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Abstract

A gap still exists between the complexity of real
discrete-event systems (DESs) and the effective-
ness of state-of-the-art diagnosis techniques. To
deal with this gap, a novel class of discrete-event
systems, called higher-order DESs (HDESs) is in-
troduced, along with a relevant diagnosis tech-
nique. The behavior of a HDES is stratified, re-
sulting in a hierarchy of cohabiting sub-DESs,
each one living its own life. The communication
between subsystems at different levels relies on
complex events, occurring when specific patterns
of transitions are matched. Diagnosis of HDESs
is context-sensitive and scalable.

1 Introduction

Diagnosis of DESs [Cassandras and Lafortune, 1999] has
been attracting attention of the scientific community since
the seminal work of [Sampath er al., 1996]. However, a
gap still exists between the complexity of real DESs and
the effectiveness of state-of-the-art diagnosis techniques. A
complex DES is not necessarily large (even though a large
DES is likely to be complex). In our meaning, complexity
refers to the mode in which the DES is organized, at dif-
ferent levels of abstraction, with each level being character-
ized by its proper behavior, which depends on the behaviors
of lower-level layers, yet differs from just the composition
of them. This property is called behavior stratification. In
the literature, DESs are typically modeled as networks of
interacting components, where the behavior of each com-
ponent is described by a communicating automaton [Brand
and Zafiropulo, 1983]. However, complexity of the DES
has become a research issue only recently. Previous re-
search has mainly focused on relevant yet different aspects,
including incrementality [Baroni et al., 1999; Grastien et
al., 2005], distribution/decentralization [Pencolé, 2000; De-
bouk et al., 2000; Pencolé€ et al., 2001; Debouk et al., 2003;
Grastien et al., 2004; Pencolé and Cordier, 2005; Qiu
and Kumar, 2006], and uncertainty/incompleteness [Lam-
perti and Zanella, 2002; Zhao and Ouyang, 2008; Lam-
perti and Zanella, 2011b; Kwong and Yonge-Mallo, 2011;
Zhao et al., 2012]. The notion of context-sensitive di-
agnosis has been introduced for DESs that are organized
within abstraction hierarchies, so that candidate diagnoses
can be generated at different abstraction levels [Lamperti
and Zanella, 2011al. Even in that work, albeit the diagnosis
depends on the context, the DES is assumed to be a net-
work of components with no behavior stratification. When
behavior stratification occurs, the DES is called a higher-
order DES (HDES).

2 Higher-Order Discrete-Event System

A higher-order DES, namely #, is a tree where nodes are
components. Leaf nodes are basic components, while inter-
nal nodes are complex components. The set of child com-
ponents of a complex component X is indicated by € (X).
Each (either basic or complex) component in K is defined in
terms of a topological model and a behavioral model. The
topological model consists of a set of input terminals and
a set of output terminals. Components in €(X) are con-
nected to one another through links, with each link exiting
the output terminal of one component and entering the input
terminal of another component. These connections form a
network N (X). Let I and O denote the input and output
terminals, respectively, of a component C. The behavioral
model of C is a communicating automaton (S, 7, O, T),
where S is the set of states, I the set of input events, O the

set of output events, and T : S x (I x I) x 2(0X0) 5 2§
the (nondeterministic) transition function. As such, a tran-
sition is triggered by an input event and generates a (possi-
bly empty) set of output events. The latters are thus made
available as input events at the corresponding component
terminals, while the input (triggering) event is consumed. A
transition can be triggered only if all links, towards which
output events are generated, are empty (no event is in the
link). Each complex component X is endowed with a Cot
additional (virtual) input terminal, which is sensitive to com-
plex events. A complex event is a set of pattern events. A
pattern event occurs when the network N (X) undergoes a
string of transitions matching a given regular expression.
The alphabet of such a regular expression is the whole set
of transitions of components in €(X). In general, for each
complex component X, a set P (X) of patterns is defined,
with each pattern being a pair (p, r), where p is the name of
a pattern event and r a regular expression on transitions of
€(X). Several pattern events may occur simultaneously. In
fact, given a string 7 of transitions of components in € (X),
each suffix of 7 matching a regular expression in f(X)
gives rise to a pattern event. The whole set of these pattern
events forms a complex event.

Figure 1: HDES: protected power transmission line.

Example 1. Shown in Fig. 1 is a HDES representing a
power transmission line £. On both sides, the line is pro-
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Figure 2: Behavioral models.

tected from short circuits by a protection hardware, ‘W and
W/, each composed of a protection device, p and p’, respec-
tively, and two breakers, [ and r, and [’ and r’/, respectively.
Boxes denote complex components £, ‘W, and 'W. We as-
sume that the output terminal of the protection device is ex-
ited by two links directed to the input terminals of the two
breakers. The protection device is sensitive to short circuits
on the line, detected as lowering of voltage, in which case it
commands the breakers to open in order to isolate the line
(just one open breaker on both sides is sufficient for isola-
tion). Once the line is isolated, the short circuit is expected
to vanish. If so, the protection device commands both break-
ers to close in order to reconnect the line (all breakers need
to be closed). However, faulty behavior may occur:

o The protection device sends the wrong command;

e The breaker does not react to the command of protec-
tion device (thereby remaining in its state);

The protection hardware fails to either disconnect or
connect the line (if just one breaker does not open,
the protection hardware is normal, as disconnection oc-
curs; for the connection, both breakers must close);

The line is not isolated, or once the short circuit has
vanished, the line is not reconnected, or after recon-
nection the short circuit still persists (e.g. a tree fallen
on the line).

Table 1: Details for transitions of models in Fig. 2.

T Action performed by component transition T
D1 Detects low voltage and outputs op (open) event
D2 Detects normal voltage and outputs ¢/ (close) event
73 Detects low voltage, yet outputs ¢/ event
N Detects normal voltage, yet outputs op event
by Consumes op event and opens
by Consumes c! event and closes
b3 Consumes op event, yet keeps closed
by Consumes c/ event, yet keeps open
bs Consumes ¢/ event
be Consumes op event
wi Consumes nd (not disconnected) complex event
wa, w3  Consumes di (disconnected) complex event
w4, ws Consumes co (connected) complex event
we, w7  Consumes nc (not connected) complex event
I Consumes ni (not isolated) complex event
123 Consumes nr (not reconnected) complex event
I3 Consumes ps (persistent short) complex event

Outlined in Fig. 2 are the behavioral models. Details on
component transitions are provided in Table 1. Patterns rele-
vant to complex events in Table 1 are defined in Table 2. For
instance, consider pattern event ps (persistent short circuit)
and the corresponding regular expression, where * means

repetition zero or more times, + means repetition one or
more times, and — (negation) means any transition different
from its argument. Event ps occurs when either ‘W or ‘W’
repeats one or more times the following sequence of transi-
tions: it closes (ws) and then, after zero or more occurrences
of wy, it opens again (w,), followed by zero or more transi-
tions other than ws. Notice that ps is a single pattern event,

while ps is the singleton {ps} (complex event).! <

2.1 Pattern Space

In order to detect complex events, the state of the matching
of patterns is to be maintained somewhere. To this end:

e For each pattern (p, r), a deterministic pattern automa-
ton A equivalent to regular expression r is generated,
where final states are marked by pattern event p.

e For each complex component X for which the set
{A1,..., Ag} of pattern automata were generated, a
pattern space, written Pts(X), is created as follows:

1. A nondeterministic automaton N is created by
generating initial state Sy and one empty transi-
tion from Sy to each initial state of A;,i € [1..k];

2. In each A;, i € [1..k], an empty transition from
each non-initial state to Sy is inserted;?

3. N is determinized into Pts(X), where each final
state S is marked by the union p of the pattern
events that are associated with the states in .S that
are final in the corresponding pattern automaton.>

Table 2: Specification of patterns by regular expressions.

Pattern event  Regular expression

di bi(l) | bi(r)

co ba(1) | ba(r)

nd p3(p) | p1(p)((D3(D)bs(r)) | (b3(r)bs(1)))
nc pa(p) | p2(p)(bs(r)? ba(l) | bs(1)? ba(r))
ni w (W) | wi (W)

nr we(W) | w7(W) | we(W) | w7 (W)

ps (ws(W)wq (W)*wa (W) (—ws(W))*) T |

(ws(WHwi (W) wa (W) (=ws(W))*)*

Example 2. Based on Example 1, consider complex com-
ponent W, whose patterns are defined in Table 2 (top). Fol-
lowing the steps specified above, Pts('W) is generated as
detailed in Table 3. The main part of the table represents
the transition function, where for each component transi-
tion T € {p1(p),...,bs(r)} (listed in the first column),
and for each state #;, i € [0..10] (listed in the first row),
the reached state is indicated in the cell (7, &;). Moreover,
highlighted states are final, namely P;, P4, P7, Pg. Com-
plex events associated with final states are listed in the last
row, namely di, co, nc¢, and nd (details are in Table 1). These
are singletons of the homonymous pattern event.

Proposition 1. The set p marking a final state St of Pts(X)
is composed of the pattern events p such that (p,r) €
P (X), T is a string in the language of Pts(X) ending at
Sy, 7' is a string matching regular expression r, and T’ is a
suffix of T .

Proof. (Sketch) In creating Pts(X), if we omit step 2 then
the language of Pzs(X) will be the union of the languages
of regular expressions involved in & (X '), where each string

! Although a complex event is a set of pattern events, inciden-
tally in our example all complex events are singletons.
2This allows for pattern-matching of overlapping strings.

3Each state S of the deterministic automaton is identified by a
subset of the states of the equivalent nondeterministic automaton.



Table 3: Tabular specification of pattern space Pts('W).

T\Pi | Po P1 Po P53 Pa Ps Ps P1 Ps Po Puo
pi(p) | P2 P Py P P Py P P P P P
pAp) | P35 Pz Pz Pz Pz Pz Pz P Py Py P
pap) | Ps Ps Py Py Pz Py Pz Py Pz Py Ps
pa(p) | P7 P P Py P P P P P P P
bi(l) | P P P P P P P P P P P
bir) | P P P P P P P P P P P
ba(l) | Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa P
ba(r)y | Ps Pa Ps  Pa Py Py Py Py Py Py P
bi(l) | - - P - - - P - - - -
by(r) | - - P - - P - - - - -
ba(l) | - - - P - - - - - - P
ba(r) | - - - P - - - - - P -
bs(l) | - - - P - - - - - - -
bs(r) | - - - P - - - - - - -
di co nc nd

ending at St matches the regular expression associated with
a pattern event in p. Consequently, the statement of the the-
orem should be restricted in the last condition by 7" = 7.
The more relaxed condition, namely 7’ being a suffix of T,
comes from step 2 of the construction: in general, because
of additional empty transitions, each string 7 ending at S¢
matches regular expressions only in its suffixes.

2.2 Behavior Space

Starting from its initial state #,, HDES # may perform
a sequence of component transitions within its behavior
space, written Bsp(J, #o), which is a finite automaton

Bsp(¥, o) = (ST, So).

S is the set of states (&, &, P), with § = (sq,...,s,) be-
ing the tuple of states of (both basic and complex) compo-
nents in #. & = (eq, ..., en) is the tuple of events at input
terminals of components in # (e indicates no event), and
P = (P, ..., Pr) the tuple of pattern-space states. Sy =
(Ho, Eo, Po) is the initial state, where &g = (¢, ..., €) and
Po = (P10, - . ., Pro) the tuple of the initial states of pattern
spaces Pts(X1), ..., Pts(Xk), respectively. T is the transi-
tion function, where

(5,6, 2) 5 (8,6, #') € Tif and only if:

1. T =5 M) s’ (where e is the input event and
E o the output events with relevant terminals) is a tran-
sition of a (either basic or complex) component C such
that s equals one element of §, [ is an input terminal
of C,and &(1) = e;

2. &' differs from § only in s’ replacing s;

3. If C € €(X;),i €[l..k], then P’ differs from & only
in the i -th element as follows:

_ T -
P(Py=1] P if P(P;) — P € Pts(X;)
P; otherwise;

4. &’ differs from & based on these conditions:
(a) €'(I) = € (event e is consumed);
(b) Y(0,0) € Euy, denoting with I’ the terminal en-
tered by the link exiting O, we have: §(I') = ¢
(no event is initially present at terminal I’) and
&'(1’) = o (o is then present at terminal /');
(c) EP/(P;) # P(P;), i € [l..k], P'(P;) is final
in Pts(X;) and marked by complex event p, then
&(Cot) = €, &'(Cor) = p.
As such, transitions in Bsp(#, #,) are marked by transi-
tions of components in J. The new state not only reflects

the consumption of input event e of the component transi-
tion 7" and the generation of the output events in Ey,: it also
accounts for the possible occurrence of a complex event p.

A string in the language of Bsp(J, #o) is a history of J¢.
The behavior space is defined for formal reasons only, as its
actual materialization is impractical in real HDESs.

3 Diagnosis Problem

Diagnosing a HDES means finding the faults in its history.
A history can be observed only in its observable transitions,
as a sequence of observation labels, called the trace of the
history, with each label being associated with an observable
transition. The diagnosis process is complicated by two
facts. First, several histories may generate the same trace.
Second, because of noise and distribution of the channels
conveying labels from the HDES, rather than a sequence
of labels, the trace is perceived as a DAG, called temporal
observation, where each node contains a set of observation
labels and each arc represents partial (rather than total) tem-
poral ordering between observation labels. Consequently,
several candidate traces are observed, each one made up
by choosing a label in each node of the DAG fulfilling the
partial ordering imposed by arcs. Furthermore, since sev-
eral (even infinite) histories may be consistent with the same
trace, the diagnosis output is a set of candidate diagnoses,
with each candidate corresponding to a subset of the possi-
ble histories. However, despite the possible infinite set of
histories consistent with the temporal observation, the set of
candidate diagnoses is always finite (being it bounded from
above by the powerset of component transitions).
A diagnosis problem for a HDES # is a quadruple

P(H) = (Ho,V, 0, R), where
o J is the initial state of J;

e Vs the viewer of #, a set of pairs (T, £), where T is a
component transition and £ an observation label, with
hpy) denoting the trace of history 4 based on V;

e (O is the temporal observation of #, with ||O| denot-
ing the set of candidate traces in ;

o R is the ruler of J, a set of pairs (T, f), where T is
a component transition and f a fault label, with Ag)
denoting the diagnosis of history h based on R, defined

as:
hgy ={f | T €h (T, f) e R}

If a transition 7 is included in 'V, then it is observable, oth-
erwise it is unobservable. If T is included in R, then it is
faulty, otherwise it is normal.

The solution A of p(H) is the set of candidate diagnoses:

A(p(H)) = {8 | h € Bsp(H. Ho). hyyy € 01,8 = higy} -

Each candidate diagnosis is the set of faulty transitions of a
history that is consistent with the temporal observation.

For practical reasons, instead of processing observation
O, the index space of O is generated [Lamperti and Zanella,
2002], namely Isp(©). This is a deterministic automaton
whose language equals || @|| (the set of candidate traces).

Example 3. With reference to Example 1, we define the di-

agnostic problem for the left-hand side protection-hardware
as p(W) = (W, V., 0, R), where:

e In W, both breakers are closed, protection device is
idle, and protection hardware is con (see Fig. 2);

o V ={(b1(l).opD), (b1(r), 0pr), (b2(1), cll), (b2 (r), clr),
(p1,awk), (p2, ide), (p3, awk), (pa, ide)};
e () is the temporal observation displayed in Fig. 3 (left);



o R ={(b3(l).nol). (b3(r). nor), (ba(l). ncl), (ba(r). ncr),
(p3.fop). (pa.fep), (wy.fdw), (we. few), (w7, few)},

(i fiD), (L. frD). (I3, psD)}.

Temporal observation @ (Fig. 3, left) includes four nodes,
with w; and w4 containing two observation labels (€ is the
empty label). As such, O is uncertain. Because of this un-
certainty and partial temporal ordering, @ embodies six can-
didate traces, which are the strings of the language of the
index space Isp(O) displayed on the right of Fig. 3 (where
J3 and J5 are final). &

o N
aWki opl opl
()] ide clr
2 @

@ @O .
0, W, cly

Figure 3: Temporal observation @ (left) and Isp(O) (right).

ide

4 Diagnosis Computation

The definition of diagnosis-problem solution is not opera-
tional in nature: it refers to the behavior space, which is
assumed not to be available in practice. The diagnosis en-
gine is expected to be sound and complete in generating
the solution of the problem, without the availability of the
behavior space. To this end, it reconstructs only the sub-
part of the behavior space that is consistent with the tem-
poral observation. In doing so, the reconstruction needs to
keep four sorts of information: the state of components, the
state of input terminals, the state of the matching of pattern
events, and the state of the matching of the temporal ob-
servation. Specifically, the solution of a diagnostic problem
P(H) = (Ho,V, O, R) is computed in three steps:

e Generating the index space of temporal observation (;

e Generating the subspace of Bsp(J, #y) that is consis-
tent with temporal observation ¢, based on viewer V,
called the behavior of p(JH), written Bhv(gp(H));

e Decorating the states of behavior Bhv(p(H)) by the
associated set of candidate diagnoses.

The actual solution A(gp(#)) is the union of the decorations
associated with final states of Bhiv(p(#)) (see Theorem 1).

Formally, Bhv(gp(#)) is defined as follows. Let S be
the domain of tuples (sq,...,s,) of states of components
in €(#). Let E be the domain of tuples (ej,...,en) of
events at input terminals (other than Ext) of components in
€(H). Let I be the domain of states in Isp(Q). Let P be
the domain of tuples (Pi,..., Px) of pattern-space states.
The behavior of gp(H) is a deterministic automaton:

Bhv(p(#)) = (S, T, So, St), where
e § CSxE x & x Jis the set of states;

So = (Hy, 8o, Po, Jo) is the initial state, where &y =
(e,...,€), Py = (P10, .- ., Pxo) the tuple of the initial
states of pattern spaces Pts(X1), ..., Pts(X), respec-
tively, and J¢ the initial state of Isp(O);

St ={(8,8,P,3)| & = (e,...,€), Jis final } is the
set of final states;

T is the transition function, where

(5.6,2.3) 5 (8,6, #.3) € T if and only if:

1. Conditions 1-4 on 8/, &', and &’, for the transi-
tion function of Bsp(H, #y), hold;

5 = { 3 if(T.0) € V.35 S e Isp(0)
¥ otherwise.

The actual algorithm that builds Bhv(gp(J)) starts from the
initial state Sy and generates all possible transitions based
on the conditions above. Eventually, it removes all spurious
states and transitions that are not in a path from the initial
state to a final state.

W
Bll
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e D oo
by(1)
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Figure 4: Behavior Bhiv(gp('W)).

Example 4. With reference to (W) in Example 3, shown
in Fig. 4 is Bhv(gp('W)), including states B, ..., B15, with
P15 final. Each state (&, &, #,3) is such that & is the
quadruple of states for /, p, r, and ‘W, where closed, open,
idle, awaken, con, and disl are written c, o, i, a, n, and 1,
respectively, & is the triple of events at input terminals of /,
r, and ‘W, respectively, where op, cl, di, and nc are written
o0, ¢, d, and n, respectively, while J* and J are the indices
of states in Pts(w) and Isp(Q@), respectively. For instance,
B> = (oacn,eod,1,2) stands for § = (open, awaken,
closed, con), & = (¢,0p,di), P = Py, and J = J5.

Once the behavior has been constructed, each state S of
Bhv(g(H)) is decorated by the minimal set of candidate di-
agnoses A(S) fulfilling the following two inductive rules:

(1) For the initial state: A(Sy) = {@}.

(2) For each transition S kN S’ in Bhw(gp(H)):

If T is normal then § € A(S) = § € A(S);
If (T, f) € Rthend € A(S) = SU{f}) € A(S).

The algorithm that decorates Bhv(gp(H#)) starts by apply-
ing the first rule, marking the initial state with the singleton
of the empty diagnosis. Then, based on the decoration of the
initial state, it continuously applies the second rule for each
transition exiting a state S whose decoration has changed. If
(T, f) € R then T is faulty, with f being the relevant fault.
If so, each candidate diagnosis in A(S) extended by fault
f is also a candidate diagnosis in A(S’). Instead, if T is
normal, all candidate diagnoses in A(S) are candidate diag-
noses in A(S’) too. As such, A(S) is constructed as the set
of diagnoses relevant to histories ending at state .S. The al-
gorithm terminates when the application of the second rule
does not cause any change in any decoration.



Table 4: Decoration of Bhv(p('W)).

States Decoration
Bo. B1. B2, B4 10}
3. Bs. Be. B7. B1o {nor}}
9 {{nor, ncl}}
B13 {{nor, ncl, few}}
Bs, B12, P14 {{nor, fep}}
11 Hnor, fep, few}}
Bis {{nor, ncl, few}, {nor, fcp, few}}

Example 5. Based on ruler R (Example 3), the behavior
in Fig. 4 will be decorated as specified in Table 4. There-
fore, two candidate diagnoses are associated with final state
B1s, namely 61 = {nor, ncl, fcew}, and 6, = {nor, fcp, fcw},
corresponding to these two scenarios:

81 : Breaker r fails to open, breaker [ fails to close, and
protection hardware ‘W fails to connect;

8, : Breaker r fails to open, protection device trips breakers
to open rather than to close, and ‘W fails to connect.

Based on Theorem 1, {81, §,} is the solution of p('W). Al-
beit we have two candidates, since §; N 8, = {nor, few},
certainly r failed to open and ‘W failed to connect.

Theorem 1. Let p(H) = (Ho,V,0,R). Let B° and
BY denote Bsp(H, Hy) and Bhv(p(J)), respectively. Let

A(B?) denote the union of the sets of diagnoses decorating
the final states of BY. Then, A(B*) = A(BY).

Proof. (Sketch) Grounded on Lemmas 1.1-1.5.
Lemma 1.1. If history h € B then h € B°.

This derives from the fact BY differs from B° in field S,
which is irrelevant for conditions on §’, &', and ’. By
induction on £, starting from the initial state, each new tran-
sition applicable in B is applicable in B* too.

Lemma 1.2. If history h € B then hpy) € || O].

Recall that /[y is the sequence of observable labels as-
sociated with visible transitions in viewer V. Based on the
definition of 87, h[y) belongs to the language of Isp(0O),
which equals ||@]|. Thus, iy € [|O]].

Lemma 1.3. If history h € 8%, hyyy € ||O||, then h € B".

By induction on £, starting from the initial state, each new
transition 7" applicable in 8% is applicable in B? too. In
fact, if T is invisible, no further condition is required. If T is
visible, based on the assumption /[y) € ||@| and on the fact
that the language of Isp(Q©) equals || ||, the label associated
with T in viewer 'V matches a transition in Isp(0O).

Lemma 1.4. If history h € BY ends at final state St then
A(Sy) includes a candidate diagnosis h|g).

Based on the two rules for decoration of 87, by induction
on A, starting from the initial state (4 empty) and the empty
diagnosis 8, the addition of a new transition 7 in & extends
8 (within the decoration of the new state) by either nothing
(T normal) or a fault label (T faulty). Upon the last tran-
sition of 4, § includes all fault labels associated with faulty
transition in ruler R, in other words § = h[g].

Lemma 1.5. If S is a final state in BY and § € A(Sy) then
3 history h € 8" ending at St such that hjg) = 8.

Based on the decoration rules for 87, § is incrementally
generated starting from the empty diagnosis initially associ-
ated with Sy, by inserting each faulty label associated with
each faulty transition encountered in a path from Sy to St.
This path is a history provided that it is finite. In fact, cycles

in B allow for an infinite number of applications of the sec-
ond decoration rule. However, since § is a set, once a cycle
has been covered, all associated fault labels are inserted into
8. Successive iterations of the cycle do not extend 6 because
of duplicate removals. Thus, § can always be generated by
a finite history 4, in other words, § = hg;.

To prove Theorem 1, we show § € A(BY) & § € A(B®).
On the one hand, if § € A(BY) then, based on Lemmas
1.1, 1.2, and 1.5, there exists a history &4 € B° such that
hryy € O] and hjg; = 6, thatis, 6 € A(B*). On the
other, if § € A(8B®) then, based on Lemmas 1.3 and 1.4,
there exists a history 7 € B? ending at final state S¢ such
that § = h®) and 6 € A(Sy), thatis, § € A(B?). a

5 Discussion

HDESs are a means of modeling complex DESs, where
behavior is stratified and events can be generated by pat-
terns of transitions. In spite of being influenced by other
components, each internal node X of the hierarchy is a
complex component living its own life. This means that
X has its own behavioral model, which does not coincide
with the composition of the behavioral models of its com-
ponents. This results in a hierarchical system (HDES) made
up of several cohabiting subsystems accommodated at dif-
ferent abstraction levels. The diagnosis technique defined
for HDESs is model-based in nature: diagnosis is output
based on the model of the system and the temporal observa-
tion. Only the portion of the behavior space consistent with
the observation is reconstructed and eventually decorated by
candidate diagnoses. Not only does separation of concerns
apply to the modeling, it also applies to the diagnosis task.
Since each (complex) component is provided with its own
behavioral model, diagnosis is context-sensitive [Lamperti
and Zanella, 2011a]. Moreover, depending on the degree of
constraints on computational resources and time response of
the diagnosis engine, model-based reasoning can be scaled
to a convenient level of abstraction. This means restricting
the HDES J# to a portion J’ (for instance, a complex com-
ponent along with its children) and projecting the temporal
observation @ on @', resulting from the removal of irrele-
vant labels, nodes, and arcs. This way, within the context
of #’, the diagnosis output is complete, even if not sound
(due to the removal of the behavioral constraints imposed by
H — J¢' and the observation constraint imposed by @ — ).
To refine diagnosis, both #’ and (9’ may be then enlarged
to a suitable extent.

6 Related Work

This paper substantially extends the idea of context-
sensitive diagnosis [Lamperti and Zanella, 2011a] in three
directions. First, in [Lamperti and Zanella, 2011a] pattern
stratification is only apparent, as, after macro-substitution,
the regular expression is invariably defined on (basic) com-
ponent transitions. In this paper, pattern stratification is real,
since regular expressions are defined on the transitions of
possibly complex components. Second, in [Lamperti and
Zanella, 2011a] faults are associated with pattern match-
ing. In this paper, faults are associated with transitions
of components: pattern matching generates pattern events
and, by union, complex events, to which complex com-
ponents are sensitive. More importantly, in [Lamperti and
Zanella, 2011a] context-sensitivity is defined on active sys-
tems, while this paper deals with HDESs, which provide be-
havioral stratification: separation of concerns holds not only
for diagnosis but also for behavior. This paper also differs
from [Jéron er al., 2006], where the notion of supervision
pattern is introduced, mainly because neither a hierarchical



structure for the system is conceived nor behavioral stratifi-
cation is applicable. HDESs are not HFSMs (Hierarchical
Finite State Machines). The notion of HFSM was inspired
by statecharts [Harel, 1987], a visual formalism for complex
systems. The most important feature of a HFSM is hierar-
chical state-nesting: if a system is in a nested state (sub-
state), it is also in all its surrounding states (superstates).
Moreover, transitions are defined at each level of the hier-
archy. A simplified version of statechart, namely HFSM,
was considered for solving a class of control problems in
[Brave and Heymann, 1993]. Recently, diagnosis of HF-
SMs has been considered in [Idghamishi and Zad, 2004;
Paoli and Lafortune, 2008]. However, no patterns are in-
volved, events are simple, and diagnosis is context-free.

7 Conclusion

HDESs are a means to formalize complex DESs with be-
havior stratification. This allows for the modeling of a hier-
archy wherein different, yet integrated, subsystems coexist,
each one living its own life. This also allows for context-
sensitivity and scalability of diagnosis.
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