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Abstract
This paper is an attempt to move a small step
toward a complexity analysis of diagnosis of
discrete-event systems (DESs). The considered
conceptual model of the behavior of DESs are
automata. If the DES is distributed, its behav-
ior is implicitly described by the automaton re-
sulting from the synchronous composition of the
component automata. Solving a diagnosis prob-
lem inherent to a DES amounts to performing a
search within the relevant automaton so as to find
a behavioral path that starts from a given state and
generates a given observation. Three dimensions
are taken into account: temporal and logical un-
certainty of the observation, and uncertainty about
the initial state. The main outcome of this prelim-
inary analysis is that checking whether there ex-
ists any solution to a given diagnosis problem is
in PSPACE. If such a check is inherent to a non-
distributed DES, it is in NP when the observation
is both temporally and logically certain, while, if
the DES is distributed, it is NP-hard, whichever
the observation.

1 Introduction
A general definition of a DES [Cassandras and Lafortune,
2008] reads ‘a discrete-state, event-driven system, that is, its
state evolution depends entirely on the occurrence of asyn-
chronous discrete events over time’. At an untimed abstrac-
tion level, a DES is described by a language. An automaton
[Hopcroft et al., 2006] is the most intuitive model to rep-
resent a language. This is the reason why automata were
adopted as modeling primitives since the very beginning of
research on Model-Based Diagnosis (MBD) of DESs [Sam-
path et al., 1995] in the middle ’90s, thus leading to what in
[Grastien et al., 2007] are called the ‘classical’ approaches.

So many years after, in spite of meaningful results on
the complexity of diagnosability of DESs represented as un-
timed automata [Jiang et al., 2001; Rintanen, 2007], a sys-
tematic analysis of the complexity of diagnosis is still miss-
ing. A DES diagnosis problem consists of a DES (automa-
ton), the initial state of the DES and an observation inherent
to the DES (assuming that some state changes of the DES
are observable). Solving it means finding all the paths in the
given automaton that may have produced the given observa-
tion. In [Grastien et al., 2007] a diagnosis problem inherent
to a DES, given an initial state that is completely certain, is
first presented as a path finding problem, and then formu-
lated as a SAT problem. This looks like a reduction of the
diagnosis problem to a known NP-complete problem. Such
a reduction, however, does not allow us to draw any conclu-
sion on the complexity of diagnosis of DESs, neither when

the temporal order of the observed events is certain or un-
certain nor when the values of observed events are uncertain
(a case which is not encompassed in [Grastien et al., 2007]).
Moreover, the same paper [Grastien et al., 2007] states that
‘diagnosis by SAT’ is ‘a problem harder in general than’
the problem dealt with by ‘the classical algorithms’, which
raises further questions about the complexity of diagnosis
of DESs. Finding the paths (even just one of them) consis-
tent with the given observation is at least as hard as deciding
whether any such a path exists. In other words, the complex-
ity of the diagnosis existence problem is a lower bound of
the complexity of the diagnosis problem.

In this paper, before proving some theorems as to the
complexity of the DES diagnosis existence problem (Sec-
tion 3), the (automata based) conceptual model adopted in
the analysis is described (Section 2). Conclusions are drawn
in Section 4.

2 Conceptual model
A MBD problem instance inherent to a dynamic system
modeled as a DES is a triple (Σ,Σ0,O), where Σ is the DES
model, Σ0 is the initial state of Σ, representing the state of
the considered system at the start of a (finite) time interval
of interest, and O is the (finite) observation of the behavior
of the system over such a time interval.

2.1 Discrete-event system
The behavior of a DES is represented as a finite automaton
(FA) Σ. In a conceptual model aimed at complexity anal-
ysis, we are interested only in the set S of states and the
set T of state transitions of such an FA, where the unique
identifier of each transition is accompanied by the source
and target states of the transition itself. Let γ : T → Eobs
be a partial observation function, where Eobs is a finite set
(alphabet) of observable events; if γ is defined for t ∈ T ,
then t is observable. Fig. 1 displays the model of a DES
consisting of 11 states (numbered from 0 to 10) and 21 tran-
sitions (whose identifiers range from t1 to t21), 10 of which
are observable (each observable transition is labeled with
the relevant observable event).

The initial state Σ0 is a subset of S, that is, Σ0 ⊆ S,
which means that Σ, at the beginning of the time interval
of interest, may be in any state in Σ0 [Sohrabi et al., 2010].
If Σ0 is a singleton, then the initial state of Σ is certain,
otherwise it is uncertain.

A DES is distributed if it consists of several interacting
components, each of which is a DES itself. If the identifier
of a transition belongs to the T set of several components,
then such a transition occurs only if and when it can oc-
cur simultaneously in all the components that share it, that
is, it is an outgoing transition of all the current states of all
the components that share it. Therefore, the FA relevant
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Figure 1: DES model.

to the whole system is the one (implicitly1) resulting from
the parallel composition (often called synchronous compo-
sition [Cassandras and Lafortune, 2008]) of all the compo-
nent FAs, where such a synchronization is based on shared
transitions, which are in fact called synchronous transitions.

There are approaches in the literature [Lamperti
and Zanella, 2003] where components interact ‘asyn-
chronously’, by exchanging (communication) events over
links. Including links in a DES model is a matter of expres-
sive power, not of computational power. A link, whichever
its capacity and its policy (FIFO, LIFO, etc.), could be rep-
resented as a component itself, which shares transitions with
both the component(s) that feed(s) the link and the compo-
nent(s) that extract(s) events from the link. Fig. 2 shows the
component model of a link whose capacity is 2, whose pol-
icy is LIFO, where the events sent on the link are of two dis-
tinct types (say r and s). Each downward arrow represents a
transition (shared with a component that feeds the link) that
pushes an event on the stack of events in the link, while each
upward arrow represents a transition (shared with a compo-
nent that is fed by the link) that extracts the event on the
top of the stack. State empty represents the case when the
link is empty, while each state whose identifier begins with
1 or 2 represents the case when the link contains one or two
events, respectively. The string of characters following the
digit recalls the content of the stack.

Specific primitives for automata communication were in-
troduced for several reasons: first of all, the link primitive is
generic (it specifies just the capacity and the policy), that is,
independent of the number and types of exchanged events,
while the component model of a link depends on them; sec-
ond, the size of the component model of a link includes a
number of states that equals

∑n
i=0 di = (dn+1−1)/(d−1),

where d > 1 is the cardinality of the set of communication
events and n is the capacity of the link; third, the link prim-
itive is processed more efficiently (by ad hoc algorithms)
than the component model of a link. However, the class of
DESs described by using links is a subset of the class of
DESs described as interacting synchronously since an asyn-
chronous communication can be modeled through the prim-
itive for synchronous communication.

In order to base the complexity analysis on the most gen-
eral class of systems, in the following we will assume to deal
with DESs conceptually modeled as synchronous systems.

1The FA relevant to a distributed DES is implicit since no state-
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Figure 2: Component model of a link.

2.2 Observation
The observation O is what has externally been perceived
about the system behavior over the time interval of interest.
Typically the dynamic system has undergone an evolution
which corresponds to a sequence of state transitions of the
DES model, starting from a state in Σ0. Such an evolution
has generated a (possibly empty) sequence of observable
events belonging to Eobs. However, in the observation the
temporal order of the emission of such events may be dis-
rupted into a partial order or even a totally unknown order
(temporal uncertainty). This uncertain order is compatible
with several sequences of observable events, among which
there is the one actually emitted by the system. Moreover,
also the observable events that have taken place in the DES
may have been distorted, that is, a received value may range
over a finite set of possible values, among which there is the
right one (logical uncertainty). Thus, the emitted sequence
of observable events may fall into a set of sequences, de-
noted ||O||. Set ||O|| is finite since (i) the number of events
in O, denoted |O|, is finite; (ii) each event ranges over a fi-
nite set of values, whose cardinality has |Eobs| as an upper
bound; and (iii) the number of total orders compatible with
the given partial order is finite, an upper bound being |O|!.

The model of the observation proposed in [Lamperti and
Zanella, 2002] is a directed acyclic graph, where each node
represents an event perceived by the observer and each
arc represents a temporal precedence relationship accord-
ing to the emission order. The relative emission order of
any pair of nodes such that one is not reachable from the
other, as the shaded ones in the observation in the cen-
ter of Fig. 3, is unknown. In case the observation is log-
ically certain, every node contains a single event; if, in-
stead, the observation is logically uncertain, then one node
at least contains several events, just one of which was ac-
tually emitted by the system. In case the observed event
represented by a node of the observation graph may be
just pure noise, then the node is bound to include sev-
eral observable events one of which is the null event (ε).
All the three observations in Fig. 3 are logically uncer-
tain, and they all include a node containing the null event.
Considering the observation on the left of the figure, set
||O|| includes 32 sequences, among which the follow-
ing: 〈a, b, a, a, b, c, a〉, 〈b, b, a, a, b, c, a〉, 〈a, b, c, a, b, c, a〉,
〈a, b, c, c, c, a〉, 〈b, b, c, c, c, a〉.

2.3 Diagnostic output
The solution of a problem instance (Σ,Σ0,O) is a (possibly
empty) set of candidate diagnoses, each of which explains
what has been observed. The most concrete notion of a can-
didate diagnosis is that providing the information for fol-
lowing a path in the FA representation of the behavior of the

of-the-art approach to MBD of DESs generates it explicitly.
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Figure 3: A totally temporally ordered observation (left),
a partially temporally ordered observation (center), and an
observation with unknown temporal order (right).

whole system, where such a path starts from a state in Σ0
and generates a sequence of observable events that belongs
to ||O||. This means that there exists a sequence of all the
nodes in O, where the total order of such a sequence is com-
pliant with the (possibly partial or unknown) temporal order
represented in the observation graph, such that, by picking
up an event from each node of the sequence of nodes, the
obtained sequence of observable events, once all the oc-
currences of the null event have been removed, equals the
sequence of observable events generated by the path. For
instance, path ℘ = 〈t2, t4, t7, t11, t9, t19, t18〉 in the DES
model of Fig. 1 generates the sequence of observable events
〈a, b, c, a, b, a〉: such a sequence is compliant with all the
three observations in Fig. 3. A candidate diagnosis can be
represented as a finite sequence of (component) transitions
(where each transition uniquely singles out both the source
and target component state(s) of the transition itself). A path
starting from a state in Σ0 is usually called a history. Thus,
if state 0 belongs to Σ0, ℘ is a history.

If the system model includes unobservable cycles, a set
of candidate diagnoses that produce the same sequence of
observable events and differ just for the number of times
each unobservable cycle is followed, can be expressed at a
higher abstraction level as a route. Syntactically, a route can
be represented as a sequence of transitions (starting from
a state σ0 ∈ Σ0) that possibly includes pairs of (possibly
nested) parentheses, where each pair contains a sequence of
transitions identifying an unobservable cycle.

For instance, r = 〈t2, t5, t8, (t12), t15, t20, t19, t18,
t17, t19, t18〉 is a route of the DES model in Fig. 1: the pair
of parentheses identifies the unobservable cycle consisting
just of transition t12. Route r cumulatively represents an
unbound number of histories, which differ from each other
for the (possibly null) number of times transition t12 is per-
formed, each of which, however, generates the sequence of
observable events 〈a, b, a, c, b, a〉, that belongs to ||O|| for
all the three observations in Fig. 3.

Some approaches [Pencolé and Cordier, 2005; Grastien et
al., 2007] represent (and compute) a candidate diagnosis as
a sequence of sets of non interfering transitions, where two
distinct transitions belonging to two distinct components do
not interfere if they may occur concurrently. A set of non
interfering transitions, called trace in [Pencolé and Cordier,
2005], is a concise representation of a ‘diamond’ in the sys-
tem model, i.e. a portion of the FA that starts in a state, ends
in another, and such that each permutation of the transitions
in the set is a path from the former to the latter. This is an-
other concise way to represent a set of histories. Actually,
the advantages of both routes and traces could be combined

in order to represent a till larger set of histories. However,
the concepts of route and trace (and their combination) do
not alter the fact that a diagnosis problem has a solution if
and only if there exists a history of Σ that generates a se-
quence of observable events belonging to ||O||. Given a
(finite, possibly empty) observation O, a history that is con-
sistent with it may be infinite, owing to unobservable cycles,
therefore no diagnostic algorithm can produce it. The route
corresponding to an infinite history, instead, is finite, there-
fore we will perform a decidability analysis by appealing to
the notion of a route as a diagnostic output.

3 Decidability and complexity
Let D be the set of all DES diagnosis problem instances,
as described in Section 2, each of which may be affected
by three orthogonal forms of uncertainty: (i) temporal un-
certainty in the observation, (ii) logical uncertainty in the
observation, and (iii) uncertainty about the initial state. Do-
main D can be partitioned into Dnd and Dd, these includ-
ing all the problem instances inherent to non-distributed
and distributed DESs, respectively. Let DIAGNOSIS-
EXISTENCE(D) be the set (i.e. the language) of all prob-
lem instances P ∈ D such that P = (Σ,Σ0,O) is solv-
able, that is, there exists a route of Σ, starting from a state
in Σ0, that generates a sequence o of observable events s.t.
o ∈ ||O||. Without loss of generality, we assume that the last
transition in a route that solves the problem is observable.
Theorem 1. DIAGNOSIS-EXISTENCE(D) is decidable.

Proof. (Sketch) The model of Σ consists of either one or
several FAs, one for each component. Whichever the chosen
initial states of all components, the synchronous composi-
tion of all such FAs is an FA, which includes a finite number
of unobservable cycles (if any). For whichever observation,
the number of nodes is finite, and each node contains a fi-
nite set of observable events. Thus, set ||O||, which contains
completely certain (finite) sequences of observable events,
is finite. So it is possible, first of all, to generate all the
sequences in ||O||. Then, for each state σ0 ∈ Σ0, the syn-
chronous composition of all the FAs starting from σ0 can be
carried out, thus obtaining an FA, say Aσ0 . Finally, for each
sequence o ∈ ||O||, a brute force search within Aσ0 can be
performed to find out whether a route starting from σ0 and
generating o exists. Such a search requires to detect possible
unobservable cycles occurring along a path, so as not to visit
any of them an unbound number of times: since the number
and length of such cycles is finite, the brute force algorithm
can detect them. As soon as a route that starts from σ0 and
generates o is found, ‘yes’ is returned. If no such route is
found, ‘no’ is returned. �

Let us call minimal history a (necessarily finite) history
drawn from a route by removing all unobservable cycles.
Theorem 2. A DES diagnosis problem P = (Σ,Σ0,O),
P ∈ D, is solvable iff there exists a minimal history that
solves it.

Proof. By definition, P is solvable iff there exists a route
that solves it. If such a route does not include any unobserv-
able cycles, then it is a minimal history. If the route includes
some unobservable cycles, then a minimal history can be
drawn from it. Such a history solves the problem as well
since all its transitions are executable in the given order and
produce the same observation as the route. �

Theorem 3. Every minimal history h is such that, for each
pair (oi, oi+1) of consecutive observable events produced by
h, the subsequence of unobservable transitions of h between
the two observable transitions that produce oi and oi+1, re-
spectively, cannot include more than Lmax − 1 transitions,
where Lmax is the number of states of Σ.



Proof. Let us assume that h produces a sequence o
of observable events. Each state reached by Σ accord-
ing to h, here called history-state, is univocally identified
by a pair consisting in the state of Σ and an observation
index i ∈ [0, . . . , |o|] that specifies the (sub)sequence of
the observable events in o that have already taken place.
Thus, value 0 of index i denotes that no observable events
have taken place, while value |o| denotes that all observable
events in o have taken place. Given a history-state charac-
terized by value i of the observation index, a history-state
characterized by value i + 1 is reachable from it iff one
observable transition is performed, where such a transition
produces observable event oi+1. However, before reaching
the new history-state, several unobservable transitions may
be performed, these leading from the current state to other
history-states characterized by the same value i of the obser-
vation index. The maximum number of history-states char-
acterized by value i and distinct from the current one2 is
Lmax − 1. �

Corollary 1. The length of a minimal history solving a di-
agnosis problem P = (Σ,Σ0,O), P ∈ D, is O(|O|Lmax),
where |O| is the number of nodes in O and Lmax is the
number of states of Σ.

Proof. Since the considered history solves the problem,
it produces a sequence o ∈ ||O||, whose maximum length
is |O|. As stated by Theorem 3, in a minimal history the
number of unobservable transitions in between two observ-
able ones cannot exceed Lmax − 1. Therefore the length of
a minimal history solving the problem is O(|O|Lmax). �

Theorem 4. DIAGNOSIS-EXISTENCE(Dnd) is in NP if the
observation is both logically and temporally certain.

Proof. Given P ∈ Dnd, let the certificate be a minimal
history h. Based on Corollary 1, |h| is polynomial in the size
of P . The pseudo-code of a verification algorithm which is
polynomial in time is here below.
1. function Verify(P, h)
2. where P = (Σ,Σ0,O): a problem instance in Dnd,
3. Σ0: a set of initial states,
4. O = 〈e1, . . . , e|O|〉: a sequence of observable events,
5. and h = 〈t1, . . . , t|h|〉: a minimal history of Σ.

6. for each σ0 ∈ Σ0 do
7. s = σ0
8. j = 1
9. for each i ∈ [1 .. |h|] do
10. if ti does not exit from s then
11. go to the next iteration of cycle at line 6
12. if ti is observable then
13. e = γ(ti) // observable event generated by ti
14. if j ≤ |O| and e == ej then j++ else
15. go to the next iteration of cycle at line 6
16. s = state reachable from s by applying ti
17. end-for
18. if j == |O| + 1 then return true
19. end-for
20. return false
21. end {Verify}

For each possible initial state in Σ0, Verify simply takes
into account each transition ti in h, according to the order
transitions appear in h. It checks whether ti exits for the cur-
rent state, and, in case ti is observable, whether it produces

2Only history-states distinct from the current one have to be
considered as h is a minimal history and, as such, it does not
include any unobservable cycle. A sequence of transitions that
comes back to the current state without any observable event hav-
ing occurred would instead follow an unobservable cycle.
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the observable event expected according to O. If, after all
transitions in h have been encompassed, all (and only) the
observable events in O have been produced, then true is re-
turned, meaning that h actually solves P . �

Theorem 5. DIAGNOSIS-EXISTENCE(Dd) is NP-hard.
Proof. NP-hardness is proven by means of a re-

duction from 3-SAT. Let φ be a Boolean formula in 3-
CNF with variables V = {v1, ..., vn} and clauses C =
{c1, ..., cm}. We will construct an instance of DIAGNOSIS-
EXISTENCE(Dd) relevant to a diagnosis problem Pφ =
(Σφ,Σφ0,Oφ) such that Pφ is solvable iff φ is satisfiable.
Since a completely certain observation is a special case of
a (temporally and/or logically) uncertain observation, and
a completely certain initial state is a special case of an un-
certain one, we will propose a reduction where Pφ is not
affected by any uncertainty, since the same reduction can be
reused in all the other settings.

(Reduction) For each vi ∈ V we build an FA resembling
that in Fig. 4, where each transition is marked by a tag for
synchronization. Then we build an FA corresponding to C,
depicted in Fig. 5, this way: it includes m + 2 states, where
each of the first m states corresponds to a distinct clause ci.
The generic state corresponding to clause ci has three ex-
iting transitions, each having a synchronization tag, corre-
sponding to a distinct literal of ci. Informally, we can move
from the state corresponding to clause ci to that correspond-
ing to clause ci+1 only if ci is true, which holds only iff at
least one literal of its is true. This means that, when the cur-
rent state of the FA in Fig. 5 is ci+1, all clauses c1, . . . , ci
are true. State LB1 has an exiting transition, generating ob-
servable event Z and leading to state LAST. Informally, state
LB1 is reached only if all clauses are true. This is the only
observable transition of Σφ. Altogether, the n + 1 automata
obtained this way constitute Σφ. The initial state Σφ0 in-
cludes the state of the FA in Fig. 5 corresponding to clause
c1 and the state IND of the remaining n automata. Observa-
tion Oφ consists of just one node, containing event Z. It it
easy to see that the construction of Pφ is polynomial in the
size of φ.

(Direct implication) Let us assume that φ is satisfiable,
that is, there exists a variable assignment V̄ of V such that
φ is true. Let us build a sequence h of transitions of Σφ of
length m + 1 this way: for each clause ci, in the order of
i from 1 to m, we pick up one of its literals, and consider
the assignment of the variable such a literal refers to: if the
literal is vj and the assignment inherent to vj in V̄ is 1, or



the literal is ¬vj and the assignment inherent to vj in V̄ is
0, then we add a transition marked by the tag correspond-
ing to such a literal (that is, tag vj for literal vj , and tag
¬vj for literal ¬vj), which corresponds to following a (syn-
chronous) transition marked by such a tag both in the FA
corresponding to variable vj and the FA corresponding to C;
otherwise, we try the next literal in ci, until the condition is
fulfilled (the condition is bound to be fulfilled by a literal of
ci since φ is satisfiable, henceforth all its disjunctive clauses
are true). After these m transitions, we add the last transi-
tion of the sequence, that leading from state LB1 to LAST in
the FA corresponding to C. The obtained sequence h is a
history of Σφ. In fact, starting from the initial state of each
FA corresponding to a variable vj , in a mutually exclusive
way we follow either the transition marked by tag vj (if the
assignment in V̄ is vj = 1) or the transition marked by tag
¬vj (if the assignment in V̄ is vj = 0); any subsequent tran-
sition in h taken from the same FA, is marked by the same
tag as the previous one (as there is a unique assignment to
vj), which is compliant with the FA itself. Moreover, such
a history is compliant with Oφ since its last transition pro-
duces event Z. The history is minimal since the FA in Fig. 5
forces a state change every time a transition is triggered.

(Reverse implication) Let hφ be a history of Σφ consis-
tent with Oφ, and let sf be the state reachable by applying
hφ to Σφ0. Since the only observable transition of Σφ is that
leading from state LB1 to LAST in the FA in Fig. 5, such a
transition has necessarily to belong to hφ and that it has to
be preceded by m (unobservable synchronous) transitions
that lead from the initial state c1 to state LB1. Since ev-
ery FA corresponding to a variable vi (Fig. 4) contains just
transitions that are synchronous with some transitions in the
FA corresponding to C (Fig. 5), in hφ there cannot be more
that m transitions preceding the only observable one. There
cannot be any transitions following the observable one since
there are no transitions exiting from state LAST in the FA in
Fig. 5. Moreover, by construction (see Fig. 4), hφ cannot
include any pair of transitions that belong to the same FA
corresponding to a variable in V and are marked by distinct
events. Let us consider an assignment of V obtained this
way: for each variable vj ∈ V , if the state of the FA rele-
vant to vj in sf is POS, then the assignment is vj = 1; if
the state of the FA relevant to vj in sf is NEG, then the as-
signment is vj = 0; finally, if the state of the FA relevant to
vj in sf is IND, then the assignment is indifferently either
vj = 1 or vj = 0. This assignment satisfies φ, that is, each
clause ci in C is true, since there exists a transition exiting
from the i-th state of the FA corresponding to C, where such
a transition corresponds to a literal in clause ci, which is the
same as that of the i-th transition in hφ. �

No upper bound has been given for the complexity of
DIAGNOSIS-EXISTENCE. The next theorem, which is in-
herent to both distributed and non-distributed DESs, is all
we know so far.
Theorem 6. DIAGNOSIS-EXISTENCE(D) is in PSPACE.

Proof. We show an algorithm, called Existence, that
solves DIAGNOSIS-EXISTENCE(D) in polynomial space.
The notions of history-state and observation index, defined
in the proof of Theorem 3, are exploited here.
1. function Existence(P )
2. where P = (Σ,Σ0,O): a problem instance.

3. for each σ0 ∈ Σ0 do
4. Sin = (σ0, 0)
5. Enumerate all sequences o ∈ ||O|| (stripped of any ε)
6. for each o do
7. if Check(Sin, o, 1)
8. then return true
9. return false

10. end {Existence}

1. function Check(S0, o, i)
2. where S0: a history-state of system Σ,
3. o: a sequence of observable events,
4. i: an integer value in [1 .. |o|+ 1] which

is the successor of the observation index of S0.

5. if i == |o|+ 1
6. then return true
7. Enumerate all history-states Si whose observation

index is i
8. for each Si do
9. if Path(S0, Si, Lmax)
10. then if Check(Si, o, i + 1)
11. then return true
12. return false
13. end {Check}

1. function Path(Sa, Sb, L)
2. where Sa, Sb: history-states of Σ,
3. L: an integer value in [1 .. Lmax].

4. ia = the observation index of Sa
5. ib = the observation index of Sb
6. if (ia == ib) ∧ there is an unobservable transition

from Sa to Sb
7. then return true
8. else if (ib > ia) ∧ there is an observable transition

from Sa to Sb ∧ such a transition generates o[ib]
9. then return true
10. else if L > 1
11. Enumerate all history-states S′ having the same

observation index as Sa

12. for each S′ 6= Sa do
13. if Path(Sa, S′, dL/2e)
14. then if Path(S′, Sb, dL/2e)
15. then return true
16. return false
17. end {Path}

Function Existence has to find out whether there exists a
minimal history that solves problem P . Intuitively, it tries
all the sequences of transitions that satisfy Theorem 3. For
each state σo ∈ Σo, it creates the relevant history-state Sin
(line 4). Then it enumerates, one by one, by using, for in-
stance, a counter, all the sequences (of observable events)
belonging to ||O||. For each of such sequences o, by in-
voking function Check, it checks whether there exists a be-
havioral path starting from the initial history-state Sin and
compliant with o[1 .. |o|]. This means that the call of func-
tion Check at line 7 returns true if there exists a whole his-
tory of Σ, starting from Sin and producing o. In such a
case, function Existence signals that there exists a solution
of problem P by returning true. If, instead, there exists no
o ∈ ||O|| that can be produced by any history of Σ starting
from some state in Σo, then Existence returns false.

Function Check is for checking whether there exists a be-
havioral path of Σ, starting from history-state S0 and pro-
ducing the observation o[i .. |o|]. If i equals |o| + 1, then
true is returned since there certainly exists an (empty) path
that does not generate any observable event. Otherwise, the
search is split in two parts: one for a path that generates
event o[i] only (line 9), and the other for a path that gen-
erates the remaining of o, that is, o[i + 1 .. |o|] (line 10).
Since a path that generates event o[i] ends in a history-state
characterized by value i of the observation index, all the
history-states Si of Σ whose observation index value is i
are enumerated, and, for each of them, by invoking func-



tion Path (line 9), it is tried whether there exists a path from
S0 to Si, whose length is Lmax at most, in accordance with
Theorem 3. If such a path exists, then it is checked, by a
recursive call of Check (line 10), whether there exists a be-
havioral path starting from Si that generates the remaining
of o. If this is the case, then we can conclude that there ex-
ists a behavioral path of Σ, starting from S0 and producing
the observation o[i .. |o|], thus Check returns true. If there is
no path like that for any Si, then Check returns false.

Function Path has to find out whether there exists a path,
of length L at most, originating from the given history-state
Sa of Σ and ending in the given history-state Sb. If there
exists a transition of Σ leading from Sa to Sb, then true is
returned. Otherwise, if L equals 1, false is returned. If,
instead, L is greater than 1, the problem is split in two sub-
problems, which are conquered by recursive calls of Path
(lines 13 and 14). Each subproblem is inherent to a path
whose length is dL/2e at most. The first path has to start
from Sa and end in a state S′, which is distinct from Sa but
has the same observation index as Sa. This is justified by
considering that two cases can occur: either (i) Path is in-
voked by Check, or (ii) the call of Path is recursive. In the
former case, the observation indexes of Sa and Sb have two
consecutive values, thus the last transition in the path from
Sa to Sb has to produce an observable event, while all the
previous ones have to be unobservable. Hence, the first path
has to lead to a state that share the same observation index as
Sa. In the latter case, that is, every time Path is recursively
called at line 13, Sa and S′ have the same observation in-
dex. Every time Path is recursively called at line 14, either
the observation indexes of S′ and S′

b are the same or the lat-
ter is the successor of the former. In both cases, at any call,
all the history-states having the same observation index as
the first parameter of Path are enumerated at line 11. For
each of them, if the first path exists, the existence of a path
from S′ to Sb is investigated. If both paths exist, true is re-
turned. If, for any S′, no such pair of paths exists, then false
is returned.

Function Path needs to manipulate history-states, each of
which includes an (integer) observation index and a state of
Σ, which in turn includes the states of all components of
Σ. The activation record of Path is O(|C|)), where C is the
set of all components. The length of the recursive chain of
Path is O(log(L)), thus the space required by a run of Path
is O(|C|log(L)). The maximum value of parameter L is
that passed by Check, that is, Lmax, this being the product
of the number of states of all components. Therefore, the
space required by the run of Path is polynomial.

The activation record of Check is O(|C|)). The length of
the recursive chain of Check is O(|o|), whose upper bound
is the number of observation nodes |O|. Check invokes Path,
therefore it requires a space O(|O||C|) + O(|C|log(Lmax)),
which is polynomial.

Function Existence is not recursive and requires both the
space for running Check, the space for variable o (which is
O(|O|), and the space to save problem instance P . Thus,
altogether, the algorithm requires a polynomial space. �

4 Conclusion
The complexity analysis faced in this paper is inherent to
a decision problem (is there a candidate that solves a DES
diagnosis problem?), whose complexity is a lower bound of
that of the corresponding function problem (find the candi-
dates of a DES diagnosis problem).

In [Portinale et al., 2004] the decision problem consist-
ing in determining whether an instance of a static diagnostic
problem has a solution is proven to be NP-complete. Intu-
itively, the complexity of the same problem when dynamic
systems are considered cannot be lower than that of static

ones. However, the preliminary analysis performed by this
paper is not enough to draw such a conclusion.

According to Theorem 4, checking the existence of a can-
didate is in NP if the DES is non-distributed and the obser-
vation is certain. This result is obtained since the length of
a minimal history that solves the problem is polynomial in
the number of states of the non-distributed DES, that is, for
the effort to synchronize the behavior of system components
is not included in the analysis. According to Theorem 5,
checking the existence of a candidate is NP-hard if the DES
is distributed. The main outcome (Theorem 6) is that de-
ciding whether a DES diagnosis problem is solvable is in
PSPACE. Future research will concentrate on finding a more
precise upper bound for the complexity of such a problem,
as well as on providing results inherent to non-distributed
DESs in settings where the observation is uncertain.
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