
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Chapter 3 ❖

Types
The evolution of modern programming languages is closely coupled with the
development (and formalization) of the concept of data type. At the machine-
language level, all values are untyped (that is, simply bit patterns). Assem-
bler-language programmers, however, usually recognize the fundamental dif-
ferences between addresses (considered relocatable) and data (considered
absolute). Hence they recognize that certain combinations of addresses and
data (for example, the sum of two addresses) are ill defined.

This assembler-language view of typing is flawed, however, because it
views type as a property of a datum rather than a property of the cell contain-
ing the datum. That is, whether or not an operation is meaningful can usu-
ally be determined only at runtime when the actual operand values are
available. An assembler will probably recognize the invalidity of an expres-
sion that adds two labels, while it will accept a code sequence that computes
exactly the same thing! This weakness has led to the introduction of tagged
architectures that include (at runtime) type information with a datum. Such
architectures can detect the label-addition error, because the add instruction
can detect that its operands are two addresses. Unfortunately, the type infor-
mation included with data is usually limited to the primitive types provided
by the architecture. Programmer-declared data types cannot receive the
same sort of automatic correctness checking.

FORTRAN and later high-level languages improved upon assembler lan-
guages by associating type information with the locations holding data rather
than the data itself. More generally, languages associate type information
with identifiers, which may be variables or formal parameters. When an at-
tribute such as a type is associated with an identifier, we say the the identi-
fier is bound to the attribute. Binding that takes place at compile time is
usually called static, and binding that takes place at runtime is called dy-
namic. Static-typed languages are those that bind types to identifiers at
compile time. Since types are known at compile time, the compiler can detect
a wide range of type errors (for example, an attempt to multiply two Boolean
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

On-line edition copyright  1996 by Addison-Wesley Publishing Company. Permission is
granted to print or photocopy this document for a fee of $0.02 per page, per copy, payable to Addi-
son-Wesley Publishing Company. All other rights reserved.

55



variables).
High-level languages prior to Pascal usually limited their concepts of data

types to those provided directly by hardware (integers, reals, double precision
integers and reals, and blocks of contiguous locations). Two objects had dif-
ferent types if it was necessary to generate different code to manipulate
them. Pascal and later languages have taken a rather different approach,
based on the concept of abstract data types. In Pascal, the programmer can
give two objects different types even if they have the same representation and
use the same generated code. Type rules have shifted from concentrating on
what makes sense to the computer to what makes sense to the programmer.

1 ◆ DYNAMIC-TYPED LANGUAGES
It is possible to delay the binding of types to identifiers until runtime, leading
to dynamic-typed languages. Interpreted languages (like SNOBOL, APL, and
Awk) often bind types only at runtime. These languages have no type decla-
rations; the type of an identifier may change dynamically. These are different
from typeless languages, such as Bliss or BCPL, which have only one type of
datum, the cell or word.

Delaying the binding of a type to an identifier gains expressiveness at the
cost of efficiency, since runtime code must determine its type in order to ma-
nipulate its value appropriately. As an example of expressiveness, in dy-
namic-typed languages, arrays need not be homogeneous. As an example of
loss of efficiency, even in static-typed languages, the values of choice types re-
quire some runtime checking to ensure that the expected variant is present.

2 ◆ STRONG TYPING
One of the major achievements of Pascal was the emphasis it placed on the
definition of data types. It viewed the creation of programmer-declared data
types as an integral part of program development. Pascal introduced the con-
cept of strong typing to protect programmers from errors involving type mis-
matches. A strongly typed language provides rules that allow the
compiler to determine the type of every value (that is, every variable and ev-
ery expression).1 Assignments and actual-formal parameter binding involv-
ing inequivalent types are invalid, except for a limited number of automatic
conversions. The underlying philosophy is that different types represent dif-
ferent abstractions, so they ought to interact only in carefully controlled and
clearly correct ways.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 Actually, Pascal is not completely strongly typed. Procedure-valued parameters do not

specify the full procedure header, so it is possible to provide an actual parameter that does not
match the formal in number or type of parameters. Untagged record variants are another loop-
hole.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

56 CHAPTER 3 TYPES



57

3 ◆ TYPE EQUIVALENCE
The concept of strong typing relies on a definition of exactly when types are
equivalent. Surprisingly, the original definition of Pascal did not present a
definition of type equivalence. The issue can be framed by asking whether
the types T1 and T2 are equivalent in Figure 3.1:

Figure 3.1 type 1
T1, T2 = array[1..10] of real; 2
T3 = array[1..10] of real; 3

Structural equivalence states that two types are equivalent if, after all
type identifiers are replaced by their definitions, the same structure is ob-
tained. This definition is recursive, because the definitions of the type identi-
fiers may themselves contain type identifiers. It is also vague, because it
leaves open what “same structure” means. Everyone agrees that T1, T2, and
T3 are structurally equivalent. However, not everyone agrees that records re-
quire identical field names in order to have the same structure, or that arrays
require identical index ranges. In Figure 3.2, T4, T5, and T6 would be consid-
ered equivalent to T1 in some languages but not others:

Figure 3.2 type 1
T4 = array[2..11] of real; -- same length 2
T5 = array[2..10] of real; -- compatible index type 3
T6 = array[blue .. red] of real; -- incompatible 4

-- index type 5

Testing for structural equivalence is not always trivial, because recursive
types are possible. In Figure 3.3, types TA and TB are structurally equivalent,
as are TC and TD, although their expansions are infinite.

Figure 3.3 type 1
TA = pointer to TA; 2
TB = pointer to TB; 3
TC = 4

record 5
Data : integer; 6
Next : pointer to TC; 7

end; 8
TD = 9

record 10
Data : integer; 11
Next : pointer to TD; 12

end; 13

In contrast to structural equivalence, name equivalence states that two
variables are of the same type if they are declared with the same type name,
such as integer or some declared type. When a variable is declared using a
type constructor (that is, an expression that yields a type), its type is given
a new internal name for the sake of name equivalence. Type constructors in-

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 TYPE EQUIVALENCE



clude the words array, record, and pointer to. Therefore, type equivalence
says that T1 and T3 above are different, as are TA and TB. There are different
interpretations possible when several variables are declared using a single
type constructor, such as T1 and T2 above. Ada is quite strict; it calls T1 and
T2 different. The current standard for Pascal is more lenient; it calls T1 and
T2 identical [ANSI 83]. This form of name equivalence is also called declara-
tion equivalence.

Name equivalence seems to be the better design because the mere fact
that two data types share the same structure does not mean they represent
the same abstraction. T1 might represent the batting averages of ten mem-
bers of the Milwaukee Brewers, while T3 might represent the grade-point av-
erage of ten students in an advanced programming language course. Given
this interpretation, we surely wouldn’t want T1 and T3 to be considered equiv-
alent!

Nonetheless, there are good reasons to use structural equivalence, even
though unrelated types may accidentally turn out to be equivalent. Applica-
tions that write out their values and try to read them in later (perhaps under
the control of a different program) deserve the same sort of type-safety pos-
sessed by programs that only manipulate values internally. Modula-2+,
which uses name equivalence, outputs both the type name and the type’s
structure for each value to prevent later readers from accidentally using the
same name with a different meaning. Anonymous types are assigned an in-
ternal name. Subtle bugs arise if a programmer moves code about, causing
the compiler to generate a different internal name for an anonymous type.
Modula-3, on the other hand, uses structural equivalence. It outputs the
type’s structure (but not its name) with each value output. There is no dan-
ger that rearranging a program will lead to type incompatibilities with data
written by a previous version of the program.

A language may allow assignment even though the type of the expression
and the type of the destination variable are not equivalent; they only need to
be assignment-compatible. For example, under name equivalence, two ar-
ray types might have the same structure but be inequivalent because they
are generated by different instances of the array type constructor. Nonethe-
less, the language may allow assignment if the types are close enough, for ex-
ample, if they are structurally equivalent. In a similar vein, two types may
be compatible with respect to any operation, such as addition, even though
they are not type-equivalent. It is often a quibble whether to say a language
uses name equivalence but has lax rules for compatibility or to say that it
uses structural equivalence. I will avoid the use of “compatibility” and just
talk about equivalence.

Modula-3’s rules for determining when two types are structurally equiva-
lent are fairly complex. If every value of one type is a value of the second,
then the first type is a called a “subtype” of the second. For example, a record
type TypeA is a subtype of another record type TypeB only if their fields have
the same names and the same order, and all of the types of the fields of TypeA
are subtypes of their counterparts in TypeB. An array type TypeA is a subtype
of another array type TypeB if they have the same number of dimensions of
the same size (although the range of indices may differ) and the same index
and component types. There are also rules for the subtype relation between
procedure and pointer types. If two types are subtypes of each other, they are

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

58 CHAPTER 3 TYPES



59

equivalent. Assignment requires that the value being assigned be of a sub-
type of the target variable.2

After Pascal became popular, a weakness in its type system became appar-
ent. For example, given the code in Figure 3.4,

Figure 3.4 type 1
natural = 0 .. maxint; 2

you would expect natural numbers (which are a subrange of integers) to be
equivalent to integers, so that naturals and integers might be added or as-
signed. On the other hand, given the code of Figure 3.5,

Figure 3.5 type 1
feet = 0 .. maxint; 2
meters = 0 .. maxint; 3

you would probably expect feet and meters to be inequivalent. It turns out
in Pascal that subranges of an existing type (or a type identifier defined as
equal to another type identifier) are equivalent (subject to possible range re-
strictions). But I don’t want feet and meters to be equivalent.

Successors to Pascal (especially Ada) have attempted to generalize type
rules to allow types derived from an existing type to be considered inequiva-
lent. In such languages, one can declare a type to be a subtype of an existing
type, in which case the subtype and original type are type-equivalent. One
can also declare a type to be derived from an existing type, in which case the
derived and original types are not type equivalent. To implement feet and
meters as inequivalent, I could therefore create types as follows:

Figure 3.6 type 1
feet = derived integer range 0..maxint; 2
meters = derived integer range 0..maxint; 3

variable 4
imperial_length : feet; 5
metric_length : meters; 6

begin 7
metric_length := metric_length * 2; 8

end; 9

In order to make sure that values of a derived type that are stored by one
program and read by another maintain their type, Modula-3 brands each de-
rived type with a string literal. Branded values may only be read into vari-
ables with the same brand. In other words, the programmer may control
which derived types are considered structurally equivalent to each other.

There is a slight problem in line 8 in Figure 3.6. The operator * is de-
fined on integer and real, but I intentionally made meters a new type dis-
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 The actual rule is more complex in order to account for range types and to allow pointer
assignments.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 TYPE EQUIVALENCE



tinct from integer. Similarly, 2 is a literal of type integer, not meters. Ada
solves this problem by overloading operators, procedures, and literals associ-
ated with a derived type. That is, when meters was created, a new set of
arithmetic operators and procedures (like sqrt) was created to take values of
type meters. Similarly, integer literals are allowed to serve also as meters
literals. The expression in line 8 is valid, but metric_length * impe-
rial_length involves a type mismatch.3

The compiler determines which version of an overloaded procedure, opera-
tor, and literal to use. Intuitively, it tries all possible combinations of inter-
pretations, and if exactly one satisfies all type rules, the expression is valid
and well defined. Naturally, a smart compiler won’t try all possible combina-
tions; the number could be exponential in the length of the expression. In-
stead, the compiler builds a collection of subtrees, each representing a
possible overload interpretation. When the root of the expression tree is
reached, either a unique overload resolution has been found, or the compiler
knows that no unique resolution is possible [Baker 82]. (If no appropriate
overloaded procedure can be found, it may still be possible to coerce the types
of the actual parameters to types that are accepted by a declared procedure.
However, type coercion is often surprising to the programmer and leads to
confusion.)

The concept of subtype can be generalized by allowing extensions and re-
ductions to existing types [Paaki 90]. For example, array types can be ex-
tended by increasing the index range and reduced by decreasing the index
range. Enumeration types can be extended by adding new enumeration con-
stants and reduced by removing enumeration constants. Record types can be
extended by adding new fields and reduced by removing fields. (Oberon al-
lows extension of record types.) Extending record types is very similar to the
concept of building subclasses in object-oriented programming, discussed in
Chapter 5.

The resulting types can be interconverted with the original types for pur-
poses of assignment and parameter passing. Conversion can be either by
casting or by coercion. In either case, conversion can ignore array elements
and record fields that are not needed in the target type and can set elements
and fields that are only known in the target type to an error value. It can
generate a runtime error if an enumeration value is unknown in the target
type.

The advantage of type extensions and reductions is much the same as that
of subclasses in object-oriented languages, discussed in Chapter 5: the new
type can make use of the software already developed for the existing type;
only new cases need to be specifically addressed in new software. A module
that extends or reduces an imported type does not force the module that ex-
ports the type to be recompiled.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3 In Ada, a programmer can also overload operators, so one can declare a procedure that

takes a metric unit and an imperial unit, converts them, and then multiplies them.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

60 CHAPTER 3 TYPES



61

4 ◆ DIMENSIONS
The example involving meters and feet shows that types alone do not pre-
vent programming errors. I want to prohibit multiplying two feet values and
assigning the result back into a feet variable, because the type of the result
is square feet, not feet.

The AL language, intended for programming mechanical manipulators, in-
troduced a typelike attribute of expressions called dimension to prevent
such errors [Finkel 76]. This concept was first suggested by C. A. R. Hoare
[Hoare 73], and it has been extended in various ways since then. Recent re-
search has shown how to include dimensions in a polymorphic setting like
ML [Kennedy 94]. (Polymorphism in ML is discussed extensively later in this
chapter.) AL has four predeclared base dimensions: time, distance, angle,
and mass. Each base dimension has predeclared constants, such as second,
centimeter, and gram. The values of these constants are with respect to an
arbitrary set of units; the programmer only needs to know that the constants
are mutually consistent. For example, 60*second = minute. New dimen-
sions can be declared and built from the old ones. AL does not support pro-
grammer-declared base dimensions, but such an extension would be
reasonable. Other useful base dimensions would be electrical current (mea-
sured, for instance, in amps), temperature (degrees Kelvin), luminous inten-
sity (lumens), and currency (florin). In retrospect, angle may be a poor choice
for a base dimension; it is equivalent to the ratio of two distances: distance
along an arc and the radius of a circle. Figure 3.7 shows how dimensions are
used.

Figure 3.7 dimension 1
area = distance * distance; 2
velocity = distance / time; 3

constant 4
mile = 5280 * foot; -- foot is predeclared 5
acre = mile * mile / 640; 6

variable 7
d1, d2 : distance real; 8
a1 : area real; 9
v1 : velocity real; 10

begin 11
d1 := 30 * foot; 12
a1 := d1 * (2 * mile) + (4 * acre); 13
v1 := a1 / (5 * foot * 4 * minute); 14
d2 := 40; -- invalid: dimension error 15
d2 := d1 + v1; -- invalid: dimension error 16
write(d1/foot, "d1 in feet", 17

v1*hour/mile, "v1 in miles per hour"); 18
end; 19

In line 13, a1 is the area comprising 4 acres plus a region 30 feet by 2 miles.
In line 14, the compiler can check that the expression on the right-hand side
has the dimension of velocity, that is, distance/time, even though it is hard
for a human to come up with a simple interpretation of the expression.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

4 DIMENSIONS



In languages lacking a dimension feature, abstract data types, introduced
in the next section, can be used instead. The exercises explore this substitu-
tion.

5 ◆ ABSTRACT DATA TYPES
An abstract data type is a set of values and a set of procedures that manip-
ulate those values. An abstract data type is analogous to a built-in type,
which is also a set of values (such as integers) and operations (such as addi-
tion) on those values. Once a program has introduced an abstract data type,
variables can be declared of that type and values of the type can be passed to
the procedures that make up the type. The client of an abstract data type
(that is, a part of a program that uses that type, as opposed to the part of the
program that defines it) can create and manipulate values only by using pro-
cedures that the abstract data type allows. The structure of an abstract data
type (usually a record type) is hidden from the clients. Within the definition
of the abstract data type, however, procedures may make full use of that
structure.

An abstract data type can be seen as having two parts: the specification
and the implementation. The specification is needed by clients; it indicates
the name of the type and the headers of the associated procedures. It is not
necessary for the client to know the structure of the type or the body of the
procedures. The implementation includes the full description of the type and
the bodies of the procedures; it may include other procedures that are used as
subroutines but are not needed directly by clients.

This logical separation allows a programmer to concentrate on the issues
at hand. If the programmer is coding a client, there is no need to worry about
how the abstract data type is implemented. The implementer may upgrade
or even completely redesign the implementation, and the client should still
function correctly, so long as the specification still holds.

A popular example of an abstract data type is the stack. The procedures
that manipulate stacks are push, pop, and empty. Whether the implementa-
tion uses an array, a linked list, or a data file is irrelevant to the client and
may be hidden.

Abstract data types are used extensively in large programs for modularity
and abstraction. They put a barrier between the implementor of a set of rou-
tines and its clients. Changes in the implementation of an abstract data type
will not influence the clients so long as the specification is preserved. Ab-
stract data types also provide a clean extension mechanism for languages. If
a new data type is needed that cannot be effectively implemented with the ex-
isting primitive types and operations (for example, bitmaps for graphics), it
can be still specified and prototyped as a new abstract data type and then ef-
ficiently implemented and added to the environment.

In order to separate the specification from the implementation, program-
ming languages should provide a way to hide the implementation details from
client code. Languages like C and Pascal that have no hiding mechanism do
not cater to abstract data types, even though they permit the programmer to
declare new types. CLU, Ada, C++, and Modula-2 (as well as numerous other
languages) provide a name-scope technique that allows the programmer to
group the procedures and type declarations that make up an abstract data

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

62 CHAPTER 3 TYPES



63

type and to give clients only a limited view of these declarations. All declara-
tions that make up an abstract data type are placed in a module.4 It is a
name scope in which the programmer has control over what identifiers are
imported from and exported to the surrounding name scope. Local identifiers
that are to be seen outside a module are exported; all other local identifiers
are invisible outside the module, which allows programmers to hide imple-
mentation details from the clients of the module. Identifiers from surround-
ing modules are not automatically inherited by a module. Instead, those that
are needed must be explicitly imported. These features allow name scopes
to selectively import identifiers they require and provide better documenta-
tion of what nonlocal identifiers a module will need. Some identifiers, like
the predeclared types integer and Boolean, may be declared pervasive,
which means that they are automatically imported into all nested name
scopes.

Languages that support abstract data types often allow modules to be par-
titioned into the specification part and the implementation part. (Ada, Mod-
ula-2, C++, and Oberon have this facility; CLU and Eiffel do not.) The
specification part contains declarations intended to be visible to clients of
the module; it may include constants, types, variables, and procedure head-
ers. The implementation part contains the bodies (that is, implementa-
tions) of procedures as well as other declarations that are private to the
module. Typically, the specification part is in a separate source file that is re-
ferred to both by clients and by the implementation part, each of which is in a
separate source file.

Partitioning modules into specification and implementation parts helps
support libraries of precompiled procedures and separate compilation. Only
the specification part of a module is needed to compile procedures that use
the module. The implementation part of the module need not be supplied un-
til link time. However, separating the parts can make it difficult for imple-
mentation programmers to find relevant declarations, since they might be in
either part. One reasonable solution is to join the parts for the convenience of
the implementor and extract just the specification part for the benefit of the
compiler or client-application programmer.

Figure 3.8 shows how a stack abstract data type might be programmed.

Figure 3.8 module Stack; 1

export 2
Push, Pop, Empty, StackType, MaxStackSize; 3

constant 4
MaxStackSize = 10; 5

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4 You can read a nice overview of language support for modules in [Calliss 91]. Modules are

used not only for abstract data types, but also for nesting name scopes, separate compilation, de-
vice control (in Modula, for example), and synchronization (monitors are discussed in Chapter 7).

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

5 ABSTRACT DATA TYPES



type 6
private StackType = 7

record 8
Size : 0..MaxStackSize := 0; 9
Data : array 1..MaxStackSize of integer; 10

end; 11

-- details omitted for the following procedures 12
procedure Push(reference ThisStack : StackType; 13

readonly What : integer); 14
procedure Pop(reference ThisStack) : integer; 15
procedure Empty(readonly ThisStack) : Boolean; 16

end; -- Stack 17

In Figure 3.8, line 3 indicates that the module exports the three procedures.
It also exports the constant MaxStackSize, which the client may wish to con-
sult, and StackType, so the client may declare variables of this type. I as-
sume that integer and Boolean are pervasive. The code does not export
enumeration types or record types. Generally, exporting these types implies
exporting the enumeration constants and the record field names as well.

In Ada, the programmer can control to what extent the details of an ex-
ported type are visible to the module’s clients. By default, the entire struc-
ture of an exported type, such as its record field names, is visible. If the
exported type is declared as private, as in line 7, then only construction, de-
struction, assignment, equality, and inequality operations are available to the
client. Even these can be hidden if the exported type is declared limited
private. The only way the client can manipulate objects of limited private
types is to present them as actual parameters to the module’s procedures.
The programmer of the implementation may change the details of private
types, knowing that the change will not affect the correctness of the clients.
In Oberon, record types can be partly visible and partly private.

Languages differ in how programmers restrict identifier export. In some
languages, like Simula, all identifiers are exported unless explicitly hidden.
Others, like Eiffel, provide for different clients (which are other modules) to
import different sets of identifiers from the same module. The export line for
Eiffel might look as shown in Figure 3.9:

Figure 3.9 export 1
Push, Pop, Empty, StackType {ModuleA}, 2

MaxStackSize {ModuleA, ModuleB}; 3

Here, Push, Pop, and Empty are exported to all clients. Only ModuleA may im-
port StackType, and only two modules may import MaxStackSize. The mod-
ule can thereby ensure that no client makes unauthorized use of an exported
identifier. However, this approach of restricting exports requires that a mod-
ule be recompiled any time its client set changes, which can be cumbersome.

An alternative, found in Modula-2, is for client modules to selectively im-
port identifiers, as in Figure 3.10.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

64 CHAPTER 3 TYPES



65

Figure 3.10 from Stack import 1
Push, Pop, Empty, StackType; 2

This client has chosen not to import MaxStackSize. This approach of restrict-
ing imports is not as secure but requires less recompilation when programs
change.5

Very large programs sometimes face confusion when importing from sev-
eral modules; the same identifier may be imported from more than one mod-
ule. Languages often permit or require qualified identifiers to be used in
order to remove any ambiguity.

The principle of uniform reference suggests that clients should not be
able to discover algorithmic details of exporting modules. In particular, they
should not be able to distinguish whether an exported identifier is a constant,
a variable, or a parameterless function. However, in many languages, the
client can distinguish these identifiers. In C++, for example, parameterless
functions are special because they are invoked with parentheses surrounding
an empty list. Variables are special in that only they may be used on the left-
hand side of an assignment. In Eiffel, however, the syntax is the same for all
three, and exported variables are readonly, so the principle of uniform refer-
ence is upheld.

6 ◆ LABELS, PROCEDURES, AND TYPES AS
FIRST-CLASS VALUES

You are used to thinking of integers as values. But to what extent is a label
or a procedure a value? Can a type itself be a value? One way to address
these questions is to categorize values by what sort of manipulation they al-
low. The following chart distinguishes first, second, and third-class val-
ues.

Class of value

First Second Third
Manipulation

Pass value as a parameter yes yes no
Return value from a procedure yes no no
Assign value into a variable yes no no

Languages differ in how they treat labels, procedures, and types. For ex-
ample, procedures are third-class values in Ada, second-class values in Pas-
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

5 The difference between restricting exports and restricting imports is identical to the dif-
ference between access lists and capability lists in operating systems.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

6 LABELS, PROCEDURES, AND TYPES AS FIRST-CLASS VALUES



cal, and first-class values in C and Modula-2. Labels are generally third-class
values, but they are second-class values in Algol-60.

Labels and procedures are similar in some ways. If a label is passed as a
parameter, then jumping to it must restore the central stack to its situation
when the label was elaborated. The value of a label passed as a parameter
must therefore include a reference to the central stack as well as a reference
to an instruction. In other words, a label is passed as a closure. Similarly,
procedures that are passed as parameters generally are passed as closures, so
that when they are invoked, they regain their nonlocal referencing environ-
ments. In both cases, the closure points to an activation record deeper on the
central stack than the called procedure’s activation record. Jumping to a
passed label causes the central stack to be unwound, removing intermediate
activation records. Invoking a passed procedure establishes its static chain to
point somewhere deep in the central stack.

Allowing labels and procedures to be first-class values is trickier. Such
values may be stored in variables and invoked at a time when the central
stack no longer contains the activation record to which they point. Figure
3.11 demonstrates the problem.

Figure 3.11 variable 1
ProcVar : procedure(); 2

procedure Outer(); 3
variable OuterVar : integer; 4
procedure Inner(); 5
begin -- Inner 6

write(OuterVar); 7
end; -- Inner 8

begin -- Outer 9
ProcVar := Inner; -- closure is assigned 10

end; -- Outer 11

begin -- main program 12
Outer(); 13
ProcVar(); 14

end; 15

By the time Inner is invoked (as the value of the procedure variable ProcVar
in line 14), its nonlocal referencing environment, the instance of Outer, has
been deactivated, because Outer has returned. I call this the dangling-
procedure problem. Languages take various stances in regard to the dan-
gling-procedure problem:

1. Treat any program that tries to invoke a closure with a dangling pointer
as erroneous, but don’t try to discover the error.

2. Prevent the bad situation from arising by language restrictions. Top-
level procedures do not need a nonlocal referencing environment. In C,
all procedures are top-level, so bad situations cannot arise. Modula-2
disallows assigning any but a top-level procedure as a value to a vari-
able; it forbids the assignment in line 10 above. Neither language treats
labels as first-class values.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

66 CHAPTER 3 TYPES



67

3. Prevent the bad situation from arising by expensive implementation.
The nice aspect of a central stack is that allocation and deallocation are
inexpensive and occur in a strict stack order as procedures are invoked
and return. This inexpensive mechanism can be replaced by activation
records that are allocated from the heap and are linked together. A ref-
erence-count mechanism suffices for reclamation, since there will be no
cycles. Activation, deactivation, and access to referencing environments
is likely to be slower than if a stack were used.

Labels as first-class values are frightening for another reason: they can be
stored in a variable and repeatedly invoked. Therefore, the procedure that
elaborates a label (that is, that defines the label) can return more than once,
because that label may be invoked repeatedly. Multiply-returning procedures
are certain to be confusing.

So far, I have only dealt with labels and procedures, but the same ques-
tions can also be asked about types. Types as parameters, type variables and
procedures that return types could be very useful. For example, an abstract
data type implementing stacks really ought to be parameterized by the type
of the stack element, rather than having it simply “wired in” as integer, as in
Figure 3.8 (page 63). Ada and C++ allow a limited form of type polymor-
phism, that is, the ability to partially specify a type when it is declared and
further specify it later. They implement polymorphism by permitting mod-
ules (that is, the name scopes that define abstract data types) to accept type
parameters. Such modules are called generic modules.6 A declaration of a
generic module creates a template for a set of actual modules. The stack ex-
ample can be rewritten as in Figure 3.12.

Figure 3.12 generic(type ElementType) module Stack; 1

export 2
Push, Pop, Empty, StackType, MaxStackSize; 3

constant 4
MaxStackSize = 10; 5

type 6
private StackType = 7

record 8
Size : 0..MaxStackSize := 0; 9
Data : array 1..MaxStackSize of ElementType; 10

end; 11
12

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
6 Ada and C++ allow generic procedures in addition to generic modules.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

6 LABELS, PROCEDURES, AND TYPES AS FIRST-CLASS VALUES



-- details omitted for the following procedures 13
procedure Push(reference ThisStack : StackType; 14

readonly What : ElementType); 15
procedure Pop(reference ThisStack) : ElementType; 16
procedure Empty(readonly ThisStack) : Boolean; 17

end; -- Stack 18

module IntegerStack = Stack(integer); 19

To create an instance of a generic module, I instantiate it, as in line 19. In-
stantiation of generic modules in Ada and C++ is a compile-time, not a run-
time, operation — more like macro expansion than procedure invocation.
Compilers that support generic modules need to store the module text in or-
der to create instances.

The actual types that are substituted into the formal generic parameters
need not be built-in types like integer; program-defined types are also ac-
ceptable. However, the code of the generic module may require that the ac-
tual type satisfy certain requirements. For example, it might only make
sense to include pointer types, or array types, or numeric types. Ada provides
a way for generic modules to stipulate what sorts of types are acceptable. If
the constraint, for example, is that the actual type be numeric, then Ada will
permit operations like + inside the generic module; if there the constraint
only requires that assignment work, Ada will not allow the + operation.
Now, program-defined types may be numeric in spirit. For example, a com-
plex number can be represented by a record with two fields. Both Ada and
C++ allow operators like + to be overloaded to accept parameters of such
types, so that generic modules can accept these types as actual parameters
with a “numeric” flavor.

More general manipulation of types can also be desirable. Type construc-
tors like array or record can be viewed as predeclared, type-valued proce-
dures. It would be nice to be able to allow programmers to write such type
constructors. Although this is beyond the capabilities of today’s mainstream
languages, it is allowed in Russell, discussed later in this chapter. A much
fuller form of polymorphism is also seen in the ML language, the subject of
the next section.

7 ◆ ML
Now that I have covered some issues surrounding types, I will present a de-
tailed look at one of the most interesting strongly typed languages, ML
[Harper 89; Paulson 92]. ML, designed by Robin Milner, is a functional pro-
gramming language (the subject of Chapter 4), which means that procedure
calls do not have any side effects (changing values of variables) and that
there are no variables as such. Since the only reason to call a procedure is to
get its return value, all procedures are actually functions, and I will call them
that. Functions are first-class values: They can be passed as parameters, re-
turned as values from procedures, and embedded in data structures.
Higher-order functions (that is, functions returning other functions) are
used extensively. Function application is the most important control con-

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

68 CHAPTER 3 TYPES



69

struct, and it is extremely uniform: all functions take exactly one parameter
and return exactly one result. Parameters and results can, however, be arbi-
trary structures, thereby achieving the effect of passing many parameters
and producing many results. Parameters to functions are evaluated before
invocation and are passed in value mode.

ML is an interactive language. An ML session is a dialogue of questions
and answers. Interaction is achieved by an incremental compiler, which
translates new code (typically new functions) and integrates it into already-
compiled code. Incremental compilers have some of the advantages of inter-
preted languages (fast turnaround for dialogues) and of compiled languages
(high execution speed).

ML is statically scoped. All identifiers are associated with meanings ac-
cording to where they occur in the program text, not according to runtime ex-
ecution paths. This design avoids name conflicts in large programs, because
identifier names can be hidden in local scopes, and it prevents accidental
damage to existing programs. Static scoping greatly improves the security
and, incidentally, the efficiency of an interactive language.

ML is strongly typed. Every ML expression has a statically determined
type. The type of an expression is usually inferred from the way it is used so
that type declarations are not necessary. This type inference property is
very useful in interactive use, when it would be distracting to have to provide
type information. However, it is always possible for the programmer to spec-
ify the type of any value. Adding redundant type information can be a good
documentation practice in large programs. Strong typing guarantees that ex-
pressions will not generate type errors at runtime. Static type checking pro-
motes safety; it detects at compile time a large proportion of bugs in programs
that make extensive use of the ML data-structuring capabilities (type check-
ing does not help so much in numerical or engineering programs, since there
is no concept of dimension). Usually, only truly “logical” bugs are left after
compilation.

ML has a polymorphic type mechanism. Type expressions may contain
type identifiers, which stand for arbitrary types. With such expressions,
the ML programmer can express the type of a function that behaves uni-
formly on a class of parameters of different (but structurally related) types.
For example, the length function, which computes the length of a list, has
type ’a list -> int, where ’a is a type identifier standing for any type.
Length can work on lists of any type (lists of integers, lists of functions, lists
of lists, and so forth), because it disregards the elements of the list. The poly-
morphic type mechanism gives ML much of the expressiveness of dynamic-
typed languages without the conceptual cost of runtime type errors or the
computational cost of runtime type checking.

ML has a rich collection of data types, and the programmer can define
new abstract data types. In fact, arrays are not part of the language defini-
tion; they can be considered as a predeclared abstract data type that just hap-
pens to be more efficient than its ML specification would lead one to believe.

ML has an exception-handling mechanism that allows programs to uni-
formly handle predeclared and programmer-declared exceptions. (Exception
handling is discussed in Chapter 2.) Exceptions can be selectively trapped,
and handlers can be specified.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

7 ML



ML programs can be grouped into separately compiled modules. Depen-
dencies among modules can be easily expressed, and the sharing of common
submodules is automatically guaranteed. ML keeps track of module versions
to detect compiled modules that are out of date.

I will describe some (by no means all!) of the features of SML, the Stan-
dard ML of New Jersey implementation [Appel 91]. I should warn you that I
have intentionally left out large parts of the language that do not pertain di-
rectly to the concept of type. For example, programming in the functional
style, which is natural to ML, is discussed in Chapter 4. If you find func-
tional programming confusing, you might want to read Chapter 4 before the
rest of this chapter. In addition, I do not discuss how ML implements ab-
stract data types, which is mostly similar to what I have covered earlier. I do
not dwell on one very significant type constructor: ref, which represents a
pointer to a value. Pointer types introduce variables into the language, be-
cause a program can associate an identifier with a pointer value, and the ob-
ject pointed to can be manipulated (assigned into and accessed). ML is
therefore not completely functional. The examples are syntactically correct
SML program fragments. I mark the user’s input by in and ML’s output by
out.

7.1 Expressions
ML is an expression-based language; all the standard programming con-
structs (conditionals, declarations, procedures, and so forth) are packaged as
expressions yielding values. Strictly speaking, there are no statements: even
operations that have side effects return values.

It is always meaningful to supply an arbitrary expression as the parame-
ter to a function (when the type constraints are satisfied) or to combine ex-
pressions to form larger expressions in the same way that simple constants
can be combined.

Arithmetic expressions have a fairly conventional appearance; the result
of evaluating an expression is presented by ML as a value and its type, sepa-
rated by a colon, as in Figure 3.13.

Figure 3.13 in: (3 + 5) * 2; 1
out: 16 : int 2

String expressions are straightforward (Figure 3.14).

Figure 3.14 in: "this is it"; 1
out: "this is it" : string 2

Tuples of values are enclosed in parentheses, and their elements are sepa-
rated by commas. The type of a tuple is described by the type constructor
* .7
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

7 The * constructor, which usually denotes product, denotes here the set-theoretic Carte-
sian product of the values of the component types. A value in a Cartesian product is a compound
formed by selecting one value from each of its underlying component types. The number of val-
ues is the product of the number of values of the component types, which is one reason this set-
theoretic operation is called a product.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

70 CHAPTER 3 TYPES



71

Figure 3.15 in: (3,4); 1
out: (3,4) : int * int 2

in: (3,4,5); 3
out: (3,4,5) : int * int * int 4

Lists are enclosed in square brackets, and their elements are separated by
commas, as in Figure 3.16. The list type constructor is the word list after
the component type.

Figure 3.16 in: [1,2,3,4]; 1
out: [1,2,3,4] : int list 2

in: [(3,4),(5,6)]; 3
out: [(3,4),(5,6)] : (int * int) list 4

Conditional expressions have ordinary if syntax (as usual in expression-
based languages, else cannot be omitted), as in Figure 3.17.

Figure 3.17 in: if true then 3 else 4; 1
out: 3 : int 2

in: if (if 3 = 4 then false else true) 3
then false else true; 4

out: false : bool 5

The if part must be a Boolean expression. Two predeclared constants true
and false denote the Boolean values; the two binary Boolean operators
orelse and andalso have short-circuit semantics (described in Chapter 1).

7.2 Global Declarations
Values are bound to identifiers by declarations. Declarations can appear at
the top level, in which case their scope is global, or in blocks, in which case
they have a limited local scope spanning a single expression. I will first deal
with global declarations.

Declarations are not expressions. They establish bindings instead of re-
turning values. Value bindings are introduced by the keyword val; additional
value bindings are prefixed by and (Figure 3.18).

Figure 3.18 in: val a = 3 and 1
b = 5 and 2
c = 2; 3

out: val c = 2 : int 4
val b = 5 : int 5
val a = 3 : int 6

in: (a + b) div c; 7
out: 4 : int 8

In this case, I have declared the identifiers a, b, and c at the top level; they

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

7 ML



will be accessible from now on unless I redeclare them. Value bindings
printed by ML are always prefixed by val, to distinguish them from type
bindings and module bindings.

Identifiers are not variables; they are named constants. All identifiers
must be initialized when introduced. The initial values determine their
types, which need not be given explicitly.

Value declarations are also used to declare functions, with the syntax
shown in Figure 3.19.

Figure 3.19 in: val f = fn x => x + 1; 1
out: val f = fn : int -> int 2

in: val g = fn (a,b) => (a + b) div 2; 3
out: val g = fn : (int * int) -> int 4

in: (f 3, g(8,4)); 5
out: (4,6) : int * int 6

The function f declared in line 1 has one formal parameter, x. The result of a
function is the value of its body, in this case x+1. The arrow -> (lines 2 and
4) is a type constructor that takes two types (the left operand is the type of
the parameter of the function, and the right operand is the type of its return
value) and returns the type that describes a function that takes such a pa-
rameter and returns such a result. In other words, functions have types that
can be described by a constructor syntax, which is necessary if functions are
to be first-class values and if all values are to have describable types. The
function g declared in line 3 has a single parameter, the tuple of integers for-
mally named a and b.

Parameters to functions do not generally need to be parenthesized (both in
declarations and applications): the simple juxtaposition of two expressions is
interpreted as a function application, that is, as invoking the function (the
first expression) with the given parameter (the second expression). Function
application is an invisible, high-precedence, binary operator; expressions like
f 3 + 4 are parsed like (f 3) + 4 and not like f (3 + 4). Parentheses are
needed in line 5, because g 8,4 would be interpreted as (g 8),4.

The identifiers f and g are bound to functions. Since functions are first-
class values, they can stand alone, without being applied to parameters (Fig-
ure 3.20).

Figure 3.20 in: (f, f 3); 1
out: (fn,4) : (int -> int) * int 2

in: val h = g; 3
out: val h = fn : (int * int) -> int 4

In line 1, f is both presented alone and applied to 3. Functional values,
shown in line 2, are always printed fn without showing their internal struc-
ture. In line 3, h is mapped to the function g. I could also have written line 3
as val h = fn (a,b) => g(a,b).

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

72 CHAPTER 3 TYPES



73

Identifiers are statically scoped, and their values cannot change. When
new identifiers are declared, they may override previously declared identi-
fiers having the same name, but those other identifiers still exist and still re-
tain their old values. Consider Figure 3.21.

Figure 3.21 in: val a = 3; 1
out: val a = 3 : int 2

in: val f = fn x => a + x; 3
out: val f = fn : int -> int 4

in: val a = [1,2,3]; 5
out: val a = [1,2,3] : int list 6

in: f 1; 7
out: 4 : int 8

The function f declared in line 3 uses the top-level identifier a, which was
bound to 3 in line 1. Hence f is a function from integers to integers that re-
turns its parameter plus 3. Then a is redeclared at the top level (line 5) to be
a list of three integers; any subsequent reference to a will yield that list (un-
less it is redeclared again). But f is not affected at all: the old value of a was
frozen in f at the moment of its declaration, and f continues to add 3 to its ac-
tual parameter. The nonlocal referencing environment of f was bound when
it was first elaborated and is then fixed. In other words, ML uses deep bind-
ing.

Deep binding is consistent with static scoping of identifiers. It is quite
common in block-structured programming languages, but it is rarely used in
interactive languages like ML. The use of deep binding at the top level may
sometimes be counterintuitive. For example, if a function f calls a previously
declared function g, then redeclaring g (for example, to correct a bug) will not
change f, which will keep calling the old version of g.

The and keyword is used to introduce sets of independent declarations:
None of them uses the identifiers declared by the other bindings in the set;
however, a declaration often needs identifiers introduced by previous declara-
tions. The programmer may introduce such declarations sequentially, as in
Figure 3.22.

Figure 3.22 in: val a = 3; val b = 2 * a; 1
out: val a = 3 : int 2

val b = 6 : int 3

A function that expects a pair of elements can be converted to an infix op-
erator for convenience, as seen in line 2 of Figure 3.23.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

7 ML



Figure 3.23 in: val plus = fn (a,b) => a + b : int; 1
in: infix plus; 2
in: 4 plus 5; 3
out: 9 : int; 4

7.3 Local Declarations
Declarations can be made local by embedding them in a block (see Figure
3.24), which is formed by the keywords let (followed by the declarations), in
(followed by a single expression, the body), and end. The scope of the declara-
tion is limited to this body.

Figure 3.24 in: let 1
val a = 3 and b = 5 2

in 3
(a + b) div 2 4

end; 5
out: 4 : int 6

Here the identifiers a and b are mapped to the values 3 and 5 respectively for
the extent of the expression (a + b) div 2. No top-level binding is introduced;
the whole let construct is an expression whose value is the value of its body.

Just as in the global scope, identifiers can be locally redeclared, hiding the
previous declarations (whether local or not). It is convenient to think of each
redeclaration as introducing a new scope. Previous declarations are not af-
fected, as demonstrated in Figure 3.25.

Figure 3.25 in: val a = 3 and b = 5; 1
out: val b = 5 : int; 2

val a = 3 : int; 3

in: (let val a = 8 in a + b end, a); 4
out: (13,3) : int * int 5

The body of a block can access all the identifiers declared in the surrounding
environment (like b), unless they are redeclared (like a).

Declarations can be composed sequentially in local scopes just as in the
global scope, as shown in Figure 3.26.

Figure 3.26 in: let 1
val a = 3; 2
val b = 2 * a 3

in 4
(a,b) 5

end; 6
out: (3,6) : int * int 7

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

74 CHAPTER 3 TYPES



75

7.4 Lists
Lists are homogeneous; that is, all their components must have the same
type. The component type may be anything, such as strings, lists of integers,
and functions from integers to Booleans.

Many functions dealing with lists can work on lists of any kind (for exam-
ple to compute the length); they do not have to be rewritten every time a new
kind of list is introduced. In other words, these functions are naturally poly-
morphic; they accept a parameter with a range of acceptable types and return
a result whose type depends on the type of the parameter. Other functions
are more restricted in what type of lists they accept; summing a list makes
sense for integer lists, but not for Boolean lists. However, because ML allows
functions to be passed as parameters, programmers can generalize such re-
stricted functions. For example, summing an integer list is a special case of a
more general function that accumulates a single result by scanning a list and
applying a commutative, associative operation repeatedly to its elements. In
particular, it is not hard to code a polymorphic accumulate function that can
be used to sum the elements of a list this way, as in Figure 3.27.

Figure 3.27 in: accumulate([3,4,5], fn (x,y) => x+y, 0); 1
out: 12 : int 2

Line 1 asks for the list [3,4,5] to be accumulated under integer summation,
whose identity value is 0. Implementing the accumulate function is left as an
exercise.

The fundamental list constructors are nil, the empty list, and the right-
associative binary operator :: (pronounced “cons,” based on LISP, discussed
in Chapter 4), which places an element (its left operand) at the head of a list
(its right operand). The square-brackets constructor for lists (for example,
[1,2,3]) is an abbreviation for a sequence of cons operations terminated by
nil: 1 :: (2 :: (3 :: nil)). Nil itself may be written []. ML always uses
the square-brackets notation when printing lists.

Expression Evaluates to

nil []
1 :: [2,3] [1,2,3]
1 :: 2 :: 3 :: nil [1,2,3]

Other predeclared operators on lists include
• null, which returns true if its parameter is nil, and false on any other

list.
• hd, which returns the first element of a nonempty list.
• tl, which strips the first element from the head of a nonempty list.
• @ (append), which concatenates lists.

Hd and tl are called selectors, because they allow the programmer to select a
component of a structure. Here are some examples that use the predeclared
operators.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

7 ML



Expression Evaluates to

null [] true
null [1,2,3] false
hd [1,2,3] 1
tl [1,2,3] [2,3]
[1,2] @ [] [1,2]
[] @ [3,4] [3,4]
[1,2] @ [3,4] [1,2,3,4]

Lists are discussed in greater depth in Chapter 4, which discusses functional
languages. They are interesting to us in this chapter because of their interac-
tion with ML’s type rules and with patterns.

7.5 Functions and Patterns
Because all functions take exactly one parameter, it is often necessary to pass
complicated structures in that parameter. The programmer may want the
formal parameter to show the structure and to name its components. ML
patterns provide this ability, as shown in Figure 3.28.

Figure 3.28 in: val plus = fn (a,b) => a + b;

I need to say a + b : int, as I will show later. Here, the function plus takes a
single parameter, which is expressed as a pattern showing that the parame-
ter must be a tuple with two elements, which are called formally a and b.8

This pattern does not force the actual parameter to be presented as an ex-
plicit tuple, as Figure 3.29 shows.

Figure 3.29 in: plus(3,4) 1
out: 7 : int 2

in: let 3
val x = (3,4) 4

in 5
plus x 6

end; 7
out: 7 : int 8

The first example (line 1) builds the actual parameter to plus explicitly from
two components, 3 and 4. The comma between them is the tuple constructor.
The syntax is contrived to remind the programmer that the intent is to pro-
vide two parameters.9 The second example presents a single variable x as the
actual parameter (line 6); the compiler can tell that it has the right type,
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

8 The declaration is actually ambiguous; ML cannot determine which meaning of + is
meant.

9 In practice, a compiler can usually optimize away the extra pair constructions.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

76 CHAPTER 3 TYPES



77

namely int * int.
Figure 3.30 shows how the declaration of plus can be written in single-

parameter form.

Figure 3.30 in: val plus = fn x => 1
let 2

val (a,b) = x 3
in 4

a + b 5
end; 6

out: val plus = fn : int * int -> int

This example avoids a pattern for the formal parameter, now called x (line 1).
However, it introduces a pattern in line 3 to produce the same effect. This
pattern constrains x (retroactively) to be a pair, and it binds a and b to the
two components. Figure 3.31 also uses patterns, both in specifying formal pa-
rameters and in declaring identifiers.

Figure 3.31 in: val f = fn [x,y,z] => (x,y,z); 1
out: val f = fn : ’a list -> ’a * ’a * ’a 2

in: val (a,b,c) = f[1,2,3]; 3
out: val c = 3 : int 4

val b = 2 : int 5
val a = 1 : int 6

The function f (line 1) returns three values packaged as a tuple. The pattern
a,b,c in line 3 is used to unpack the result of f[1,2,3] into its components.

Patterns in ML come in many forms. For example, a pattern [a,b,c]
matches a list of exactly three elements, which are mapped to a, b, and c; a
pattern first::rest matches a nonempty list with its first element associ-
ated with first, and its other elements to rest. Similarly,
first::second::rest matches a list with at least two elements, and so forth.
The most common patterns are tuples like (a,b,c), but more complicated
patterns can be constructed by nesting, such as ([a,b],c,(d,e)::h). The
don’t-care pattern h matches any value without establishing any binding.
Patterns can conveniently replace selector operators for unpacking data.

Patterns allow functions to be coded using case analysis, that is, testing
the value of the parameter to determine which code to execute. This situa-
tion is most common in recursive functions, which must first test if the pa-
rameter is the base case, which is treated differently from other cases. ML
programs seldom need to use the if expression for this purpose. Instead, pat-
tern alternatives are used, as in Figure 3.32.

Figure 3.32 in: val rec summation = 1
fn nil => 0 2
| (head :: tail) => head + summation tail; 3

out: val summation = fn : int list -> int 4

The rec declaration in line 1 indicates that the scope of the declaration of

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

7 ML



summation starts immediately, not after the declaration. This wide scope al-
lows the invocation of summation in line 3 to refer to this function itself. The
formal parameter is presented as a series of alternatives separated by the
| symbol. Each alternative gives a different pattern, thereby restricting the
allowable values of the actual parameter and naming its formal components.
The patterns are evaluated sequentially when the function is invoked. If a
pattern matches the actual parameter, the identifiers in the pattern act as
formal parameters that are bound to the respective parts of the actual param-
eter, and the corresponding action is executed. If several patterns match the
actual parameter, only the first matching one is activated. If all patterns fail
to match the actual parameter, a runtime exception occurs. In this case, the
first pattern requires that the parameter be an empty list; the second
matches any nonempty list and names its components head and tail.10

Patterns used for case analysis should obey several properties. First, they
must all be of the same type. In Figure 3.32, both nil and (head :: tail) are
of a list type with unspecified component type. ML disallows a declaration in
which the formal-parameter patterns cannot be unified into a single type.
Second, they should be exhaustive, covering all possible cases. The ML com-
piler will issue a warning if it detects a nonexhaustive match. (In the exam-
ple, omitting either of the two cases elicits such a warning.) Invoking a
function with a nonexhaustive match can lead to a Match exception being
raised (exceptions are discussed in Chapter 2). Third, good style dictates that
they should not overlap. The ML compiler issues a warning if it detects a re-
dundant match. The first matching pattern will be used when the function is
invoked.

Patterns are found in other languages as well. CSP (Chapter 7) and Pro-
log (Chapter 8) use patterns both for unpacking parameters and for introduc-
ing restrictions on their values. String-processing languages (Chapter 9) use
patterns for testing data and extracting components.

7.6 Polymorphic Types
A function is polymorphic when it can work uniformly over parameters of
different data types. For example, the function in Figure 3.33 computes the
length of a list.

Figure 3.33 in: val rec length = 1
fn nil => 0 2
| (h :: tail) => 1 + length tail; 3

out: val length = fn : ’a list -> int 4

in: (length [1,2,3], length ["a","b","c","d"]); 5
out: (3,4) : int * int 6

The type of length inferred by the compiler (line 4) contains a type identifier
(’a), indicating that any kind of list can be used, such as an integer list or a
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

10 The parentheses in the second pattern are not needed; I put them in for the sake of clari-
ty. Parentheses are required in tuples, however.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

78 CHAPTER 3 TYPES



79

string list. A type identifier is any ordinary identifier prefixed by one or more
tic marks (’). For convenience, we can pronounce ’a as “alpha” and ’b as
“beta.”

A type is polymorphic if it contains type identifiers; otherwise it is
monomorphic. A type identifier can be mapped to any ML type and thereby
form an instance of that type. For example, int list is a monomorphic in-
stance of ’a list. Instances of polymorphic types may themselves be poly-
morphic. For example, (’b * ’c) list is a polymorphic instance of ’a list.

Several type identifiers can be used in a type, and each identifier can ap-
pear several times, expressing contextual relationships between components
of a type. For example, ’a * ’a is the type of all pairs having components of
the same type. Contextual constraints can also be expressed between param-
eters and results of functions, as in the identity function, which has type ’a
-> ’a, or the function in Figure 3.34, which swaps pairs:

Figure 3.34 in: val swap = fn (x,y) => (y,x); 1
out: val swap = fn : (’a * ’b) -> (’b * ’a) 2

in: swap ([],"abc"); 3
out: ("abc",[]) : string * (’a list) 4

The empty list [] is a polymorphic expression of type ’a list, because it can
be considered an empty integer list, an empty string list, or some other empty
list.

In printing out polymorphic types, ML uses the type identifiers ’a, ’b, and
so on in succession, starting again from ’a at every new top-level declaration.

Several primitive functions are polymorphic. For example, you have al-
ready encountered the list operators, whose types appear in the following
table.

Operator Type

nil ’a list
:: (’a * ’a list) -> ’a list
null (’a list) -> bool
hd (’a list) -> ’a
tl (’a list) -> (’a list)
@ (’a list * ’a list) -> (’a list)

If these operators were not polymorphic, a program would need different
primitive operators for all possible types of list elements. The ’a shared by
the two parameters of :: (cons) prevents any attempt to build lists containing
expressions of different types.

The user can always determine the type of any ML function or expression
by typing its name at the top level; the expression is evaluated and, as usual,
its type is printed after its value, as in Figure 3.35.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

7 ML



Figure 3.35 in: []; 1
out: [] : ’a list 2

in: hd; 3
out: fn : (’a list) -> ’a 4

7.7 Type Inference
A type can be a type identifier (’a, ’b, ...), or it can be constructed with type
constructors. Predeclared type constants, like int and bool, are actually
nullary type constructors. Polymorphic type constructors include -> , * ,
and list.

As a simple example of type inference, if I declare Identity = fn x =>
x, then Identity has type ’a -> ’a, because it returns unchanged expressions
of any type. If I have the application Identity 0, then since 0 is of type int,
this application of Identity is specialized to int -> int, and hence the value
of the application is of type int.

The following table summarizes the types assumed for a variety of literals
and operators, some of which are naturally polymorphic.

Expression Type

true bool
false bool
1 int
+ (int * int) -> int
= (’a * ’a) -> bool
nil ’a list
:: (’a * ’a list) -> ’a list
hd ’a list -> ’a
tl ’a list -> ’a list
null ’a list -> bool

A type expression may contain several occurrences of the same type iden-
tifier, allowing the programmer to specify type dependencies. Thus ’a -> ’a
represents a function whose parameter and result type are the same, al-
though it does not specify what that type is. In a type expression, all occur-
rences of a type identifier must represent the same type. Discovering that
type is done by an algorithm called unification; it finds the strongest com-
mon type constraint for (possibly polymorphic) types. For example, int ->
int and (int -> bool) -> (int -> bool) can be unified to ’a -> ’a. They can
also be unified to ’a -> ’b, but that is a weaker constraint. In fact, they can
be unified to the weakest possible type, ’a.

To perform polymorphic type inference, ML assigns a type identifier to
each expression whose type is unknown and then solves for the type identi-
fiers. The algorithm to solve for the type identifiers is based on repeatedly
applying constraints:

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

80 CHAPTER 3 TYPES



81

1. All occurrences of the same identifier (under the scoping rules) have the
same type.

2. In a let rec declaration, all free occurrences of the declared identifier
(that is, those that are not bound by new declarations in nested name
scopes) have the same type.

3. In a conditional expression such as if B then branch1 else branch2, B
must have type bool, and branch1, branch2, and the total expression
have the same type. A shorthand expression for this constraint would
be if bool then ’a else ’a : ’a.

4. Function application: (’a -> ’b) ’a : ’b. This means that applying a
function to a parameter yields a result of the appropriate type. This
constraint can be used to derive the type of the parameter, the type of
the result, or the type of the function.

5. Function abstraction: fn ’a => ’b : ’a -> ’b. This means that an anony-
mous function has a type based on the type of its parameter and its re-
sult. Again, this constraint can be used to derive the type of the
parameter, the type of the result, or the type of the function.

Let me now illustrate type inference based on the code in Figure 3.36.

Figure 3.36 in: val rec length = fn AList => 1
if null AList then 2

0 3
else 4

1 + length(tl AList); 5
out: val length = fn : ’a list -> int

To begin, the following type constraints hold:

Expression Type

length ’t1 -> ’t2
AList ’t3
null AList bool
1 + length(tl AList)) int

Using the type of null, that is, ’a list -> bool, it must be that ’t3 = ’a
list, and because + returns int, it must be that length(tl AList) : int;
hence ’t2 = int. Now tl : ’a list -> ’a list, so tl AList : ’a list. There-
fore, length : ’a list -> int, which agrees with the intuitive declaration of a
length function.

Although type inference may appear trivial, interesting problems can
arise. Consider first self-application, as shown in Figure 3.37.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

7 ML



Figure 3.37 in: val F = fn x => x x; 1
out: Type clash in: (x x) 2

Looking for a: ’a 3
I have found a: ’a -> ’b 4

Here, F : ’a -> ’b, so x : ’a. Since (x x) : ’b, therefore x : ’a -> ’b, which
leads to the conclusion that ’a = ’a -> ’b, which has no (finite) solution. Un-
der the type inference rules, F has an invalid type.

Another interesting problem is illustrated in Figure 3.38.

Figure 3.38 in: val f1 = fn x => (x 3, x true); 1
out: Type clash in: (x true) 2

Looking for a: int 3
I have found a: bool 4

The problem is how to type the parameter x, which clearly is a function. ML
treats functions as first-class values, so passing a function as a parameter
isn’t a problem. The first application of x to 3 suggests a type of int -> ’a,
while the second application to true suggests bool -> ’b. You might be
tempted to generalize the type of x to ’c -> ’a, so any function would be valid
as a parameter to f. But, for example, not (of type bool -> bool) matches ’c
-> ’a, but not can’t take an integer parameter, as required in the first appli-
cation of x. Rather, ML must conclude that f can’t be typed using the rules
discussed above and hence is invalid.

Now consider the valid variant of f1 shown in Figure 3.39.

Figure 3.39 in: let 1
val f2 = fn x => x 2

in 3
((f2 3), (f2 true)) 4

end; 5
out: (3,true) : int * bool 6

Now f2’s type is ’a -> ’a, so both calls of f2 are valid. The significance is
that a parameter to a function, like x in f1, must have a single type that
works each time it appears. In this case, neither int -> ’a nor bool -> ’a
works. On the other hand, polymorphic functions like f2 can acquire differ-
ent inferred types each time they are used, as in line 4 of Figure 3.39.

Even with its polymorphism, ML is strongly typed. The compiler knows
the type of every value, even though that type may be expressed with respect
to type identifiers that are not yet constrained. Furthermore, ML is type-
safe; that is, whenever a program passes the compile-time type-checking
rules, no runtime type error is possible. This concept is familiar in monomor-
phic languages, but not in polymorphic languages.

The type mechanism of ML could be enhanced to allow f1 in Figure 3.38 to
be typed. ML could provide a choice type, composed of a fixed number of al-
ternatives, denoted by alt. Then f1 could be typed as ((int alt bool) -> ’a)
-> (’a * ’a). I could use datatype for this purpose, but it would not be as el-
egant.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

82 CHAPTER 3 TYPES



83

7.8 Higher-Order Functions
ML supports higher-order functions, that is, functions that take other func-
tions as parameters or deliver functions as results. Higher-order functions
are particularly useful to implement partial application, in which an invo-
cation provides only some of the expected parameters of a function, as in Fig-
ure 3.40.

Figure 3.40 in: val times = fn a => (fn b : int => a * b); 1
out: val times = fn : int -> (int -> int) 2

in: times 3 4; 3
out: 12 : int 4

in: val twice = times 2; 5
out: val twice = fn : int -> int 6

in: twice 4; 7
out: 8 : int 8

The type of times (lines 1–2) is unexpectedly complex, because I have chosen
to split the two parameters. (I explicitly indicate that b is of type int to re-
solve the * operator.) In line 3, times 3 4 is understood as (times 3) 4.
Times first takes the actual parameter 3 and returns a function from integers
to integers; this anonymous function is then applied to 4 to give the result 12.
This unusual definition allows me to provide only the first parameter to
times if I wish, leading to partial application. For example, I declare twice in
line 5 by calling times with only one parameter. When I wish to supply the
second parameter, I can do so, as in line 7.

The function-composition function, declared in Figure 3.41, is a good ex-
ample of partial application. It also has an interesting polymorphic type.

Figure 3.41 in: val compose = fn (f,g) => (fn x => f (g x)); 1
out: val compose = fn : 2

((’a -> ’b) * (’c -> ’a)) -> (’c -> ’b) 3

in: val fourTimes = compose(twice,twice); 4
out: val fourTimes = fn : int -> int 5

in: fourTimes 5; 6
out: 20 : int 7

Compose takes two functions f and g as parameters and returns a function
that when applied to a parameter x returns f (g x). Composing twice with
itself, by partially applying compose to the pair (twice,twice), produces a
function that multiplies numbers by four. Function composition is actually a
predeclared binary operator in ML written as o. The composition of f and g
can be written f o g.

Suppose now that I need to partially apply a function f that, like plus,
takes a pair of parameters. I could redeclare f as in Figure 3.42.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

7 ML



Figure 3.42 val f = fn a => (fn b => f(a,b))

Since I did not say rec, the use of f inside the declaration refers to the preex-
isting function f. The new f can be partially applied and uses the old f as ap-
propriate.

To make this conversion more systematic, I can write a function that
transforms any function of type (’a * ’b) -> ’c (that is, it requires a pair of
parameters) into a function of type ’a -> (’b -> ’c) (that is, it can be par-
tially applied). This conversion is usually called currying the function.11

Figure 3.43 declares a curry function.

Figure 3.43 in: val curry = fn f => (fn a => (fn b => f(a,b))); 1
out: val curry = fn : 2

((’a * ’b) -> ’c) -> (’a -> (’b -> ’c)) 3

in: val curryPlus = curry plus; 4
out: val curryPlus = fn : int -> (int -> int) 5

in: val successor = curryPlus 1; 6
out: val successor = fn : int -> int 7

The higher-order function curry (line 1) takes any function f defined on pairs
and two parameters a and b, and applies f to the pair (a,b). I have declared
curry so that it can be partially applied; it needs to be provided at least with
f, but not necessarily with a or b. When I partially apply curry to plus (line
4), I obtain a function curryPlus that works exactly like plus, but which can
be partially applied, as in line 6.

7.9 ML Types
The type of an expression indicates the set of values it may produce. Types
include primitive types (integer, real, Boolean, string) and structured types
(tuples, lists, functions, and pointers). An ML type only gives information
about attributes that can be computed at compile time and does not distin-
guish among different sets of values having the same structure. Hence the
set of positive integers is not a type, nor is the set of lists of length 3. In con-
trast, Pascal and Ada provide subtypes that restrict the range of allowable
values.

On the other hand, ML types can express structural relations within val-
ues, for example, that the right part of a pair must have the same type as the
left part of the pair, or that a function must return a value of the same type
as its parameter (whatever that type may be).

Types are described by recursively applied type constructors. Primitive
types like int are type constructors that take no parameters. Structured
types are built by type constructors like * (Cartesian product, for tuples),
list, -> (for functions), and ref (for pointers). Type constructors are usu-
ally infix or suffix: int * int, int list, int -> int, and int ref are the types
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

11 Haskell B. Curry was a logician who popularized this idea.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

84 CHAPTER 3 TYPES



85

of integer pairs, lists, functions, and pointers. Type constructors can be arbi-
trarily nested. For example, (int -> int) list is the type of lists of integer-
to-integer functions.

Type identifiers can be used to express polymorphic types. Polymorphic
types are mostly useful as types of functions, although some nonfunctional
expressions, like [], of type ’a list, are also polymorphic. A typical example
of a polymorphic function is hd, of type ’a list -> ’a. The type of hd indi-
cates that it can accept any list and that the type of the result is the same as
the type of the elements of the list.

Every type denotes a type domain, which is the set of all values of the
given type. For example, int * int denotes the domain of integer pairs, and
int -> int denotes the domain of all integer functions. An expression can
have several types; that is, it can belong to several domains. For example,
the identity function fn x => x has type int -> int, because it maps any ex-
pression of type integer to itself, but it also has the type bool -> bool for a
similar reason. The most general polymorphic type for the identity function
is ’a -> ’a, because all the types of identity are instances of it. This last nota-
tion gives more information than the others, because it encompasses all the
types that the identity function can have and thus expresses all the ways that
the identity function can be used. Hence it is preferable to the others, al-
though the others are not wrong. The ML type checker always determines
the most general type for an expression, given the information contained in
that expression.

The programmer may append a type expression to a data expression in or-
der to indicate a type constraint, as in Figure 3.44.

Figure 3.44 in: 3 : int; 1
out: 3 : int 2

in: [(3,4), (5,6) : int * int]; 3
out: [(3,4),(5,6)] : (int * int) list 4

In this example, the type constraint has no effect. The compiler indepen-
dently infers the types and checks them against the given constraints. Any
attempt to constrain a type incorrectly will result in a type error, as shown in
Figure 3.45.

Figure 3.45 in: 3 : bool; 1
out: Type clash in: 3 : bool 2

Looking for a: bool 3
I have found a: int 4

However, a type constraint can restrict the types inferred by ML by con-
straining polymorphic expressions or functions, as in Figure 3.46.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

7 ML



Figure 3.46 in: [] : int list; 1
out: [] : int list 2

in: (fn x => x) : int -> int; 3
out: fn : int -> int 4

The type normally inferred for [] is ’a list, and for fn x => x, it is ’a -> ’a.
Type constraints can be used in declarations, as in Figure 3.47.

Figure 3.47 in: val (a : int) = 3; 1
in: val f = fn (a : int, b : int) => a+b; 2
in: val f = fn (a : int, b) => a+b; 3
in: val f = fn ((a,b) : int * int) => (a + b) : int; 4

The examples in lines 2, 3, and 4 are equivalent.

7.10 Constructed Types
A constructed type is a type for which constructors are available. Con-
structors can be used in patterns later to decompose data. You have already
seen examples of this dual usage with the tuple constructor and the list con-
structors nil and :: (cons).

A constructed type and its constructors should be considered as a single
conceptual unit. Whenever a new constructed type is declared, its construc-
tors are declared at the same time. Wherever a constructed type is known,
its constructors are also known.

The programmer can introduce new constructed types in a type declara-
tion. A type declaration introduces a new type name and the names of the
constructors for that type. Each of those constructors leads to a component,
whose type is also presented. The components together make up a choice
type, that is, a type whose values cover all the components. Syntactically,
components are separated by | . Each component starts with its constructor
name, followed by the keyword of and then the type of the component. The
keyword of and the component type can be omitted; in this case the construc-
tor is a constant of the new type.

For example, money can be a coin of some value (in cents), a bill of some
value (in dollars), a check drawn on some bank for some amount (in cents), or
the absence of money (see Figure 3.48).

Figure 3.48 in: datatype money = 1
nomoney | 2
coin of int | 3
bill of int | 4
check of string * int; -- (bank, cents) 5

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

86 CHAPTER 3 TYPES



87

out: datatype money = 6
bill of int | 7
check of string * int | 8
coin of int | 9
nomoney 10

con nomoney : money 11
con coin = fn int -> money 12
con check = fn : (string * int) -> money 13
con bill = fn : int -> money 14

Here nomoney, coin, bill, and check are money constructors; nomoney is also
a money constant. Constructors can be used as ordinary functions in expres-
sions, as in Figure 3.49.

Figure 3.49 in: val 1
nickel = coin 5 and 2
dime = coin 10 and 3
quarter = coin 25; 4

out: val 5
quarter = coin 25 : money 6
dime = coin 10 : money 7
nickel = coin 5 : money 8

Figure 3.50 shows that they can also be used in patterns.

Figure 3.50 in: val amount = 1
fn nomoney => 0 2
| (coin cents) => cents 3
| (bill dollars) => 100 * dollars 4
| (check(bank,cents)) => cents; 5

out: val amount = fn : money -> int 6

Quarter is not a constructor, but an identifier with value coin 25 of type
money. I cannot add, say after line 4, a clause saying quarter => 25, because
quarter would be interpreted as a formal parameter, like cents.

A constructed type can be made entirely of constants, in which case it is
similar to an enumeration type, except there is no ordering relation among
the individual constants. A type can be composed of a single constructor, in
which case the type declaration can be considered as an abbreviation for the
type following of. Both these possibilities are shown in Figure 3.51.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

7 ML



Figure 3.51 in: datatype color = red | blue | yellow; 1
out: datatype color = blue | red | yellow 2

con yellow : color 3
con red : color 4
con blue : color 5

in: datatype point = point of int * int; 6
out: datatype point = point of int * int 7

con point = fn : (int * int) -> point 8

In the second example, I have overloaded the identifier point, which is both
the name of a type and a constructor that builds values of that type. Such
overloading is conventional in ML if there is only one constructor for a type.
There is no risk of ambiguity, since ML can always tell by context if a con-
structor or a type is intended.

A constructed-type declaration may involve type identifiers, in which case
the constructed type is polymorphic. All the type identifiers used on the right
side of the declaration must be listed on the left side as type parameters, as
shown in Figure 3.52.

Figure 3.52 in: datatype ’a predicate = 1
predicate of ’a -> bool; 2

out: datatype ’a predicate = predicate of ’a -> bool 3
con predicate = fn : (’a -> bool) -> (’a predicate) 4

in: predicate null; 5
out: predicate null : (’a list) predicate; 6

in: datatype (’a,’b) leftProjection = 7
leftProjection of (’a * ’b) -> ’a; 8

out: datatype (’a,’b) leftProjection = 9
leftProjection of (’a * ’b) -> ’a 10

con leftProjection = fn : 11
((’a * ’b) -> ’a) -> (’a,’b) leftProjection 12

In lines 1–2, predicate is declared as a type with one constructor, also called
predicate. This constructor turns Boolean-valued functions into objects of
type predicate. An example is shown in line 5, which applies the constructor
to null, which is a Boolean-valued function. The result, shown in line 6, is in
fact a predicate, with the polymorphic type somewhat constrained to ’a
list. In lines 7–8, leftProjection is declared as a type with one construc-
tor, also called leftProjection. This type is doubly polymorphic: it depends
on two type parameters. This constructor turns functions of type (’a * ’b)
-> ’a into objects of type leftProjection.

ML also allows recursive constructed types. Figure 3.53 shows how the
predeclared list type and the hd selector are declared:

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

88 CHAPTER 3 TYPES



89

Figure 3.53 in: datatype ’a list = 1
nil | 2
:: of ’a * (’a list); 3

out: datatype ’a list = 4
nil | 5
:: of ’a * (’a list) 6

con nil : ’a list 7
con :: = fn : (’a * (’a list)) -> (’a list) 8

in: val hd = fn ::(head, rest) => head; 9
out: val hd = fn : (’a list) -> ’a 10

The pattern in line 9 indicates that hd may only be called on lists constructed
with the :: constructor; it is invalid to call it on nil.

In addition to constructed types, ML provides abstract data types through
a module mechanism. It permits the specification and the implementation
parts to be separated. Modules can be parameterized by types, in much the
same way as generic modules in Ada and C++.

Before leaving the subject of types, I will turn briefly to two other pro-
gramming languages that are closely related to ML but show how one might
extend its treatment of types.

8 ◆ MIRANDA
The Miranda language, designed by David Turner of the University of Kent,
shares many features with ML [Turner 85a, 86; Thompson 86]. It is strongly
typed, infers types from context, provides for abstract data types, and has
higher-order functions. It provides tuples and homogeneous lists, and compo-
nents of tuples are extracted by patterns. Operators are provided for cons
and append, as well as for list length, selection from a list by position, and set
difference.

Miranda differs from ML in some minor ways. It is purely functional;
there are no pointer types. Functions of more than one parameter are auto-
matically curried unless parentheses explicitly indicate a tuple. (ML also has
a declaration form that automatically curries, but I have not shown it.) The
scope rules in Miranda are dynamic, which means that functions may be ref-
erenced textually before they are declared. All declarations implicitly allow
recursion; there is no need for a rec keyword. Binary operators may be
passed as actual parameters in Miranda; they are equivalent to curried func-
tions that take two parameters.

Miranda has a nontraditional syntax in which indentation indicates
grouping and conditionals look like the one in Figure 3.54.

Figure 3.54 max = a, a>=b 1
= b, otherwise 2

However, my examples will follow ML syntax (modified as necessary) for con-
sistency.

Miranda provides some novel extensions to ML. First, evaluation is nor-
mally lazy. I discuss lazy evaluation in detail in Chapter 4; for now, let me

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

8 MIRANDA



just say that expressions, particularly actual parameters, are not evaluated
until they must be, and then only as much as necessary. As Figure 3.55
shows, I can declare a function cond that does not need to evaluate all its pa-
rameters.

Figure 3.55 in: val cond = 1
fn true, x, y => x 2
| false, x, y => y; 3

out: val cond = fn : bool -> (’a -> (’a -> ’a)) 4

in: let val x=0 in cond x=0 0 1/x end 5
out: 0 : int 6

If cond evaluated all its parameters, the invocation in line 5 would generate
an exception as the program tries to divide 1 by 0. However, lazy evaluation
prevents the suspicious parameter from being evaluated until it is needed,
and it is never needed.

Miranda provides a concise syntax for specifying lists by enumerating
their components. Most simply, one can build a list by a shorthand, as in Fig-
ure 3.56.

Figure 3.56 in: [1..10]; 1
out: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] : int list 2

Infinite lists (Figure 3.57) are a bit more sophisticated.

Figure 3.57 in: [0..]; 1
out: [0, 1, 2, ...] : int list 2

in: val ones = 1 :: ones; 3
out: [1, 1, 1, ...] : int list 4

Line 3 declares ones recursively. I have arbitrarily decided to let the expres-
sion printer evaluate only the first three components of an infinite list.

The next step is to filter objects, whether finite or infinite, to restrict val-
ues. ZF-expressions (named after Zermelo and Fraenkel, founders of modern
set theory), also called list comprehensions, are built out of filters, as shown
in Figure 3.58.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

90 CHAPTER 3 TYPES



91

Figure 3.58 in: [n*n | n <- [1..5] ]; 1
out: [1, 4, 9, 16, 25] : int list 2

in: [ (a,b,c,n) | a,b,c,n <- [3..]; aˆn + bˆn = cˆn ]; 3
out: [ ... ] : (int * int * int * int) list 4

in: val QuickSort = 5
fn [] => [] 6
| (a :: rest) => 7

QuickSort [ b | b <- rest; b <= a ] @ 8
[a] @ 9
QuickSort [ b | b <- rest; b > a]; 10

out: val QuickSort = fn : ’a list -> ’a list 11

Line 1 evaluates to a list of 5 squares. Line 3 evaluates to an empty list (most
likely), but will take forever to compute. However, if the expression is evalu-
ated lazily, the infinite computation need not even start. Lines 5–10 repre-
sent the Quicksort algorithm concisely.

Infinite lists can be used to create lookup tables for caching the values of a
function. Caching allows a programmer to use a recursive algorithm but ap-
ply caching (also called dynamic programming and memoization) to change
an exponential-time algorithm into a linear-time one. For example, Fibonacci
numbers can be computed efficiently as shown in Figure 3.59.

Figure 3.59 in: val map = 1
fn function, [] => [] 2
| function, [a :: rest] => 3

(function a) :: (map function rest); 4
out: val map = fn : (’a -> ’b) -> (’a list -> ’b list) 5

in: val cache = map fib [0..] 6
and fib = 7

fn 0 = 1 8
| 1 => 1 9
| n => cache at (n-1) + cache at (n-2) 10

out: val fib = fn : int -> int 11

The map function (lines 1–4) applies a function to each member of a list, pro-
ducing a new list. The fib function (lines 7–10) uses the infinite object cache
(line 6), which is not evaluated until necessary. Line 10 calls for evaluating
just those elements of cache that are needed. (The at operator selects an ele-
ment from a list on the basis of its position.) The chart in Figure 3.60 shows
the order of events in evaluating fib 4.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

8 MIRANDA



Figure 3.60 fib 4 1
cache at 3 2

cache at 0 3
fib 0 returns 1; cache at 0 becomes 1 4

cache at 1 5
fib 1 returns 1; cache at 1 becomes 1 6

cache at 2 7
fib 2 8

cache at 1 returns 1 9
cache at 0 returns 1 10
fib 2 returns 2; cache at 2 becomes 2 11

fib 3 12
cache at 2 returns 2 13
cache at 1 returns 1 14
returns 3; cache at 3 becomes 3 15

cache at 2 returns 2 16
returns 5 17

Another way to express dynamic programming for computing Fibonacci num-
bers is described in Chapter 9 in the section on mathematics languages.

Lazy evaluation also makes it fairly easy to generate an infinite binary
tree with 7 at each node, as in Figure 3.61.

Figure 3.61 in: datatype ’a tree = 1
nil | 2
node of ’a * (’a tree) * (’a tree); 3

out: datatype ’a tree = 4
nil | 5
node of ’a * (’a tree) * (’a tree) 6
con nil : ’a tree 7
con node = fn : ’a -> 8

((’a tree) -> ((’a tree) -> (’a tree))) 9

in: val BigTree = node 7 BigTree BigTree; 10
out: node 7 ... ... : int tree 11

In Miranda, the programmer may introduce a named polymorphic type
much like ML’s datatype construct but without specifying constructors, as
Figure 3.62 shows.

Figure 3.62 in: type ’a BinOp = ’a -> (’a -> ’a); 1
out: type ’a BinOp = ’a -> (’a -> ’a) 2

in: BinOp int; 3
out: int -> (int -> int) 4

in: type ’a Matrix = ’a list list; 5
out: type ’a Matrix = ’a list list 6

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

92 CHAPTER 3 TYPES



93

in: type BoolMatrix = Matrix bool; 7
out: type BoolMatrix = bool list list 8

in: val AMatrix = [[true, false] [false, false]] 9
: BoolMatrix; 10

out: val AMatrix = [[true, false] [false, false]] 11
: bool list list 12

in: val FirstRow = fn 13
[RowOne :: OtherRows] : BoolMatrix => RowOne; 14

out: val FirstRow = fn : 15
bool list list -> bool list 16

In line 1, BinOp is declared as a polymorphic type with one type parameter,
’a. Line 3 demonstrates that BinOp can be invoked with a parameter int,
leading to the type int -> (int -> int). Types derived from polymorphic
types may be used to constrain declarations, as seen trivially in lines 9–10
and not so trivially in lines 13–14.

Recursively defined types sometimes need to provide multiple ways of de-
riving the same object. For example, if I wish to declare integers as a recur-
sive data type with constructors succ and pred, I need to indicate that zero is
the same as succ(pred zero). Miranda allows the programmer to specify
simplification laws, as shown in Figure 3.63.

Figure 3.63 in: datatype MyInt = 1
zero | 2
pred of MyInt | 3
succ of MyInt 4

laws 5
pred(succ n) => n and succ(pred n) => n; 6

in: pred(pred(succ(zero)); 7
out: pred zero : MyInt 8

Simplification laws also allow the programmer to declare a rational-number
data type that stores numbers in their canonical form (see Figure 3.64).

Figure 3.64 in: datatype Rational = ratio of num * num 1

laws ratio (a,b) => 2
if b = 0 then 3

error "zero denominator" 4
elsif b < 0 then 5

ratio (-a,-b) 6

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

8 MIRANDA



else 7
let 8

val gcd = fn (x,y) => 9
if a < b then gcd (a,b-a) 10
elsif b < a then gcd (a-b,b) 11
else a; 12

CommonPart = gcd (abs a, abs b) 13
in 14

if CommonPart > 1 then 15
ratio (a div CommonPart, 16
b div CommonPart); 17

else 18
nosimplify 19

end; 20

in: ratio (3,2); 21
out: ratio (3,2) : Rational 22

in: ratio (12,-3); 23
out: ratio (-4,1) : Rational 24

In line 19, nosimplify indicates that no law applies in that case.

9 ◆ RUSSELL
The Russell language predates ML but is quite similar in general flavor
[Demers 79; Boehm 86]. It was developed to explore the semantics of types,
in particular, to try to make types first-class values. Russell is strongly
typed, infers types from context, provides for abstract data types, and has
higher-order functions.

Russell differs from ML in some minor ways. Although it is statically
scoped, new function declarations do not override old ones of the same name
if the types differ; instead, the name becomes overloaded, and the number
and type of the actual parameters are used to distinguish which function is
meant in any particular context. (Redeclaration of identifiers other than
functions is not allowed at all.) Functions may be declared to be invoked as
prefix, suffix, or infix operators. Functions that take more than two parame-
ters may still be declared to be invoked with an infix operator; a given num-
ber of the parameters are placed before the operator, and the rest after. ML
only allows infix notation for binary functions. To prevent side effects in the
presence of variables (ref types), functions do not import identifiers mapped
to variables.

Russell’s nomenclature is nonstandard; what ML calls a type is a signa-
ture in Russell; an abstract data type (a collection of functions) is a type in
Russell. So when Russell succeeds in making types first-class values, it
doesn’t accomplish quite as much as we would expect. Russell’s syntax is
quite different from ML. For consistency, I will continue to use ML terminol-
ogy and syntax as I discuss Russell.

The principal difference between Russell and ML is that in Russell ab-
stract data types are first-class values, just like values, pointers, and func-
tions. That is, abstract data types may be passed as parameters, returned
from functions, and stored in identifiers. Abstract data type values can also
be manipulated after they have been constructed.

More specifically, Russell considers an abstract data type to be a collection
of functions that may be applied to objects of a particular domain. The
Boolean abstract data type includes the nullary functions true and false, bi-
nary operators such as and and or, and even statements such as if and
while, which have Boolean components. Manipulation of an abstract data
type means deleting or inserting functions in its definition.

The border between data and program becomes quite blurred if we look at
the world this way. After all, we are not used to treating control constructs
like while as functions that take two parameters, a Boolean and a statement,



95

and return a statement. We don’t usually consider a statement to be data at
all, since it cannot be read, written, or manipulated.12

The components of an abstract data type may be quite different from each
other. I could declare an abstract data type MyType that includes the Boolean
false as well as the integer 3 (both nullary functions). If I wish to distin-
guish which false is meant, I can qualify it by saying bool.false or My-
Type.false. (The . operator is a selector that extracts a given component of
a given abstract data type.)

I might declare a simple abstract data type of small integers as shown in
Figure 3.65.

Figure 3.65 val SmallInt = 1
type New = fn : void -> SmallInt -- constructor 2
and ":=" = fn : (SmallInt ref, SmallInt) -> SmallInt 3

-- assignment 4
and ValueOf = fn : SmallInt ref -> SmallInt -- deref 5
and alias = fn : (SmallInt ref, SmallInt ref) -> bool 6

-- pointer equality 7
and "<" = fn : (SmallInt,SmallInt) -> Boolean 8
... -- other comparisons, such as <= , =, >, >=, ≠ 9
and "-" = fn : (SmallInt, SmallInt) -> SmallInt 10
... -- other arithmetic, such as +, *, div, mod 11
and "0" : SmallInt -- constant 12
... -- other constants 1, 2, ... , 9 13

-- the rest are built by concatenation 14
and "ˆ" = fn : (SmallInt,SmallInt) -> SmallInt 15

-- concatenation 16
; 17

I use void in line 2 to indicate that the New function is nullary. The function
declarations are all missing their implementations.

Generally, one builds abstract data types with shorthand forms that ex-
pand out to such lists. For example, there are shorthands for declaring enu-
merations, records, choices, and new copies of existing abstract data types.
The lists generated by the shorthands contain functions with predefined bod-
ies.

Since abstract data types can be passed as parameters, the programmer
can build polymorphic functions that behave differently on values of different
abstract data types. It is common to pass both value-containing parameters
and type-containing parameters to functions. Figure 3.66 shows how to de-
clare a polymorphic Boolean function least that tells if a given value is the
smallest in its abstract data type.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
12 Some languages, like SNOBOL and APL, let strings be converted at runtime into state-

ments and then executed. Only LISP, discussed in Chapter 4, and Tcl, discussed in Chapter 9,
actually build programs out of the same stuff as data.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

9 RUSSELL



Figure 3.66 val least = 1
fn (value : bool, bool) => value = false 2
| (value : SmallInt, SmallInt) => value = SmallInt."0" 3
| (value : Other, Other : type) => false; 4

Line 2 applies when the first parameter is Boolean and the second parameter
so indicates. It returns true only if the first parameter has value false.
Line 3 applies when the first parameter is of type SmallInt. Line 4 applies to
all other types, so long as the type of the first parameter matches the value of
the second parameter. A call such as least("string", int) would fail be-
cause none of the alternatives would match.

Manipulations on an abstract data type include adding, replacing, and
deleting its functions. The programmer must provide a body for all replace-
ment functions. For example, I can build a version of the integer type that
counts how many times an assignment has been made on its values (Figure
3.67).

Figure 3.67 val InstrumentedInt = 1
record (Value : int, Count : int) 2

-- "record" expands to a list of functions 3
adding 4

Alloc = fn void => 5
let 6

val x = InstrumentedInt.new 7
in 8

count x := 0; 9
x -- returned from Alloc 10

end 11
and 12

Assign = fn 13
(IIVar : InstrumentedInt ref, 14

IIValue : InstrumentedInt) -> 15
( -- sequence of several statements 16

count IIValue := count IIValue + 1; 17
Value IIVar := Value IIValue; 18

) 19
and 20

GetCount = fn (IIValue : InstrumentedInt) -> 21
count IIValue 22

and 23
new = InstrumentedInt.Alloc -- new name 24

and 25
":=" = InstrumentedInt.Assign -- new name 26

and 27
ValueOf = ValueOf Value 28

hiding 29
Alloc, Assign, -- internal functions 30
Value, Count, -- fields (also functions); 31

Two abstract data types are considered to have the same type if they con-
tain the same function names (in any order) with equivalent parameter and
result types. This definition is a lax form of structural equivalence.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

96 CHAPTER 3 TYPES



97

10 ◆ DYNAMIC TYPING IN STATICALLY TYPED
LANGUAGES
It seems strange to include dynamic typing in otherwise statically typed lan-
guages, but there are situations in which the types of objects cannot be pre-
dicted at compile time. In fact, there are situations in which a program may
wish to create a new type during its computation.

An elegant proposal for escaping from static types is to introduce a prede-
clared type named dynamic [Abadi 91]. This method is used extensively in
Amber [Cardelli 86]. Values of this type are constructed by the polymorphic
predeclared function makeDynamic. They are implemented as a pair contain-
ing a value and a type description, as shown in Figure 3.68 (in an ML-like
syntax).

Figure 3.68 val A = makeDynamic 3; 1
val B = makeDynamic "a string"; 2
val C = makeDynamic A; 3

The value placed in A is 3, and its type description is int. The value placed in
B is "a string", and its type description is string. The value placed in C is
the pair representing A, and its type description is dynamic.

Values of dynamic type can be manipulated inside a typecase expression
that distinguishes the underlying types and assigns local names to the com-
ponent values, as in Figure 3.69.

Figure 3.69 val rec Stringify = fn Arg : dynamic => 1
typecase Arg 2
of s : string => ’"’ + s + ’"’ 3
| i : int => integerToString(i) 4
| f : ’a -> ’b => "function" 5
| (x, y) => "(" + (Stringify makeDynamic x) + 6

", " + (Stringify makeDynamic y) + ")" 7
| d : dynamic => Stringify d 8
| _ => "unknown"; 9

Stringify is a function that takes a dynamic-typed parameter Arg and re-
turns a string version of that parameter. It distinguishes the possible types
of Arg in a typecase expression with patterns both to capture the type and to
assign local identifiers to the components of the type. If the underlying type
is itself dynamic, Stringify recurses down to the underlying type (line 8). In
lines 6–7, makeDynamic is invoked to ensure that the parameters to Stringify
are of the right type, that is, dynamic.

Figure 3.70 shows a more complicated example that nests typecase ex-
pressions. The function Apply takes two curried dynamic parameters and in-
vokes the first one with the second one as a parameter, checking that such an
application is valid.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

10 DYNAMIC TYPING IN STATICALLY TYPED LANGUAGES



Figure 3.70 val rec Apply = 1
fn Function : dynamic => 2

fn Parameter : dynamic => 3
typecase Function 4
of f : ’a -> ’b => 5

typecase Parameter 6
of p : ’a => makeDynamic f(p); 7

Line 5 explicitly binds the type identifiers ’a and ’b so that ’a can be used
later in line 7 when the program checks for type equivalence. Line 7 needs to
invoke makeDynamic so that the return value of Apply (namely, dynamic) is
known to the compiler. In each typecase expression, if the actual type at
runtime is not matched by the guard, a type error has occurred. I could use
an explicit raise statement in a language with exception handling.

The dynamic type does not violate strong typing. The compiler still knows
the type of every value, because all the otherwise unknown types are lumped
together as the dynamic type. Runtime type checking is needed only in evalu-
ating the guards of a typecase expression. Within each branch, types are
again statically known.

It is possible to allow compile-time coercion of dynamic types. If a dynamic
value is used in a context where the compiler does not have any applicable
meaning, it may implicitly supply a typecase that distinguishes the mean-
ings that it knows how to handle, as shown in Figure 3.71.

Figure 3.71 in: write makeDynamic (4 + makeDynamic 6) 1
out: 10 : int 2

In line 1, the + operator has no overloaded meaning for integers plus dy-
namic values. The compiler realizes this fact and inserts an explicit typecase
to handle the one meaning it knows, integers plus integers. The predeclared
write function cannot handle dynamic types, either, so another typecase is
inserted for all the types that it can handle. In other words, the input is ex-
panded to that shown in Figure 3.72.

Figure 3.72 typecase makeDynamic 4 + 1
typecase makeDynamic 6 2
of i : int => i 3
end; 4

of 5
i : int => write i 6
r : real => write r 7
... 8

end; 9

The typecase expression in lines 2–4 has type int, so the + in line 1 is well
defined. In order to give write’s parameter a compile-time type, I had to
draw the write function into the outer typecase (in lines 6–8). Drawing
functions into the implicit typecase expressions can lead to an explosion of
code.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

98 CHAPTER 3 TYPES



99

It is much better to coerce at runtime, when the actual type is known for
each dynamic type. The program in Figure 3.72 would clearly use integer ad-
dition and printing of integers. Runtime coercion is still perfectly type-safe,
although some type errors won’t be discovered until runtime.

11 ◆ FINAL COMMENTS
The discussion of derived types and dimensions is part of a larger issue about
how restrictive a programming language needs to be in order to permit the
art of programming. One way to look at this question [Gauthier 92] is to no-
tice that on the one hand the real world is very restrictively typed, as stu-
dents of physics realize. One should not add apples and oranges, much less
volts and calories. On the other hand, the memory of most computers is com-
pletely untyped; everything is represented by bits (organized into equally un-
typed bytes or words). The programming language represents a platform for
describing the real world via the computer, so it properly lies somewhere be-
tween these extremes. It needs to balance type security with simplicity. Type
security demands that each different kind of value have its own type in order
to match the real world. For example, lists of exactly three elements are dif-
ferent from lists of four elements. Integers constrained to even numbers are
different from unconstrained integers. Simplicity demands that types be easy
to specify and that types be efficiently checked, preferably at compile time. It
is not so easy to include lengths or number-theoretic considerations in the
type description of lists and integers, respectively.

It is largely a matter of personal taste where this platform should be on
the spectrum ranging from restrictively typed, using strong typing and per-
haps providing derived types with dimensions, to lax, with dynamic typing
and easy coercion. Proponents of the restrictive style point with pride to the
clarity of their programs and the fact that sometimes they run correctly the
first time. Proponents of the lax style speak disparagingly of “bondage-and-
discipline” languages like Ada, and prefer the relative freedom of C.

Such taste is likely to change as a programmer changes. My first experi-
ence of programming (after plug-board computers) was in machine language,
not even assembler language. Later, I relished the intricacies of SNOBOL,
which is quite lax about typing. Algol was a real eye-opener, with its declared
types and its control structures. I now prefer strong typing; to me, an elegant
program is one that is readable the first time by a novice, not one that plays
unexpected tricks. Strong typing helps me to build such programs. Still, I
use C heavily because it is implemented so widely, and I often need to port my
programs across machines.

ML is an elegant language that shows how to make functions first-class
values and how to deal with type polymorphism and still be strongly typed.
Type inference relieves the programmer of careful type declarations. Mi-
randa extends these ideas with infinite lists and lazy evaluation. (There is
also a lazy variant of ML with similar extensions.) Russell even allows some
types to be manipulated in fairly simple ways. None of these languages truly
allows types themselves to be first-class values. Such an extension would
probably require runtime type checking or lose strong typing. (The exercises
explore this concept.)

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

11 FINAL COMMENTS



Type systems are an area of active research. Integrating dimensions into
polymorphic languages like ML, for example, is being studied [Kennedy 94].
The SML variant of ML includes an experimental, higher-order extension of
the module system, in which generic modules can be parameterized by other
(possibly generic) modules.

Although I have intentionally avoided issues of syntax in this chapter, I
would like to point out that syntactic design certainly affects the ease with
which programmers can learn and use a language. Compare, for example,
identical types in C and ML:

C ML

int z z : int
int (*a)(char) a : (char -> int) ref
int (*((*b)(int)))(char) b : (int -> ((char -> int) ref))) ref
int (*c)(int (*)(char)) c : ((char -> int) ref -> int) ref

Although the C type expressions are shorter, I find them difficult to generate
and to understand.

EXERCISES

Review Exercises
3.1 What is the difference between the way Modula-2+ and Modula-3 han-

dle type equivalence for derived types?

3.2 If two types are name-equivalent, are they necessarily structurally
equivalent?

3.3 Would you consider First and Second in Figure 3.73 structurally equiv-
alent? Why or why not?

Figure 3.73 type 1
First = 2

record 3
A : integer; 4
B : record 5

B1, B2 : integer; 6
end; 7

end; 8
Second = 9

record 10
A: record 11

A1, A2 : integer; 12
end; 13
B : integer; 14

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

100 CHAPTER 3 TYPES



101

end; 15

3.4 How can abstract data types be used to implement dimensions?

3.5 Why is instantiation of a generic module a compile-time operation, not a
runtime operation?

3.6 What sort of type equivalence does ML use — name equivalence, struc-
tural equivalence, or something else?

Challenge Exercises
3.7 Enumerate the possible values of type TA in Figure 3.3 (page 57).

3.8 Given that First and Second are not structurally equivalent in exercise
3.3, suggest an algorithm for testing structural equivalence.

3.9 Suggest an algorithm for compile-time dimension checking. Is runtime
dimension checking needed?

3.10 Explore adding dimensions to ML.

3.11 Write an accumulate procedure in ML that can be used to sum a list, as
suggested on page 75.

3.12 Show a valid use of leftProjection, introduced in Figure 3.52 (page
88).

3.13 Program QuickSort in ML.

3.14 Show how datatype in ML could give me the effect of f1 : ((int alt
bool) -> ’a) -> (’a * ’a), as suggested on page 82.

3.15 Use the dynamic type in an ML framework to declare a function Build-
Deep such that BuildDeep 2 produces a function of dynamic type int ->
(int -> int), BuildDeep 3 produces a function of dynamic type int ->
(int -> (int -> int)), and so forth. The produced functions should re-
turn the sum of all their parameters.

3.16 Generalize types in ML so that types are true first-class values. That is,
I should be able to build things of type type, or of type type -> int. De-
cide what the built-in functions on type type should be. Try to keep the
language strongly typed.

3.17 Extend ML so that there is a type expression. Devise reasonable func-
tions that use that type. These functions should have runtime (not just
compile-time) significance.

3.18 What is the type (in the ML sense) of least in Figure 3.66 (page 96)?

3.19 Can Io constructs (see Chapter 2) be represented in ML?

3.20 Show two types in Russell that are type-equivalent, but are neither
name-equivalent nor structurally equivalent.

3.21 Are all structurally equivalent types type-equivalent in Russell?

3.22 Russell prevents side effects in the presence of variables (ref types) by
prohibiting functions from importing identifiers mapped to variables.
Why is this rule important?

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

EXERCISES



3.23 Russell also prohibits a block from exporting a value of a type declared
locally in that block. Why is this rule important in Russell? Should ML
also have such a rule? Can this rule be enforced at compile time?

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

102 CHAPTER 3 TYPES


