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Crystallisation starts off with nucleation, which is rathorly understood. However, over the last few years thexe lbeen
important quantitative experiments at constant supersédn, and the modelling of this data has also advancedeitixents
in which the supersaturation is varying, e.g., those attamsooling rate, are important but hard to interpret. Tiigew
focuses on the state of the art in quantitative studies ofeation at constant supersaturation. We can now test helfab
heterogeneous nucleation and somewhat less reliablydaatier case of homogeneous nucleation. In the case of betexous
nucleation, we can also obtain at least some informationluet V8 responsible for nucleation. We also now have (uniiatily
currently untested) predictions for the scaling of nuéteatimescales with system size. These predictions mayeproportant
both for scaling up from small droplets to larger volumes] &r scaling down to crystallisation at the nanoscalessesiefor
nanotechnology applications. Finally, it is worth notitgt in many experiments the dynamic range of nucleationgiisi¢oo
large to be measured. This is presumably due to highly Veriaipurities, and this problem may need to be addressedunefu
work.

1 Introduction 2000 . . .

[N
Crystallisation lies at the heart of many natural phenomena y, 1500k ]
and of many technologically important processes. Our ¢téma g
is affected by clouds of ice particles, and most pharmaceuti @
cals are crystalline. Crystallisation starts with nudtsatNu- S 1000f 1
cleation is the dynamic process that determines how difficul &
it is for a crystal to form in the system. Here | will only rewie qéa 500} e
studies at constant supersaturation, because studiesamth ©
ing supersaturation are much harder to interpret and to mode 0
At constant supersaturation, nucleation is the processitha 0 50000 100000 150000 200000
termines how long you have to wait before a crystal appears ir Time (number of MC cycles)

the system. As an example, this waiting time is approxingatel

160,000 simulation cycles in the system of Fig. 1. _ _ S

has to be. In experiments the nucleation time is approximatecompmer simulation of a simple model. The model is the Gaussian
. ’2 . . . . .

by the time the crystal is first observeggs. This observation Core modet2. In the liquid phase, at each pointin time, there are

is tvpically via optical MIicrosco and is when the crvstal microscopic crystallites formed by thermal fluctuations. The figure
YP y P Py, y shows the number of molecules in the largest crystallite as a

is at least many mlcrometres a-cross. The time to nucleate Rinction of time. Time is given in Monte Carlo simulation cycles. A
probably best defined as the time for the crystal nucleus tQycie is one attempted move per molecule of the liquid. The size of
reach the (nanoscale) size such that the probability thetlit  the largest crystallite fluctuates with time, until an unusually large
redissolve is negligiblety. Then if the time for a nucleus fluctuation takes the crystallite over the nucleation barrier. This

this size to grow to be large enough to be obsertgeek ty, occurs at around 160,000 cycles. After this the crystal grows rapidly
togs will be a good approximation to a well-defined nucleation and irreversibly, as seen by the steep increase in size after about

timety. In computer simulations we can obsetyétself, it is 160,000 cycles. A snapshot is shown of the growing cluster when it
about 160,000 simulation cycles in Fig. 1. has approximately 500 molecules. Figure courtesy of James Mithen.
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The study of nucleation at constant supersaturation is e2 Introduction to Nucleation at Constant Su-
sentially the attempt to measure, understand and predict th persaturation
waiting time before the crystal appears. Ultimately, we wvan
to understand and be able to predict whether the nucleatiolhe cleanest and so easiest to interpret experimental data o
time will be seconds, minutes, hours, days, years, or tog lonthe nucleation of crystals is that on small droplets at corist
to be measured. Once nucleation in a system at constant sgupersaturation. We refer to this as isothermal crysaditia,
persaturation is quantitatively understood and modelhetit because to keep the supersaturation constant the temygeratu
predicting how nucleation occurs at varying supersatomati must be kept constant. The pressure, and in the case of solu-
(e.g., varying temperature) should be possible. tions, the concentration must also be kept constant. Ifthe s

Although control over crystal growth is also important, nu- Persaturation is varying with time then this will cause aref
cleation can probably define which polymorphs can form, annergy barriers to nucleation to also vary with time, gseatl
can set both the lattice orientatidand the size of the crystals complicating analysis of the data.
produced. Too fast nucleation can produce a shower of small Small droplets mean that only one nucleation event is
crystals when perhaps a single crystal is desired. Howevefeeded for crystallisation, and the crystal that resuttsifthis

if nucleation is slower than the experimental timescalenthe €vent can easily be observed. To accurately measure a nucle-
crystallisation will be prevented altogether. ation time, the time for the nucleus to grow large enough to

There is considerable evidence that nucleation is a ste;chals:’e observabldg, should be short, in comparison to the nucle-

tic process, i.e., there is randomness inherent in it. lrctma- 2ﬂggﬂ?gtN;Ow::;(rae?féeéltlh; grg?nglr S;t'g%emm'go?;p'ge
puter simulation of simple systems this is clearly true.nt t of order segonds or less. Then we can measurepthé cr )s/talli-
simulation of Fig. 1 was rerun the waiting time before nucle- ' Y

ation would not be the same. It could be 20,000 simulation?‘r’lt'on time and Fh's wil p_rowde agoo_d approximation foas_th
ime for nucleation (the time we are interested in), prodide
cycles, 300,000 cycles, etc.

T ) this nucleation time is at least around 10 minutes or more.
In molecular, ionic and metal systems, nucleation occurs on

time and lengthscales that are inaccessible to convehéana 21 P plot
periments: the nucleus is only briefly at the top of the barrie © (t) plots

and is then only a few molecules (and hence nm) across. Tha useful way to plot isothermal nucleation data is to plot the
nucleus in Fig. 1 is of a few hundred molecules, and if we concumulative probabilityP that nucleation hasot occurred as
vert from simulation to experimental time units, then itsge 4 function of timet. In experiment this is straightforward to
only nanoseconds near the top of the nucleation barrien,Als obtain. Some large number, perhaps 50 or more, nominally
the nucleation of a crystal is almost always heterogene@us, identical droplets are prepared, and then followed oveetim
it occurs on a surface in contact with the fluid. Typicallysthi The fraction of droplets in which nucleation has not ocodirre
is the poorly characterised surface of an impurity. Thiséfiw s then an approximation #®(t). The probability density that
established for the best studied system: ice nucledfioRor  nycleation occurs at a timep(t), is related tdP(t) by p(t) =
all these reasons, despite its importance nucleation ifypoo —dpP(t)/dt. It is in general probably better to work wif(t)
understood. rather tharp(t), because(t) will be noisier.

The structure of this review is as follows. The next section We can also define an effective nucleation rate as a function
introduces isothermal nucleation. The heart of this reviiew Of time, h(t), via the differential equation
sections 3 and 5. Section 3 reviews guantitative experiahent
data on isothermal nucleation, and section 5 reviews the mod dP(t) = —h(t)P(t) (1)
els that have been fitted to this data. In between these Bsctio ot

we briefly cover the classical theory of nucleation. which defined(t) as being the nucleation rate of those subset

Then there a few short sections highlighting particular fea of the droplets that are still liquid at tinte Note that equiva-
tures of the data or approaches to modelling it. This staitts w |ently, h(t) can be defined asi(t) = p(t)/P(t). The function
section 6, which points out that there are many results fl@m t h(t) is what is called the hazard function or failure rate in the
field of survival data analys®® that may be useful in the study field of survival data analysi$. See the textbooks of L&
of nucleation. Section 7 covers the important problem of howor Cox and Oakéfor an introduction to the statistics Bft)
nucleation times scale with volume, and section 8 hightight andh(t).
the common observation that the spread of nucleation rates i |f the effective nucleation rate is constahtt) = k. Then
often so large that it exceeds the dynamic range of the expethe solution to Eq. (1) is the simple exponential
iment. The final section is a conclusion and consideration of
future work. P(t) = exp[—kt]  exponential (2)
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Fig. 2 Plot of the probability that nucleation has not occuried), time /s
as a function of timet, for computer simulation of nucleation in a
simple lattice modél. Time is in units of computer simulation
cycles. The solid purple curve is at a supersaturation of Fig. 3 Plot of the logarithm of the fraction of unfrozen water
2h/KT = 0.16, and is for nucleation on a surface that is not changingdroplets,Ny(t)/No, as a function of time. The plot is from Duft and
with time (p = 0). The magenta dotted curve is a fit of an Leisne®, and is for the freezing of water droplets to form ice at

exponential function to thiB(t). The solid black and green curves T = 237.1 K. The green circles are for droplets of radiusj49,

are for nucleation on surfaces that are changing with time. The and the purple squares are for smaller droplets of radiysm9
surfaces are slowly dissolving, at ratgs= 10-° and Copyright 2004 Duft and Leisner. Distributed under Creative

rp = 2 x 1078, respectively. In both cases, the supersaturationis  Commons Attribution 3.0 license.

lower than for the purple curve ahZkT = 0.12. The brown and

turquoise dotted curves are fits of the function of Eq. (11) to the

black and greef(t)'s respectively. In all cases the simulatiB(t)'s  dh/dt > 0. Then IrP(t) curves downwards. All three classes

are obtained from 250 nucleation runs. From Ref. 7. Copyright are seen in experiment and will be reviewed here.
2014 Sear. Distributed under Creative Commons Attribution 3.0

license.
3 Experimental results on the isothermal nu-

o _ . cleation of crystals
We show the results of nucleation in a simple lattice model
(the lattice gas or Ising model) in Fig. 2. This is heterogerse | this section we review experimental results Rit) for the
nucleation, nucleation is occurring at a surface. The tesulisothermal nucleation of the crystal phase in small drepbet
for nucleation at a surface that is not changing with time isin small volumes in vials. We will mention some models, but
shown as the purple curve in Fig. 2. The curve is well fit by the models themselves are reviewed in the next two sections.
a simple exponentiaP(t) = exg—1.22x 10 %], so here the  |n this section, the work reviewed is divided up according to
nucleation rate i& = 1.22x 10~ ®/cycle (time here is in units  the class (I, Il or Ill) ofP(t) found. We start with the simplest
of simulation cycles). class, class | wher®(t) is a simple exponential.

An exponential decay oP(t) is expected whenever there
is a well-defined and time independent nucleation rate. Thu
when we review experiment&l(t) data below, when we see
a simple exponentid®(t) we state that this data provides ev- The 2004 paper of Duft and Leisrfas a particularly clear ex-
idence for a well defined nucleation rate. We call this Class lample of a system where there is evidence for a nucleatien rat
nucleation. Asin Class I nucleatiétit) is exponential, IiP(t)  that is well defined, and where in addition this rate is prepor
is a straight line, of slope-k, and the effective rath(t) isa  tional to the volume. If we look at Fig. 3 we see that if an ini-
constant. tial transient due to temperature-equilibration is exelilithe

We useP(t) andh(t) to define two more classes of nucle- plot of InP(t) is a straight line. Thu$(t) is a simple exponen-
ation, Class Il and Class lll. Class Il is where the effectivetial. Also, the slope of Ii? as a function of time is 16 0.6
rate h(t) is a decreasing function of timehddt < 0. Then times larger for the large droplets than for the small drgple
InP(t) curves upwards. Class Il is the opposite case, wher&he ratio of the volumes of the two droplets is2% 0.8, and
the effective nucleation rate is an increasing functionimkt  so the data is consistent with a nucleation rate that scales a

31 Classl: exponential P(t)
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Fig. 4 (a) to (c) The logarithm of the fraction of droplets not crystalligeslt) /No, as a function of timé. The droplets are of the polymer
polyethylene oxide (PEO), and they are on polystyrene (PS) substfaisss the work of Carvalho and Dalnoki-Verésdhe different
curves in each plot are for droplets of different sizes, as measyrdte areas of the substrate the PEO droplets cover. These areagare g
in the keys of (a) to (c). (a) Droplets of PEO on smooth amorphoudRS+{2°C). (b) PEO on a rough crystalline PS substrate{4°C).

(c) PEO on an even rougher crystalline PS substiite (0°C). The crystalline substrates are annealed at different tempergtiras 185
and (c) at 175C, to create the different roughnesses. The variation in nucleation @feaswith droplet radiuRR is plotted in (d). The
timescaler = one over the slope of [INa(t)/N). The nucleation timescale varies approximately as one over the dropleter¢n = 2.9) for
droplets on the smooth substrate, as one over the dropletrared.{) on the rough crystalline substrate, and as one over the radiu4.Q)
on the even rougher substrate. Copyright 2010 by The Americarid@h@ociety.

the volume. The rate per unit volume is of ordet4m3/s, or  droplets of the polymer poly(ethylene oxide) (PEO). Again
10-24nmé/ns. this data is consistent with homogeneous nucleation.

As Duft and Leisner state, this provides good evidence that The second study | wish to discuss in detail is by Car-
the nucleation is actually homogeneous nucleation. Nate th valho and Dalnoki-Veress who studied the crystallisation of
this is at the low temperature df = 237.1 K (-36 C). At  small (of order 10um across) PEO droplets on three differ-
higher temperatures water freezes via heterogeneous-nuclent polystyrene (PS) substrates. ResultsH@ are shown
ation®. However, note that even here, this behaviour is alsdn Fig. 4. They also studied the crystallisation of polyethy
consistent with nucleation on microscopic impurities vbhic lene'3. In most cases IR(t) is, to a reasonable approximation,
are present in the water at a fixed concentration, and wherg straight line, indicating a well-defined and time-indegemt
the spread of nucleation barriers is small nucleation rate. Note that these plots are all for only aestdifs

But if we assume that indeed this is homogeneous nuthe droplets studied. In each experiment some droplets crys
cleation, then a rate per unit volume of order #inm/ns tallised on cooling from high temperatures to the tempeeatu
implies a free energy barrier to homogeneous nucleation oftudied in that experiment, and some crystallised in thé firs
aroundkT In(10°%) = 55KT. This assumes a molecular vol- 400 s of the experiment. All these droplets were disgarded.
ume of 1 nni and a molecular timescale of 1 ns. So evenThus the complete sets of droplets do not have a well-defined
though nucleation is rapid here (within seconds, see Fig. 3hucleation rate, presumably due to some of them having im-
there is a still a substantial free-energy barrier. purities that are very active at inducing nucleation. Hosvev

The work of Duft and Leisnéris a good example of how for a subset of the droplets it is possible to define a nudeati
to use quantitative experimental data to provide evidehae t rate, via the plots in Fig. 4.
nucleation occurs according to the standard classicakenucl For PEO droplets on a smooth PS substrate, this nucleation
ation theory picture for homogeneous nucleation. They showate was found to scale as the volume of droplets. The scal-
both that a rate is well defined and time independen®P(8s  ing is shown in Fig. 4(d). It is consistent with homogeneous
is exponential), and that it is proportional to the volum®aa nucleation and is just what Duft and LeisAdbund for ice
homogeneous nucleation rate should be. This is obviously syFig. 3). On two different rougher PS substrates, Carvalttb a
perior to just asserting that nucleation is homogeneous$i-wi Dalnoki-Veres$ found nucleation rates that scaled as droplet
out providing evidence, which a number of other authors doarea in one case, and droplet linear dimension in the other.
It should be noted that this work is far from the first work to This is shown in Fig. 4(d). The scaling with area was found
see a clean exponential dependencePfoy. For example, in  for the less rough of the two rough PS surfaces. A nucleation
1974 Miyasawa and Pourtifound similar behaviour for the rate that scales as droplet area is consistent with nucteati
crystallisation of liquid gallium. on a reasonably homogeneous interface. As the only inter-

Massa and Dalnoki-Vere$$also found exponentially de- face that changes between the data of Fig. 4(a) and (b) is the
cayingP(t) curves, with slopes that scaled approximately withPS/PEO interface, this suggests that the PEO crystals in (b)
volume. This was for the nucleation of the crystal phase inare nucleating at the interface between the liquid PEO amd th
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Fig. 5 AFM images of crystallised PEO droplets on PS substrates,
from Carvalho and Dalnoki-Vere8sThe droplets are about@n

across. (a) is a droplet on a smooth amorphous PS substrate. (b) and
(c) are droplets on the rougher of the two crystalline substrates. The

arrows indicate assumed nucleation sites, which are at the edges of 0.0+ T T T T T T T
the droplets for (b) and (c). Copyright 2010 by The American 0 200 400 600 800 1000 1200 1400
Physical Society. Time (min)

Fig. 6 Plots of the probabilityP that nucleation has not occurred in
a droplet, as a function of time. This is the work of Dietal . 1°,
rough PS substrate. and is for the nucleation of aspirin from solution. The solvent is a
) mixture of water and ethanol. The supersaturation is 2.1. Polymer
On a PS substrate with a larger roughness, the rate scal@sicrogel particles are added to the solution in all three cases. The
with the linear size of the droplet. This is the behaviour ex-polymer is poly(ethylene)glycol diacrylate (PEGDA), made with
pected when nucleation occurs on something that is propotPEG of varying molecular weights: 200, 400 and 700 g/mol. The
tional to the diameter of the droplet. The obvious objechwit microgel particles were added to induce nucleation. The curves are
size proportional to the diameter is the contact line at thgee  fits of the Weibull function, Eg. (3), to the data. The valuegaire
of the droplet where the PEO/air interface meets the PEO/P852, 069 and 086 for polymer made with PEG molecular weights
interface. Studies of the final crystallised droplets viamsit ~ ©f 200, 400 and 700 g/mol, respectively. Reprinted with permission
force microscopy (AFM) are consistent with this idea. AFM oM Ref. 19. Copyright 2012 American Chemical Society.
images of crystallised PEO droplets are shown in Fig. 5. It
appears (Fig. 5b) and c)) that on the roughest substrate the _ ) , )
droplets started to crystallise from a point on their edge. 3.2 Classll: decreasing effective nucleation rate

It is not known why on the rougher substrates, the dropletUr first éxample of a system with a decreasing effective rate
should crystallise at the contact line. The nucleationibarr N(t): iS shown in Fig. 6. This is the work of Diaet al.™
can be lower at a contact line than at an interf4é& but it~ ©" the nucleation of crystals of aspirin from solution. Diao

is not clear how changing the substrate roughness will affec@d coworkers have also studied other systems, such as the
this. The nucleation of ice has been studied at contact lined"0/ecules ROY and paracetamol, and also fo_und4results where
where the air/water interface hits a solid surface. Howeverthe effective rate is a decreasing function of e

mixed results have been found in the sense that some stud- In most of the work reviewed here, nucleation is presum-
ies find nucleation preferentially at the contact fiflewhile ~ ably occurring on either impurities in the solution or at & su

other studies do nét-18 See Gurganus et &% and my earlier ~ face in contact with the solution. The work of Diabal.™®
review!S for discussion of this point. is an exception. They deliberately added particles of advydr

gel to their solutions to induce nucleation. Material adtted

Finally, both Jiang and ter Hor&, and Quoret al.?> also  provide surfaces for nucleation is sometimes called a nucle
found approximately exponenti®(t)’s. In the case of Jiang ant’? Nucleants are particularly common in proté&r?®
and ter Horst this needed a small time offset, to account foand ice crystallisatioh?2%-32 Often the surfaces of the nu-
growth. The results of Jiang and ter Hdfstand Quonet  cleants are both disordered and poorly characterisedyiee.
al.?! are also consistent with well defined nucleation ratesknow little more about them than we do about any impurities
that are in the thermodynamic limit. Jiang and ter HoR8t's that might be present. However, progress is being made at
data is on the crystallisation from solution of the molesule characterising these surfaé8$%-33 and here at least we have
m-aminobenzoic acicdh-ABA) and L-histidine (L-His), while  a good idea what nucleation is occurring on. So nucleants are
Quonet al.’s?! is for crystallisation of the drug paracetamol a promising way to improve our understanding of the mecha-
(also called acetaminophen). nism of nucleation.
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0.0 ————————— 20 It is the exponential of a power law, with exponghtThe pa-
T,=262.15K 115 rameterr is a timescale that is related to the median nucleation
-0.5 time, tuep, by T = twep/(In2)YA. The Weibull function is a
10 two-parameter cumulative distribution function. e 1 it
—~ -1.0 reduces to a simple exponential. For a Weibull, the effectiv
2 1 T nucleation ratéa(t) = BtP-1/1B. Forp < 1, the effective rate
o 5 2 . o .
= -1.5 AT S h(t) decreases monotonically with time, so then nucleation is
= 1 —A— Experimental data =  Class I, while if 8 > 1, h(t) increases with time, so then nu-
= -2.0H cleation is Class IlI.
I Expected decay at Tiso £0.4K - o The best fit values fop found by Diaoet al.1® were all
2.5} = Assuming uniform species less than one, so their all their data is in Class II. It is Wwort
i Assuming diverss species noting that whenB < 1, the Weibull function is also known
'3-00 20 40 60 80 100 12(1) by other names. It is often called a stretched exponéfitial
Also in the study of glassy behaviour it is sometimes called
Time / minutes a Kohlrausch or Kohlrausch-Williams-Watts function. When
B > 1 the Weibull function is also called a compressed expo-
nential.

Fi. 7 Plot of the logarithm of the fraction of a set of water droolets VO all Diaoet al.’s1° data was well fit by a stretched expo-
'g. 7ot ot the logarithm of Ihe fraction of & set ol waler Aropiels o yiial, some was better fit by the sum of two exponentials. As
that are still liquid, fiquid, as a function of time. This is the work of .
a sum of two exponentials has three parameters, one more than

Herbertet al.25. The water droplets contain the mineral the Weibull has. this is h 2 fai : But it
potassium-feldspar added to induce nucleation. The right-hand axis € Vveibull has, this 1S however not a fair comparison. butl

shows the actual number of droplets of water that are still liquid. ~May Well be that in some of their data there are two types of
This is at a temperature of 262.15 K. The experimental data is droplet, each with a well defined but different rate, and then
shown by the red triangles. The dashed curve is the prediction of a P(t) will genuinely be the sum of two exponentials. A sum
model fit to data at constant cooling rate, between approximately ~of two exponentials is always in class’ll Earlier work by
260 and 265 K. This model incorporates a spread of nucleation rateKabathet al. 3 on the nucleation of ice, also found two slopes
between the droplets (quenched disorder). The solid curves are  and hence possibly two rates.

predictions of a model that assumes that the rate is the same in all Although the work of Duft and Leisné&ron the nucleation
droplets, and so thdfiquiq decays exponentially. The two solid of ice (Fig. 3) found a well-defined nucleation rate, otherkvo
curves are obtained for data at two different constant cooling rates, on ice nucleatio®37 has found a rate that decreases with

0.2 and 2 K minL. The shaded areas indicate the uncertainty in . .
predictedfjqig curve due to uncertainty in the measured time. BfOth V_Veltlet al.*" and Herberet ?1.25 found that f[hey
temperature. Copyright 2014 Herbettl.. Distributed under could fit the!r data reasonably well with models that mc]ude
Creative Commons Attribution 3.0 license. quenched disorder. Results from Herletrl. 2° are shown in

Fig. 7. We see that Ifjiqiq(t) = InP(t) is far from a straight

line. It curves upwards. In this work the mineral potassium-

If we focus on the data plotted in red, we see that aroundeldspar was added to the water droplets to induce nucteatio
20% of the samples crystallise inside around 50 min but thaT his mineral is common in the atmosphere and affects ice nu-
almost 40% of the samples have still not crystallised after a cleation there. Instead of fitting this curve directly thetefi
most 1400 minutes. Thus the nucleation times span two ordeit¢ data obtained at a constant cooling rate, over a temperatu
of magnitude and more. This is very different from nucle-range of 4 K that includes the temperature of this experiment
ation at a constant rate whelP&) is exponential and the stan- The model used includes quenched disorder, and we see that
dard deviation of nucleation times is equal to the mean. Herd predicts the time dependence Bft). This model relates
as not all the samples crystallised we cannot even calculateucleation data at constant cooling rate to isothermal data
the standard deviation or mean of the nucleation time. This Knezic et al.38 also found aP(t) with an effective nucle-
implies that work that does not reportP4t) but does report  ation rate that was decreasing with time. This was for the
both a mean nucleation time and a standard deviation, wouldrystallisation of the protein lysozyme from solution, @vi-
be inconsistent with a well-defined constant rate if theorati tated droplets. Their data is shown in Fig. 8. They also found
standard-deviation/mean is significantly different froneo that a Weibull function with3 < 1 provided a reasonabile fit to

Diao et al.1? fitted a function called a Weibull function to the data. Their best fit value f@ was = 0.6. This work,

their data. The Weibull function is in 2004, is the earliest work | am aware of that fitfe() data
with a Weibull function.
P(t) = eXP[—(t/T)B} Weibull 3) However Knezicet al. were far from the first to observe an

6| Journal Name, 2010, [vol] 1-?? This journal is © The Royal Society of Chemistry [year]



In (NIN,)

C Experimental data

Exponential decay [In{N/N,) =y, + A%]
—— Tumbull [In{N/Ny) = A*]

—— Two step [In(N/N,) = A*t"]

T T T T
0 20 40 60 B0

time [min]

Fig. 8 Plot of the logarithm of the fraction of droplets that have not

crystallised, as a function of time. This is the work of Kneatic

al.38, and is for the nucleation of the protein lysozyme in solution. N

Thfee _fits to the data are shown. A simple exponential, Eq. (2),_ 0 1000 2000 3000

which is the brown curve labelled ‘“Turnbull’. A simple exponential t (s)

with a time offset, which is the green curve labelled ‘Exponential

decay’. A Weibull function, Eq. (3), which is the blue curve labelled

‘Two step’. For this fit,3 = 0.6. Reprinted from Ref. 38 with Fig. 9 Plots of (a), the probabilit, and (b), IrP, both as a function

permission. Copyright 2004 American Chemical Society. of time. This is the work of Lavadt al.4%, and is for the nucleation
of potassium nitrate crystals in water, at a concentration of 40 g of
potassium nitrate added to 100 g of water. From top to bottom the

ggurves are at temperatures 3.8, 2.8, 1.9, aBt The solubility of
potassium nitrate descreases with temperature so the lower the

effective nucleation rate that decreased with time. Over
yea_trs beforg them, Pound and La ﬁl%_stughed the crystalli- temperature the higher the supersaturation. The fits to the data in (b)
sation Of.OXIde coat_ed droplets of liquid tin. Thgy also fdun are of the Pound-La Mer model, Eq. (7). Reprinted from Ref. 40

an effective nucleation rate that was a decreasing funcfon i, nermission. Copyright 2009 American Chemical Society.

time. To model this, they developed the Pound-La Mer model

for P(t). We will discuss this model in the model section.

The Pound-La Mer model was also used by Laatakl °. cleation times in the simulation data of the purple curve in
They used it to to fit data on the crystallisation of potassiumFig. 2. Quenched disorder is disorder, i.e., randomness, du
nitrate from aqueous solution. The results of Lastadl. are  to fixed, i.e., time-independent, variability in the imgies
shown in Fig. 9. Also Teychénand Biscarfs used the model present in droplets.
to fit data on the crystallisation of elfucimibe from octasot For example, if nucleation occurs in droplet 1 before drople
lution. Elfucimibe is a pharmaceutical molecule. In bt}At 2, we do not immediately know if this is because just by
cases the Pound-La Mer model fits the data well, althouglthance the nucleation fluctuation occurred earlier in dropl
it should be noted that as this model has 3 parameters (onfan droplet 2, or if droplet 1 has an impurity particle irhiait
more than Weibull and two more than a simple exponentiallmakes a large contribution to the nucleation rate, but etopl
we should expect it to fit well. 2 does not. In the second case but not the first the nucleation

A weakness oP(t) plots is that they do not directly dis- rate is different in droplets 1 and 2.
tinguish between what is called thermal disorder, and whati A direct way to distinguish between quenched and thermal
called quenched disorder. Thermal disorder is disordeicfwh disorder is to do multiple crystallisation runs on the samte s
is just another word for randomness here) in the time nucleef droplets. To do this, care needs to be taken to test for
ation occurs in a droplet due to the fact that nucleation is any significant changes in the droplets when crystalligatio
thermal fluctuation. This is the disorder seen in spread of nuoccurs, and that after one crystallisation run, the crygstaé
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(a) each cycle did not drift (evidence that the nucleation sitere
not being altered by crystallisation and dissolution), et
varying the temperature and time used to dissolve the crys-
10+ tals did not change the results in the next cycle (evidenae th
the crystals dissolved completely erasing any memory otwha
ot , , , occurred in the previous cycle). Their results are in Fig. 10
0 1000 2000 3000 When the sample is crystallised multiple times the thermal

t(s) disorder will be different each time but the quenched disgrd

: by definition, remains the same. Essentially, the barregysst

the same but the time to cross still has random variabilgy, a
crossing is a thermal fluctuation. Haymet and coworkers have
also studied? this, for the freezing of water, but they worked
at constant cooling rates.

Laval et al. 0 performed 7 crystallisation runs (by cycling
the temperature) on a set of about 160 droplets. On average in
a single run a fraction.Q9 of the droplets crystallised. If there
is no quenched disorder in the system then all 160 droplets ar
equivalent and so equally likely to crystallise in any givan.
Then the probability that a randomly selected droplet crys-

20

T (°C)

0.6 (b) tallisesnc times in total in the 7 experiments is just given by
04 the standard expression from combinatorics
o 71
02 pg(Ne) = —————-0.19%0.81" " (4)
ne! (7 —ne)!
0 2 4 6 This function is plotted as the solid squares joined by lines
o in Fig. 10. The experimental data is shown as a histogram.

Clearly the prediction assuming no quenched disorder ig ver
. ) e far from the experimental data. This large difference rules
Fig. 10 Results from an experiment by Lawlal.”" to directly out the possibility that the droplets are all equivalentef&h
obserye time-independent droplet-to-droplet variability. The is quenched disorder present; there is droplet-to-droaiet
experiments are done on a set of approximately 160 droplets of ability that is independent of time, i.e., is present froneon
potassium nitrate solution (produced using microfluidics). Part (a) Ty
Jemperature cycle to the next.

has two parts. The top part is the temperature profile as a function i . . o

time applied to the set of droplets. The temperature is cycled seven Ve €an approximately quantify the relative contributiohs o
times between a high supersaturation maintained for a fixed time tothermal and quenched disorder as follows. If quenched-disor
drive crystallisation, and undersaturated conditions to dissolve the der dominated thermal disorder then a particular dropledevo
crystals before the next cycle. The bottom part of (a) is 6 either freeze O times or 7 times, i.e., freezing of a droplet
(14 x 25 mn?) images taken of the set of droplets at the point on thewould be completely predictable after the end of the first-tem
temperature profile indicated by the circle, the diamond, the triangleperature cycle. Here, about 70% of the droplets froze O or
etc. Each of these images is taken at the end of the low-temperaturg times, leaving only 30% where thermal disorder apparently
part of a single temperature cycle, when nucleation has occurred i“played arole. Itis worth noting that in the literature once
about one fifth of the droplets. The image is taken between cross  |a5tion at constant cooling rate, extensive§€83137:44-47

polarisers and so (only) the droplets with crystals appear as bright is made of models which have quenched but no thermal disor-
spots. Images are shown for only 6 of the 7 temperature cycles. Par . ,
er. These are callédsingular’ models.

(b) of the figure is the functiopg(nc), the probability that a droplet .
crystallised exactly. times in the 7 cycles. The experimental data In other systems cycling the temperature and so repeatedly

is shown as the histogram, while the squares joined by lines is the Crystallising and then melting may change the system. | am
theoretical prediction, Eq. (4), in the absence of quenched disorder.n0t aware of any study of the effect of cycling &t), but
Reprinted from Ref. 40 with permission. Copyright 2009 American Durant and Sha#? observed an effect of cycling on the freez-
Chemical Society. ing temperature of water droplets. It appears that injtitie
droplets had small air bubbles inside them. These bubbles af
fected nucleation, but they were expelled by repeatedaliiyst
completely dissolved before the next run. Laeahbl.*? did  sation cycles. Further cycles in this system caused pesttol
this. They checked that the mean number of crystals found imove from the bulk of the water droplet to its surface and this
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time (1 043) Fig. 12 Plot of the fraction of vialdN/Ng (on a logscale) in which
nucleation hasot occurred, as a function of time. This is the work
of Kim et al.*9, and is for the nucleation of RDX crystals from
Fig. 11 Freezing kinetics at four different temperatures, for tin acetone solution, in 3 ml vials. The black squares are data for just
nanoparticles, from the work of Schwirtlal. 3. The nanoparticles ~RDX in acetone, while the other symbols are data where in addition
are on a sapphire substrate and are coated with. Siley are different amphiphilic molecules were ad_ded to affect the nucleation.
approximately 100 nm across by 50 nm H§hPlotted is the Solid curves are fits of the Weibull function, Eq. (3), to the data, and
normalised difference between the localized surface plasmon dashed curves are fits of a simple exponential, Eq. (2), to the data.

resonance (LSPR) signal when all droplets are crystal and the LSPReprinted from Ref. 49 with permission. Copyright 2013 American
signal when they are all crystalline. Assuming that the droplets Chemical Society.

contribute independently this B(t). The data do not fall on simple

exponential curves. The data was fitted using a power-law function,

1/(1+rt)". The fitted parameter valuesandr are as follows: time, h(t) = nr/(1+rt), which is a decreasing function of
0.782 and 898x 10°° s~ 1 (1003°C); 1.42 and 296 x 104 s 1 time. Thus, to the extent that this function fits the data well
(97.1°C); 249 and 267x 10~* s~ 1 (95.1°C); 5.94 and the nucleation here is in Class Il. Techniques such as LSPR
2.40x 10~4 s71 (94.3°C). Reprinted from Ref. 43 with permission. mean that, at least in some systems, we can study nucleation
Copyright 2010 American Chemical Society. kinetics down to very small droplet sizes.

also affected nucleation. Any work that cycles the systeim in 3.3 Classlil: increasing effective nucleation rate

and back out of the crystalline state, for example to tesfer A nucleation rate that increases with time will result in atpl
affects of quenched disorder, will need to carefully chexk t of InP(t) curving downwards. Examples of this behaviour are
see if proccesses similar to those seen by Durant and Shaw afgre, but Kimet al.*° find just such behaviour for the crystalli-
occurring. sation of the explosive RDX from acetone solution. Their re-
In all the experiments we have reviewed so far, crystallisasults are shown in Fig. 12. The only other examples | know of
tion was observed by direct observation of the crystals éatm are those of Weidingeat al °, Toldy et al.>! and Boinovich
using optical microscopy (sometimes with crossed polariset al.>2. Note that theP(t)’s plotted in Fig. 12 are initially
ers). For nanoscale droplets, less than the wavelengtbtdf li almost horizontal and close to one, indicating very little n
across, direct visual inspection of crystallisation is pos-  cleation, and then curve downwards, dropping more and more
sible. However, Schwindt al.*3 used the difference in lo- steeply as time increases. The effective nucleation rae is
calized surface plasmon resonance (LSPR) signal between thapidly increasing function of time.
liquid and crystal states, to follow isothermal crystatisn in In Fig. 12, Kim et al.*® have fitted both simple exponen-
tin nanodroplets. Their results are shown in Fig. 11. tial functions (dashed curves) and Weibull functions ol
It appears tha(t) is not a simple exponential for these very curves). For the Weibull fits, Kinet al.*° obtain best fit val-
small crystallising systems. They fit a two-parameter fiomct ues of 8 that are greater than one, indeed they find values
of the formP(t) = 1/(1+rt)" (n,r > 0) to their data. This up to~ 5.5. This is true without additives (black squares),
corresponds to an effective nucleation rate as a function ofvith solutephilic polymer molecules added (green diam@ands
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and with amphiphilic molecules added (the other data ppints the droplet surface will affect nucleation thépe4->7
Thus although the additives do affect the rate they do not af- Thus, as Weidingeat al °© note, it seems possible that here
fect the qualitative shape of tH&t) curves. It is not known the nucleation rate is low until a surface phase transition o
why the additives have this effect. Weidingaral.®C fitted ~ curs, which then greatly increases the nucleation rates Thi
their data for the freezing of the alkangs83, with a func-  would be consistent with the Class Il behaviour observed.
tion close to a Weibull and used values of 2 and 3, for theSuch a mechanism may even be common. In many systems
equivalent parameter 6. surface phase transitions may go unnoticed, for example if
For B > 1 the effective nucleation ratgt) is an increasing they occur on the surfaces of small impurity particles. This
function of time, so this is Class Ill nucleation. Whgn>1 is worth further investigation.
the slope of the Weibull function tends to zerotas 0, i.e., Finally, Toldyet al.5! see similar behaviour to Kiret al.*°
there is an initial plateau at short times. We see that thisife ~ and Weidingeret al®C. They studied glycine crystallising
is clearly present in the data in Fig. 12. The larger the vafue in solution, but in the work of Toldyet al. the crystallis-
B, the longer the initial plateau, in relation to the time take ing droplets may not be independent of each other. They
for nucleation to occur oncB(t) starts to drop. So the large sometimes observe that once one droplet has crystallisenl, t
best-fit values oB are due to the long initial plateau followed neighbouring droplets may crystallise. This means drsplet
by a steep drop. We discuss the Weibull function in the modelsire not independent, which can give an effective nucleation
section. rate for the ensemble of droplets that increases with tiven e
It is worth noting that the Gompertz function (see Eq. (10)when the rate in an isolated droplet may not be increasirty wit
in the models section) fits the data of Kiehal.*® approxi-  time. This effect complicates understanding the nucledie
mately as well as the Weibull functi6h The Gompertz func- haviour.
tion has the same number of parameters as the Weibull (two),
and it looks qualitatively like the Weibull witi8 > 1. The 4
Gompertz function can be derived, see section 5.2, from the
assumption that the rate is an exponentially increasing-fun
tion of time.

The Classical Theory for the Nucleation of
Crystals

As Ki a.49 h d nucleation time is th The standard theory for the nucleation of crystals is classi
s Kim et al.”™ note, the measured nucleation time IS the . 1, \cjeation theor55:58 This assumes that nucleation is

time to first observe a cry sta.l in the SOIUt,'On’ and this wii d an activated process where the rate is low because there is a
fer from the true nucleation time lty, the time needed for the . energy barrier to nucleatid®*. By low we mean that

nucleated crystal to grow large enough to be visible. Thiss it 0 imescale for nucleation can be seconds, hours or more,

difficult to rule out some of the width of the initial plateaw i . is many orders of magnitude larger than the nanosec-

P(t) being due to this growth time. Itis also possible that SOMey 4 timescale for the dynamics of molecules in solution.

of it may be due to time taken for the sample to equilibrate at The classical nucleation theory prediction for the nuateat

the temperature of the experiment, from the higher tempera : L 558
. o . ‘rate of homogeneous nucleatidom, is given by
ture used to dissolve the RDX. Note that in Fig. 3 there is a . oM 1S9 y

short initial plateau that is believed to be due to tempeeatu Ruom = MjZexp(—F /KT) (5)
equilibration.

Thus, due to the nature of tHR(t) curves it is harder to | define homogeneous nucleation to be nucleation where the
demonstrate that there is an increasing nucleation ratettha nucleus consists just of the molecules of the new crystagha
demonstrate that there is an decreasing nucleation rate. Dand where the nucleus is not in contact with anythiRg.is
lays due to the time for crystals to grow large enough to bethe free energy change on forming a nucleus at the top of the
observed, and due to the time required for temperature equbarrier, in the bulk of the liquid. In Eq. (5M is the num-
libration are alternative sources of an initial plateadP{h) at ~ ber of molecules of the crystallising substangés the flux
short times. of monomers onto a critical nucleus, aAds essentially the

Earlier work by Weidingeet al.>° not only also observed an probability that the critical nucleus goes forward into tiesv
initial plateau inP(t) but they observed changes in the dropletphase not back into the metastable pRase
during that plateau, and proposed a plausible mechanism for If the nucleus is in contact with anything or contains an-
the plateau. Their work is on the freezing of levitated detgl other species that alters the barrier, | call that heteregas
of the alkane @Hs,. Interestingly, they observed changes, nucleation. See an earlier reviéwfor a discussion of the as-
probably in the surface of the levitated droplet, prior té nu sumptions that are made to derive Eq. (5).
cleation. It is knowri®>* that alkanes can undergo surface But as we have seen, nucleation is rarely homogeneous.
freezing. Surface freezing is a surface phase transiticgrevh Nucleation is usually heterogeneous, it occurs at a sur-
surface layers can crystallise before the bulk. Any charge dace®19:2255.59.60  Thjs surface may be of a nanoscale
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of the experiment the surface is not changing with time, then
theF* are fixed.

I 8 In practice we are never in a position to calculate the sum in
lz Eq. (6). The surfaces nucleation is occurring on are tylical
= o very poorly characterised. And without knowledge of the sur
L Im\purltles 7 face geometry and surface chemistry we cannot calculate the
Q. i \\ | However, for disordered surfaces tRé should be random
- variables drawn from an (unknown) probability density func
— tion p(F*). We show a schematic of a possible probability
n | density function for the site barriers in Fig. 13. Even witho
‘ L ‘ knowing anything about the distribution of nucleation s,
0 50 100 *150 200 250 300 we can say that there are two qualitatively different palsib
F* /KT ties.
The first possibility is that a numbey- 1 of the N terms
Fig. 13 A schematic plot of the log of the probability density contribute _significantly to the sum. Ther’! the C_Iemra| liméa-
p(F*/KT) of free energy barriers to heterogeneous nucleafién, rem of statistics tells us that the fluctuation&jget from one
The plot is just a simple illustrative probability density, meantto  droplet to another, due to variations in the impurities lestw
show possible features of a distribution of nucleation barriers. the droplets, will average out. The rate of heterogeneous nu

lllustrated is an effectively delta-function peak at large barriers for  cleation will then be in the thermodynamic limit, and so be th

nucleation at a free liquid surface, a broader peak at lower barriers same for all droplet¥. Nucleation will then be in Class I.

due to nucleation at a contact line, plus a tail at low barriers, due to The second possibility is th&&er is dominated by one or

Impurities. a few terms with the lowest free energy barrfé®. Then
the variability from one droplet to another will not average

objec859  These surfaces are often rough and disor2Ut and_dlffer_ent drople_ts will have different nucleati@tes.
Nucleation will then be in Class 1.

dered1927593nd the nucleation rate at a surface is very sen-
sitive to almost all details of local surface chemistry ard g
ometry!>33:61-64 Thys there will only be a single nucleation 5 Models

barrier at a totally flat smooth edgeless surface. On a rough

surface there will be not one barrier but many different aucl Nucleation of crystals appears to be quite complex. But, ex-
ation barriers. The barrier will be high at points on theacef ~ perimental data in the form d®(t) curves is typically only
where it is difficult for the nucleus to form and low at points enough to adequately constrain the parameter values of a fit-

where it fits well onto the surface. ting function with two or at most three parameters.

Thus, within classical nucleation theory, the nucleatite r So with the data at hand we need physically reasonable but
RueT, in the presence of rough disordered surfaces is giversimp|e models, models with no more than three parameters.
by?7:65 As nucleation appears to be complex, these models will be at

N least a little, and sometimes a lot, wrong. But as the distin-
Ruer = _leizi exp(—F"/KT) (6)  guished statistician George Box séidEssentially, all mod-
= els are wrong, but some are useful”.
wherej;, Z andF* are the fluxZ-factor and free energy bar- In this spirit we will outline some physical motivation for

rier for nucleation at sité. The sum is over alN nucleation the models, and then review some wrong but hopefully use-
sites on the surfaces in contact with the molecules of the ligful models. In the field of ice nucleation some quite complex
uid. The sites can be at any surface in contact with the liguidmodels with quenched disorder are u$ett 3746 These are
for example, the surface a droplet is sitting on, or that gfum  often based on classical nucleation theory, sometimesrassu
rity particles either within the liquid or at the liquid’sgace.  ing perfectly planar substrates and then taking effectie ¢
Each nucleation site should be around the size of the crossact angles for the nucleus from an imposed probabilityrieist
sectional area of the critical nucleus, which for molecsim-  bution®”-46. | will not review those here.
tems and metals should be roughly of order tens of.nm We assume that classical nucleation theory is correct in
As the nucleation rate varies exponentially with the barrie assuming that nucleation involves a rare thermal fluctoatio
ata site*, itis reasonable to assume that the variation in ratecrossing a free energy barrier. Essentially exact comysirter
from site to site is dominated by the variationRyi, i.e., that  ulations have found this to be true for many different simple
we can neglect any variability ojy andZz;. If over the course model$>61.62.6467 Then if there is just one barrier and it is
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not changing with timeP(t) is exponential anti(t) is a con- Mechanism| h(t) Class

stant. However, we have seen tlt) is frequently not a Model | A B ]

constant. There are two obvious sources of time dependence exp v

in h(t). We label them A and B. They are: P-LaM v v
Gompertz| v v v |V

A The nucleation rate is not the same in all droplets. This Weibull | v v Vv

means that the rate is not in the thermodynamic Rfhit
Consider a very simple example df = 100 nominally  Table 1 Comparison of the different functions used to fit nucleation
identical dropiets_ In 50 there are impurities with a nu- data. In the left-hand column we list the functions while in the
cleation rate ok = 1 h—l, and in the other 50 there are, by remaining columns we use ticks to indicate the physical

chance, different impurities which yield a nucleation ratemechanisms that can give rise to that function, and the nucleation
of k= 0.1 h~L. Over the first hour, very few of the droplets ¢/ t© Which they belong.

with the slow rate will nucleate, but many of the droplets

with the fast rate will nucleate. So then the effective nu-

cleation rate will be approximatelfl/2) x 1 = 0.5 h™Y. 51 Pound-LaMer model

However after 10 h almost all the droplets with the fast _

rate will have nucleated and so will not be contributing to The model proposed by Pound and La ¥feis a model for
the nucleation rate. Then the rate will be dominated bya rate that is not in the thermodynamic limit, i.e., it assame
the slow nucleating droplets, and so the effective rate willphysical mechanism A, and so givedhd) that is always in
now be close to @5 h~L. The effective nucleation rate has Class Il. It is a model for nucleation affected by a handful of
dropped. This was just a toy example, in general there wilimpurity particles per droplet. It is based on the idea tiiat a

be a distribution of rates, but this does not change thetresuimpurity particles are the same but that droplets contaiit va
that here nucleation is in class¥l able numbers of these particles. It makes two assumptions

1. Only one type of microscopic impurity particle is present
and it is randomly (Poisson) distributed among the
droplets. All impurity particles of this type make the
same contributiork, to the nucleation rate.

B The nucleation rate is the same in all droplets, but in all
droplets it is evolving with time, either increasing or de-
creasing. For example, if nucleation is occurring on a sur-
face and that surface is changing with time, then the nu-
cleation barriers and hence rates will change with fime 2.t a droplet has no impurity particles in it, then its nucle
An example of this, but in a simple lattice model, not for ation rate iskg < k.
the nucleation of crystals, is shown in Fig. 2. The black
and green curves in Fig. 2 shai(t) for simulations of =~ The Pound-La MeP(t) is given by?9-#
nucleation on a slowly dissolving surface. Note that this
time-dependent surface causes the effectivehibeto in- P(t) = exp[-m(1-exp(—kt))]  Pound-La Mer
crease with time. Surfaces can change irreversibly over +  exp(—m) [exp(—kot) — 1] )
time®8-:69 for example initially smooth smooth metal sur-
faces can corrode and become pifiéd Also, if even a  wheremis the mean number of impurity particles per droplet.
fraction of the molecules are themselves changing, e.g., by In the Pound-La Mer model, the droplets have a range of
aggregating, that can also affect the Pdteand hence if  different nucleation ratesg (zero impurity particles)k (one
this occurs on the timescale of the experimédrit) will impurity particle), X (two), 3 (three),.. ., and so the effective
vary with time. Microscopic changes in surface geome-nucleation raten(t) is a decreasing function of timfeé The
try15.61-64can change nucleation rates on the surface bymechanism here is that the droplets with the largest nunfber o
orders of magnitude. impurity particles nucleate at early times, resulting ng&ob-

served nucleation rates, while at longer times only theldtep
We have now outlined the two most obvious physical mechwith a few or no impurity particles are left to contribute het
anisms for a time dependent effective rate. Of course both manucleation rate.

be true of a system although here we will only consider mod- Whenmis of order one or smaller, the nucleation rate is not

els where one dominates. We will now outline three modelsn the thermodynamic limit, and so varies dramatically from

that go beyond the simple exponential model, and are used tone droplet to another. As — o the thermodynamic limit

fit P(t) data. The models and mechanisms are summarised is recovered. In that limit nucleation occurs at times atbun

a simple table, Table 1. We start with the earliest model, the = 1/(mk). Then exg—kt) ~ 1 —kt, and the Pound-La Mer

Pound-La Mer model. P(t) reduces to the simple exponential; éxpnkt) — as we
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would expect for a rate that is in the thermodynamic limit and In this section we derived the Gompertz function using an
where there is no explicit time dependence. explicitly time-dependenii(t), but note that thég = O limit

As it has three parameters (c.f., Weibull's two parameterspf the Pound-La Mer model (shown in Eq. (8)) gives the same
we would expect it to provide good fits to data, which it function. So, fitting the Pound-La Mer model wig = 0
does’®41 Stronger tests of the Pound-La Mer model are thatis equivalent to fitting the Gompertz model. However the fit
the fit values should be reasonahteof order 01 or 1 and  parameters are interpreted differently in the two casese Th
ko < k, and that if the impurities are in the butk should be  parameters of the two models are relatechby:r —Rp/A > 0
proportional to the volume. andk = —A. Also note that, for the Pound-La Mer model

If in the absence of impurity particles, the nucleation rate both parameters must be positive, while for the time-ewgyvi
effectively zerokg = 0, and the Pound-La Mer model simpli- model,A can have either sign whilgy must be positive. This

fies to the two-parameter model means that in the time-evolving model, nucleation can eithe
be Class Il A < 0) or Class Il @ > 0), whereas for thiy =0
P(t) = exp[-m(1-exp(—kt))]  Gompertz (8) pound-La Mer case it is always Class II.

When the initial rateRy is much lower than & > 0, the 1
in parentheses in Eqg. (10) can be neglected and the Gompertz
function simplifies to

Here we have indicated th&(t) now has the mathematical
form of the Gompertz function, although it should be noted
that asmis a mean number of particlesy> 0, and ak is a
nucleation raté > 0. In general in the Gompertz model these P(t) ~ exp[— exp[At+In(Ro/A)]] Gumbel (11)
parameters can take negative values, as we will see in the nex
section. The Gompertz function is widely used in a number ofwhere we have noted that Eq. (11) has the functional form
other fields, e.g., human mortalf; cancer recurrence, ma- of the Gumbel distribution of extreme-value statisficsThe
chine failure, eté&®. same function is also obtained by settiig= 0 in Eq. (12)
The Pound-La Mer model can be viewed as a modifiecbelow. Thus an equation of this form can also be obtained
Gompertz model. The Gompertz model decays to( exp) from a different model. Fits of Eq. (11) to simulation data
for t — o, whereas the Pound-La Mer model modifies this byfor nucleation on a dissolving surface are shown as thedlotte
causing the exp-m) term to decay to zero at a rétg curves in Fig. 2. They provide reasonably good fits to the.data

5.2 Modd for nucleation in a system evolving with time 5.3 Extreme-value statistics models

In this section we review a model in which the time depen-These are statistical models that are based on the assump-
dence ofh(t) comes from physical mechanism B: the rate intion that the observed nucleation time is the minimum of a
all droplets is the same but this rate is evolving with timkisT  very large set of nucleation times at the individual sitelseyr

was studied in earlier computer simulation work on a latticeare useful for modelling the effect of quenched disordely on

model by the authdr. when the rate is not in the thermodynamic limit do they make
The model follows directly from the assumption thét) is  useful predictions. If the rate is in the thermodynamic timi
an exponential function of tinfe/° they give results that are more easily obtained by other Bjean
e.g., if the rate is constant and in the thermodynamic limit,
h(t) = Roexp[At] () they just yield an exponenti@(t).

Extreme value statistics is the branch of statistics thatsde
with the situation where we have a large numNesf random

rate increases while ¥ < 0, the rate decreases. Note that thisv_anables and want to know the probability (_j|str|but|on ¢an
tion of the smallest or largest one of thééeariables. For ex-

assumption of an exponential variation is just a simple rhode ample, if we are given the probability distribution funetifor

in general we have no reason to believe that the dependence |s " ™’ e -
ge . P the heights of British men, then extreme value statisticsval
precisely exponential.

) . . . ._, us to determine the probability that say the tallest one 6f 10
Putting Eq. (9).'%0 Eq. (1), and solving the differential g e i above 2 m. See Castifoor Jondeatst al. 72
equation, we obtaih . : L
for an introduction to extreme-value statistics. The usexof
P(t) = exp[(Ro/A) (1—exp(At))] Gompertz (10) treme value statistics in nucleation was pioneered by leevin
[ | in 1950%73.74 although he did not use the term extreme-value
This is what is called the Gompertz function. The RDX crys- statistics. However this was not for isothermal crystatlisn
tallisation data of Kimet al.*® can be fit by the Gompertz but for crystallisation at a constant cooling rate. | coasad
function®3. The fits are approximately as good as the Weibullthe use of extreme value statistics for isothermal nuaeati
function fits shown in Fig. 12°. 201319,

whereRy > 0 is the nucleation rate at= 0, andA is the rate
of increase or decrease of the nucleation rated i 0 the
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We consider a simple extreme-value statistics model hergparameters b = —1/& andt =wy/¢. Itis also worth noting
The model relies on the following three assumptions: that foré = —1, the GEV reduces to a simple exponential.

We can use extreme-value statistics to determine the exper-
imental observable?(t), from the property of the impurities
nucleation is occuring oms (tj). Or we can use it in the other

2. The nucleation sites have a wide range of nucleation rate%'recuon’ to infer properties oy (t;) from an experimental

and so a wide range of nucleation timgs;These nucle- ©. . _ : .
ation timegt; are drawn from a probability density func- The probability density functiorp,(t) will depend on
tion pa () whatever surfaces are present. And its form determines

whether P(t) is Weibull, Fiéchet or Gumbel. It was the
3. Only one nucleation event is required to induce crystalli Weibull function, Eq. (3), that fitted the data in Figs. 6, &an

sation of the droplet, and so the droplet crystallises at 2. The requirements o needed to get the Weibull distri-
time equal to the shortegtof the set ofN values from  bution are discussed in extreme-value statistics textbdok

theN nucleation sites. Very roughly speaking, we expect the Weibull distributién i
the nucleation time is near a hard lower limit op;. Here

Once assumption 3 is made, the crystallisation tinethe  such a limit is provided by the fact that nucleation must oc-
minimum of a large number of independent random variablegur at a timet > 0. In particular if p;(tj) has a small time
and so we can use extreme-value stati¢ti¢d Also, note tail py ~ tX, with —1 < x < 0, then it is straightforwart to
that the distribution of the rates at the nucleation sitestba  show thatP(t) is a Weibull with exponen = x+1 < 1. If
be sufficiently broad for the droplet rate to not be in thether the tail of p; does not diverge, i.ex,> 0, then the rate is in the
modynamic limit. Otherwise, thié(t) can be obtained without  thermodynamic limit andP(t) is exponential. The exponext
using extreme-value statistics, and will be exponentidlis must be greater than1 in order for the integral ovep; to be
one-step and with a time-independent rate. finite. The integral must equal one of course.

Extreme-value statistics then tells us that in the lakhe Thus, the data of Diaet al.1°, and Knezicet al. 38, are con-
limit, and if relatively weak conditions are imposed @i,  sistent with the presence of nucleation sites with a praipabi
P(t) is given by what is called the generalised extreme valugjensity of nucleation times that diverges as a power law at
(GEV) distribution. The GEV of extreme-value statistics is short times. If this is correct, then we expect the predictio
conventionally written a§-72.7> for the scaling of the median nucleation time withmade in

section 7, to be correct.
exp[—exp((t — 1) /w)] =0
POZ exp|- - - w) ] g0

1. Each droplet contains a total Nfnucleation sites. These
sites are independent.

GEV

(12) 5.4 Comparison of the three models

See Refs. 71,72 and 75 for details. The conditionsppn So far we have considered the following functions to fit ex-
that are required to obtain the GEV are also described ther@erimentalP(t): Gompertz; Pound-La Mer which is a type
Roughly speaking they amount to assuming tNais large  of modified Gompertz; and GEV (which includes Weibull).
enough that only the small time tail gf, matters and that The models are compared in Table 1. The Gompertz function
this should have a simple functional form, e.g., power law, e can be derived in two very different ways. One way is from
ponential, etc. Particularly if there is a complex mixtufe o a model that assumes the rate varies from droplet to droplet.
impurities in the droplets this assumption may be rather apAnother way is from a model in which the rate is the same
proximate. in all droplets, but where this rate varies with time in each
The GEV is a three-parameter cumulative probability dis-droplet. When the Gompertz function is derived from a model
tribution function. The parameters are a width parametex  that assumes variable rates, the effective hétecan only be
location parameten, and an exponer§. The GEV includes a decreasing function of time.
three different classes of extreme-value distributiothwach Experiments of the sort shown in Fig. 10, from Lael
corresponding to a range of valueséofFor & = 0, the GEV  al.*%s work, can determine if the nucleation rates in a set of
is the Gumbel distribution, while fof > 0, the GEV is the droplets are the same or if there is droplet to droplet vilriab
Fréchet distribution, and fof < 0, it is the Weibull distribu- ity. It should however be noted that these necessarily uevol
tion. repeated crystallisation cycles of the same sample, and so a
If we seté <0, and insist thaP(t =0) = 1, thenthe GEV of  Laval et al. discuss, care must be taken to eliminate the pos-
Eg. (12) reduces to the Weibull of Eq. (3). SettP@=0)=1  sibility of history dependence on the nucleation kinetigse
reduces the number of parameters from three to two, as thealso Durant and Shat® who found that the temperature at
¢ =—w/&. The Weibull parameters are related to the GEVwhich water droplets froze varied between the first few tem-
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perature cycles and subsequent cycles. our crystallising droplets, the objects would bedroplets,
Distinguishing between the Pound-La Mer and GEV mod-with k; the nucleation rate in droplét
els, which both have quenched disorder, is perhaps best donelf classical nucleation theory is a reasonable descripgion
by fitting both to the data and determining if the fits are brette the physics of nucleation ikl droplets, but where the barrers
for one function, and checking if the best-fit parameterealu vary from droplet to dropletP(t) will be of this form. Put
are physically reasonabl® The book of Castilld* discusses into the language of this review, Proschaf'sesult is that
general fitting approaches for the GEV. It is worth notingttha wheneverP(t) can be written as in Eq. (13), nucleation must
he does not recommend the standard unweighted least-squalee in class Il i.e.h(t) must be a decreasing function of time.
fitting procedure as that gives a low weight to errors in tlie ta

of P(t). 7 Scaling with system size

6 Survival data analysis All the models make predictions for the scaling of the nucle-
ation times with system size, and these predictions arerdiff
ent. So varying the size of the droplets, or the amount of mate

This review focuses oR(t), which is what is called a survival = ) A :
rial added to induce nucleation, are useful ways of testieg t

function®8; it is the survival function of the liquid state. There _ et _ _
is an entire sub-field of statistics called ‘survival datalgn ~ Models. Also, as the system-size scaling is so variablegif w

sis’ devoted to analysing the statisticsRft) andh(t). For wish to_use_ res_ults from small droplets_to_ make pr_edictiomsf
example, in medicine the probability of a person surviviag t crystallisation in larger systems, then it is essentialaeehat

an age is studied, whereas in engineering the probability of al€St some understanding of the mechanism of nucleation.
machine still functioning at timeis often of interest. See the | € characteristic timescale for nucleation can be medsure

texbooks by Le&, and by Cox and Oakédor introductions using the median nucleation tim@ED, which is by definition

to this statistics field. such thatP(tyep) = 1/2. The simple model of a constant
Perhaps surprisingly, the methods developed in survivafat® that is the same in all drqplets, gives an exponeR(i!

data analysis have not been applied to crystallisationlié\me andtyep ~ 1/N for a nucleation raté LI N the number of

there are opportunities to apply these methods to nucteatio nucleqtlon sites. )

For example, although the exponential, Weibull and Gonapert  Earlier work by the authdf on the Weibull model of

distributions are all widely used in survival data analjdis extreme-value statistics with < 1, found that the median

other distributions are also used, and at least some of thefUCléation time varies with the number of nucleation sites a

. . . -1/B i
may be useful in the study of nucleation. For example, it ha /P. This means that the smaller the valuefofhe faster

been suggested that nucleation of the final crystal producei'® nucleation timescale varies with o _

may in some systems be a two-step pro¢&8s77-81 This in- For the Pound-La Mer model in thg = O limit, tmep varies
cludes important systems such as calcium carbdfdfand 25 1 In2

the protein lysozym®-5581 |n the field of survival data anal- tmep = ——In <1 n) (14)
ysis, it is known thatP(t) for a two-step process with the K m

two steps having similar rates should be well approximatedrhe median nucleation time can also vary rapidly for this
by what is called an Erlangian distribution The Erlangian  model. It diverges to infinity am — In2 ~ 0.69 from above.
distribution is a special case of the Gamma distributiorusTh This is because fan < In2 more than half the droplets do not
if nucleation of the crystal really is two step and the rates a have any impurity particles in them and so never nucleate. In
comparable, then we already have a ready-made prediction fehe other limit, that of largen, we can expand out the log-
P(t). All we have do is perform constant-supersaturation nu-arithm andtyep then scales as/in, i.e., one over the mean
cleation experiments. Note that if the rates of the two stepsiumber of impurities. This is just we should expect as here
are very different then typically the slower one will be rate the rate is in the thermodynamic limit.

determining, and the nucleation will be effectively onepst The other model we considered was one where the nucle-
One result in the field of survival data analysis may be par-ation rate was increasing with time. This gives a Gompertz
ticularly useful. Proschai? considered &(t) of the form distribution for P(t) which simplifies to a Gumbel function,
Eq. (11), in the limitRy < A. Then the scaling ofuep is
M iven b
Pt)=M"" Y exp(—kit) ag Y Inn2+A 1
=1 tvmep = T—XMRO (15)

for ki the rate in object. He was considering failures of air- The median nucleation time scales logarithmically with the
conditioning units on airliners but his findings are genehal initial rate Ry. We expectRy O N, the number of nucleation
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sites. Then we have a very slawgep ~ —InN, scaling of the  For example, in Pound and La Mer’s work on tin dropféts

nucleation timescale with system size. the P(t) curves often seem to be plateauing at fractions of
Having considered all three models, we can present atens of per cent, and in all cases some droplets remain un-
overview of the scalings of the median nucleation time frozen at the end of the experiment. Also, some dropletsfroz

so rapidly that the nucleation times are at the time resmiuti
of the experiments. Diao and coworkers observed similar be-
haviour??24,

Experiments typically have a dynamic range of around 100
It is notable that for the systems with rates not in the ther-or more, so the fact that this is not enough to observe nucle-
modynamic limit (Weibull and Pound-La Mer), the median ation in all droplets implies that the dynamic range of nucle
nucleation time varies rapidly with the number of nucleatio ation rates is larger than this, possibly much larger. leapp
sites. Here by rapidly we mean faster thaiN1 And by con-  that it is common that the rate is so far from the thermody-
trast when the nucleation time is set by the time for an ilijtia namic limit that the dynamic range of rates is at least a thou-
slow rate Rp) to increase, the median nucleation time variessand and possibly much more.
only slowly with N.

We end this section on scaling with size with a few example ;
predictions. Diacet al.?* studied the crystallisation of ROY 9 Conclusions

from solution. They did so with nothing added, and so wheré:gyerything should be made as simple as possible, but no sim-
n!J_cIeatlon presumably occurs on impurities, and with the adpler" is a very appealing principle, often attributed to Atb
dition of poly(ethylene glycol) diacrylate (PEGDA) hyd®lg  ginstein, The standard theory of nucleation is classical nu
particles. With the PEGDA hydrogel particles their fit to the ¢jeation theory. This makes a number of simplifying assump-
surviving fraction of liquid drops yielded a best-fit valué 0 55155558 Essentially exact computer simulations of sim-
B = 0.25. The predictiofC is then thgt on'scallng the exposed ple models shows that these simplifying assumptions aie typ
surface ared of hydrogel, the median time to observe crys- cally reasonable approximatioti-82 So for homogeneous
tallisation will scale as\~%. Without the hydrogel particles, pycleation, it seems likely that classical nucleation tjés

the best-fit value was found to ifle= 0.37, and so at constant sas0nable for many systems.

impurity conpeqtration and assuming the impurities arénm.t For example, in the important example of water, we used the
bulk of the liquid drop bulk (not at the surface) the median pyft and Leisne? data to obtain an estimated nucleation bar-
nucleation time should scale W_'th thezxoluMeasV . We  yier of 55T, at a supercooling of 3€. Computer simulations
should note that the data of Diabal.* are not perfectly fit 5|5 ideas from classical nucleation theory were used by San
by the stretched exponential function, and so there is fiiigba & 5 83t estimate a barrier of & . This was at a supercool-
considerable uncertainty in the exact value of the exponen;ng of 35°C, and was for a simple water model (TIP4P/ice).

1/N  exponentiaP(t)
Tmep ~{ 1/NYE  Weibull (B < 1) (16)
—InN rate increasing witl

and the model itself is of course an approximation. Given that both numbers are estimates and the model for wa-
ter is approximate, this is actually good agreement.
8 Largedynamicrangein nucleation times However, homogeneous nucleation is very much the excep-

tion. Heterogeneous nucleation is far more common. Here it

Carvalho and Dalnoki-Veress note that “upon cooling therds still possible that classical nucleation theory may piewa
is a population of droplets that nucleate at higher temperareasonable estimate of the barrier to nucleation at a péatic
tures either because of heterogeneous nucleation or lBecausoint on a surface. But, apart from in the study of ice nucle-
the variations in the substrate result in a range of actimati ation, it is often assumed that there is just one barrier hat t
barriers to nucleation.” A fraction of their droplets crgtise  this is the same in all droplets. The large volume of nuateati
while they are cooling to the temperature at which they will data in our Class I, directly contradicts this assumptiba o
study isothermal crystallisation. As we can see in Fig. 4tmossingle barrier, as does the huge dynamic range of nucleation
of the remainder crystallise over the 1500 s of their experitimes often observed. So, this assumption is too simple. It
ment. Clearly some of the droplets have barriers to nudeati should be abandoned, except where there is evidence for it,
that are so much lower than the barriers in the majority of the.e., an exponentid®(t).
droplets that they cannot be studied in the same experiment. To understand nucleation data, it would be very helpful to
In effect the dynamic range of nucleation rates in the ditsple obtain direct information on the surfaces nucleation isaity
is too large to be studied in an experiment that can only accesccurring on. One way is to add material that induces nucle-
timescales from seconds to a thousand seconds. ation. We then have a good idea of at least the basic chemistry

This observation that the experiment is not able to study thef the surface. Also, Parmait al.®®, Asanithiet al.?® and
nucleation times of all droplets is commbt?-13:22-25.39.40.43  jawor-Baczynsket al. ’® have all done work on characterising
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objects in solution that affect nucleation. However theleuc 22
ation site may be only 10 nm across and so its geometry and
any deviations from typical surface chemistry are unknown?
even in these cases. Future work should address this difficul,
problem of better characterising the sites where nucleatis

curs. Finally, in many systems it may also be important to
determine where in the liquid nucleation is occurring. Bore 25
ample, if it is occurring on an impurity, is this impurity at a

> . 26
surface or is it even at a contact I8

27
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