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Abstract. The class of ν-infinitely divisible (ID) distributions, which arise
in connection with random summation, is a reach family including geometric
infinitely divisible (GID) and geometric stable (GS) laws. We present two sim-
ple results connected with triangular arrays with random number of terms and
their limiting ν-ID distributions as well as random sums with ν-ID distributed
terms. These generalize and unify certain results scattered in the literature
that concern the special cases of GID and GS laws.

Mathematics Subject Classifications: 60E07, 60E10, 60F05, 60G50

Keywords: Geometric convolution; Geometric exponential distribution; Geo-
metric gamma distribution; Geometric infinitely divisible distribution; Geo-
metric Mittag-Leffler distribution; Geometric stable distribution; Harris distri-
bution; Laplace distribution; Linnik distribution; Mittag-Leffler distribution;
Random sum; Stability property; Transfer theorem

1. Introduction and the main results

Let X be an infinitely divisible (ID) random variable (RV), so that for each
integer n ≥ 1 its characteristic function (ChF) φ admits the representation
φ(t) = [φn(t)]n, where φn = φ1/n is another ChF corresponding to some RV

X(n). Then, the sum X
(n)
1 + · · · + X

(n)
n of n independent and identically dis-

tributed (IID) copies of X(n) converges to X (the sum actually has the same
distribution as X). It now follows from transfer theorems (see, e.g., [4], The-

orem 4.1.2) that the random sums X
(n)
1 + · · ·+X

(n)
νn , where (νn) is a sequence

of integer-valued RV’s such that νn
p→ ∞ (in probability) while νn/n

d→ ν (in
distribution), converge in distribution to a RV Y whose ChF is of the form

ψ(t) = λ(− log φ(t)),(1)

1Research partially supported by NSF grant DMS-0139927.



156 Tomasz J. Kozubowski

where λ is the Laplace transform (LT) of the RV ν (If the variables X and
Y are non-negative with LT’s φ and ψ, respectively, then the same relation
holds, see, e.g., Remark 4.1.1 in [4]. Consequently, for simplicity we shall
follow the convention that these are LT’s whenever the relevant variables are
non-negative).

The following is a slight generalization, which unifies many results concern-
ing sums with geometric number of terms, scattered in the literature (see
examples below).

Proposition 1.1. Assume that zero is an accumulation point of Δ ⊂ (0, 1),
and consider a family {νp, p ∈ Δ} of integer-valued, nonnegative RV’s such

that pνp
d→ ν as p→ 0. Further, for each p ∈ Δ let X

(p)
1 , X

(p)
2 , . . . be a sequence

of IID RV’s that are independent of νp and given by the ChF φp(t) = φp(t),
where φ is an ID ChF. Then, as p→ 0, the random sums

Sp = X
(p)
1 + · · ·+X(p)

νp
(2)

converge in distribution to a RV Y whose ChF is given by (1), where λ is the
LT of ν. [If the above RV’s are non-negative then the same relation applies to
their LT’s.]

Proof. For simplicity, we shall assume that the RV’s are nonnegative and work
with the relevant LT’s (the general case involving the ChF’s is identical). Writ-
ing the LT of the random sum Sp as

Ee−tSp =
∑

n

[Ee−tX
(p)
1 ]nP(νp = n) = E[φp(t)]νp

= E[φ(t)]pνp = Eepνp log φ(t) = λp(− log φ(t)),

where λp is the LT of pνp, we conclude that it must converge to (1) since pνp

converges in distribution to ν and λ is the LT of ν.

One important special case arises when νp above has a geometric distribution
with parameter p ∈ Δ = (0, 1), so that

P(νp = k) = (1 − p)k−1p, k = 1, 2, 3 . . . .(3)

In this case pνp converges in distribution to the standard exponential variable
with the LT λ(t) = (1+ t)−1, and the ChF (or LT for positive variables) of the
limiting distribution of the random sums Sp is given by

ψ(t) =
1

1 − log φ(t)
.(4)

Since their introduction in [9], the distributions given by (4) are known as ge-
ometrically infinitely divisible laws, as they can be decomposed into geometric
convolutions. More precisely, if Y is a RV with the ChF (or LT) (4) above,
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then for any p ∈ Δ there exists a sequence (X
(p)
j ) of IID RV’s independent of

νp such that we actually have the equality in distribution,

Y
d
=

νp∑
j=1

X
(p)
j .(5)

It is worth noting that not all distributions with the ChF (1) admit the random
divisibility property (5). As shown in [4, 10], those that do must have a
special structure: the probability generating functions (PGF’s) generated by
the family {νp, p ∈ Δ} must form a commutative semigroup with the operation
of superposition. It can be verified easily that this is the case when νp is
geometric (3):

Gp ◦Gq(z) = Gp(Gq(z)) = Gq(Gp(z)) = Gq ◦Gp(z), p, q ∈ Δ = (0, 1),

where

Gp(z) = Ezνp =
pz

1 − (1 − p)z
(6)

is the PGF of νp. More general distributions with this property are known as
ν-infinitely divisible laws. Their ChF’s (or LT’s) are of the form (1) where φ
is ID and the LT λ is connected with the family {νp, p ∈ Δ} via the relation

Gp(z) = λ

(
1

p
λ−1(z)

)
, p ∈ Δ, 0 < z ≤ 1,(7)

where Gp is the PGF of νp (see [4, 10] for details). The following result holds
in the above setting.

Proposition 1.2. Consider a family {νp, p ∈ Δ} of integer-valued, nonnega-
tive RV’s such that Eνp = 1/p → ∞ and the corresponding PGF’s Gp form a
commutative semigroup under the operation of composition. Let Y1, Y2, . . . be
IID variables independent of the νp’s, with the ChF ψ given by (1), where φ is
a ID ChF and λ satisfies (7). Then the ChF of the random sum

Yp = Y1 + · · ·+ Yνp(8)

is also given by (1), but with φ replaced by φ1/p. [If the above RV’s are non-
negative then the ChF’s in these relations can be replaced by the LT’s.]

Proof. For simplicity, we shall assume that the RV’s are nonnegative and work
with the relevant LT’s (the general case involving the ChF’s is identical). Since
the Yi’s are IID with the LT ψ given by (1) with λ satisfying (7), the LT of Yp

is

Ee−tYp = Gp(ψ(t)) = Gp(λ(− log φ(t)))

= λ

(
1

p
λ−1(λ(− log φ(t)))

)
= λ

(− log φ1/p(t)
)
,

and the result follows.
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Remark 1. Note that if the variables pνp in Proposition 1.1 converge to 1, then
ψ(t) = φ(t). This is, for example, the case when νp has the Poisson distribution
with mean 1/p, where p ∈ Δ = (0, 1). However, the PGF’s corresponding to
this family do not generate commutative semigroup, so that Proposition 1.2 is
not applicable in this case.

Remark 2. If φ in (1) corresponds to a stable law (see, e.g., [21]), then the
distributions corresponding to ψ are called ν-stable laws (see, e.g., [12, 13]).
Suppose further that φ corresponds to a strictly stable distribution with index
α ∈ (0, 2], so that for all c > 0 and t ∈ R we have φc(t) = φ(c1/αt). Then,
if the PGF’s of the family {νp, p ∈ Δ} and the LT of the limit of pνp are
connected via (7), Proposition 1.2 shows that for each p ∈ Δ, the random sum
(8) of the Yi’s has the same type of distribution as each of the terms in the
sum. Such random stability properties were studied in [2, 8, 22], among others.
Some specific examples will be considered below.

Example 1. Consider a trivial case when the distribution of X is concentrated
at 1, so that its LT is φ(t) = e−t. Then by Proposition 1.1 the LT of the limiting
distribution of the random sums (2) is ψ(t) = λ(s). It is not surprising that
this coincides with the LT of ν, which is the limit of pνp, since here Sp = pνp.
Further, assume that νp is geometric (3) so that the corresponding PGF’s
form a commutative semigroup and the limit ν of pνp as p → 0 is a standard
exponential variable with the LT λ(t) = (1+t)−1. Then Proposition 1.2 implies
that for each p ∈ (0, 1) the LT of the random sum (8) is (1 + t/p)−1, which
is again an exponential variable. Thus we recover the well-known stability
property of the exponential distribution with respect to geometric summation
(see, e.g., [1]).

Example 2. Let φ(t) = e−t2 be the ChF of a normal distribution with mean zero
and variance 2. Then by Proposition 1.1 the ChF of the limiting distribution
of the random sums (2) with geometrically distributed νp is ψ(t) = (1+ t2)−1 -
the standard classical Laplace distribution (see, e.g, [11]). Proposition 1.2 now
implies that for each p ∈ (0, 1) the ChF of the random sum (8) is (1 + t2/p)−1,
which is again a Laplace ChF. We thus obtained the stability property of the
Laplace distribution with respect to geometric summation (see, e.g., [11]).

Example 3. Consider now the LT φ(t) = e−tα , α ∈ (0, 1), corresponding to a
positive stable law, and let the νp’s again be geometric, so that ν is standard
exponential as before. Then, in view of Proposition 1.1 we obtain the LT of the
limiting distribution of (2) to be ψ(t) = (1+tα)−1. This is the standard Mittag-
Leffler distribution introduced in [19]. The application of Proposition 1.2 shows
that we have the stability property with respect to geometric summation as
well (as expected, since φ is strictly stable).

Example 4. Now take φ(t) = e−|t|α , α ∈ (0, 2), to be the ChF of a symmetric
stable law with index α (which reduces to the normal when α = 2), and let νp be
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geometric as before. Again, by Proposition 1.1 we obtain ψ(t) = (1 + |t|α)−1,
which corresponds to the Linnik distribution (see, e.g., [11] and references
therein), also known as α-Laplace law (see [18]). The application of Proposition
1.2 again recovers the well-known stability property of this distribution with
respect to geometric summation (see, e.g., [15]).

Let us note that the distributions that arise in these four examples are all
special cases of geometric stable (GS) laws (see, e.g., [14]), which are given by
the ChF ψ(t) = (1− log φ(t))−1 with a stable ChF φ. These infinitely divisible
distributions appear as weak limits of (normalized) sums of independent and
identically distributed (IID) RV’s, where the number of terms in the summa-
tion has a geometric distribution (independent of the terms) with the mean
converging to infinity. More information on theory and applications of these
classes of distributions can be found in [8].

Below we present additional examples where this time φ corresponds to the
above GS distributions and νp are assumed to be geometrically distributed.

Example 5. If φ(t) = (1+t)−1 is the LT of a standard exponential distribution,
then by Proposition 1.1 we obtain ψ(t) = (1 + log(1 + t))−1, which is the
geometric exponential distribution introduced in [20] and studied in [7]. We
thus recovered Theorem 3.1 of [20] (as well as Theorem 2.1 of [7]). Further,
Proposition 1.2 shows that for each p ∈ (0, 1) the LT of the random sum (8)
is (1+ (1/p) log(1+ t))−1, which corresponds to geometric gamma distribution
(see [7]). Note that in this context Proposition 1.2 is a generalization of Lemma
3.2 of [20]. Similarly, if φ(t) = (1+ t)−v, v > 0, is the LT of a standard gamma
distribution, then ψ(t) = (1 + v log(1 + t))−1 corresponds to the geometric
gamma distribution, which recovers Theorem 2.2 of [7].

Example 6. If φ(t) = (1+ tα)−1 is the LT of the standard Mittag-Leffler distri-
bution, then by Proposition 1.1 we obtain ψ(t) = (1 + log(1 + tα))−1, which is
the geometric Mittag-Leffler distribution discussed in [6]. This recovers Theo-
rem 2.2 of [6]. In turn, Proposition 1.2 shows that for each p ∈ (0, 1) the LT of
the random sum (8) is (1+(1/p) log(1+tα))−1, which corresponds to geometric
quasi factorial gamma distribution in the terminology of [6]. Moreover, this
recovers Theorem 2.1 of [6]. Similarly, if φ(t) = (1+tα)−v, v > 0, is the LT of a
generalized Mittag-Leffler distribution (or quasi factorial gamma distribution
in the terminology of [6]), then ψ(t) = (1 + v log(1 + tα))−1 is the geometric
quasi factorial gamma distribution and we recover Theorem 2.3 of [6].

Example 7. Let φ(t) = (1 + t2)−1 be the ChF of the standard Laplace distri-
bution, in which case φp corresponds to another ID distribution called Bessel
function distribution (see [11], Chapter 4) or generalized Laplace distribution
(see [16]). Then by Proposition 1.1 we obtain ψ(t) = (1+ log(1+ t2))−1, which
is the geometric Laplace distribution defined in [23]. This recovers Theorem
1 of [23]. Similarly, Proposition 1.2 shows that for each p ∈ (0, 1) the ChF of
(8) is (1 + (1/p) log(1 + t2))−1.
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Example 8. Let φ(t) = (1 + |t|α)−1, 0 < α < 2, be the ChF of the standard
Linnik distribution, in which case φp corresponds a generalized Linnik distri-
bution (see, e.g., [3, 17]), also known as generalized α-Laplace variable (see
[23]). Again, by Proposition 1.1, we obtain ψ(t) = (1 + log(1 + |t|α))−1, which
is the geometric α-Laplace distribution defined in [23]. This recovers Theorem
3 of [23]. Similarly, Proposition 1.2 shows that for each p ∈ (0, 1) the ChF of
(8) is (1 + (1/p) log(1 + |t|α))−1.

In closing, let us mention two other families {νp, p ∈ Δ} related to the
geometric distribution, which lead to further examples and special cases of our
results. The first one is the negative binomial family given by the PGF

Gp(z) =

(
p

1 − (1 − p)z

)r

, p ∈ Δ = (0, 1), r > 0.(9)

Here, the variables pνp converge in distribution to a standard gamma variable
ν with shape parameter r (and scale 1), so that λ(t) = (1+ t)−r. Consequently
Proposition 1.1 leads to further examples of ID distributions, in parallel to
those “generated” by the geometric family and stable or geometric stable ChF’s
(or LT’s) φ. However, this family of PGF’s is not commutative, so Proposition
1.2 does not apply. On the other hand, it is easy to see that whenever PGF’s

Gp and LT λ (corresponding to ID laws) are connected via (7) then so are G
(k)
p

and LT λk for each integer k ≥ 1, defined as

G(k)
p (z) = [Gp(z

k)]1/k, λk(t) = [λ(kt)]1/k.(10)

Thus, another group of results and additional examples can be generated via

Proposition 1.2 (as well as Proposition 1.1) when we take the G
(k)
p ’s corre-

sponding to the geometric laws (6). Note that this PGF’s correspond to the
RV’s 1 + kNp, where Np has the negative binomial distribution (9) with pa-
rameter r = 1/k (so that the corresponding values are 1, 1 + k, 1 + 2k, . . . ).
This distribution appears in [5], and was mentioned in [2, 22] in connection
with random stability.
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