
Abstract 

Sensor placement algorithms find a minimum set of meas-

urements that can provide maximum detectability and iso-

lability for a set of faults that can occur in the system. Add-

ing sensors to the system usually incurs additional cost and 

may reduce system reliability (because sensors themselves 

may degrade and fail). Therefore, sensor placement algo-

rithms play an important role in system design and deploy-

ment. In this paper, we study two different algorithms and 

prove their equivalence. We also compare their computa-

tional complexities. 
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1 Introduction 

An important aspect of designing effective diagnosers in-
volves determining the right set of sensor locations for de-
tection and isolation of known faults in the system [1][13]. 
Sensor placement algorithms attempt to find a minimum 
number of sensors that can detect and isolate a known set of 
faults in a system given a system model [7][11]. Additional 
criteria, such as likelihood of fault occurrence and sensor 
failures [15], cost of sensor placement [2], and reliability of 
the overall diagnostic system [12] have also imposed in de-
termining the minimum sensor set. 

Sensor placement algorithms are also sensitive to the na-
ture of the model employed. In most cases, the sensor place-
ment algorithms are based on structural models of the sys-
tem. This includes graph-based (e.g., [1][11]) and equation-
based (e.g., [3][7][13]) models. The work described in this 
paper focuses on  two algorithms to determine optimal sen-
sor placement: (1) a systematic sensor placement algorithm 
[7] based on the Dulmage-Mendelsohn (DM) structural De-
composition of an equation-based model of a dynamic sys-
tem [4]; and (2) an  A*-based  search algorithm from AI that 
uses a graph-based model of the system dynamics [9] and 
[11]. Furthermore, [9] much like the methods presented in 
[1] use signed-directed graphs for deriving fault signatures 
to represent the effects of fault parameters on observations 
or sensor measurements.  

Our intent in this paper is not to compare different mod-
eling approaches, and their impact on sensor placement al-
gorithms. Instead, we adopt the equation-based framework 
[3][7][13] and compare the effectiveness of the algorithm 
based on DM decomposition in [7] with the heuristic A*-

based search algorithm in [11]. The original A*-based algo-
rithm used fault signatures derived from a Temporal Causal 
graph model of the system [9][11]. However, when compar-
ing the two algorithms, we use a Fault Detectability Matrix 
(FDM) as the starting point for sensor placement using the 
A* algorithm to achieve a level playing field. The FDM ma-
trix does not use the sign of the change associated with a 
measurement residual when computing the detectability of 
a fault given a measurement.  We evaluate the ability of 
these algorithms to generate optimal sensor placement, and 
also compare their computational complexities.  

Sensor placement is implemented offline during system 
design, taking into consideration factors such as observabil-
ity, monitorability, controllability, and reliability of the sys-
tem.  Therefore, computational complexity may play an im-
portant factor in determining the smallest number of sensors 
required for full diagnosability, while also meeting some of 
the other requirements of the designed system.  

2 Background 

Structural diagnosis methods fall into two categories: 
graph-based and equation-based methods. However, the 
task of optimal sensor placement and the notions of detect-
ability and diagnosability can be formally defined inde-
pendent of the two representations. We begin with the defi-
nitions and then present details of the two algorithms under 
study in the rest of this section. 

2.1 Definitions 

Given a dynamic system described by its corresponding 
model, M, a set of faults, F, in this system that are of interest, 
and a possible set of sensor locations, S, we define the im-
portant notions of fault detectability and isolability, and use 
these definitions to formalize the sensor placement problem. 
We assume that the occurrence of a fault f  F causes one 
or more measurements, m  M to deviate from its nominal 
value, producing non-zero residuals that can be measured. 
Definition (Fault Detectability) Given a model M, associ-
ated faults F, and possible sensor locations S, iff for all 
faults fi F, we can generate at least one measurement re-
sidual which is sensitive to fi, we say the fault set F is de-
tectable by sensor set S. 
Definition (Fault Isolability) Given a model M, associated 
faults F, possible sensor locations S, iff for all pairs of faults 
{fi, fj |fi, fj

F; fi  fj },  we can generate at least one meas-
urement residual where the residual generated by  fj is dif-
ferent from the residual generated by fi, we say the fault set 
F is isolable by sensor set S. 
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For a system model M, given a set of faults, F, and a set of 
measurements, S, it is clear that detectability is a pre-requi-
site for isolability. Our focus is on isolability, therefore, the 
next step is to find a minimal set of sensors that make all the 
faults in F isolable. To do this we adapt the definition of 
minimal sensor set [7]. 
Definition (Minimal Sensor Set): Let S be the set of possi-

ble sensor locations, and let S be a multiset defined on S. 

Then, S is a minimal sensor set, if the sensors in S  fulfill the 

detectability and isolability specification and all proper 

subsets of S do not. 

The notion of multiset is used because a sensor may be used 

more than once to isolate faults. In the next two sections, we 

briefly review the two sensor placement algorithms as they 

are originally defined.  

2.2 Sensor placement using DM-Decomposition 

DM decomposition [4] assumes that the system model is 
represented by a bipartite graph, with the set of equations 
represented as one type of nodes and the set of variables as 
a second type of nodes.  The set of equations are rows in the 
structural model while variables representing system behav-
ior appear in the columns. Fig. 1 illustrates a structural 
model from [7]. The gray areas imply edges between equa-
tions and the variables. By appropriate permutation of rows 
and columns, the structural model can be represented in an 
upper block triangular form, i.e., the Dulmage-Mendelsohn 
(DM) Decomposition. The method to derive the upper block 
triangular form is described in [4].  

 
 
 

 
 
 
 
 

 

Figure 1. From [7]. Structural model representing the system de-
scribed by the set of five first order differential equations on the right 
side.  e stands for equation, x are unknown variables,  f are faults, and 

b are strongly connected component blocks. 
Starting with the set of equations in Fig. 1 the DM-De-

composition partitions the structural model into three parts: 
(1) structurally underdetermined part, which has more var-
iables than equations; (2) structurally just-determined part, 
which has equal number of equations and variables; and (3) 
structurally over determined part, which has more equations 
than variables. The decomposition can be derived from the 
bipartite graph by finding the maximum matching, which is 
actually the non-zero diagonal in the structural model [4]. 
By appropriate permutation, we can then derive the block 
triangular form of the matrix [12], and this provides the 
three structural parts. The over determined part of the sys-
tem equations are redundant, and form the basis for the fault 
diagnosis algorithm. The example shown in Fig. 1 is a just-
determined system with the upper block triangular form that 
has a nonzero diagonal. This defines a perfect matching in 
the bipartite graph [5]. Adding sensors introduces additional 
equations, which become the over-determined part of the 
system model. The over-determined part makes fault pa-
rameters, fF, detectable. 

Deriving sets of sensors that achieve maximum isolabil-

ity is a special case of maximum detectability This is 
achieved by removing the equation which makes fault fi de-

tectable;  if  all other faults are still detectable, then fault fi 

is isolable for the set of chosen sensors. Therefore, by selec-

tively adding appropriate sensors as we cycle through all 

faults in F, the set F can be made isolable.  

In order to be efficient, the algorithm applies the notion 

of Hasse diagram of the partial order over blocks and faults 

classes [2]. The Hasse diagram is derived according to ori-

entations of unknown variables and equations [3], which is 

defined as follows:  (a)  if the edge (ei, xj) belongs to the 

matching (on the non-zero diagonal), it is oriented   from ei 

to xj; and (b)  otherwise, it is oriented from xj to ei.. Faults 
associated with topmost blocks (maximum faults classes) in 

the Hasse diagram are blocks that cannot be oriented to 

other faults-associated blocks. Sensor sets that can detect 

faults in maximum fault classes can detect all other faults 

because the fault classes associated with all other blocks 

have propagation paths to maximum fault class blocks ac-

cording to the orientation. And since a block is strongly con-

nected, any measurement in a block is sufficient to detect all 

faults within that block. This is shown in Figure 2.  

The sensor placement algorithm will first find sensor sets 

SD that achieve maximum detectability and then repeatedly 
remove the equation associated with a fault to find sensor 

sets SI achieving maximum detectability for the rest of the 

system. By applying the Minimal Hitting Set algorithm [7] 

on resulting sensor sets SD and SI, we can get S, the sensor 

set  that has a non-empty intersection with all of them, and 

it maximizes detectability and isolability. 

 

 

 

 

 

 
Figure 2. Procedure of generating Hasse diagram of partial order over 

blocks (right) and faults classes (bottom), where [f1] and [f3] are maxi-

mum faults classes. (This figure is from [7]) 

2.2 A* based Sensor Placement algorithm 

Before describing this algorithm [11], we introduce the no-

tion of temporal causal graph (TCG) and how to derive fault 
signatures from the TCG. A TCG is a directed graph derived 

from a bond graph model using causal assignments to the 

bonds derived from the SCAP algorithm [5], and creating a 

directed graph that captures all of these relations [9]. A fault 

signature defines the changes to a sensor value induced by 

a fault (typically, we define a fault by a ± change to the pa-

rameter value associated with the fault). Propagation starts 

with 0-order change through all causal paths in the TCG 

from the fault towards the measurements. Every integrating 

edge increases the temporal order of the signature by 1 (in-

dicating a delay in the propagation). Since the TCG is a 
global model, i.e., it contains all  relations between variables 

and faults, it is sufficient to determine fault signatures for 

all faults on all possible observations in the system model, 

based on a specific causal assignment. Figure 3 shows this 

procedure for a simple one tank system. The fault signature 



of C on e2 is +,, where Ce2
+e3

+f3+f2, and 
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 is a first-order effect because of the integrating 

edge. This implies an instantaneous jump in e2 (0th order 

change) if C decreases, and then a gradual decrease in its 

residual (1st order change). 

  

 
Figure 3. (left) One tank system; (middle) Bond Graph; and (right) 

Temporal Causal Graph(TCG) 
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 The A* search algorithm finds the optimal path from a 

start state (no sensors selected) to a goal state (a minimal 

sensor set). A* introduces two measures: g, the distance 

from the initial state to the current state (i.e., the number of 

sensors added), and h, the estimate of the distance from the 

current state to the goal state (i.e., estimate of minimum 

number of sensors needed to achieve full diagnosability) 

[11]. The algorithm finds the optimal, i.e., lowest-cost path 

if h underestimates the true distance to the goal. 

The algorithm is best described by a partitioning ap-

proach. The system configuration in each step is {P, OSET}, 

where P is the partition of faults not yet diagnosed, and 
OSET is the set of sensors that have been selected. The ini-

tial configuration is {Pinit, OSETinit}, where Pinit  is made up 

of a set that contains all faults (no fault can be isolated), and 

OSETinit is empty. Similarly, the goal state {Pgoal, OSETgoal}, 

has each element of Pgoal with exactly one fault, and OSET-

goal  includes  the smallest number of sensors that can isolate 

all faults. This set may not be unique. To achieve the best 

sensor placement, at each iteration we add the sensor that 

has the highest discriminatory power. Fault signatures de-

rived for each fault and possible measurement using the 

Qualitative Fault Signature scheme [9]. As proven in [9][11] 
a fault can have one of 4 different signatures on an observa-

tion: ‘+,+’, ‘+,’, ‘,’ and ‘,+’ if magnitude and first or-
der  computations are formed for each measurement. There-

fore, each observation can discriminate at most 4 sets of 

faults. This provides the information for deriving h. There 

exist two different way of specifying h, and because config-

urations differ from each other, the two derived values for h 

are not necessarily to be the same. The value h1 is derived 

by achieving max partitioning for all partitions. Suppose the 

current configuration is {Pcurrent, OSETcurrent}, where Pcurrent 

has t partitions. A new observation can split each partition 

into at most 4 new partitions. So nth 4 , and 

)(log 41
t

n
h  . The value h2 is derived by achieving max 

partitioning of the largest partition. Say, Pcurrent has a largest 

partition Pl that includes tl faults. It can be split to at most 4 

partitions. In order to split it into partitions contain exactly 

one fault with minimum observations, it should be split into 

4 partitions at each iteration. So h2 can be calculated by 

14/ h

lt , where )(log 42 lth  . Then h = Max{h1, h2}. 

At each iteration i, we choose an observation that has 

lowest value for 
ii gh   to guarantee the underestimate dis-

tance from current point to goal point to get an optimal so-

lution on measurement selection. The correctness of the so-

lution has been demonstrated in [11].  

The A* algorithm is general, and it can be used with any 

discriminatory function. In the Case Study we include only 

binary information, i.e., a sensor measurement can or cannot 

detect a fault.  In this case, a fault set can be decomposed 

into two sets by a measurement, therefore, the base of the 
logarithm used for the computation is 2. 

3 Case Study 

We will use a traditional three tank system configuration 
shown in Fig. 4 to illustrate the two algorithms. The bond 
graph model (Fig. 5) implies six sensor variables in the sys-
tem, that is pressures in the tanks, p1, p2, p3, and flow rates 
out of the tanks, q1, q2 and q3 (q0, the input flow rate is 
known). The sensor locations (circled) are shown in Fig. 4. 
In the bond graph model, the tanks are modeled as capaci-
tors, and the pipes and valves as resistances. 0-junctions rep-
resent common effort locations, and 1-junctions imply cur-
rent flow locations [5]. 

Following the constituent relations of the basic elements 
of the bond graph, we derive a set of equations (1): 

p1 = e1 = e2 =e3 
p2 = e5 = e6 =e7 
p3 = e9 = e10 =e11 
q1 = f3 = f4 =f5 
q2 = f7 = f8 =f9 
q3 = f11 

In order to clearly represent causality, we introduce three 

more variables 
1



p , 
2



p  and 
3



p , which represent the deriva-

tives  of variables p1, p2 and p3, respectively for the DM-

Decomposition method.  
 

 

 
Figure 4. Three-tank system 

 
Figure 5. Bond graph model of the three tank system 

 

4 Comparison of the two Methods 

4.1  DM-Decomposition method 

The set of equations deriving three tanks system behavior is 
given by (These equations do not imply any causality but 
only relations between variables and parameters): 
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The 9 equations and 9 unknowns imply a just-determined 

system. Six possible single faults associated with the system 

are R1, R2, R3, C1, C2 and C3 (faults in the valves and tank 

capacities, respectively).  After proper permutation of equa-
tions and unknown variables, we obtain the DM-decompo-

sition shown in Figure 6. 

Using the DM-Decomposition method for maximum de-

tectability we get the sensors sets: {
1q }, {

2q }, {
3q }, {

1p }, 

{
2p }, {

3p }, {


1p }, {


2p }, {


3p }, and for each variable cor-

responding to a sensor, we add an equation that measures 

the unknown variable. This makes all faults detectable. 

Since the system represents a strongly connected compo-

nent of the structural model, any one sensor makes all faults 

detectable. And by repeatedly remove one equation associ-
ated with a fault we find sensors that achieve full detecta-

bility for the rest of the system. The union of the sensor sets 

after each iteration defines the sensor set that achieves max-

imum isolability. Among the list of completely diagnosable 

sensor sets of size 3 are{


1p , 
1q , 

3q }, {
1p , 

1q , 
3q }, {

2p , 

1q , 
2q }, {



2p , 
1q , 

2q }1. 

 
Figure 6. DM-decomposition of the example system, where the whole 

system is in one strongly connected component. Notice there is a nonzero 

diagonal in the matrix which is a perfect matching of the bipartite graph 

from the system. 

4.2 A* approach 

For comparison purposes, we use the same diagnosability 

information for the A* algorithm as the DM-Decomposition. 

This information is introduced as the Fault Detection Matrix 

(FDM). So this is a modified version A* algorithm. The 
FDM for the three tank system is shown in Figure 7. In this 

matrix, a “1” for {si, Fi} implies that if Fi is detectable when 

removing all other faults from the system under si, which 

                                                
1 We do not list all possible sensor combinations for minimal 

diagnosis. 

actually means, Fi has a propagation path to si. For example, 

R1 is detectable under measurement q1 when removing 

equations E2, E3, E4, E5, E6 associated with R1, R2, C1, C2, 

C3, respectively( propagation path:  R1  E1  q1). 
 

m\ F C1 C2 C3 R1 R2 R3 

1q
 

1 1 0 1 0 0 

2q
 

0 1 1 0 1 0 

3q
 

0 0 1 0 0 1 

1p
 

1 0 0 1 0 0 

2p
 0 1 0 1 1 0 

3p
 

0 0 1 0 1 1 

1



p
 

1 0 0 1 0 0 

2



p
 

0 1 0 1 1 0 

3



p
 

0 0 1 0 1 1 

Figure 7. Fault Detection Matrix 

Fault Detection Matrix is a two dimensional matrix that contains detecta-

bility information of each pair of {O, F}, where O is an observation, F is 

a fault 

 

Initially, Pinit = {C1, C2, C3, R1, R2, R3}, and all observa-

tions can split the partition. Calculating, h = Max{h1, h2}, 

we get 
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Since g = 0 initially, and there are some tied values for 

min{h}, we randomly choose one, say q2 and add it to OSET, 

OSET = {q2 },  and   P = {C1, R1, R3}, {C2, C3, R2}. In the 

next iteration, we repeat this procedure to re-calculate h val-
ues. The minimum value occurs for sensor q1. Then OSET 

= {q2, q1}, and  p = {C1, R1}, {R3}, {C2}, {C3, R2}. 

In the next and last iteration, we choose p2 as the next 

observation, then OSET = {q2, q1, p2} which splits p into 

{C1}, {R1}, {R3}, {C2}, {C3}, {R2}, and this implies a fully 

diagnosable system. This OSET = {q2, q1, p2} is one of the 

optimal set of sensors we derived by using DM-Decompo-

sition method. We could derive the other minimum sensor 

sets by making different choices when ties occur in the 

choice of sensors. 

4.3 Comparison of the two approaches 

According to example results shown above, the A* algo-

rithm derives one of the optimal sensor sets derived by DM-

Decomposition approach.  



4.3.1  Comparison on functionality 

Equivalence for Detectability 
The A* algorithm does not have an explicit notion for de-

riving maximum detectability, so we use the same method 

as the DMD approach.  

 

Equivalence for Isolability 

The A* approach can be seen as tracking a binary search 

tree shown in Figure 8. There is a set of faults for each ver-

tex, and an observation 𝑂𝑖 for each non-leaf vertex, which 
can split the set into two parts, where the set of faults on its 

left child is detectable under 𝑂𝑖  while the set on its right 

child is not. So it starts from the root with all faults in one 

set{𝑓1 … 𝑓𝑛}, adds an observation 𝑂0  splitting the partition 

into {𝑓1 … 𝑓𝑖} and {𝑓𝑖+1 … 𝑓𝑛}. Repeat the procedure until we 

have full isolation, i.e., {𝑓1}, {𝑓2} … {𝑓𝑛−1}, {𝑓𝑛}. In addition, 

we may need an observation 𝑂𝑛  to make sure the system is 

fully detectable. 𝑆𝐴∗ = {𝑂0, 𝑂1 … 𝑂𝑘 … 𝑂𝑝} ∪ {𝑂𝑛} is an op-

timal sensor set for maximum detectability and isolability. 
 

 
Figure 8. Binary Search Tree for A* algorithm 

 

For DM-Decomposition, we start from the leaves of the 

binary search tree, removing equations associated with a 

fault one by one and getting sensor sets that detect the rest 
of the faults. The minimal hitting set provides the optimal 

sensor placement.  

So, we want to prove that 𝑆𝐴∗ is also an optimal answer 

derived by DMD method. In order to do this, we need to 

prove that there is always a set 𝑆𝑖 ⊆ 𝑆𝐴∗, which is sufficient 

to detect all faults in the system 𝑀𝑠\𝑒𝑓𝑖
. 

Proof:  Notice that when a vertex in the binary tree is a left-

child of its parent, all faults in that partition are detectable 

under its parent’s observation. So all faults of its descend-

ants are also detectable. Obviously, every leaf that is a left 

child can be detectable under its parent’s observation, i.e., 

𝑓1  is detectable under 𝑂𝑘 . And for the leaf which is a right 

child, we just need to climb the tree to a level where it 

reaches a vertex that is a left child of its parent, then the 
observation of this parent can detect this fault. The only ex-

ception is right-most leaf which can only be detected by 𝑂𝑛 . 

So the observation set 𝑆𝑖 ⊆ 𝑆𝐴∗ is always sufficient to detect 

rest of faults when we remove one from the system.          ■ 
 Second, we need to prove that every observation 𝑂𝑖 ∈ 𝑆𝐴∗  

is needed at least once in the iterations of the DMD method 

if we want only observations from 𝑆𝐴∗. 

Proof: Notice that the observation of an vertex 𝑉𝑖 in binary 

tree is the only one in 𝑆𝐴∗ which can detect the right-most 
leaf-fault of its left sub-tree (every non-leaf vertex can have 

two sub-tree, left and right) because the right-most leaf of 

that sub-tree cannot get to an vertex which is a left child by 

climbing up the tree. And since the root of the sub-tree is 

the left child of 𝑉𝑖, observation of 𝑉𝑖 is needed to detect that 

right-most leaf-fault.                                                      ■ 
 According to the proof above, we can always find an ob-

servation set 𝑆𝑖 ⊆ 𝑆𝐴∗ when we run iterations of DMD 

method, and every  𝑂𝑖 ∈ 𝑆𝐴∗  will happen at least once in 𝑆𝑖. 

So after getting the minimal hitting sets, the set 𝑆𝐴∗ must be 

one of the resulting sets by DMD method since A* algo-

rithm is guaranteed to give an optimal answer. 

 To sum up, the A* algorithm and the DMD methods gen-

erate equivalent results. The DMD method produces multi-

ple optimal sets, while the A* algorithm only generates one 
answer. However, if we maintain multiple search trees 

whenever ties occur in h, by making different choices, we 

get exactly the same results as the DMD method. 
 

4.3.2  Comparison on computational complexity 

We compare the computational complexity of the two al-

gorithms for isolability. Let us assume first, the system con-

sists of n possible observation locations, which is typically 

the number of unknown variables, and m faults. It is clear 

that there are at most k numbers of iterations in A* algo-

rithm, where k = |𝑂𝑆𝐸𝑇𝑓𝑖𝑛𝑎𝑙|. This is because exactly one 

observation will be added to OSET in each iteration. Then 

the algorithm will calculate the value of g+h for each obser-

vation that does not belong to OSET repeatedly, and at most 

n observations will be checked in each iteration. It takes 

constant time to get the value of g by g = |OSETcurrent | + 1. 

And for h, we need to go through all the partitions in Pcurrent 

at least once either to find the largest partition or count the 
number of partitions. Since there are at most O(m) partitions 

in each iteration, it take O(m) time to get the value of tl (size 

of largest partition)or t (number of partitions), and then ob-

viously, constant time to compute ℎ1 = 𝑙𝑜𝑔4(𝑡) and ℎ2 =
𝑙𝑜𝑔4(𝑡𝑙). Overall, the time complexity for the A* algorithm 

is k*n*O(m) = O(k*n*m), where k is the number of obser-

vations been selected, n is the number of possible sensor lo-

cations and m is the number of faults. 

To perform isolation, the DM-Decomposition algorithm, 

repeatedly removes one equation associated with a fault 
class and finds the maximum detectability in the rest of the 

system. So the algorithm is going to repeat for at most O(m) 

times. For each iteration, a matching for the bipartite graph 

is needed to form the non-zero diagonal in decomposition. 

The computational complexity of finding the maximum 

matching is )( VEO , where V is the number of vertices 

and E is the number of edges in the bipartite graph [10]. In 

our case, there are 2*n vertices (n unknown variables and 

typically the same number of equations in the bipartite 

graph), while the number of edges is at most O(
2n ). Overall, 

this step takes O(
5.2n ) time. Then the step to find strongly 

connected component can be done in )( VEO   time by us-

ing Tarjan’s algorithm [14], which is O( nn 2
) in our 

case. And deriving maximum classes takes the same time as 

finding strongly connected component by using depth first 

search. This is an O( mn *5.2
) running time. 



It is much higher than O(k*n*m) for the A* algorithm. 

And we have not even take the final step of DMD method: 
for all sets of observations (derived for all pairs of isolable 

faults), find the minimum set of observations that has none 

empty intersection with each of those sets. This problem, 

called minimum hitting set problem is NP-hard, and it can 

be deduced from vertex cover problem that is known to be 

NP-Complete. So the running time would be exponential to 

the number of pairs of faults. However, if a system is well 

designed, this part of computation would not take that much 

time [7]. And since sensor placement analysis is always im-

plementing off-line, the exponential complexity may not be 

a problem. So the overall computational complexity for the 

DMD based method is O( mn *5.2
) +U, where U indicates 

an unpredictable time value from the NP-hard problem. We 

are analyzing the worst cases for both algorithms, so the 

lower bound computations are omitted. 

5 Conclusion and discussion 

We have shown that the detectability and isolability algo-

rithms for the A* and DMD approaches are equivalent, and 

we can infer that they have the same discriminatory capa-

bility. For observations which can accommodate higher or-
der and multiple types of deviations, we can introduce inte-

gral causality into the DM-Decomposition as well as mak-

ing different observation type. Different observation types 

can have multiple measurement equations on the same 

measurement location. By following the DMD procedure, 

we can find the maximum detectability and isolability using 

fault signatures. The two algorithms are equivalent in func-

tionality. 

DM-Decomposition based methods have a complexity 

given by O( mn *5.2
)+U, whereas it is O(k*n*m) for the 

A* algorithm. One of the reasons for this is that the DM-

Decomposition based method repeats some iterations un-

necessarily, i.e., doing exhaustive search for all possible 

fault pairs. For example, when both fi and fj  are detectable, 

if fi is isolable from fj , it is not  necessarily true that fj is also 

isolable from fi by the notion of faults being detectable in 

the overdetermined part of a system. However, this is actu-

ally true, because fi will have deviation on at least two ob-

servations while fj has deviation on only one of them as we 

have discussed above, both of them are isolable from each 
other. On the other hand, the DM-Decomposition based al-

gorithm can give us all possible sets of sensors locations that 

can achieve maximum isolability, while A* algorithm can 

only derive them sequentially, when there are ties in the g+h 

value among some observations. Besides, the accuracy or 

timeliness of diagnosis can decrease as the number of sen-

sors is decreased, because it implies longer propagation 

paths from faults to the sensors. The accuracy or timeliness 

of detection and isolation may decrease becomes significant 

for higher order systems. Therefore, if we consider accuracy  

and timeliness of diagnosis, the DM Decomposition based 

algorithm may provide better results because one can 
choose additional criteria to pick the sensor set that best sat-

isfies these criteria.  
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