Bird's Linear Array Notation

Handles recursive functions with limit ordinal ω

The Linear Array Notation has 5 rules of operation

Rule 1 (only 1 or 2 entries):
$\{\mathrm{a}\}=\mathrm{a}$,
$\{a, b\}=a^{\wedge} b$.

Rule 2 (last entry is 1):
$\{a, b, c, \ldots, z, 1\}=\{a, b, c, \ldots, z\} \quad$ (remove trailing 1's).

Rule 3 (second entry is 1):
$\{a, 1, c, d, \ldots, z\}=a$.

Rule 4 (third entry is 1):

$$
\{a, b, 1, \ldots, 1, d, e, \ldots, z\}=\{a, a, a, \ldots,\{a, b-1,1, \ldots, 1, d, e, \ldots, z\}, d-1, e, \ldots, z\} .
$$

The '...' between the 1 's represents an unbroken string of 1 's - there can be any number of 1 's, from one 1 (third entry alone) to a string of 1 's up to the penultimate entry - it is the last 1 of this unbroken string (not necessarily the last 1 in the array) that is replaced by a copy of the entire array with its second entry reduced by 1 , and all entries prior to this become an unbroken string of a's. This is the only way that a fourth or subsequent entry in the array can be reduced in number (albeit by 1); if there are n 1 's in the unbroken string from the third entry onwards then the $(\mathrm{n}+3)$ th entry (represented by d) is reduced by 1 .

Rule 5 (rules 1-4 do not apply):
$\{a, b, c, d, \ldots, z\}=\{a,\{a, b-1, c, d, \ldots, z\}, c-1, d, \ldots, z\}$.
The second entry is replaced by a copy of the entire array with its second entry reduced by 1 , in order to reduce the third entry by 1 .

It is helpful when the rules are considered in sequence; first use Rule 1 if it applies, if not then use Rule 2, etc. If none of Rules 1-4 apply then Rule 5 will. The curly brackets can only be removed after the array inside the curly brackets has been evaluated into a single number.

About the Linear Array Notation

Bird's Linear Array Notation is similar to Jonathan Bowers' Array Notation for linear arrays except that he originally defined $\{a, b\}=a+b$ rather than $\{a, b\}=a^{\wedge} b$. It is more logical to set $\{a, b\}=a^{\wedge} b$ rather than $\{a, b\}=a+b$ because Rules 2 and 3 would then work for arrays with 2 entries, just as they do for arrays with 3 or more entries. For example, $\{a, 1\}=a^{\wedge} 1=a$, whereas $a+1 \neq a$.

Jonathan Bowers' Array Notation builds on his Extended Operator Notation, which was originally
$a\{1\} b=a+b$,
$a\{2\} b=a \times b$,
$a\{3\} b=a \wedge b$,
and, in general,
$a\{c\} b=a\{c-1\}(a\{c-1\}(a\{c-1\}(\ldots(a\{c-1\} a) \ldots))) \quad$ (with b terms)

$$
=a\{c-1\}(a\{c\}(b-1))
$$

Bird's Linear Array Notation modifies this so that

$$
\mathrm{a}\{1\} \mathrm{b}=\mathrm{a}^{\wedge} \mathrm{b},
$$

$$
\left.a\{2\} b=a^{\wedge}\left(a^{\wedge}\left(a^{\wedge}\left(a^{\wedge}\left(\ldots\left(a^{\wedge} a\right) \ldots\right)\right)\right)\right) \quad \text { (with } b \text { terms }\right)
$$

$$
a\{3\} b=a\{2\}(a\{2\}(a\{2\}(\ldots(a\{2\} a) \ldots))) \quad \text { (with } b \text { terms })
$$

and so on.

Bowers nested these huge numbers inside operators by defining
$a\{\{1\}\} 2=a\{a\} a$,
$a\{\{1\}\} 3=a\{a\{a\} a\} a$,
$a\{\{1\}\} 4=a\{a\{a\{a\} a\} a\}$,
$a\{\{1\}\} b=a\{a\{a\{\ldots\{a\{a\} a\} \ldots\} a\} a\} a \quad$ (with $b a \not a$ from centre out),
and

$$
a\{\{c\}\} b=a\{\{c-1\}\}(a\{\{c-1\}\}(a\{\{c-1\}\}(\ldots(a\{\{c-1\}\} a) \ldots))) \quad \text { (with } b \text { terms }) .
$$

Further, he defined
$a \operatorname{a\{ \{ 1\} }\}\} b=a\{\{a\{\{a\{\{\ldots\{\{a\{\{a\}\} a\}\} \ldots\}\} a\}\} a\}\} a$
(with b a's from centre out),
$a\{\{\{c\}\}\} b=a\{\{\{c-1\}\}\}(a\{\{\{c-1\}\}\}(a\{\{\{c-1\}\}\}(\ldots(a\{\{\{c-1\}\}\} a) \ldots)))$
(with b terms),
a $\{\{\{\{1\}\}\}\} \mathrm{b}=\mathrm{a}\{\{\{\mathrm{a}\{\{\{\mathrm{a}\{\{\{\ldots$... $\{\{\mathrm{a}\{\{\{\mathrm{a}\}\}\} \mathrm{a}\}\}\} \ldots\}\}\} \mathrm{a}\}\}\} \mathrm{a}\}\}\} \mathrm{a}$
(with b a's from centre out),
$a\{\{\{\{c\}\}\}\} \mathrm{b}=\mathrm{a}\{\{\{\{\mathrm{c}-1\}\}\}\}(\mathrm{a}\{\{\{\{\mathrm{c}-1\}\}\}\}(\mathrm{a}\{\{\{\{\mathrm{c}-1\}\}\}\}(\ldots(\mathrm{a}\{\{\{\{\mathrm{c}-1\}\}\}\} \mathrm{a}) . .))$. (with b terms),
and, in general, when $\left\}_{d}\right.$ denotes $\{\{\{. .\{ \} .\}\}$.$\} with d pairs of curly brackets,$
$a\{1\}_{d} b=a\left\{a\left\{a\left\{\ldots\left\{a\{a\}_{d-1} a\right\}_{d-1} \ldots\right\}_{d-1} a\right\}_{d-1} a\right\}_{d-1} a \quad$ (with b a's from centre out), $a\{c\}_{d} b=a\{c-1\}_{d}\left(a\{c-1\}_{d}\left(a\{c-1\}_{d}\left(\ldots\left(a\{c-1\}_{d} a\right) \ldots\right)\right)\right) \quad$ (with b terms $)$.

The last 2 equations can be rewritten as follows:

$$
\begin{aligned}
& \mathrm{a}\{1\}_{d} \mathrm{~b}=\mathrm{a}\left\{\mathrm{a}\{1\}_{\mathrm{d}}(\mathrm{~b}-1)\right\}_{\mathrm{d}-1} \mathrm{a}, \\
& \mathrm{a}\{\mathrm{c}\}_{\mathrm{d}} \mathrm{~b}=\mathrm{a}\{\mathrm{c}-1\}_{\mathrm{d}}\left(\mathrm{a}\{\mathrm{c}\}_{\mathrm{d}}(\mathrm{~b}-1)\right) .
\end{aligned}
$$

In an array of 3 entries,
$\{a, b, c\}=a\{c\} b$

$$
\begin{array}{ll}
=a^{\wedge \wedge \wedge \cdots \wedge} \mathrm{b} & \\
=\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \mathrm{c} & \text { (with c Knuth's up-arrows) } \\
\text { (in Conway's Chained Arrow Notation). }
\end{array}
$$

In an array of 4 entries,

$$
\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\}=\mathrm{a}\{\{\{. .\{\mathrm{c}\} . .\}\}\} \mathrm{b} \quad \text { (with d pairs of curly brackets). }
$$

This is because, in the case of arrays with 3 entries,

$$
\begin{array}{rlrl}
\{a, b, 1\} & =a\{1\} b \\
& =a^{\wedge} b & & \\
& =\{a, b\} & & \text { (gives Rule } 2 \text { for 3-entry arrays) } \\
\{a, 1, c\} & =a\{c\} 1 \\
& =a & & \\
\text { (gives Rule } 3 \text { for 3-entry arrays), }
\end{array}
$$

$$
\begin{aligned}
\{a, b, c\} & =a\{c\} b \\
& =a\{c-1\}(a\{c\}(b-1)) \\
& =\{a,(a\{c\}(b-1)), c-1\} \\
& =\{a,\{a, b-1, c\}, c-1\} \quad \text { (gives Rule } 5 \text { for 3-entry arrays). }
\end{aligned}
$$

In the case of arrays with 4 entries (with $\left\}_{d}\right.$ denoting $\{\{\{. .\{ \} .\}\}$.$\} with d$ pairs of curly brackets),

$$
\begin{aligned}
& \{a, b, c, 1\}=a\{c\} b \\
& =\{a, b, c\} \\
& \{a, 1, c, d\}=a\{c\}_{d} 1 \\
& =\mathrm{a} \quad \text { (gives Rule } 3 \text { for 4-entry arrays), } \\
& \{a, b, 1, d\}=a\{1\}_{d} b \\
& =a\left\{a\{1\}_{d}(b-1)\right\}_{d-1} a \\
& =\left\{a, a,\left(a\{1\}_{d}(b-1)\right), d-1\right\} \\
& =\{a, a,\{a, b-1,1, d\}, d-1\} \quad \text { (gives Rule } 4 \text { for 4-entry arrays), } \\
& \{a, b, c, d\}=a\{c\}_{d} b \\
& =a\{c-1\}_{d}\left(a\{c\}_{d}(b-1)\right) \\
& =\left\{a,\left(a\{c\}_{d}(b-1)\right), c-1, d\right\} \\
& =\{a,\{a, b-1, c, d\}, c-1, d\} \quad \text { (gives Rule } 5 \text { for 4-entry arrays). }
\end{aligned}
$$

The Linear Array Notation with n entries ($n \geq 2$) handles fast-growing functions up to recursion level $\mathrm{n}-1$ (or ($\mathrm{n}-1$)-recursive functions) since there are $\mathrm{n}-1$ arguments (excluding the first entry, which is the base or 'filler' entry). Knuth's Up-arrow Notation only goes up to recursion level 2 because it does not extend beyond 3-entry arrays. Conway's Chained Arrow Notation only goes up to recursion level 3 as it does not extend beyond 4-entry arrays. Since there is no limit to the number of entries allowed in Bird's Linear Array Notation, it extends upwards to recursion level ω (the smallest infinite ordinal). In other words, the Linear Array Notation handles recursive functions with limit ordinal ω, which translates to limit ordinals of $\omega^{\wedge} \omega$ and $\omega^{\wedge} \omega^{\wedge} \omega$ in the fast-growing and Hardy hierarchies of functions respectively.

Examples

Using Bird's Linear Array Notation and Bird's Extended Operator Notation,

$$
\begin{aligned}
\{3,3,1\} & =\{3,3\} \\
& =3^{\wedge} 3 \\
& =27, \\
\{3,3,2\} & =3\{2\} 3 \\
& =3^{\wedge}\left(3^{\wedge} 3\right) \quad\left(\text { since } a\{1\} b=a^{\wedge} b\right) \\
& =3^{\wedge} 27 \\
& =7,625,597,484,987,
\end{aligned}
$$

$\{3,3,3\}=3\{3\} 3$
$=3\{2\}(3\{2\} 3)$
$=3\{2\}\left(3^{\wedge}\left(3^{\wedge} 3\right)\right)$
$=3\{2\} 7,625,597,484,987$
$=3^{\wedge}\left(3^{\wedge}\left(3^{\wedge}\left(\ldots\left(3^{\wedge} 3\right) . ..\right)\right)\right)$
(a power tower with 7,625,597,484,987 terms - even if every 3 in the stack was as small as the thickness of a human hair, the tower would reach the moon and back),

$$
\begin{aligned}
\{3,3,4\} & =3\{4\} 3 \\
& =3\{3\}(3\{3\} 3) \\
= & 3\{3\}\left(3^{\wedge}\left(3^{\wedge}\left(3^{\wedge}\left(\ldots\left(3^{\wedge} 3\right) \ldots\right)\right)\right)\right) \quad(\text { with } 7,625,597,484,9873 \text { 's in power tower) } \\
= & 3\{2\}(3\{2\}(3\{2\}(\ldots(3\{2\} 3) \ldots))) \\
& \left.\quad \text { (where the number of terms is a power tower of } 7,625,597,484,9873^{\prime} s\right) .
\end{aligned}
$$

While the number

$$
\begin{aligned}
\{3,2,1,2\} & =3\{\{1\}\} 2 \\
& =3\{3\} 3
\end{aligned}
$$

the number
$\{3,3,1,2\}=3\{\{1\}\} 3$

$$
=3\{3\{3\} 3\} 3
$$

and the number

$$
\begin{aligned}
\{3,4,1,2\} & =3\{\{1\}\} 4 \\
& =3\{3\{3\{3\} 3\} 3\} 3 .
\end{aligned}
$$

Since
$\{3,65,1,2\}=3\{\{1\}\} 65$

$$
=3\{3\{3\{\ldots\{3\{3\} 3\} \ldots\} 3\} 3\} 3 \quad \text { (with } 65 \text { 3's from centre out) }
$$

and Graham's Number is achieved by changing the 3 in the centre to a 4, it follows that
$\{3,65,1,2\}<($ Graham's Number) $\ll\{3,66,1,2\}$.

While the number

$$
\begin{aligned}
\{3,2,2,2\} & =3\{\{2\}\} 2 \\
& =3\{\{1\}\} 3 \\
& =3\{3\{3\} 3\} 3 \\
& =\{3,3,1,2\},
\end{aligned}
$$

the number

$$
\begin{aligned}
\{3,3,2,2\} & =3\{\{2\}\} 3 \\
& =3\{\{1\}\}(3\{\{1\}\} 3) \\
& =3\{\{1\}\}(3\{3\{3\} 3\} 3) \\
& =\{3,(3\{3\{3\} 3\} 3), 1,2\} \\
& =\{3,\{3,3,1,2\}, 1,2\},
\end{aligned}
$$

and so is very much larger than Graham's Number.

While the number

$$
\begin{aligned}
\{3,2,3,2\} & =3\{\{3\}\} 2 \\
& =3\{\{2\}\} 3 \\
& =\{3,3,2,2\},
\end{aligned}
$$

the number

$$
\begin{aligned}
\{3,3,3,2\} & =3\{\{3\}\} 3 \\
& =3\{\{2\}\}(3\{\{2\}\} 3) \\
& =\{3,(3\{\{2\}\} 3), 2,2\} \\
& =\{3,\{3,3,2,2\}, 2,2\} .
\end{aligned}
$$

While the number

$$
\begin{aligned}
\{3,2,1,3\} & =3\{\{\{1\}\}\} 2 \\
& =3\{\{3\}\} 3 \\
& =\{3,3,3,2\},
\end{aligned}
$$

the number

$$
\begin{aligned}
\{3,3,1,3\} & =3\{\{\{1\}\}\} 3 \\
& =3\{\{3\{\{3\}\} 3\}\} 3 \\
& =\{3,3,(3\{\{3\}\} 3), 2\} \\
& =\{3,3,\{3,3,3,2\}, 2\} .
\end{aligned}
$$

Since
$\{a, b, c, d\}=a\{\{\{. .\{c\} .\}\}\}$.$b \quad (with d$ pairs of curly brackets), the following numbers can be written as follows:
$\{3,3,3,3\}=3\{\{\{3\}\}\} 3$,
$\{10,10,10,10\}=10\{\{\{\{\{\{\{\{\{10\}\}\}\}\}\}\}\}\}\} 10$,
$\{10,10,100,20\}=10\{\{2\{x\{x\{\{\{\{\{x\{\{\{100\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}\}$
When the number of curly brackets in the Extended Operator Notation becomes large, it is easier to use the Linear Array Notation.

While the number represented by

$$
\begin{aligned}
\{a, 2,1,1,2\} & =\{a, a, a, a\} \\
& =a\{\{\{. .\{a\} . .\}\}\} a \quad \text { (with a pairs of curly brackets) },
\end{aligned}
$$

that represented by

$$
\begin{aligned}
\{a, 3,1,1,2\} & =\{a, a, a,\{a, 2,1,1,2\}\} \\
& =a\{\{\{. .\{a\} . .\}\}\} \text { a } \quad(\text { with a }\{\{\{. .\{a\} . .\}\}\} \text { a pairs of curly brackets (with a pairs of } \\
& \text { curly brackets)) }
\end{aligned}
$$

and

$$
\begin{aligned}
\{a, 4,1,1,2\} & =\{a, a, a,\{a, 3,1,1,2\}\} \\
& =a\{\{\{. .\{a\} . .\}\}\} a \quad \text { (with a }\{\{\{. .\{a\} . .\}\}\} \text { a pairs of curly brackets (with a }\{\{\{. .\{a\} . .\}\}\} a \\
& \quad \text { pairs of curly brackets (with a pairs of curly brackets))). }
\end{aligned}
$$

In general,

$$
\begin{aligned}
\{a, b, 1,1,2\} & =\{a, a, a,\{a, b-1,1,1,2\}\} \\
& =a\{\{\{. .\{a\} . .\}\}\} a \quad \text { (with }\{a, b-1,1,1,2\} \text { pairs of curly brackets). }
\end{aligned}
$$

Hence,
$\{3,5,1,1,2\}=3\{\{\{. .\{3\} .\}\}\}$.$3 \quad (with 3\{\{\{. .\{3\} .\}\}\}$.3 pairs of curly brackets (with $3\{\{\{. .\{3\} .\}\}\}$. pairs of curly brackets (with 3 \{\{\{3\}\}\} 3 pairs of curly brackets))).

Friedman's $n(k)$ function for k-character sequences in his Block Subsequence Theorem grows so rapidly that it approaches the limits of Bird's Linear Array Notation. While

$$
\begin{aligned}
& n(1)=3 \\
& n(2)=11 \\
& n(3)>\{2,158386,7197\} \\
& n(4)>\{3,\{2,187196,187195\}, 1,2\},
\end{aligned}
$$

the growth rate of $n(k)$ is broadly comparable to the function

$$
f(n)=\{3,3,3, \ldots, 3\} \quad \text { (with } n \text { entries). }
$$

Jonathan Bowers' Array Notation can be visited at: h http://www.polytope.net/hedrondude/array.htm

Author: Chris Bird (Gloucestershire, England, UK)
Last modified: 1 April 2012
E-mail: m.bird44 at btinternet.com (not clickable to thwart spambots!)

