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ABSTRACT 

This paper attempts a systematic analysis of 

diagnosability when comparing derivative ver-

sus integral causal forms of dynamic system 

models. We formally define the notions of 

structural detectability and structural 

isolability, and use these definitions in a case 

study where we compare these factors for a 

three-tank system model. We prove that inte-

gral and derivative causality can lead to differ-

ent isolability properties and by using derivate 

and integral causality forms of the models 

concurrently we can maximize fault isolability 

of the system.  

1 Introduction 

The control systems-based FDI community and AI-

based DX community have developed a number of 

methodologies for fault detection and isolation in dy-

namic systems using structural models [1-6]. Structural 

methods for diagnosis have a number of advantages. 

These methods are based on the interconnectedness of 

system components and variables, and numerical values 

of the parameters do not affect the design of the diag-

nostic process. Therefore, structural methods are more 

general and easier to implement, and they can be easily 

applied to  different systems and domains. Also, many 

common complexities in other methods like existence 

of answer or singularity of the matrices in the design 

process do not directly affect the structural methods.  

The DX community has developed several structural 

approaches for diagnosis, e.g., the Temporal Causal 

Graph (TCG) approach which derives Qualitative Fault 

Signatures (QFS) [2] and the Possible Conflicts (PC) 

approach that exploits local redundancy in system 

measurements [3]. In parallel, the FDI community has 

developed ARR schemes (e.g., [4]) based on system 

equations. One of these is the  Diagnostic Bond Graph 

approach that derives ARRs in an organized manner 

from system bond graph models [1]. Since system 

equations can be reformulated in many different ways 

to exploit the analytic redundancy relations for fault de-

tection and isolation, researchers have often restricted 

the form of the equations used to integral or derivative 

causality forms. The integral causality form of the 

models has advantages that they are more robust to 

measurement noise, but they have the disadvantage that 

the initial system state has to be known for residual 

generation. The derivative causality models do not re-

quire the initial state, but computing derivatives in 

noisy environments is hard, and may lead to false 

alarms, and incorrect diagnoses. 

The diagnosis community has often debated if the 

method of representing the model of a dynamic system 

affects the inferred diagnosability of the system. On the 

surface this may not appear to be the case, because irre-

spective of how the constraints are represented, the col-

lective set of equations defines the dynamic behavior of 

the system. In this paper, we undertake a preliminary 

investigation of this topic, by comparing the 

diagnosability of system models represented in integral 

and derivative causality – the two most common forms 

of representation for dynamic system models. 

Recently, Frisk, et al. [7] presented through an ex-

ample that using different forms of causality in the sys-

tem equations can lead to different isolability proper-

ties. The results of this paper is a primary motivation 

for this paper, i.e., study in more detail how different 

forms of causality can lead to different isolability prop-

erties and how we can utilize the information provided 

by integral and derivative causality models concurrent-

ly to maximize isolability in the system. In this paper, 

we make an attempt to make these results more system-

atic. 

The rest of this paper is organized as follows.  In sec-

tion 2, we formally present the notions of integral and 

derivative causality forms of system behavior models. 

The three tank system is used as a case study to demon-

strate the various concepts and the results derived in 

this paper. In section 3, we first formally define the no-



   

tions of detectability and isolability in dynamic sys-

tems. Then Possible Conflicts (PC), a structural diagno-

sis approach developed by Pulido and Alonso [3] is uti-

lized to demonstrate the diagnosability results on the 

three tank system using integral and derivative causali-

ty. In previous work [10], we have demonstrated the 

equivalence between the PC and ARR approaches to 

diagnosis. 

Section 5 discusses an approach where the derivative 

and integral causality forms of the dynamic system 

models are integrated to achieve the highest levels of 

diagnosability in a system, for a given set of sensors. 

Finally, Section 6 discusses the advantages and draw-

backs of using the two forms of causality concurrently, 

and concludes by laying out a brief plan for future 

work. 

2 Test Case: A Three Tank System 

To study fault detectability and isolability in dynamic 

systems a simple three tank system model shown in 

Figure 1 is considered as a running example for this 

paper. 

  Figure 1: Three tank system configuration. 

 

The three tank system consists of a flow input source 

(
fS ), three tanks (

1 2,C C and 
3C ) and three valves 

(
1 2,R R and 

3R ). Also three sensors measure the 

pressure of the first tank ( 1e ), the volumetric flow rate 

of the second valve ( 5f ) and the pressure of the last 

tank (
3e ). Six possible faults in the system components 

(
1 2 3 1 2, , , ,R R R C C and 

3C ) are considered in this study.  

This section first reiviews Bond Graph modeling 

language and its relationship with structral fault 

diagnostability and then uses bond graph model to 

derive system equations in integral and derivative 

causalities.  

2.1 Bond Graph Modeling Methodoloy  

Bond Graphs are topological, energy based, modeling 

methodology for physical processes [8]. Nodes in the 

bond graphs represent elements of the dynamic system 

and directional links or bonds show energy path and its 

positive direction between the elements. Effort and 

flow are the energy variables in the bond graph lan-

guage. They represent different variables in different 

domains. For instance in the hydraulic domain effort 

represents pressure and flow is volumetric flow rate. 

System elements in the bond graphs are modeled as 

sources (source of effort and source of flow), energy 

storage elements (capacities and inertias) and dissipa-

tive elements (resistors). Two ideal junctions (0 and 

1junctions) are also defined in the bond graph model-

ing language.  

 Series (1)junctions are common flow junctions and 

parallel (0)junctions are common effort junctions. The 

bond graph model of the three tank system in Figure 1 

is shown in Figure 2. There is an effort and a flow vari-

able associated with each bond (half arrow) in the bond 

graph. The product of the effort with flow variable rep-

resents the rate of energy flow between connected 

components. In Figure 2  the bonds connected to a 

common effort junction (0junction) only one effort 

variable and for the bonds connected to a common flow 

junction (1junction) only one flow variable is inde-

pendent, and determines the value of that variable on 

all incident bonds.  

Mosterman and Biswas [2] define the set of hypothe-

sized faults candidates for a system as the parameters of 

components of its bond graph model. In [5] bond 

graphs are used to derive ARRs and [9] suggests a 

method to derive PCs from the bond graph model of the 

system. Based on these similarities we utilize bond 

graph models as a common framework for comparing 

diagnosability of different structural methods [10].  In 

bond graphs, causality is represented by a vertical bar 

at the side of link, and this defines the side of the effort 

receiver. For example, in Figure 2 
1R represents a 

resistor with input effort, and, consequently, the flow 

value is the output defined by the equation associated 

with the resistor, 2
3

1

e
f

R
 . There are four kinds of cau-

salities in the bond graphs. (1)-Fixed causality :for 

sources and nonlinear elements which can accept one 

form of causal model. (2) Constrained causalities for 

junctions: 0junctions  can accept effort only from one 

of the connected links and similarly, 1junctions  can 

accept flow only from one of the connected links. (3) 

Preferred causality: for energy storage elements. If we 

prefer integral causality, we assign the causality in a 

way that capacities receive flow and inertias receive ef-

fort. For derivative preferred causality, capacities re-

ceive effort and inertias receive flow. (4) Arbitrary cau-

sality for dissipative elements:  Assigning a specific 

causality form to the bond graph represents the compu-

tational order that the model should be solved. For ex-

ample, in figure 2 the assigned causality to 
1R  informs 



  

the simulator to compute 2e , and then use 2e  to com-

pute 3f . In the next two subsections the equations of 

the three tank system model are derived in integral and 

derivative causality forms.     

 
Figure 2 Bond graph of 3 tank system in integral cau-

sality. 

2.2 Deriving System Equations: Integral versus De-

rivative Causality in Dynamic Systems 

To derive the equations of the system in integral 

causality form we  assign integral causality to the bond 

graph  bonds as shown in Figure 2. Then for each 

element and junction we write the associted equation 

based on the assigned cauasality, as shown below:  
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For modeling dynamic systems usually integral 

causality is prefered for several reasons. The most 

important one is that derivative operator is not causal, 

i.e.,  to calculate the derivation of a variable at time t   

its value at the next sample time is needed.  

 
0
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t
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


  (2) 

However, the simulator can wait for one sample time 

and calculate the derivative. So it is possible to simu-

late three tank systems in derivative causality as well. 

To derive the equations of the system in derivative cau-

sality we assign derivative causality to the bond graph 

model of the system. Figure 3 shows the bond graph 

model of the three tank system in derivative causality. 

Set of equations of the elements and junctions  of the 

bond graph of three tank system in derivative causality, 

form the set of system equations in derivative causality 

as represented in (3). 

Figure 3 Bond graph of three tank system in derivative 

causality. 
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To complete the set of system equations input and out-

puts variables are expressed as: 

1u f                                                 (4) 

 1 1 2 5 3 5, , .y e y f y e               (5) 

Combinations of integral and derivative causality, i.e., 

mixed causality is not considered in this paper. In the 

next section we will see how integral and derivative 

causalities can lead to different fault isolation 

properties. 

3 Fault Detection and Isolation: Possible Conflicts 

Approach  

Possible conflicts (PCs) are localized methods for 

structural diagnosis. Given a set of system equa-

tions, PCs capture all the minimal subsets of con-

strains which produce inconsistencies when faults 

occur.  Any constraint in the system which con-

tains fault components and has sufficient analytical 

redundancy to capture faults is a possible conflict. 

In the first part of this section, detectable and iso-

lable faults are defined. Then possible conflicts 

method is used in integral and derivative causality 

forms to isolate the faulty components in the three 

tank system.   

3.1 Detectability and Isolability in Dynamic Sys-

tems 

In this section, we start with relevant definitions. 

Definition 1: Given the set of component faults 

1{ ,..., }nF f f  and the set of possible conflicts 



  

1{ ,..., }mP p p , the fault connection matrix (FCM) is 

a *m n matrix and its elements are defined as: 

0
( , )

1 .

j i

j i

if p does not include f component
FCM i j

if p includes f component


 


Using definiton 1 we can define detectable and 

isolatable faults [10]. 

Definition 2: A fault parameter if  is structurally de-

tectable, if there exists a non-zero entry in the FCM for 

at least one possible conflict. 

Definition 3: Fault parameter if  and jf  are structur-

ally isolable from each other if they have different sig-

natures in the FCM. 

Using these definitions the isolability of different com-

ponent faults for integral and derivative causality is an-

alyzed in the following subsections.   

3.2 Diagnosability of System Faults using PC in In-

tegral Causality  

Fault detection and isolation starts with the system dy-

namic model. In this subsection, the set of system equa-

tion in integral causality (1) is applied to derive Possi-

ble Conflicts. Consider 1

D
as the integral operator we 

have: 

2
5

4 1
2 1 3 1 1

2 2
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
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and 2
1 2 1 3 1

1 1 1 1

1 1 1
( ) ( ).

e
e f f f f

DC DC DC R
      (7) 

By substituting (6) in (7) we get:  

 51 2
1 1 1

1 1 2 1 2

1
( ( )).

( 1)

fR C D
e f e

DC R C D R C D
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
 (8) 

Since 1 1,e f and 5f  are all known, equation (8) is a 

possible conflict. From (1) one can also conclude that: 
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and: 

 3 54
5

2 2

.
e ee

f
R R


   (10) 

By substituting (9) in (10) one can get: 

 1 1 5 5 2 1
5

2 2 1

(1 )
.

(1 )

e R f e DC R
f

R DC R
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


 (11) 

Since 1 5,e e and 5f  are all known (11) is also a possi-

ble conflict. For 5e we can say: 

 

5
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5 7 3 3 5 5
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e
f

f f R R f ef
e
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
 
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Here also 5e and 5f  are both known so equation (12) 

is also a conflict. Based on (8), (11) and (12) we can 

derive FCM as: 

Table 1: FCM in Integral Causality 

 
1R  2R  3R  1C  2C  3C  

1e  1 0 0 1 1 0 

5f  1 1 0 0 1 0 

5e  0 0 1 0 0 1 

 

Using FCM, one can derive the maximum isolability 

matrix as:  

Table 2: Maximum Isolability Matrix in Integral Cau-

sality 

 
1R  2R  3R  1C  2C  3C  

1R          

2R         

3R          

1C         

2C          

3C          

Table 2 shows 1R is not isolatable from 2C and 3R  is 

not isolatable from  3C  but all the other faults are iso-

latable from each other.  

3.3 Diagnosability of System Faults using PC in De-

rivative Causality 

To perform fault detection and isolation in derivative 

causality we start with the set of equations in derivative 

causality (3) and consider the same set of inputs (4) and 

sensors (5) as the integral causality model. Represent-

ing the derivation operator as D and doing some alge-

braic manipulations we have: 

1 2 3 1 3 4 5 1 1 1 1 2 5 5( ) .e e e R f e e R f C De R f e        

 (13) 

Since 1 5,e f and 5e  are all known so equation (13) is a 

possible conflict. We also have: 

 



  

 5 3 4 1 2 2 3 1 1 1 2 4 5

1 1 1 2 2 5 5

( )

( ),

f f f f f C De f C De C D e e

f C De C D R f e

        
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 (14) 

where 1 1 5, ,e f f and 5e  are all known variables and  

(14) is also a possible conflict. Finally, we can say: 

 
5 3 7 3 5 6 3 5 3 5( ) ( ).e R f R f f R f C De      (15) 

It is clear that (15) is a possible conflict as well.  Table 

3 shows the FCM for the three-tank system in deriva-

tive causality form. The maximum isolability matrix for 

derivative causality is presented in Table 4. 

Table 3: FCM in Derivative Causality 

 
1R  2R  3R  1C  2C  3C  

1e  1 1 0 1 0 0 

5f  0 1 0 1 1 0 

5e  0 0 1 0 0 1 

 

Table 4: Maximum Isolability Matrix in Derivative 

Causality 

 
1R  2R  3R  1C  2C  3C  

1R         

2R          

3R          

1C          

2C         

3C          

In this case, 1R is isolatable from 2C  but 2R is not 

isolatable from 1C   and 3R  and  3C  are still non iso-

latable. The example is quite interesting because it 

shows changing the causality can change the isolability 

of the faults. A method to isolate maximum possible 

faults from each other is suggested in the next section. 

4 Concurrent Causality 

In this section, we use the definitions presented in sec-

tion 3.1 and the FCM derived in sections 3.2 and 3.3 to 

show if we consider derivative and integral causality 

simultaneously, we can improve the isolability of the 

faults. Then we use this theoretical discussion to sug-

gest fault isolation using concurrent causality.  

4.1 Fault Isolability in Dynamic Systems   

Isolability information provided in integral and deriva-

tive causalities is discussed in the following theorem.   

Theorem: Structural isolability information provided 

by considering derivative and integral causalities to-

gether (concurrent causality) provides equal or more 

isolability than by considering just derivative or just in-

tegral causality. 

 

 Proof: To prove this theorem we first prove that the 

isolability information provided in derivative and inte-

gral causality are not the same. To prove this part we 

simply use contradiction. Assume that isolability in-

formation provided by derivative and integral causality 

are the same. If we can provide one example where in-

tegral and derivative causalities lead to different solu-

tions, the first part is proved. Consider the three-tank 

system in figure 1 with the set of measurements provid-

ed in (5).  One can see from Table 2 that in integral 

causality faults in 1R and 2C are not isolatable from 

each other. But Table 4 shows these faults are isolable 

in derivative causality. Also from Table 4 it can be seen 

that faults in 2R and  1C  are not isolable from each 

other in derivative causality but Table 2 shows they are 

isolable in integral causality. So it is proved that deriva-

tive and integral causality provide different isolability 

information and the information provided by each of 

them is not a subset of the other. Therefore, by using 

both of them we can get more or in some possible cases 

equal information of using one of them. 

4.2 Fault Diagnostic in the Three-tank System using 

Concurrent Causality  

Based on the theoretical discussions in the previous 

subsection we expect that by using concurrent causality 

we achieve to the maximum isolability in our case 

study. Figure 4 shows fault diagnostic structure using 

concurrent causality.  

 

 

 

Figure 4 Concurrent causalities. 

 

 



  

 We know that non of the integral and derivate 

causality does not provide maximum isolability 

information. So to isolate maximum faults concurrent 

causality is applied. To this end equations (8), (11), 

(12) and equations (13), (14), (15) are all used to derive 

possible conflicts. In this case FCM is: 

Table 8: FCM in Concurrent Causality 

 
1R  2R  3R  1C  2C  3C  

1( )e i  1 0 0 1 1 0 

5 ( )f i  1 1 0 0 1 0 

5 ( )e i  0 0 1 0 0 1 

1( )e d  1 1 0 1 0 0 

5 ( )f d  0 1 0 1 1 0 

5 ( )e d  0 0 1 0 0 1 

where index i represents integral and index d repre-

sents derivative causality. The maximum isolability 

matrix in this case would be: 

Table 10: Maximum Isolability Matrix in Concurrent 

Causality 

 
1R  2R  3R  1C  2C  3C  

1R         

2R         

3R          

1C         

2C         

3C          

It can be seen from Table 10 that the faults 1C   and 

2R or 1R and 2C are structurally isolatable in this 

method. 

5 Conclusions 

In this paper, we showed that by considering integral 

and derivative causality simultaneously we can isolate 

some faults which were not isolatable in just integral or 

derivative case. However, the important point is that 

each of the integral and derivative causalities has some 

limitations. For example, derivative causality is not 

proper for noisy environments because possibly we 

have to get derivation from some measurements and in 

noisy environments it can lead to huge errors and false 

alarms. On the other hand, integral causality may lead 

to unstable residuals. Also considering both of the cau-

salities needs twice computations. So in the cases that 

we do not have these limitations concurrent causality 

could be considered as an interesting tool to isolate 

faults as much as possible. In future work, we will 

study mixed causality and discus which mixed causality 

can provide maximum fault isolation in the system. 
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