
Using Genetic Algorithms to Study the Effects of Topology on
Spectrum Based Diagnosis

Cuiting Chen, Hans-Gerhard Gross and Andy Zaidman
Delft University of Technology, the Netherlands

e-mail: {cuiting.chen; h.g.gross; a.e.zaidman}@tudelft.nl

Abstract

Spectrum-based fault localization (SFL) is a
statistical fault diagnosis technique that infers
diagnoses from runtime observations. It works
by monitoring system transactions, and com-
paring activity information with pass/fail ob-
servations. SFL requires the monitors, which
recover the activity data, to be organized to
produce optimal information for the diagno-
sis. This organization is termed topology.

Optimality of monitoring topology for diag-
nosability represents a search or optimization
problem amenable to be addressed by meta-
heuristic algorithms. In order to study the
effects of topology on the production of diag-
noses through SFL, we use genetic algorithms
(GA) to generate topologies that lead to im-
proved diagnosability. We illustrate how mon-
itoring topologies affect the diagnosability of
systems, and how GA can help to study these
effects. We derive general characteristics of
topologies to facilitate SFL-based diagnoses.

1 Introduction
Spectrum-based fault localization (SFL) is a
lightweight statistics-based automatic diagnosis
approach that can be applied to identify misbehaving
system parts [5]. It works by automatically inferring
a diagnosis from symptoms [1]. The diagnosis is a
ranking of potentially faulty system components and
the symptoms are observations about component
involvement in system activation, plus pass/fail infor-
mation for each activation [8]. The activation of the
system is expressed in terms of a binary activity matrix
representing for each component whether it has been
involved in a transaction. The pass/fail information
is expressed in terms of a binary output vector. A
diagnosis is determined by calculating the similarity
between each component’s activation vector and the
output vector. A component whose activity vector is
more similar to the output vector is more likely faulty
than other components, and ranked higher as suspect.

The application of SFL creates a particular challenge,
i.e. the placement of the monitors for gathering compo-
nent involvement information. We refer to this place-
ment as the monitoring topology of the diagnosis sys-
tem. In principle monitors may be placed anywhere

in the monitored system. However, the places should
be selected carefully to yield the best results in terms
of calculating correct diagnoses. Typical places are in
or around the system components, or collections of sys-
tem components, or between them. Finding monitoring
topologies that lead to high diagnosability represents a
difficult optimization problem amenable to be solved by
meta-heuristic algorithms, such as genetic algorithms.
This brings us to the formulation of the following re-
search questions:

RQ1: How can genetic algorithms be used to deter-
mine better diagnosable topologies?

RQ2: What are characteristics of topologies that are
better diagnosable?

One contribution of this paper is the application of GA,
including the definition of adequate fitness functions,
in order to study the optimality of topologies for bet-
ter diagnosability. Another contribution is the formu-
lation of general characteristics of topologies that im-
prove SFL-based diagnoses. Optimization of topology
is a well-known problem domain to be addressed by
genetic algorithms, e.g. [4], however, the use of GA in
spectrum-based software fault localization is novel, in
particular the formulation of the fitness introduced.

The remainder of this article is organized as follows.
Section 2 introduces SFL and how it is affected by
topology. Section 3 illustrates how GA can be applied
for SFL topology optimization. Section 4 outlines our
experiments performed, and Section 5 presents the dis-
cussion of their results, and lessons learned. Finally,
Section 6 lists the related work, and Section 7 summa-
rizes and concludes the paper and gives an outlook on
future work.

2 Background and Scope
Spectrum-based fault localization calculates a diagnosis
ranking of potentially faulty components from observ-
ing their activity and pass/fail outcome [8]. Activity is
expressed in terms of block-hit-spectra [12], producing
per transaction a binary coverage spectrum [21][23] and
a verdict. Component activity and verdicts are derived
through dedicated monitors. This is demonstrated in
[5].

Table 1 illustrates SFL with a system made of com-
ponents C0 − C10. It is activated with 6 transactions
t1 − t6, leading to the corresponding component ac-
tivations in the activity matrix. Four transactions

Table 1: Illustration of SFL
Cmp Character counter t1 t2 t3 t4 t5 t6 SCo

def count(string) [Activity Matrix]
C0 let = dig = other = 0 1 1 1 1 1 1 0.82
C1 string.each char { |c| 1 1 1 1 1 1 0.82
C2 if c===/[A-Z]/ 1 1 1 1 0 1 0.89
C3 let += 2 1 1 1 1 0 0 1.00
C4 elsif c===/[a-z]/ 1 1 1 1 0 1 0.89
C5 let += 1 1 1 0 0 0 0 0.71
C6 elsif c===/[0-9]/ 1 1 1 1 0 1 0.89
C7 dig += 1 0 1 0 1 0 0 0.71
C8 elsif not c===/[a-zA-Z0-9]/ 1 0 1 0 0 1 0.58
C9 other += 1 } 1 0 1 0 0 1 0.58
C10 return let, dig, other 1 1 1 1 1 1 0.82

end
Output vector (verdicts) 1 1 1 1 0 0

Topology A Topology B Topology C

Figure 1: Different diagnosis topologies of an example
service-based system

are failing, two are passing, noted in the output vec-
tor. The Ochiai similarity coefficient (SCo) is deter-
mined for each component activation vector (ai) and
the output vector (oi). SCo is based on three coun-
ters n(1, 1), n(1, 0), n(0, 1), representing the respec-
tive numbers of occurrences that ai and oi form the
combinations (1, 1), (1, 0), (0, 1), and it is defined by:
SCo = n11/

√
(n11 + n01) · (n11 + n10). This denotes the

likelihood of a component being faulty and determines
its position in the ranking. Any SC may be used; how-
ever, the Ochiai SC has been found to work best [2].
By applying SCo in Table 1, C3 is correctly identified
as the faulty component in this example system (faulty
component marked bold in Table 1).

Table 2 illustrates how monitoring topology affects
SFL. The three topologies shown are comprised of six
components, C1 – C6. In Topology A and B, every
component represents a monitor collecting component
activation information. In Topology C, component C3

is split to represent two monitors, i.e. C3.1 and C3.2.
Component C4 is faulty with health h=0.0, all other
components are healthy (h=1.0). The invocation prob-
abilities between the components are represented by the
numbers noted down at the arrows. Topology A shows
a particular system characteristic, with components C1,
C3, C4, and C6 being tightly coupled, indicated by the
1.0 invocation probabilities. This represents a specific
inhibiting factor for the calculation of the diagnosis as
shown by the poor component ranking in the corre-
sponding activity matrix. Components C1, C3, C4 get
attributed the same ranking, rendering this diagnosis
ambiguous. Topology B represents a relaxation of the
tight couplings between components C1, C3, C4, and
C6 to a lower value of 0.9. This leads to a better SCo

calculation and a correct diagnosis of the faulty ser-

Table 2: Activity, SC for the topologies in Fig. 1
Topology A

Service Activity for Topology A SCo

S5 00 0.000
S1 1000111101000001100001010010110000000100 0.592
S4 1001111101111100110110001010111000100100 0.742
S3 11 1.000
S2 11 1.000
S0 11 1.000
Output 11

Topology B
Service Activity for Topology B SCo

S5 00 0.000
S1 0000000000000100001000000011000010000100 0.340
S4 0011101001100000001110101011100100101001 0.668
S0 11 0.949
S2 1111101111111011111111111111111111111111 0.973
S3 1111101111111010111111111111011111111111 1.000
Output 1111101111111010111111111111011111111111

Topology C
Service Activity for Topology C SCo

S5 00 0.000
S1 1010000000000000000100000010000000000000 0.344
S4 0001000000110001101110010100111000000000 0.445
S2.2 1001001000000111001011110110111001110101 0.601
S0 11 0.689
S2.1 1001100100111001110110111010110000100110 0.851
S3 1001000100001011110110111010010001100110 1.000
Output 1001000100001011110110111010010001100110

vice for Topology B. The same effect is achieved, if a
component is split up into two observation points (C3.1
and C3.2 in Topology C). The calculation of the SCo

for Topology C is also correct and unambiguous. This
simple example suggests that topology has a major in-
fluence on the calculation of a diagnosis with SFL. The
goal of this paper is to study these effects with the help
of GA, and derive general characteristics of topologies
resulting in high diagnosability.

3 GA for Topology Optimization

We favor genetic algorithms over other optimization
heuristics, since they are adequate for our problem do-
main [4] and easy to apply. GA represent a group of
optimization techniques, loosely related to the mecha-
nisms of natural evolution with reproduction and selec-
tion [7]. The parameters of the optimization problem
are encoded as binary string (chromosome). Each chro-
mosome represents an individual in a pool of solutions
(population). During reproduction, pairs of individuals
are selected for recombination and some parts of their
chromosomes form a new individual. This is termed
crossover and controlled by the crossover operator ac-
cording to probability Pc. After recombination, indi-
vidual bits of the new chromosome are mutated by a
mutation operator according to a low mutation proba-
bility Pm. The resulting new individuals are assessed
with the fitness function. This measures how well an in-
dividual solves the original problem. Fitter individuals
have a higher chance to reproduce. This is controlled
by the so-called selection operator. The fittest individ-
uals remain in the population and build the basis for
the next generation.

In SFL, the topology is represented in the activ-
ity matrix. It expresses for every observation point
(monitor), whether it has been activated in a trans-
action or not. The coverage of the topology can be
expressed as one binary string, making a mapping to a
GA-chromosome straightforward. Every line in the ac-
tivity matrix becomes a substring of the chromosome.

Table 3: Fitness A: high overall SC

Fitness A: high overall SC
def f_high(chrom, act)

genotype -> phenotype transfer
activity = Array.new
while (a=chrom.take(act)) != [] do
activity << a
chrom = chrom.drop(act)

end
SC calculation
sc = Array.new
activity.each do |output_vec|
activity.each do |activity_vec|
sc<<ochiai(activity_vec, output_vec)

end
end
fitness: sum up sc values
fitness = sc.inject{|sum,x| sum + x}
return fitness

end

The fitness distinguishes good from poor solutions, and
it represents the adequacy of a topology to support the
calculation of a diagnosis. Diagnosability can be ex-
pressed in terms of the extent to which all diagnoses
carried out on an activity matrix coming from that
topology, are correct diagnoses. In other words, if a
topology is organized such that every faulty compo-
nent can be identified correctly, the topology may be
referred to as highly diagnosable. This can be achieved
by consecutively setting all components used in the ac-
tivity matrix to be faulty, and then calculating the sim-
ilarity coefficient for each fault scenario. This yields a
value representing how well a topology facilitates the
discovery of faults in components. Topologies leading
to higher fitness values will lead to better pinpointing
of all faulty components.

The ruby-method f_high (Fitness A in Table 3) rep-
resents the basic fitness function yielding high overall
SC. First, in the so-called genotype-phenotype transfer,
the GA chromosome is translated into the problem do-
main, i.e. the binary gene-string is transformed into a
binary activity matrix. Second, each component acti-
vation vector is set to be the output vector, and the SC
is calculated. Third, the SC values are summed up.

4 Experiments

We performed a number of experiments in order to have
GA generate highly diagnosable topologies, and then
to derive general characteristics for diagnosable topolo-
gies. The genetic algorithm used for these experiments
can be downloaded.1 It uses the following rudimentary
operators.

Two individuals are selected for recombination based
on tournament selection [17]. This chooses Nt indi-
viduals from the population randomly, and returns the
fittest in this tournament. The actual recombination is
done according to the uniform crossover operator [22].
It determines for every bit in the chromosome, accord-
ing to a probability Pc, whether the value for the new
individual (offspring) is taken from the first or from the
second parent.

The other GA-parameters depend on the complexity
of the particular problem size to be solved. The pop-
ulation size Np, and the tournament size Nt are set to
different values in the different experiments, reflecting

1https://github.com/SERG-Delft/rusiga

the chromosome size of the respective problem, i.e. ac-
cording to the size of the activity matrix (or based on
experience). Bigger activity matrices represent larger
search spaces and require bigger populations for better
sampling of the search space. Experiments with large
topologies are possible but would require more space for
presentation. Therefore, the topologies shown are lim-
ited to five components. Experiments with larger num-
bers of components yield similar results. The GA main-
tains and evolves the Np fittest individuals. Crossover
probability Pc is set to 0.5 in all experiments, and mu-
tation probability Pm is set to a low value of 0.001.
These were determined through initial experiments and
found to provide acceptable results. Every experiment
was repeated 20 times. There may be better GA im-
plementations or operators to chose from, however, the
ones introduced here are sufficient to produce usable
results.
Assessing the Setup.

The first experiments performed serve as assessment in
terms of whether or to which extent the GA is able
to generate highly diagnosable activity matrices. We
assume a diagnosable topology is represented by high
overall SC values. This can be tested by iteratively set-
ting the output vector in the fitness function equal to
each component’s activation vector (Fitness A in Table
3). Each component is set to be faulty in the calcula-
tion of the SC (single fault case), resulting in SCo = 1
for this comparison, and we expect the GA to produce
activity matrices in which all component activations
are alike. An example is shown in Table 4, above.
The first activity matrix (fitness=16.75) represents the
best random individual from the first generation. The
second activity matrix (fitness=24.88) represents the
fittest individual after 200 generations. The success of
this optimization example is quite obvious. All com-
ponent activity vectors are highly similar, representing
a highly diagnosable activity matrix expressed by the
calculation of high overall SC. In fact, the most optimal
solution in this example is fitness=25, when all combi-
nations of component activity vector and output vector
yield a 1.0 as SC value, i.e., when they are identical. In
this example, the fittest individual is only 1 bit flip
away from the optimal solution, i.e. in the penultimate
spectrum of C1.

Even though, this experiment is successful in terms
of assessing our experimental setup, it is useless in diag-
nosis, because the activity matrix represents a topology
in which all components are tightly coupled. If C1 is
invoked, all other components will also always be in-
voked, leading to components C1 to C5 being assigned
the same ranking (SC = 1.0; compare with Topology
A in Table 2), and resulting in an ambiguous diagno-
sis. As a consequence, we have to extend the adequacy
criterion for topologies: “A topology is diagnosable, if
it facilitates the detection of all faults in a system, and
their unambiguous identification,” i.e. it must not gen-
erate duplicate top SCo.
Topologies for Discriminable Diagnoses.

In this experiment, the fitness function from the previ-
ous setup is adjusted to award topologies higher fitness,
which result in high overall SC, but also lead to discrim-
inable diagnoses, thereby addressing ambiguity. The
fitness function f_discrim (Fitness B in Table 5) illus-

Table 4: Assessment of the experimental setup
100 Generations, 40 Activations
Np=120, Nt=6, Pc=0.5, Pm=0.001

best random individual (fitness=16.75)
C1 1010101001111001011111000110101110100100
C2 0011101100110000101101101010110011110101
C3 1001010011011111110000111101100010111011
C4 0101101110011001100101101011100010110001
C5 0101111111001001010101001110101010101001

best final individual (fitness=24.88)
C1 0111101110111111101111101111111110110101
C2 0111101110111111101111101111111110110111
C3 0111101110111111101111101111111110110111
C4 0111101110111111101111101111111110110111
C5 0111101110111111101111101111111110110111

trates this extension. It awards individuals that lead
to one top ranked component, and a number of lower-
ranked components. Moreover, it can be configured to
minimize (diff=:low) or maximize (diff=:high) the
difference between the top ranked and all lower-ranked
components. Table 6 shows examples for both opti-
mization goals.

Table 5: Fitness B: discriminable SC
Fitness B: discriminable SC
def f_discrim(chrom, act, diff=:high)

genotype -> phenotype transfer
same as f_high()
...
SC calculation
same as f_high()
...
fitness: discriminiable SC
highest_sc = (sc.sort!)[-1]
pivot = sc.find_index(highest_sc)
low_sc = sc[0..pivot-1]
top_sc = sc[pivot..-1]
sum_top = top_sc.inject {|sum,x| sum+x}
sum_low = low_sc.inject {|sum,x| sum+x}
return sum_top - sum_low if diff==:high
return sum_low - sum_top if diff==:low

end

Adjusting diff to :high leads to a large number of
‘0’s in the final activity matrix compared to a random
activity matrix from the early generations, represent-
ing a lot of unique component activation. This means
that discriminable diagnoses, indeed, can be supported
by the topology of the system, and that inactivity of
the components, indicated through the many zeroes,
supports this. In other words, high diagnosability can
be achieved through inactivity observations, or through
activation of components in isolation, which is the op-
posite of tight component coupling. This is an inter-
esting result, because for the topology it means, that
having components which may be activated individu-
ally rather than in combination with other components,
helps separating system executions, and thus, improves
the diagnosability of the system. This comes from how
the SCo calculates similarity. Completely inactive spec-
tra are ignored by the SCo, but spectra with fewer ac-
tivations provide more useful information for SFL than
spectra with more activations. For example, a spec-
trum with ai = [0, 0, 0, 0, 1] is more useful than another
one with aj = [1, 1, 1, 1, 0], because if the transaction
ai fails, this will result in the only one activated com-
ponent in ai being blamed more. This outcome may
seem like ”the bleeding obvious,” but, because complete
decoupling of all components is not realistic in real sys-
tems, in the future, we will have to assess whether or
to which extent a GA may be able to generate optimal
monitoring locations that help to exploit this property,
at least to a certain extent.

Table 6: Examples for discriminable diagnoses
30 Generations, 40 Activations

Np=50, Nt=3, Pc=0.5, Pm=0.001; diff=:high
fitness=-2.98 (best random individual)

C1 1110100010001000101100111001110100100011
C2 1000101000100100100110100000000011001110
C3 1111010000100101100001000100100101110000
C4 1001001111110111100111110111011000010100
C5 0100110111000010010110110011010000101001

fitness=4.606 (best individual after 30 gen.)
C1 0000100000001000000000001100000011100010
C2 0110000000000100000010100001000100001100
C3 0000000001000010001000000010000000000001
C4 0001001100100001000100000000000000010000
C5 1100010110010000110001010000111000000000

30 Generations, 40 Activations
Np=50, Nt=3, Pc=0.5, Pm=0.001, diff=:low

fitness=7.092 (best random individual)
C1 1001111101010000100011101111100100011101
C2 1011011000010110111100111101110110011010
C3 1100111001010110101100101111111010101110
C4 0101101110001000101010101101101001110011
C5 1010001001000110101100011001111101101011

fitness=12.978 (best individual after 30 gen.)
C1 1011111001011111100010111111100111111111
C2 1111111011011111101110111111100111111011
C3 1111111011011111101000111111111111111011
C4 0111101011011100101010111111100101111111
C5 1111100011011111101000111111100111111011

Setting diff to :low shows different results. Even
though the activity matrix contains many ’1’s, indicat-
ing tight coupling between the components, conclusive
diagnoses can be calculated, if the topology can pro-
vide just enough discriminative information, e.g. some
’0’s in some spectra. Looking only at the failing spec-
tra in which each component was activated, would lead
to ambiguous diagnoses (comparable with Topology A
in Table 2). Because there is slight variation in other
spectra to compensate for the tight coupling, the infor-
mation contained in the activity matrix is just diverse
enough in order for the diagnosis algorithm to come
up with an unambiguous ranking. An increase in ob-
servation diversity can be achieved by adding observa-
tion points. One approach could be the inclusion of
observations representing the invocation links between
the components. Another approach is the instrumenta-
tion of the components themselves in order to acquire
more diverse observations. This second approach has
been demonstrated to improve diagnosis considerably
for service-based systems [6]. In any case, both ap-
proaches also raise the question of the optimal number
of observation points for high diagnosability w.r.t. low
monitoring overhead, to be addressed in future work.

Topologies for Intermittent Fault Behavior.
In the previous experiments, activation of a faulty com-
ponent always lead to a failure. Here, we would like to
assess to which extent topology influences the quality
of the diagnosis when components exhibit intermittent
fault behavior. Intermittency, i.e. a component fails
occasionally, is quite common in software, and it is not
attributable to random faults (as in hardware). Even
though, software exhibits deterministic fault behavior,
intermittency comes from the mismatch between the
monitoring granularity and the activation granularity
(basic block level). Hence, intermittency presents a
monitoring topology issue.

Fitness function f_randinterm (Fitness C in Table
7) realizes intermittency through removing all ‘1’s from
each output vector except for a number of randomly
chosen ones (e.g. 3 random failure observations). This

Table 7: Fitness C: random intermittency and Fitness
D: constant intermittency
Fitness C: random intermittency
def f_randinterm(chrom, activ, diff=:high)

genotype -> phenotype transfer
same as f_high()
...
SC calculation
sc = Array.new
activity.each do |output_vec|
output_vec.remove_all_ones_except_rand(3)
activity.each do |activity_vec|
sc<<ochiai(activity_vec,output_vec)

end
end
fitness: discriminable
same as f_discrim()
...

end
Fitness D: constant intermittency
def f_constinterm(chrom, activ, diff=:high)
genotype -> phenotype transfer
same as f_high()
...
SC calculation with const. output vector
output_vec = [0,0,0,1,0,0,0,0,0,1,0,0,0,...]
activity.each do |activity_vec|
sc<<ochiai(activity_vec,output_vec)

end
fitness: discriminable
same as f_discrim()
...

end

yields similar results as presented in Table 6, with diff
set to :high and :low, respectively, so we omitted an
example. Consecutively using each activation vector as
output vector, leads the optimization to be focused only
on the generation of high/low differences between top
ranked activations and the lower ranked activations,
thereby ignoring the intermittency target.

Amending the fitness function by focusing on only
one faulty component, leads to a more differentiated
outcome (through Fitness D, in Table 7). Table 8 shows
two examples with five constant failures seeded into the
output vector, and with diff set to :high and :low,
respectively. Looking at the two examples, the solution
of the GA to the intermittency problem is both cunning
and ironic: “in an optimal topology, faulty components
should only be executed when they are guaranteed to
fail,” which avoids intermittency altogether and is not
very useful. Further, when diff is set to :high, it be-
comes apparent that when the failing component, C5

in this example, is activated, none of the other compo-
nents is activated, suggesting again, that the ability to
activate components in isolation is advantageous. And
when diff is set to :low, ambiguous diagnoses can be
resolved through additional observations, i.e. through
the very few additional ’1’s in the bottom activity ma-
trix. This confirms our previous observations. Inter-
mittency cannot be addressed with this kind of exper-
iment.

Freely Evolved Topologies.
Up to this point, we have had the GA evolve topolo-
gies based on a predefined output vector with seeded
faults. That way, we could define the interesting error
scenarios, and have the GA generate optimal activity
matrices. In this experiment, we let the GA not only
evolve the activity matrices, but also their correspond-
ing output vectors. It means, we have no control over
the number of failure observations generated in the out-
put vector, and we cannot tell whether the diagnosis is

Table 8: Examples for fault intermittency
200 Generations, 40 Activations

Np=200, Nt=3, Pc=0.5, Pm=0.001; diff=:high
fitness=0.377 (best random individual)

C1 0000110011100110100000001000101100110001
C2 0001011111000100001001010111011110101111
C3 1100101010101110110101001101000010110001
C4 1001100110111100101100010000011011111110
C5 1010010010110111110111000010011001111001
O 0111000000000000000000000000000000000110

fitness=1.0 (best individual after 200 gen.) SCo

C1 0000101111000000110100111011111000110000 0.00
C2 1000010101010001101001000111110100010000 0.00
C3 0000010011111011011110100011000110110001 0.00
C4 0000111111110010011000101110000001111001 0.00
C5 0111000000000000000000000000000000000110 1.00
O 0111000000000000000000000000000000000110

200 Generations, 40 Activations
Np=200, Nt=3, Pc=0.5, Pm=0.001; diff=:low

fitness=1.105 (best random individual)
C1 1111110000110000100011111100010011110010
C2 1111100100010001000111100001100000010011
C3 0111100111101010101101000110000011110101
C4 0111110100100011101000111000111100000101
C5 0111010010010100100100101010001111110110
O 0111000000000000000000000000000000000110

fitness=2.652 (best individual after 200 gen.) SCo

C1 0111000000001000000000000000000000000110 0.91
C2 0111100000000000000000000000000000000110 0.91
C3 0111000001000000000000000000000000000110 0.91
C4 0111000000000000000000000000000000000110 1.00
C5 0111000010000000000000000000000000000110 0.91
O 0111000000000000000000000000000000000110

correct, because we cannot seed any particular faults.
For these experiments, a 6th component is added to the
GA chromosome representing the output vector, and
Fitness E in Table 9 is used for evaluation of the individ-
uals. The fitness function is slightly different compared
to the earlier ones, because of the output vector taking
part in the evolution. Setting diff to :low results in
a selective pressure favoring many failure observations
to be produced as shown in the example activity ma-
trix on the top right hand side of Table 10. Because the
number of failing transactions is unrealistically high for
real software systems, we set diff to :high, resulting
in much lower number of failure observations. This is
shown in the example activity matrix on the bottom
right hand side of Table 10.

Table 9: Fitness E: Freely evolved topologies

Fitness E: freely evolved
with output vector
def f_discrout(chrom, act, diff=:low)

genotype -> phenotype transfer
same as f_discrim()
...
SC calculation
ouput -> last comp act vector
output = activity_matrix[-1]
activity_matrix.delete_at(-1)
sc = Array.new
activity_matrix.each do |activ|

sc << ochiai(activ, output)
end
fitness: discriminable SC
top_sc = (sc.sort!)[-1]
top_cnt = sc.count(top_sc)
low_sc = sc[0..-2]
sum_low = low_sc.inject {|sum,x| sum+x}
return (top_sc - sum_low) / top_cnt if diff==:low
return (sum_low - top_sc) / top_cnt if diff==:high
#return (sum_low - top_sc) / (top_cnt + output.count(1))
favor. low num. of failures

end

Two noteworthy results can be observed in this sec-
ond case. First, as noted earlier, being able to acti-
vate components individually supports the diagnosis.
Second, intermittency can be dealt with. The faulty

Table 10: Examples for Freely evolved topologies
200 Generations, 40 Activations

Np=200, Nt=3, Pc=0.5, Pm=0.001; diff=:low
C1 1111111111111111111111111111111101111111 0.97
C2 1011111111111111110111111111111111111111 0.98
C3 1011111111111111111111111111011111111111 0.98
C4 1011111111111111111111111111111111111111 1.00
C5 1011111111111111111111111111111101111111 0.98
O 1011111111111111111111111111111111111111

200 Generations, 40 Activations
Np=200, Nt=3, Pc=0.5, Pm=0.001; diff=:high

C1 1100011100000001100101011000101010010000 0.00
C2 0100000001101000000010000010101110000001 0.00
C3 0101100001000100001000100010010001100000 0.80
C4 0111000001000010010000010001000010010111 0.00
C5 1000001001100001110100001110001010011000 0.00
O 0000100000000100001000100000010001100000

component, C3 in this example, is sometimes invoked
without resulting in a failed transaction. This leads to
the SCo < 1.0. In fact, when C3 is invoked in isolation,
it fails, if it is invoked in combination with any of the
other components it passes. This is a clear indicator of
a missing observation point, either in the component C3

itself, or in one of its peers which is invoking it individ-
ually. Translated to a real system it means, that if C3
is invoked from an external (unmonitored) system, it is
exercising a different internal route, than if it was called
from one of its monitored peers. In future work, we will
assess to which extent missing observation points can
inhibit proper diagnosis.

Freely Evolved Topologies with Fewer Failures.

Even when diff is set to :low, we can get useful re-
sults, when the fitness function favors individuals with
low number of failures. We can amend the Fitness
E shown in Table 9 by adding a scaling factor, i.e.
output.count(1), shown in the last line of the fitness
function’s code, penalizing individuals with high num-
bers of failures. Table 11 shows an example with a an
activity matrix containing only one failure.

Remarkable, again, is the high number of zeroes in-
dicating that monitoring of inactivity is advantageous
for high diagnosability. This is in line with our ear-
lier results. However, the result shown in Table 11
also hints to another interesting topological issue. Even
though, all components are activated together in case
of the failing transaction, representing tight interaction
of the components in the fault case, the activity ma-
trix contains enough discriminative information in or-
der to reach an unambiguous diagnosis. This is, again,
a strong indicator that the ability of a monitoring topol-
ogy to observe various combinations or patterns of com-
ponent invocations will help in reaching unambiguous
diagnoses. The other occasional activations lead to suf-
ficiently diverse information in order to being able to
separate the tight coupling of the components on fail-
ure.

From this observation, we can deduce that not only
diverse coverage benefits diagnosability, but moreover,
also distinct coverage. In other words, topologies with
more diverse execution routes, covering distinct com-
ponents, facilitate diagnosability. In the topology, this
can be achieved through monitoring not only activa-
tion or non-activation of a particular entity, i.e. the
fact that something has been used, but also through
monitoring the context in which something has been
used, i.e. incoming and outgoing combinations of ac-

Table 11: Freely evolved topologies, fewer faults
200 Generations, 40 Activations

Np=100, Nt=3, Pc=0.5, Pm=0.001; diff=:low
fitness=0.081 (best random individual)

C1 0011010100111001111111111001010001000111
C2 0011110101001011000100111010010101110111
C3 0011111100001100111100001110000100110111
C4 0110010010001111010000011001100000100111
C5 0110101101000001000100110110110001111001
O 0010111000110111000000100101010001101111

fitness=0.44 (best indiv. after 200 gen.) SCo

C1 0010100100100100000001100000100000110000 0.316
C2 0000111010101100001100100000010000010000 0.289
C3 0000101000010011011100000000000010000110 0.302
C4 0010100001100000000000011100000001100011 0.302
C5 0110100010000010001001000110000000100010 0.302
O 0000100000000000000000000000000000000000

tivations. In other words, the fact that something has
been covered through various routes, or in particular
sequences, which can be monitored, has an influence
on the diagnosability of a topology. In the future, we
will take a closer look at the influence of the traces
leading to an activity matrix, rather than merely the
activations themselves.

5 Discussion

5.1 Revisiting the Research Questions

In the introduction, we asked ourselves how genetic al-
gorithms can be used to study the effects of the mon-
itoring topology on the diagnosability of systems. We
will now address this problem by providing answers to
the two research questions formulated:
RQ1: How can search-heuristics such as genetic
algorithms be used to determine better diag-
nosable topologies? The topology of a system is
represented by an activity matrix, whereby, for each
observation point, it expresses whether that point has
been activated. The coverage of all observation points
can be expressed as a binary string, making a mapping
to a GA-chromosome straightforward. For the fitness,
we propose several approaches. First, a function that
expresses the diagnosability of a monitoring topology,
i.e., the extent to which all diagnoses carried out on an
activity matrix coming from that topology, are correct
diagnoses. In the fitness function, each component is
set to be faulty per diagnosis. Then, the fitness func-
tion calculates to which extent all similarity coefficients
combined from all runs represent correct and distin-
guishable diagnoses. This yields a value representing
how well a topology facilitates the discovery of each
potential fault in every component. This basic fitness
function can be amend in order to address the different
optimization criteria required in the different experi-
ments, e.g. favor high or low differences in the SCo, or
favor output vectors with low number of failures.
RQ2: What are characteristics of topologies
that are better diagnosable? According to the fit-
ness function, a topology is a “good” or a diagnosable
topology, if it facilitates the detection of all faults in a
system in an unambiguous manner. The application of
GA hints at a number of routes to satisfying this fitness
goal. Our results show that

• being able to invoke components in isolation is ben-
eficial for diagnosability, because it helps separate
component involvement in system executions bet-
ter.

• adding observation points (monitors) in the sys-
tem, and including the monitoring of inactivity,
helps separating system executions, which also fa-
cilitates the diagnosability of the system.

• including monitoring of the system context (exter-
nal components from other systems, incoming and
outgoing activations) can support diagnosability
through incorporating different invocation routes.

• including tracing information which represents
combinations or distinct patterns of component
coverage, may suport SFL-based diagnosis.

All these items also raise the question of the optimal
number of observation points for high diagnosability
w.r.t. low monitoring overhead.

5.2 Lessons Learned

Besides the more general characteristics of diagnosable
topologies stated above, the application of GA taught
us a lot about the behavior of the SFL approach. It
is interesting to see how a search heuristic cannot only
help to provide solutions, but also point to issues, both
known, and unknown.

In the initial assessment of our setup, the GA gener-
ated topologies with tightly coupled components. This
was due to our poor fitness definition. We knew already
that tight component interaction is bad for diagnosabil-
ity of a topology, and the GA was, in fact, pointing to
this issue, so that in subsequent experiments, the fitness
function could be adjusted.

The fact that having fewer activations within a spec-
trum provides better information for SFL than more ac-
tivations was not obvious initially. Creating monitoring
topologies that lead to such observations is, therefore,
an essential goal for future work.

Finally, from the last experiments we can deduce that
the context of activity is an important factor in the
calculation of a diagnosis. In other words, if a compo-
nent is activated, which route did this activation take?
We knew already that introducing more information
into the calculation of the SC yields better diagnoses.
But this points to very particular information to be in-
cluded, i.e., the activation paths through the system.
In future work, we will derive the activation sequences
from the traces generated by the monitors and encode
this in the activity matrix.

5.3 Threats to Validity

In this initial application of GA to studying the ef-
fects of topologies on diagnosability, we have used ac-
tivity matrices instead of real topologies. An activ-
ity matrix represents component involvement in system
transactions and must be regarded as a simplification
of a topology. It does not explicitly express the links
between components. We can, therefore, only infer
very general characteristics of potentially diagnosable
topologies.

In the experiments, we have only looked at a low
number of observation points (monitors), and at a low
number of observations (spectra). We are aware of the
fact that the number of observations and observation
points affect the achievable results, but we decided to
treat the generation of variable numbers of observation

points as a problem in its own right, to be addressed in
the future.

6 Related Work

Literature describing the application of genetic algo-
rithms to the optimization of topologies is abundant.
For instance, Kumar et al. [14] propose a general ap-
proach based on GA to design network topologies for
distributed systems, in order to achieve network reli-
ability; Madeira et al. [16] develop a computational
model to optimize topologies of linear elastic structures
with GA; the authors of [9] use GA to optimize the
topology of hardware circuit against parallel flows.

In software engineering, the authors of [10], [19], and
[20] propose to apply multi-objective GA to automat-
ically synthesize software architectures. The architec-
tural patterns are used for mutations and the quality
metrics are used as fitness function to assess each ar-
chitecture. Their research results conclude that their
approach of architecture synthesis based on GA is able
to produce a set of reasonable architectural solutions.
However, only two quality attributes, i.e. modifiabil-
ity and efficiency, were considered in their approach to
generate software architectures. Lutz [15] use meta-
heuristics to evolve good hierarchical decompositions.
Decomposition is related to our problem of placing
monitors at strategically optimal locations.

Harman [11] states that“metrics are fitness functions
too”. We acknowledge this by defining fitness func-
tions for diagnosability. Kim and Park [13] propose the
application of reinforcement learning in self-managing
systems. In particular, they mention software archi-
tecture. Our approaches are intended to contribute to
self-adaptive and self-managing systems.

Piel et al. [18] apply spectrum-based fault local-
ization techniques together with online monitoring
to recover health information and pinpoint problem-
atic components for self-adaptive systems. Abreu
et. al. [3] present a diagnosis approach combining
spectrum-based fault localization and model-based di-
agnosis techniques, which is able to locate multiple
faulty components with relatively low cost.

7 Summary, Conclusions and Future
Work

In this paper, we outlined how genetic algorithms can
be used to study the effects of monitoring topologies
on SFL-based diagnoses. We defined a simple one-to-
one mapping between the chromosome of a genetic al-
gorithm and an activity matrix to be used by SFL,
plus several fitness functions representing diagnosabil-
ity. Activity matrices were used as simplifying models
for real topologies. Explorative experiments revealed
a number of general characteristics of topologies that
support diagnosability, and we learned to better under-
stand how topology affects the calculation of diagnoses.

The vision of our research is that, eventually, we
would like to be able to have a search heuristic gen-
erate the most optimal monitoring topology in terms
of high diagnosability for any arbitrary existing sys-
tem. In the future, therefore, we will have to look at
how real topologies can be encoded for GA, instead of

merely using activity matrices representing topologies.
This can be done either with the help of a topology
simulator2, or with real systems. Other issues to be
addressed in the future are the inclusion of context in-
formation (derived from traces) in the calculation of the
diagnosis, and the inclusion of more monitors. This last
aspect represents a multi-objective optimization prob-
lem in its own right, i.e. generate topologies for optimal
diagnosability with minimal monitoring overhead.
Acknowledgements: Thanks to NWO for sponsor-

ship, and our industrial partners Adyen and Exact.

References
[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. van

Gemund. A practical evaluation of spectrum-based
fault localization. Journal of Systems and Soft-
ware, 82(11):1780–1792, 2009.

[2] R. Abreu, P. Zoeteweij, and A. J. van Gemund.
An evaluation of similarity coefficients for software
fault localization. In Proc. Int’l Symp. on De-
pendable Computing (PRDC), pages 39–46. IEEE,
2006.

[3] R. Abreu, P. Zoeteweij, and A. J. van Gemund.
Spectrum-based multiple fault localization. In
Proc. Int’l Conf. on Automated Software Engineer-
ing (ASE), pages 88–99. IEEE, 2009.

[4] C. Chapman, K. Saitou, and M. Jakiela. Genetic
algorithms as an approach to configuration and
topology design. Mech. Des., 116(4):1005–1012,
December 1994.

[5] C. Chen, H.-G. Gross, and A. Zaidman. Spectrum-
based fault diagnosis for service-oriented software
systems. In Proc. of the Int’l Conf. on Service-
Oriented Computing and Applications (SOCA).
IEEE, 2012.

[6] C. Chen, H.-G. Gross, and A. Zaidman. Improv-
ing service diagnosis through increased monitoring
granularity. In 7th Intl Conf. on Software Security
and Reliability, page to appear, Washington, DC,
June, 18–20 2013.

[7] D. Goldberg. Genetic algorithms in search, opti-
mization, and machine learning. Addison Wesley,
1989.

[8] A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, and
A. J. van Gemund. Spectrum-based sequential di-
agnosis. In Proc. Int’l Conf. on Artificial Intelli-
gence (AAAI), pages 189–196. AAAI Press, 2011.

[9] G. Granelli, M. Montagna, F. Zanellini, P. Bre-
sesti, and R. Vailati. A genetic algorithm-based
procedure to optimize system topology against
parallel flows. Power Systems, IEEE Transactions
on, 21(1):333–340, 2006.

[10] Hadaytullah, S. Vathsavayi, O. Raiha, and
K. Koskimies. Tool support for software architec-
ture design with genetic algorithms. In Proc. Inter-
national Conference on Software Engineering Ad-
vances (ICSEA), pages 359–366. IEEE CS, 2010.

2https://github.com/SERG-Delft/sfl-simulator

[11] M. Harman and J. A. Clark. Metrics are fitness
functions too. In Proc. of the Int’l Symp. on Soft-
ware Metrics (METRICS), pages 58–69. IEEE,
2004.

[12] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi.
An empirical investigation of program spectra.
In Proc. SIGPLAN-SIGSOFT workshop on Pro-
gram analysis for software tools and engineering
(PASTE), pages 83–90. ACM, 1998.

[13] D. Kim and S. Park. Reinforcement learning-
based dynamic adaptation planning method for
architecture-based self-managed software. In Pro-
ceedings of ICSE Workshop on Software Engi-
neering for Adaptive and Self-Managing Systems
(SEAMS), volume 0, pages 76–85. IEEE, 2009.

[14] A. Kumar, R. M. Pathak, Y. P. Gupta, and
H. R. Parsaei. A genetic algorithm for dis-
tributed system topology design. Comput. Ind.
Eng., 28(3):659–670, 1995.

[15] R. Lutz. Evolving good hierarchical decomposi-
tions of complex systems. Journal of Systems Ar-
chitecture, 47(7):613–634, July 2001.

[16] J. A. Madeira, H. Rodrigues, and H. Pina. Multi-
objective optimization of structures topology by
genetic algorithms. Advances in Engineering Soft-
ware, 36(1):21–28, 2005.

[17] B. Miller and D. Goldberg. Genetic algorithms,
tournament selection and the effects of noise. Tech-
nical Report 95006, IlliGAL Report, Dept. General
Engineering, University of Illinois at Urbana Cam-
paign, July 1995.

[18] E. Piel, A. Gonzalez-Sanchez, H. Gross, and A. van
Gemund. Spectrum-based health monitoring for
self-adaptive systems. In Proc. Int’l Conf. Self-
Adaptive and Self-Organizing Systems (SASO),
pages 99–108. IEEE, 2011.

[19] O. Räihä, K. Koskimies, and E. Mäkinen. Ge-
netic synthesis of software architecture. In Proc. of
the International Conference on Simulated Evolu-
tion and Learning (SEAL), volume 5361 of LNCS,
pages 565–574. Springer, 2008.

[20] O. Räihä, K. Koskimies, and E. Mäkinen. Gener-
ating software architecture spectrum with multi-
objective genetic algorithms. In Third World
Congress on Nature & Biologically Inspired Com-
puting (NaBIC), pages 29–36. IEEE, 2011.

[21] T. Reps, T. Ball, M. Das, and J. Larus. The use
of program profiling for software maintenance with
applications to the year 2000 problem. In European
Softw. Engineering Conf. & Symp. on Foundations
of Softw. Engineering (ESEC/FSE), volume 1301
of LNCS, pages 432–449. Springer, 1997.

[22] G. Syswerda. Uniform crossover in genetic algo-
rithms. In Third International Conference on Ge-
netic Algorithms, pages 2–9, 1989.

[23] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. van
Gemund. Diagnosis of embedded software using
program spectra. In Proc. Int’l Conf. and Work-
shops on Engineering of Computer-Based Systems
(ECBS), pages 213–220. IEEE, 2007.

