Theory of Intersections on the Arithmetic Surface

S. J. Arakelov*

1. Let K be an algebraic number field, $\Lambda \subset K$ be the ring of integers in K, X be a curve of genus g over K and $f: V \rightarrow \operatorname{Spec} \Lambda$ be its nonsingular model. Here we shall describe a method which yields a very close analogy between a two-dimensional scheme V and compact algebraic surface.

For the sake of simplicity we shall supopse that the fibration family $f: V \rightarrow \operatorname{Spec} \Lambda$ has no degenerate fibres. We shall denote an inclusion of our field K in the complex number field by the symbol ∞. We choose one inclusion from each pair of complex conjugated inclusions. From now on the symbol Σ_{∞} means that every real inclusion and one of every pair of complex conjugated inclusions is present in our sum. Let us denote the Riemann surface of an algebraic curve $X \otimes_{\infty} \boldsymbol{C}$ by X_{∞}. First of all, we shall define a notion which is analogous to the notion of a divisor on the compact algebraic surface.

Definition. A compactified divisor or c-divisor is a formal linear combination

$$
D=\sum_{i} k_{i} C_{i}+\sum_{\infty} \lambda_{\infty} X_{\infty}
$$

Here \boldsymbol{C}_{i} is an irreducible closed subset in V of codimension $1, k_{i} \in \boldsymbol{Z}, \lambda_{\infty} \in \boldsymbol{R}$. To avoid confusion we shall call a usual divisor on our scheme V a finite divisor, or f-divisor, and write accordingly a letter " c " or " f " near the corresponding symbol. We shall often consider a finite divisor as a c-divisor with $\lambda_{\infty}=0$. All c-divisors form a group which we denote by $\operatorname{Div}_{c}(V)$.

To define a principal divisor, it is necessary to fix on each surface X_{∞} a hermitian metric $d s_{\infty}^{2}$. We shall assume the corresponding volume element to satisfy the following condition: $\int_{X_{\omega}} d \mu_{\infty}=1$.

Let $\varphi \in K(X)$ be a rational function. The divisor of the function φ is defined by the formula

[^0]$$
(\varphi)=\sum_{C \subset V} v_{c}(\varphi) \cdot C+\sum_{\infty} v_{\infty}(\varphi) \cdot X_{\infty} .
$$

Here $\Sigma v_{C}(\varphi) \cdot C=(\varphi)_{f}$ is a usual divisor of the function φ and

$$
\nu_{\infty}(\varphi)=-\int_{X_{\infty}} \log |\varphi| d \mu_{\infty} .
$$

All c-divisors modulo principal divisors form a group which we denote by $\operatorname{Pic}_{c}(V)$.
2. There exists a theory of intersections for c-divisors. For two c-divisors D_{1}, D_{2} their real intersection index $\left(D_{1}, D_{2}\right) \in \boldsymbol{R}$ can be defined. It is bilinear, symmetrical and is invariant under c-equivalence: For $\varphi \in K(X),\left((\varphi)_{c}, D\right)=0$. When written in terms of the finite divisors the invariance property has the following form:

$$
\left(D_{f}+(\varphi)_{f}, D_{f}^{\prime}\right)=\left(D_{f}, D_{f}^{\prime}\right)+\operatorname{deg} D^{\prime} \cdot \sum_{\infty} \int_{X_{\infty}} \log |\varphi| d \mu_{\infty}
$$

Here and below $\operatorname{deg} D$ means the degree of D on the general fibre. It follows from this relation that when restricted on the divisors of degree 0 our index is an invariant under usual linear equivalence. In this case such an index is equal to Neron's index.

The intersection index depends on the choice of the metrics $d s_{\infty}^{2}$. However, there exists one metric on the curve X_{∞} which is the most convenient for the theory of intersections. To define it, let us consider the Jacobian J_{∞} of the curve X_{∞} and let $d s_{J, \infty}^{2}$ be the invariant metric on J_{∞} defined by its Θ-polarisation.

Definition. The canonical metric $d s_{\infty}^{2}$ is a restriction of the metric $d s_{J, \infty}^{2}$, under the canonical inclusion $X_{\infty} \rightarrow J_{\infty}$.

From this moment we shall consider every metric $d s_{\infty}^{2}$ to be a canonical one. It is interesting to note that there exists a c-divisor class $\mathscr{K} \in \mathrm{Pic}_{c}(X)$ which is an analogue of the canonical divisor class on the algebraic surface and which has the following property: If $C \subset V$ is an irreducible horizontal curve on V and δ_{C} is an absolute discriminant of its ring of regular functions, then

$$
\begin{equation*}
(C, C)+(C, \mathscr{K})=\log \left|\delta_{C}\right| \tag{*}
\end{equation*}
$$

3. Now we shall formulate an analogue of the Riemann-Roch theorem. First of all we shall describe an interpretation of c-divisor classes which is analogous to the interpretation of usual divisor classes as linear bundles. Let \mathscr{L} be an invertible sheaf on V. Then \mathscr{L} defines for each ∞ a complex linear bundle L_{∞} over the surface X_{∞}. If every bundle L_{∞} is provided with a hermitian metric $\left\|\|_{\infty}\right.$ on it, whose curvature form is proportional to the form $d \mu_{\infty}$, we shall call \mathscr{L} a c-bundle. The group of c-bundles is isomorphic to the group $\operatorname{Pic}_{c}(V)$.

Let us denote by $V_{\infty}(\mathscr{L})$ the complex linear space of sections of the bundle L_{∞} for the complex ∞ and the corresponding real space for the real ∞. The metric $\left\|\|_{\infty}\right.$ defines a positive function F_{∞} on the $V_{\infty}(\mathscr{L})$ by the following formula:

$$
\log F_{\infty}(s)=\int_{X_{\infty}} \log \|s\|_{\infty} d \mu_{\infty} \quad \text { for } s \in V_{\infty}(\mathscr{L})
$$

Let us define on the space $V(\mathscr{L})=\oplus_{\infty} V_{\infty}(\mathscr{L})$ a "norm" function $F=\Pi_{\infty} F_{\infty}^{\alpha_{\infty}}$. Here α_{∞} equals 1 for a real ∞ and 2 for a complex ∞. If $\operatorname{deg} \mathscr{L}>2 g-2$, then the Λ
module $\Omega_{\mathscr{L}}=\Gamma(V, \mathscr{L})$ is a projective module of rank $m+1-g$ and has a natural inclusion as a lattice into the space $V(\mathscr{L})$. We can define the density of $\Omega_{\mathscr{L}}$ with respect to the norm function F by the formula

$$
\mathfrak{x}\left(\Omega_{\mathscr{L}}\right)=\left(\prod_{\infty} p\left(B_{\infty}\right)\right) / v\left(\Omega_{\mathscr{L}}\right) .
$$

Here B_{∞} is a unit ball of the norm function $F_{\infty}, v\left(B_{\infty}\right)$ is its volume measured by any euclidean metric E_{∞} on the space V_{∞} and $v\left(\Omega_{\mathscr{L}}\right)$ is a volume of the fundamental cube of the lattice $\Omega_{\mathscr{L}}$ measured by the metric $E=\oplus E_{\infty}$ on the $V(\mathscr{L})$.

Conjecture 1.

$$
\log \mathfrak{x}\left(\Omega_{\mathscr{L}}\right)=\frac{1}{2}(\mathscr{L}, \mathscr{L}-\mathscr{K})+\frac{1}{2} \operatorname{deg} \mathscr{L} \cdot \log |\partial|+d
$$

Here ∂ is the discriminant of the field K and $d=d(X)$ is some invariant of the curve X.

Conjecture 2. Invariant $d(X)$ has an interpretation as the height of the point which corresponds to X in the moduli variety of curves of genus g.

Let us put $\tilde{d}(\mathscr{L})=\log \mathfrak{x}\left(\Omega_{\mathscr{L}}\right)-\frac{1}{2}(\mathscr{L}, \mathscr{L}-\mathscr{K})-\frac{1}{2} \operatorname{deg} \mathscr{L} \cdot \log |\partial|$. Conjecture 1 asserts that $\tilde{d}(\mathscr{L})$ does not depend on \mathscr{L}.

It is possible to prove that $\tilde{d}(\mathscr{L})$ is absolutely bounded if $\operatorname{deg} \mathscr{L}$ is fixed. For an elliptic curve X it is possible to prove that $\tilde{d}(\mathscr{L})=$ const if $\operatorname{deg} \mathscr{L}$ is fixed.
4. In the last section we shall consider two questions. For the first one let $\xi \in \operatorname{Pic}(X / K)$ be a divisor class of degree $m>2 g_{1}-2$ on X. Suppose, for the sake of simplicity, that the class number of K equals 1 . Then ξ corresponds to the single invertible sheaf \mathscr{L}_{ξ} on V, and all effective divisors on V of class ξ are interpreted as classes of equivalent elements of the lattice $\Omega_{\xi}=\Gamma\left(V, \mathscr{L}_{\xi}\right)$ under the action of the group of units of K.

Let us consider those vectors of the lattice Ω_{ξ} which correspond to irreducible divisors on V. The discriminant δ of a prime divisor is a function which is defined only on such vectors, but it can be extended on the whole lattice Ω_{ξ} by the formula (*). In this way we get a function δ on the lattice Ω_{ξ} which is proportional to the ($m+2 g-2$)th power of the norm function. Using Conjecture 1 we can compute the density $\mathfrak{r}_{\delta}(\xi)$ of the lattice Ω_{ξ} with respect to the function $\delta^{(m+2 g-2)^{-1}}$. Here is the asymptotic behavior of this density when $\operatorname{deg} \xi=m$ is fixed:

$$
\log \mathfrak{\chi}_{\delta}(\xi)=- \text { const } \cdot(g-1) \cdot B(\xi, \xi)+o(B(\xi, \xi))
$$

Here const is positive and $B(\xi, \xi)$ is the quadratic part of the height of the point on the Jacobian of the curve X with respect to Θ-polarisation. So we can see that if $g>1$ than $\mathfrak{\chi}_{\delta}(\xi) \rightarrow 0$ when $\xi \rightarrow \infty$.

The second question is about the distribution of the divisors of degree $m>2 g-2$ with regard to height.

Let H be any c-divisor of degree 1 and D be an f-divisor. We shall call the magnitude $N_{H}(D)=\exp (D \cdot H)$ a height of a divisor D with regard to H. It is possible to prove that the series

$$
\sum_{D>0 ;} \sum_{\operatorname{deg} D=m} \frac{1}{N_{H}(D)^{s}}=\zeta\left(m_{F}\right)(s)
$$

converges if $s>m+1-g$ and that the limit

$$
T=\lim _{s \rightarrow m+1-g}(s-(m+1-g)) \cdot \zeta_{H}^{(m)}(s)
$$

exists and does not equal zero. Using Conjecture 1 we can compute that

$$
T=\operatorname{const}(m) \cdot R \cdot \frac{h}{\mu} \cdot|\delta|^{m / 2} \exp \alpha(H) \exp d(X) \cdot \sum_{\xi \in \operatorname{Pic}(X / K)} \exp (-F(\xi)) .
$$

Here $\alpha(H)=\frac{1}{2} m(m+2-2 g)(H, H)+\frac{1}{2} m(H, \mathscr{K}), h$ is the class number of K, R is its regulator and μ is the number of roots of unity of K. At last $F(\xi)$ is the sum of the quadratic and linear parts of the height on the Jacobian of X in regard to θ-polarisation.

References

С.Ю. Аракелов, Теория пересеченй на арифжетической поверхности, Известия АН СССР, матем. серия 38 (1974).

University of Moscow
Moscow, U.S.S.R.

[^0]: *Not presented in person.

