence (3,*,*) as follows:
 First, find C1(k), C2(k) and C3(k) as shown in figure below.

Figure 4.13 Directed graph for the partial sequence (3, *, *).

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 25

Note, set U = { j1 , j2}. The calculations are shown below.

Table 4.25 Calculation of lower bound for partial Sequence (3, *, *)

Jobs M1 M2 M3 p2j+p3j p3j
1 4 6 2 8 2
2 3 7 1 8 1
3 6 2 5
 Σp1j= Σp2j= Σp3j= min min
 7 13 3 8 1

21876)p(pminp(k)CA

Uj
3j2j

Uj
1j11 =++=+++= ∑∑

∈∈

221138}min{pp(k)CA 3j

Uj
2j22 =++=++= ∑

∈

16313p(k)CA

Uj
3j33 =+=+= ∑

∈

22)16,22,21max()A,A,Amax()3(LB 321 ===

The values of lower bound for first level nodes are entered for respective
sequence. Since nodes 1 and 2 have equal values of lower bound, branch to lower
level nodes from these nodes as shown in Figure 4.14. Thus, fathom node 3 for
further branching.

Figure 4.14 Branch and bound tree with level two nodes.

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 26

Level 2 Computations
Calculate LB for partial sequence (1,2,*) as follows:
First, find C1(k), C2(k) and C3(k) as shown in Figure 4.15 below.

Figure 4.15 Directed graph for partial sequence.

Note, set U = {j3}. The calculations are shown below.

Table 4.26 Calculation of lower bound for partial Sequence (1, 2, *)

Jobs M1 M2 M3 p2j+p3j p3j
1 4 6 2
2 3 7 1
3 6 2 5 7 5
 Σp1j= Σp2j= Σp3j= min min
 6 2 5 7 5

20767)p(pminp(k)CA

Uj
3j2j

Uj
1j11 =++=+++= ∑∑

∈∈

245217}min{pp(k)CA 3j

Uj
2j22 =++=++= ∑

∈

23518p(k)CA

Uj
3j33 =+=+= ∑

∈

24)23,24,20max()A,A,Amax()4(LB 321 ===

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 27

Similarly, calculate LB(5) for partial sequence (1,3,*) as follows:
First, find C1(k), C2(k) and C3(k) as shown in Figure 4.16 below.

Figure 4.16 Directed graph for partial sequence (1, 3, *).

Note, set U = { j2}. The calculations are shown below.

Table 4.27 Calculation of lower bound for partial Sequence (1, 3, *)

Jobs M1 M2 M3 p2j+p3j p3j
1 4 6 2
2 3 7 1 8 1
3 6 2 5
 Σp1j= Σp2j= Σp3j= min min
 3 7 1 8 1

218310)p(pminp(k)CA

Uj
3j2j

Uj
1j11 =++=+++= ∑∑

∈∈

201712}min{pp(k)CA 3j

Uj
2j22 =++=++= ∑

∈

18117p(k)CA

Uj
3j33 =+=+= ∑

∈

21)18,20,21max()A,A,Amax()4(LB 321 ===

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 28

Similarly, calculate LB(6) for partial sequence (2,1,*) as follows:
First, find C1(k), C2(k) and C3(k) as shown in Figure 4.17 below.

Figure 4.17 Directed graph for the partial sequence (2, 1, *).

Note, set U = { j3}. The calculations are shown below.

Table 4.28 Calculation of lower bound for partial Sequence (2, 1, *)

Jobs M1 M2 M3 p2j+p3j p3j
1 4 6 2
2 3 7 1
3 6 2 5 7 5
 Σp1j= Σp2j= Σp3j= min min
 6 2 5 7 5

20767)p(pminp(k)CA

Uj
3j2j

Uj
1j11 =++=+++= ∑∑

∈∈

235216}min{pp(k)CA 3j

Uj
2j22 =++=++= ∑

∈

23518p(k)CA

Uj
3j33 =+=+= ∑

∈

23)23,23,20max()A,A,Amax()6(LB 321 ===

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 29

Finally, calculate LB(7) for partial sequence (2,3,*) as follows:
First, find C1(k), C2(k) and C3(k) as shown in Figure 4.18 below.

Figure 4.18 Directed graph for partial sequence (2, 3, *)

Note, set U = { j1}. The calculations are shown below.

Table 4.29 Calculation of lower bound for partial Sequence (2, 3, *)

Jobs M1 M2 M3 p2j+p3j p3j
1 4 6 2 8 2
2 3 7 1
3 6 2 5
 Σp1j= Σp2j= Σp3j= min min
 4 6 2 8 2

21849)p(pminp(k)CA

Uj
3j2j

Uj
1j11 =++=+++= ∑∑

∈∈

202612}min{pp(k)CA 3j

Uj
2j22 =++=++= ∑

∈

19217p(k)CA

Uj
3j33 =+=+= ∑

∈

21)19,20,21max()A,A,Amax()7(LB 321 ===

The values of lower bounds for nodes 4, 5, 6 and 7 are shown in Figure 4.19 below.

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 30

Figure 1The complete branch and bound tree with an optimal solution.

The sequences for nodes 5 and 7 provide optimal solution for the problem under
consideration.

EXERCISES

4.1 Consider the schedule 3-2-1-4 with the make span 24 units of time for the

following F3 | | Cmax problem given the following data:
Job 1 2 3 4
M1 3 2 1 8
M2 5 1 8 7
M3 7 4 2 2

Construct the Gantt chart for the problem. Show mathematically that the
schedule is optimal.

4.2 Consider a 3-machine 4-job problem as below.
Job 1 2 3 4
M1 4 7 3 1
M2 9 6 3 8
M3 7 4 8 5

Solve problem using;

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 31

(i) CDS Algorithm, (ii) NEH Algorithm

4.3 Consider F3 | | Cmax Problem given the following data:

Job 1 2 3 4 5 6
M1 5 6 30 2 3 4
M2 8 30 4 5 10 1
M3 20 6 5 3 4 4

Use the branch and bound method to find the optimal makespan for this
problem. (Hint: LB = max (A1, A2, A3)).

4.4 The data pertaining to F3 || Cmax problem is shown in Table below.

Job 1 2 3 4

M1 6 8 3 4

M2 4 1 2 3

M3 5 6 4 7
a) Apply Johnson’ Rule and find optimal solution.
b) Apply CDS heuristic and find Cmax
c) If due dates of the jobs are as follows:

Job 1 2 3 4

Due Date 17 13 11 18
Find tardiness of the jobs using Johnson’s Rule and CDS heuristics. Which of
the two methods provides minimum value of Lmax?

4.5 Consider F3| | Cmax with the following data:

 Job
Machines 1 2 3 4 5 6

M1 2 23 25 5 15 10
M2 29 3 20 7 11 2
M3 19 8 11 14 7 4

Use the following methods to find the best sequence:
i. Compbell, Dudek, and Smith (CDS) approach,
ii. Nawaz, Enscore, and Ham (NEH) approach.
Show all of your work. Then, compare the results obtained by the two
approaches.

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 32

4.6 Consider F4 | | Cmax with the following data:
Job 1 2 3 4 5
1 1 10 17 12 11
2 13 12 9 17 3
3 6 18 13 2 5
4 2 18 4 6 16

Use the Compbell, Dudek, and Smith (CDS) approach to find the best
sequence. Also, draw all Gantt Charts for the CDS schedule.

4.7 Consider F3 | | Cmax with the following data:
Job 1 2 3 4 5
M1 1 10 17 12 11
M2 13 12 9 17 3
M3 6 18 13 2 5

Find the optimal makespan using the branch and bound. Also, draw the final
Gantt Charts for the Branch and bound schedule and draw the tree for the
Branch and bound.

4.8 Consider F3 | | Cmax with the following data:

Job 1 2 3 4
M1 6 8 3 4
M2 3 1 3 3
M3 4 4 4 2

Find the best solution for the above problem

4.9 Consider F3 | | Cmax problem with the following data:

Job 1 2 3 4
M/c 1 5 6 30 2
M/c 2 8 30 4 5
M/c 3 20 6 5 3

a) Use the branch and bound method to find the optimal sequence that
minimizes the makespan.

b) Draw the Gantt Charts for the optimal sequence.

Chap. 4 / Flow Shop Scheduling

Algorithms for Sequencing & Scheduling 4. 33

c) Assume a common due date for all jobs which is the average total work
content among jobs, then, compute the makespan, total tardiness, and
maximum lateness.

	4
	Flow Shop Scheduling
	CHAPTER CONTENTS
	4.1 INTRODUCTION
	4.2 MINIMIZATION OF MAKESPAN USING JOHNSON’S RULE FOR (F2 || Cmax) PROBLEM

	Johnson’s Algorithm
	Example 4.1
	4.3 MINIMIZATION OF MAKESPAN FOR (F3 || Cmax) PROBLEM
	Example 4.2
	4.4 MINIMIZATION OF MAKESPAN FOR (Fm || Cmax) PROBLEMS WHEN m > 3
	4.5 PERMUTATION SCHEDULES
	4.6 HEURISTICS FOR MINIMIZATION OF MAKESPAN (Fm || Cmax) PROBLEMS
	4.6.1 Palmer’s Heuristic
	Example 4.3
	4.6.2 Campbell, Dudek, and Smith (CDS) Algorithm
	Example 4.4
	4.6.3 Nawaz, Enscor, and Ham (NEH) Algorithm
	Example 4.5
	4.7 BRANCH AND BOUND ALGORITHM

