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ABSTRACT
Estimating the location of people and tracking them in an in-
door environment poses a fundamental challenge in ubiquitous
computing. The accuracy of explicit positioning sensors such as
GPS is often limited for indoor environments. In this study, we
evaluate the feasibility of building an indoor location tracking
system that is cost effective for large scale deployments, can op-
erate over existing Wi-Fi networks, and can provide flexibility
to accommodate new sensor observations as they become avail-
able. At the core of our system is a novel location and tracking
algorithm using a sigma-point Kalman smoother (SPKS) based
Bayesian inference approach. The proposed SPKS fuses a pre-
dictive model of human walking with a number of low-cost sen-
sors to track 2D position and velocity. Available sensors include
Wi-Fi received signal strength indication (RSSI), binary infra-
red (IR) motion sensors, and binary foot-switches. Wi-Fi signal
strength is measured using a receiver tag developed by Ekahau
Inc. The performance of the proposed algorithm is compared
with a commercially available positioning engine, also developed
by Ekahau Inc. The superior accuracy of our approach over a
number of trials is demonstrated.

Index Terms— sigma-point Kalman filter, sigma-point
Kalman smoother, indoor tracking, RSSI tracking

1. INTRODUCTION

Location and context-aware technologies play a critical role
in emerging next generation mobile applications. Example
goals of these applications range from tracking assets within
large warehouses, monitoring people inside assisted living
communities, to adapting user interfaces based on location
and activity. Key to each application is the ability to ac-
curately localize and track an individual or asset. Explicit
positioning sensors based on GPS work worldwide and can
sometimes achieve centimeter accuracy. However, GPS re-
quires a direct view to several satellites, resulting in limited
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performance for indoor environments. Hence there remains a
need to develop new location sensing technologies based on
both existing opportunistic signals and hardware, as well as
new systems and sensor modalities. Additional design con-
straints pose significant challenges for development of such
systems, including calibration overhead, user privacy, and the
high variability of wireless channels.

A number of commercial and research prototype systems
currently exist for indoor localization. Systems typically use
infra-red (IR), radio-frequency (RF), or ultra-sound sensors [1–
4]. Although they show the necessary potential in indoor
tracking, each has their own limitations. The Active Badge
System is one example of an early location-aware applica-
tion that determines the location of an individual by use of
an ”active badge” that emits an unique IR code [1]. A net-
work of sensors pick up the periodic IR waveforms to triangu-
late the individual. Poor IR scalability and high maintenance
overheads were some of the drawbacks faced by this system.
Two popular systems, RADAR [2] and Cricket [3], use RF,
and RF with ultrasonic sensors respectively. RADAR com-
pares the user’s RSSI observation with a set of prestored sig-
nal strength measurements known as ”fingerprints” at each of
the base stations to identify the user’s coordinates. RADAR
uses a k-nearest-neighbors method in order to find the closest
match between known fingerprints and observed RSSI. The
major disadvantages of the fingerprinting method includes the
need for dense training coverage and poor extrapolation to
areas not covered during training. Although RADAR em-
ploys an empirical model for RF propagation and wall atten-
uation, actual RF signals deviate considerably while propa-
gating indoors due to multipath, metal reflection, and noise.
The Cricket system uses time of flight (TOF) difference be-
tween RF and ultrasonic pulses in order to localize a person.
Based on the TOF difference between multiple beacons, the
closest beacon is inferred. Although Cricket improves accu-
racy and stability, high maintenance and calibration require-
ments require significant effort to deploy it in practice. ”Place
Lab” evaluates the feasibility of building a large scale loca-
tion tracking system based on a 802.11 wide-area wireless
network [5, 6]. Place Lab uses standard 802.11 access points



and 802.11 radio listener built into the users devices for posi-
tioning. The system compares the observed RSSI with a pre-
stored radio map to determine the users position. Although
it enjoys the advantage of limited calibration, the accuracy is
lower than exiting positioning systems. Ekahau [7] provides
a complete tag and software solution, also using RSSI with
the 802.11 protocol. The system is relatively inexpensive and
energy efficient, but its accuracy is quite limited in certain sce-
narios as seen in the experimental section of this paper. There
are also a number of software and hardware based systems
using ultra wide-band (UWB) and ultrasound frequencies that
also use TOF calculations and employ similar methods to that
used within GPS receivers [8, 9]. Ubisense [8], for example,
can provide high tracking accuracy to within several centime-
ters, but with significant calibration challenges as well as a
very high cost.

Our contribution to indoor location tracking focuses on
improving the core estimation algorithms that fuse the vari-
ous sensor measurements. We take a Bayesian inference ap-
proach, which provides a probabilistic framework for com-
bining a predictive model of walking motion with all avail-
able sensor observations. Bayesian methods can estimate a
person’s velocity and acceleration in addition to position, and
can also provide a measure of the accuracy of the estimates.
A number of variants of probabilistic Bayesian inference ap-
proaches have already appeared in the literature [4,6,10–18].
In [10, 15], the authors survey Bayesian filter implementa-
tions for location estimation using ultrasound, infrared and
laser range finders. They conclude that although particle fil-
ters can converge to the true posterior state distribution for
non-Gaussian and multimodal cases, the Kalman filter and its
variants are the most efficient in terms of memory and com-
putation. Kalman filtering methods for real time positioning
have long been popular in the robot tracking and navigation
communities [19]. Meng et al. [20] propose an adaptive ex-
tended Kalman filter (EKF) algorithm to localize a mobile
robot equipped with multiple sonar sensors in an indoor en-
vironment. Leonard et al. [21] use an EKF approach to accu-
rately localize a mobile robot that relies on the observed dis-
tance from the current robot’s position to a number of known
environmental features. Borthwick et al. [22] employ an EKF
based technique to track an automated guided vehicle (AGV)
using a optical ranger and a known priori map of the envi-
ronment. Kalman filter and their variants have also been ap-
plied to indoor people tracking. For examples, Fod et al. [12]
and Hsieh et al. [13] describe a Kalman filter approach us-
ing multiple laser range finders. More recently, particle filters
have been used to demonstrate encouraging performance, al-
though at a high computational cost for real time people track-
ing [4,16–18]. The particle filter based system described by J.
Hightower et al. [4] incorporates a random acceleration based
human motion model as the dynamics of the system, while
the sensor model (observation likelihood) uses only a sin-
gle Gaussian with fixed manufacturer predefined parameters.

However, severe multipath, non-line-of-sight propagation, or
metal reflection may cause a highly complex position-RSSI
relationship that is not accurately captured by such a simple
observation model. Letchner et al. [17] introduce a sensor
measurement model in the particle filter framework that com-
bines a Wi-Fi signal propagation model [23] and fingerprint-
ing techniques for localization. The methods assumes radially
symmetric attenuation of wireless signals and also requires
large training data for fingerprinting. Recently, Gaussian pro-
cesses are also used to generate a measurement likelihood for
wireless signal strength measurements in particle filter [16].
However, learning the parameters using graph based hyper-
parameter estimation can take significant computational re-
sources with slow convergence. The use of hidden Markov
modeling (HMM) and grid based approaches for people track-
ing have also appeared in the literature. The Locadio sys-
tem [14] use a HMM on a graph of location nodes to infer
position based on the variation of the Wi-Fi signal strength.
The person’s motion is determined based on the variance of
RSSI measurements over a sliding window. However, signif-
icant RSSI variability (even at the same location) can cause
a high number of errors in determining whether the person is
moving or still.

Our approach to Bayesian inference is based on sigma-
point Kalman Filters (SPKF) [24–26]. SPKFs are estimation
algorithms, which include the unscented Kalman filter (UKF)
[27], central difference Kalman filter (CDKF) [28], and their
square-root variants [29]. The SPKF has recently become
a popular better alternative to the Extended Kalman Filter
(EKF). Additional background on the SPKF will be provided
later in this paper. We specifically used our recently pro-
posed forward-backward statistically linearized sigma-point
Kalman smoother (FBSL-SPKS) algorithm [30] . For track-
ing purposes, this is implemented as a fixed interval smoother
that use all the past and future measurements to estimate the
current state. To make the tracking close to real time, we also
develop a fixed lag Kalman smoother (FL-SPKS) algorithm.
Both estimators optimally fuse a model of walking motion,
room-wall configurations, and all available sensor observa-
tions in order to track a person. A random acceleration based
human walk model is used as the dynamic model of motion.
This is augmented with a room-wall model involving a poten-
tial field created throughout the indoor environment in order
to repel motion away from walls. Our observation model use
Radial-Basis Function (RBF) networks that provide a non-
linear mapping between known locations and observed RSSI
values. These models are fit during a separate calibration pro-
cess, and thus take into account the various multipath and
other room specific characteristics.

While our approach is generally independent of the spe-
cific hardware or sensor modality, the current system design
uses RSSI sensors manufactured by Ekahau Inc. The per-
son(s) to be tracked carry a small body-borne device that pe-
riodically measures the RSSI at 3 or more standard Wi-Fi



Fig. 1. Room Potential field

access points placed at pre-defined locations. Augmenting
the RSSI measurements are IR motion sensors mounted to
the walls that provide a binary ”on” signal when it detects
a motion in its range. Similarly, binary foot-switches indi-
cate the location of a person when stepped on. Experimen-
tation was performed at several ”living-laboratories” used to
develop monitoring and assistive technologies for the elderly.
The performance of our tracker was compared with the base-
line Ekahau tracking engine. As will be shown, both the
FBSL-SPKS and FL-SPKS based tracker provide significant
improvement in position tracking accuracy.

2. RECURSIVE BAYESIAN ESTIMATION AND
KALMAN FILTERING

Recursive Bayesian estimation is a general probabilistic ap-
proach for sequentially estimating an unknown state proba-
bility density function over time using incoming noisy mea-
surements and a mathematical process model. The problem
can often be cast in terms of estimating the state of a discrete-
time nonlinear dynamic system,

xk+1 =fk (xk, vk) (1)
zk =hk (xk, nk) , (2)

where xk represent the unobserved state of the system and zk

is the sensor observations. The process noise vk drives the
dynamic system, and the observation noise is given by nk.
Note that we are not assuming additivity of the noise sources.
The system dynamic model f(.) and observation model h(.)
are assumed known.

A recursive solution to the Bayesian estimation problem
for an arbitrary state space model is generally intractable. Se-
quential Monte Carlo (SMC) based techniques, or particle fil-
ters, model the density of the state distribution using a set of
discrete points and can provide arbitrary accuracy to the so-
lution with a sufficient number of sample points. Under a
pure Gaussian and linear assumption, the Kalman filter is op-
timal and provides for an efficient and practical solution. A
first-order approximation to account for nonlinearities leads
to the extended Kalman filter (EKF). While still assuming
a Gaussian state distribution, the sigma-point Kalman filter
(SPKF) provides superior performance over the EKF. Note

that the SPKF refers to a family of related algorithms, the
Unscented Kalman Filter (UKF), Central Difference Kalman
Filter (CDKF), and several variants. We will return to the de-
tails of the SPKF after first describing both the dynamic and
observation models chosen of the specific tracking applica-
tion.

2.1. Dynamic Model

We define the state vector x =
[

x y vx vy

]

, corre-
sponding to 2D position and velocity for tracking purposes.
A simple random walk model on the velocities is used for
predicting walking motion. This is augmented with a room
model involving a potential field created throughout the in-
door environment in order to repel estimated motion away
from walls.

The potential field can be created off-line using prior knowl-
edge of wall configurations and large furniture location. Com-
putationally this is achieved by dividing the space into 1 inch
square cells. Each cell contains a binary certainty measure
C (i, j) that indicates whether the cell is occupied, i.e., an ob-
stacle exits within the cell. The force Fi,j (x, y) exerted on a
person due to an occupied cell is made inversely proportional
to the distance between the person’s current position and the
occupied cell position.

Fi,j (x, y) = −FcrC (i, j)

d2
i,j (x, y)

(

x − xi
c

di,j(x, y)
~x +

y − yj
c

di,j(x, y)
~y

)

,

(3)

where di,j(x, y) is the distance between the person’s current
position, (x, y), and the occupied cell position, (xi

c, y
j
c). ~x

and ~y are the unit vectors along the x and y direction. Fcr is
the force constant and design parameter that controls the over-
all strength of the repulsive force. If the force is too strong,
location estimates will not be near walls or furniture. If the
force is too small, tracking may results in trajectory estimates
that pass through walls.

The total resultant force Fr(x, y) is the vectorial sum of
forces exerted by all the occupied cells on the person’s current
cell location.

Fr(x, y) =
∑

i,j

Fi,j (x, y) . (4)

This repelling force function Fr(x, y) is calculated once off-
line, and may be viewed as a potential field or simply a non-
linear function of the person’s current position. Fig. 1 dis-
plays the corresponding magnitude of the potential field for a
simple multi-room example.

Combining the potential field and a random walk model



(a)

0
20

40
60

−20
−10
0
0

20

40

60

80

x(ft)y(ft)

RS
SI

(b)

0
20

40
60

−20
−10
0
0

20

40

60

80

RS
SI

y(ft) x(ft)

(c)

0
20

40
60

−20
−10
0
0

20

40

60

80

x(ft)y(ft)

RS
SI

(d)

Fig. 2. (a) Example floor plan with calibration locations indicated by a ’+’, (b) Raw RSSI values recorded at each access
point during calibration, (c) RSSI mean values at each calibration location, (d) RBF nonlinear map plotted with the RSSI mean
values.

yields the dynamic state-space model,

xk+1 = xk + δTvxk
+

δT 2

2
Fxk

(xk , yk) (5)

yk+1 = yk + δTvyk
+

δT 2

2
Fyk

(xk, yk) (6)

vxk+1
= λvxk

+ δTFxk
(xk, yk) + (1 − λ) vpx,k

(7)
vyk+1

= λvyk
+ δTFyk

(xk, yk) + (1− λ) vpy,k
(8)

The parameter λ smooths the changes in velocities and also
ensures that the variance of random process remains bounded.
The integration time in this case is δT = 1 second. The pro-
cess noise vp,k =

[

vpx,k
vpy,k

]

is modeled as zero mean
white Gaussian.

2.2. Observation Model

As we have used 3 different sensor technologies for obser-
vations, the observation model shown in (2) depends on the
specific technology used.

2.2.1. RSSI Observation model

A naive approach to using RSSI measurements involve com-
paring an observed RSSI value to a table of previously recorded
RSSI values and their associated positions. This direct ”ta-
ble look-up” approach, however, is prone to errors due to the
high variability of RSSI values. In the Bayesian framework,
the observation function can be viewed as a generative model
providing the likelihood of a RSSI observation given the cur-
rent estimate of the state position. In most of RSSI track-
ing literature, the observation likelihood is approximated with
a simple fixed a priori distribution (e.g., Gaussian distribu-
tion) [4,6]. In our method, we characterize the RSSI-position
relationship and variability by fitting nonlinear mappings be-
tween position and observed RSSI values.

Data to fit the maps are first collected during a calibration
phase. This involves dividing the floor plan into P rooms or
sections. In each section, the vertices and center of an ap-
proximate octagonal grid are used as calibration points. See
Fig. 2(a) for illustration purposes. At each calibration point, a

person carrying a body borne RSSI tag spends a fixed amount
of time while RSSI data is collected. Typically, RSSI values
are recorded from M (generally 3 − 5) Wi-Fi access points
located in the corners of the entire space to be calibrated. The
person also performs a slow rotation at each point to average
RSSI variability due to tag orientation. Note that if multi-
ple tags are to be calibrated simultaneously, it is advisable to
physically separate the tags on the person as far as possible,
as we have found that multiple tags can interfere with RSSI
consistency. This process is repeated at all calibration points
in the space. Fig. 2(b) illustrates the collection of raw RSSI
data at each calibration point. Note the high variability of
RSSI values at each location. The RSSI samples are then av-
eraged to obtain a representative mean RSSI observation per
calibration point as shown in Fig. 2(c). Specific values for the
amount of data collected, variability, etc., are tag specific and
will be given in the experimental results section.

After RSSI data collection, a RBF network is used to fit
a nonlinear map between known calibration locations and the
mean RSSI observations as illustrated in Fig. 2(d). A RBF
network is a feed forward neural network consisting of a hid-
den layer of radial kernels and an output layer of linear neu-
rons [31]. A Gaussian kernel is used as the radial basis. This
RBF map represents the forward generative observation model,

zm,k = hm,k (xk, yk) + nr
m,k (9)

where zm,k is the observed RSSI from access point m, 1 ≤
m ≤ M , with noise nr

m,k assumed to be Gaussian with zero
mean and standard deviation equal to the RSSI variability de-
termined from the calibration data. The RBF observation map
hm,k for the m-th access point is specified by

hm,k (xk , yk) =W T
mKm,G

([

xk yk

]

; µm,Σm

)

,

where Km,G is the Gaussian kernel function with mean vec-



tor µm and covariance matrix Σm and can be defined as:

µm =
[

µm,1 µm,2 . . . µm,C

]T
,

Σm =











Σm,1 0 · · · 0
0 Σm,2 · · · 0
...

. . .
...

0 · · · 0 Σm,C











.

It is assumed that there are C Gaussian kernels in the hidden
layer of the RBF network. Wm are the output layer linear
weights,

Wm =
[

wm,0 wm,1 . . . wm,C−1

]

.

The parameters of each Gaussian kernel {µm,c, Σm,c} and
the hidden to output layer weights Wm,c are learned using a
hybrid procedure that operates in 2 stages. The prior weight,
center position and the spread parameter of each Gaussian
are first obtained by modeling the known calibration locations
with a Gaussian Mixture Model (GMM) using Expectation
Maximization (EM) algorithm. The hidden to output weights
are then calculated in a batch least square manner in order to
minimize the MSE error at the output. Fig. 2(d) illustrates a
nonlinear observation map learned from calibration data.

The observed RSSI zm,k, RBF function hm,k, and the ob-
servation noise nr

m,k from each access point are combined to
form a multi-dimensional observation model,

zk =
[

z1,k z2,k . . . zm,k . . . zM,k

]

(10)
hk =

[

h1,k h2,k . . . hm,k . . . hM,k

]

(11)
nr

k =
[

nr
1,k nr

2,k . . . nr
m,k . . . nr

M,k

]

(12)

where zk is the multi-dimensional RSSI observations ema-
nating from M access points. Similarly hk and nr

k are the
RBF observation model and the measurement noise for the
M access points.

Once fit using calibration data, this RBF observation model
may be used in the Bayesian framework for tracking. The
model takes into account room specific multi-path and atten-
uation, and RSSI variability. By learning the map, the need to
specify the location of the access points is also avoided.

2.2.2. IR motion sensor Observation model

Infra-red (IR) motion sensors may be mounted to the walls
and provide binary ”on” signals when motion is detected within
range. Localization using motion sensors are challenging due
to their large beam width and high false alarm rate. The likeli-
hood model for a motion sensor is modeled simply as a Gaus-
sian distribution. The mean value is taken to be a position in-
line with the orientation of the sensor at a distance based on
approximate sensor range. The variance is based on the beam
width of the sensor. Specific values for the mean and variance

are found by characterizing the sensors and are somewhat ar-
bitrary. The observation model is thus linear and defined as:

zk =Hkxk + nms
k (13)

zk =

[

1 0 0 0
0 1 0 0

]

xk + nms
k , (14)

where Hk is the observation matrix and nms
k is the Gaus-

sian observation noise with mean and variance as determined
for the location and beamwidth of the sensor. Note that this
simple model clearly does not take into account the specific
geometry of the beam pattern, or other complicating factors
such as memory and latency in the binary sensor.

2.2.3. Binary foot-switch Observation model

Similar to IR motion detectors, foot-switches may be placed
on the floor to provide a binary ”on” signal that indicates the
location of a person. The observation likelihood may again
be modeled simply as a Gaussian distribution with the corre-
sponding observation model,

zk =Hkxk + n
f
k (15)

zk =

[

1 0 0 0
0 1 0 0

]

xk + n
f
k , (16)

where n
f
k is the Gaussian observation noise for the foot-switch

sensors. The mean value of the Gaussian is set to the known
location of the switch. The variance specifies the accuracy of
the localization for the foot switch.

2.2.4. Multiple sensors observation model

The Kalman framework allows for fusing multiple sensors of
different types as available. An augmented observation vector
is specified,

zk =
[

zRSSI
k zIR

k zFoot
k

]

(17)

along with the corresponding observation functions. Note that
the dimension of this augmented observation may change at
each time step to account for varying sensor sampling rates or
missing observations.

3. SPKS BASED LOCATION TRACKER

The Kalman filter [32] provides the optimal Bayesian recur-
sive estimate for the state xk of a linear state-space system
driven by Gaussian noise. The estimate is optimal given all
noisy measurements Zk = [z1, z2, . . . , zk] up to the current
time index k. In contrast, the Kalman smoother estimates the
conditional expectation of the state at time k given all past and
future measurements Zk = [z1, z2, . . . , zN ], 1 ≤ k ≤ N .
Several common Kalman smoothing formulations are given
in [19, 33–36]. In this article, we consider both fixed lag and



fixed interval smoothing. In fixed lag smoothing, L future
measurements are used at every time step to obtain smoothed
state estimates at time k. In fixed-interval smoothing, the final
time N is fixed and smoothed estimates are found using all N

measurements.
For nonlinear state-space models, the extended Kalman

filter (EKF) approach may be used whereby the nonlinear
state-space model is linearized around the estimate of the cur-
rent state using a first order Taylor series expansion. The
sigma-point Kalman filter (SPKF), which includes the un-
scented Kalman filter (UKF) [37], central difference Kalman
filter (CDKF) [28], and their square-root variants [29], has re-
cently become a popular better alternative to the EKF. Like
the EKF, the SPKF approximates the state distribution by a
Gaussian random variable (GRV). However, the probability
distribution is represented by a set of carefully chosen deter-
ministic sample points (called sigma points). These sigma
points are then propagated through the true nonlinear system,
with the posterior mean and covariance calculated using sim-
ple weighted averaging. This approach captures the posterior
mean and covariance accurately to the 2nd-order (3rd-order
is achieved for symmetric distribution) compared to the EKF
which linearizes the nonlinear systems and only achieves 1st-
order accuracy.

While the SPKF may be applied directly to the tracking
problem, we have found improved performance through the
use of the sigma-point Kalman smoother (SPKS). Two SPKS
variants are investigated, the forward-backward (FBSL-SPKS)
[30] and fixed-lag (FL-SPKS) [33]. The FBSL-SPKS cor-
responds to a fixed interval smoothing approach whereby a
SPKF is used to estimated the states forward in time. A mod-
ified backward SPKF is then used to estimate the states in the
backward direction, which are combined with the forward es-
timates to calculate the smoothed estimates. In the FL-SPKS,
the estimate of the state is found after waiting for L future
measurements. The SPKF is reformulated by incorporating a
large state vector augmenting states from xk to xk−L. Details
of both these smoother variants are described in the following
sections.

3.1. Forward backward statistical linearized sigma-point
Kalman smoother (FBSL-SPKS)

In the FBSL-SPKS, a standard SPKF is run in the forward di-
rection using the nonlinear state-space model in (9). A back-
ward filter then computes the estimates operating on the in-
verse dynamics of the forward filter. As the forward nonlin-
ear dynamics are never analytically linearized, the backward
filter is not well defined for a nonlinear dynamical system.
To derive the appropriate backward filter, the SPKS makes
use of the weighted statistical linear regression (WSLR) for-
mulation of the filter. WSLR is a linearization technique that
takes into account the uncertainty of the prior random variable
(RV) when linearizing the nonlinear model [38]. In this way,

���������
	����

������� ���
��������������� ���"!$#

% &(')+*

,"-/.10$23,4-$5(6

7989:�;�<+=>8@?

Actual (sampling) Linearized (EKF)

sigma points

true mean

SP mean

    and covariance
weighted sample mean

mean

SP covariance

covariance

true covariance

transformed
sigma points

Sigma−Point

Fig. 3. 2D example of the sigma-point approach. The ac-
curacy of the sigma-point method in propagating the mean
and covariance of the prior GRV through a nonlinear func-
tion is compared with Monte-Carlo sampling and the EKF
approaches.

WSLR is more accurate in the statistical sense than first-order
linearization, which does factor in the ”probabilistic spread”
at the point of linearization. By representing the forward dy-
namics in terms of WSLR, a backward information filter can
be formulated that does not require inverting the nonlinear
dynamics. Estimates of the forward and backward filter are
then optimally combined to generate smoothed estimates in
the standard manner. Before presenting the pseudo-code for
the SPKS, we first give a short review on the relationship be-
tween the SPKF and WSLR.

Consider a prior random variable (RV) x which is propa-
gated through a nonlinear function g(x) to obtain a posterior
RV z. Sigma points χi, i = 0, 1, . . . , 2M are selected as the
prior mean x̄ plus and minus the columns of the square root
of the prior covariance Px

χ =
[

x̄ x̄ + γ
√

Px x̄ − γ
√

Px

]

(18)

where M is the RV dimension and γ is the composite scal-
ing parameter. The sigma point set χ completely capture the
mean x̄ and the covariance Px of the prior RV x.

x̄ =

2M
∑

i=0

wiχi (19)

Px =

2M
∑

i=0

wi (χi − x̄) (χi − x̄)T (20)

where wi is a normalized scaler weight for each sigma point.
Each prior sigma point is propagated through the nonlinearity



to form the posterior sigma point γi.

γi =g (χi) i = 0, 1, . . . , 2M (21)

The posterior statistics can then be calculated using weighted
averaging of the posterior sigma points,

ẑ =

2M
∑

i=0

wiγi (22)

P̂z =
2M
∑

i=0

wi (γi − ẑ) (γi − ẑ)T (23)

P̂xz =

2M
∑

i=0

wi (χi − x̄) (γi − ẑ)
T (24)

This deceptively simple approach captures the desired pos-
terior statistics more accurately than using standard lineariza-
tion techniques. The implementation is also simpler, as it
avoids the need to analytically linearize the nonlinear func-
tion, and only requires direct function evaluations. The per-
formance of the sigma point approach in capturing the mean
and covariance of a GRV which undergoes a nonlinear trans-
formation is demonstrated in Fig. 3. The left plot shows the
mean and covariance propagation using Monte-Carlo sam-
pling. The center plot demonstrates the results using first-
order linearization as in the EKF. The right hand plot depicts
the performance of the sigma point approach. Note, only
5 sigma-points are needed to approximate the 2D distribu-
tion. The superior performance of the sigma-point approach
is clearly evident.

An alternate view of the sigma point approach can be
found by considering the weighted statistical linearization of
the nonlinear dynamics,

z =g (x) ∼= Ax + b + ε (25)

where A and b are the statistical linearization parameters and
can be determined by minimizing the expected mean square
error which takes into account the uncertainty of the prior RV
x. Defining J = E

[

εT Wε
]

is the expected mean square
error with sigma-point weighting matrix W ,

[A, b] =arg min J

=arg min
(

E
[

εT Wε
])

(26)

The true expectation can be replaced as a finite sample ap-
proximation,

E
[

εT Wε
]

=

2M
∑

i=0

wiε
T
i εi (27)

where the point-wise linearization error εi = γi − Aχi −
b specifically use the sigma point selection as above. Now
taking partial derivative of J with respect to A and b,

A =P̂ T
xz

P−1
x

(28)
b =ẑ − Ax̄ (29)

where the prior mean (x̄) and covariance (Px) are calculated
in (19)-(20) from the prior sigma points. Similarly, the pos-
terior mean (ẑ) and covariances (P̂z and P̂xz) are calculated
from the posterior sigma points as shown in (22)-(24). The
linearization error ε has zero mean and covariance

Pε =P̂z − APxAT . (30)

From (30), P̂z = APxAT + Pε, we observe that the covari-
ance of the linearization error Pε is added when calculating
the posterior covariance P̂z. A first-order Taylor series ex-
pansion employed by EKF to linearize the nonlinear dynam-
ics neglects this error term. In general, the WSLR technique
is an optimal way of linearizing any nonlinear function in the
minimum mean square error (MMSE) sense. The approach
explicitly takes into account the prior RV statistics.

To form the SPKF estimator, we consider the nonlinear
state space model:

xk+1 =fk (xk, vk) (31)
zk =hk (xk, nk) (32)

where xk ∈ R
M is the state, zk ∈ R

P is the observation at
time index k, vk and nk are Gaussian distributed process and
observation noises, f(.) is the nonlinear dynamic model and
h(.) is the nonlinear observation model function. The process
and observation noise has zero mean and covariances Qk and
Rk respectively. The SPKF is then derived by recursively
applying the sigma point selection scheme at every time index
to these dynamic equations (see [37] for more details).

Alternatively, the SPKF may be derived from the WSLR
from of the nonlinear state space,

xk+1 =Af,kxk + bf,k + Gf,kvk + Gf,kεf,k (33)
zk =Ah,kxk + bh,k + nk + εh,k (34)

where Af,k, Ah,k, bf,k, bh,k are the statistical linearization
parameters and εf,k, εh,k are the linearization error with mean
zero and covariance Pεf ,k and Pεh,k. All the parameters can
be obtained by applying (29) and (28) iteratively at each time
index k. Deriving the KF using the linearized state space re-
sults in the exact same equations and estimates as the SPKF
(see [38]). The key advantage, however, of the statistically
linearized form is that it can be used to derive the necessary
backward filter. The FBSL-SPKS equations, consisting of the
forward filter, backward filter, and smoother, are specified in
the next sections.

3.1.1. Forward Filter

A standard SPKF is used as the forward filter. The task of
the SPKF is to estimate xk at time index k given all past and
current measurements. The SPKF recursions, which operates
on the nonlinear state space model defined in (31) and (32),
are written below using the WSLR formulation:



• Initialization:
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For k=1,2,. . . ,N

• Calculate sigma-points:
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• Weighted Statistical Linearization of f(.):
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• Measurement-update equations:
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• Weighted Statistical Linearization of h(.):
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• Parameters:
λ is the composite scaling parameter

λ =α
2 (L + κ) − L,

and w
(c)
i and w

(m)
i are the scaler sigma-point weights defined

as:

w
(c)
0 =
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, i = 0

w
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1

2 (L + λ)
, i = 1, 2, . . . , 2L

w
(m)
i =

1

2 (L + λ)
, i = 1, 2, . . . , 2L

where α controls the size of the sigma point spread and should
be within 0 ≤ α ≤ 1 to avoid sampling non-local points when
the nonlinearities are strong [38]. β ≥ 0 is the weighting term
which incorporates the higher order moments of the prior dis-
tribution. The sigma point approach can effectively capture
the first 2 moments (mean and covariance) of the distribution.
The parameter β also can be used to minimize the error in ap-
proximating higher order moments of the distribution. For a
Gaussian prior, we set β = 2 [37]. The parameter κ is used
to ensure the positive definiteness of the covariance estimates.
Setting κ ≥ 0 should work for most cases. L is the dimension
of the augmented state, Qk and Rk are the process and obser-
vation noise covariances. Note that the measurement-update
equations may be skipped when observations are unavailable.
This allows for multi-rate processing in which the state esti-
mates are updated at a higher rate than the sensor sampling or
to accommodate missing observations.

3.1.2. Backward Filter

An information filter is used to estimate the states in the back-
ward direction given all the present and future measurements.
The backward filter recursion is derived from the statistically
linearized state space found during the forward pass (see [30]).
The pseudo code is given below:



• Initializations:

SN+1 = 0

ŷN+1 = 0

where Sk = (Pxk
)−1 is the information matrix and ŷk =

Skx̂k is defined as the information state.

• Time-update equations:

S
−
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T
f,kSk+1Af,k − A

T
f,kSk+1Gf,k

[

(

Pεf ,k + Qk

)−1
+ G

T
f,kSk+1Gf,k

]−1

G
T
f Sk+1Af,k

Define Kb,k as the backward gain matrix

Kb,k =Sk+1Gf,k
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Pεf ,k+ Qk

)−1
+ G

T
f,kSk+1Gf,k

]−1

Then substituting Kb,k on S−
k ,
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• Measurement-update equations:

Sk = S
−
k + A

T
h,k (Pεh,k + Rk)−1

Ah,k

ek = (zk − bh,k)

ŷk = ŷ
−
k + Ah,k (Pεh,k + Rk)−1

ek

Note that as the WSLR state-space is different than the stan-
dard linear state-space used by the Kalman filter, the resulting
time and measurement update equations differ from standard
backward Kalman equations. Specifically note how the cor-
rection terms Pεf ,k and Pεh,k are fed back in the time-update
and measurement-update equations. This term is absent in
the standard information filter formulation [19,33]. The more
severe the nonlinearity is over the uncertainty region of the
state, the higher will be the linearization error covariance ma-
trices. This correction term appears due to the statistical lin-
earization as it considers the covariance of the prior RV while
linearizing the nonlinear model. A first-order Taylor series
expansion is less accurate because it does not consider this
error term.

3.1.3. Smoothing

As the last step in the estimation process, the forward and
backward filter estimates are optimally combined to form the
smoothed estimates,

P s
k =

[

(Pxk
)
−1

+ S−

k

]

−1

x̂s
k =

(

I + Pxk
S−

k

)

−1
x̂k + P s

k ŷ−

k

For tracking purposes, the FBSL-SPKS provides an off-
line estimate of the position and velocity trajectories after all
data up to time N has been collected. Alternatively, pseudo
real-time estimates may be achieved by dividing the data into
blocks (e.g., N =

∑

Ni) and then performing the forward-
backward operation on the buffered blocks of data as they
become available.

3.2. Fixed Lag sigma-point Kalman smoother (FL-SPKS)

In FL-SPKS, the objective is to estimate the current state us-
ing all the past, present and L future measurements, where L

is the fixed lag. Alternatively, this may be viewed as estimat-
ing the lagged state xk−L given all measurements up to the
current time k. The FL-SPKS is specified by simply defining
a new augmenting state space,

x̃k+1 =
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xk

...
xk−L
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I 0
0 I

]

x̃k



 +
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0
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vk (30)

zk = hk (xk) + nk (31)

where

x̃k =
[

xk xk−1 . . . xk−L−1

]T

The standard SPKF recursions shown in 3.1.1 are applied di-
rectly to the augmented system. The fixed-lag estimate of the
last element of the augmented state vector xk−L will be equal
to the x̂k−L given measurements up to and including time
index k. The increased state dimension increases the over-
all computational complexity of the algorithm. However, the
FL-SPKS provides sequential estimates of the states delayed
by L measurements, and is thus more appropriate to on-line
implementation than the FBSL-SPKS.

4. EXPERIMENTAL RESULTS

Implementation and testing was performed at several ”living-
laboratories” (also called Point-of-Care labs) used to develop
monitoring and assistive technologies for the elderly. A num-
ber of trials were conducted in which different subjects fol-
lowed a predefined path. While walking, the subject period-
ically noted down the ground truth. The Ekahau real-time
positional engine was also turned on during these tests for
comparison. Note that the same calibration data was used for
both the SPKS based tracker and Ekahau’s positioning en-
gine. The performances of SPKS based tracker and Ekahau
real time tracking engine displayed in this paper were per-
formed at 3 different sites.
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Fig. 4. (a) to (e): raw RSSI values from 5 access points collected during calibration at Point of Care test lab-I, (f) to (j): fitted
RBF maps.

 

 

(a) (b) (c)

(d) (e) (f)

Fig. 5. Tracking performance in test lab-I, (a) and (d) Ekahau estimates (red: ground truth, brown: estimate), (b) and (e)
SPKS estimates using RSSI measurements (red: ground truth, blue: SPKS estimate), (c) and (f) SPKS estimates using RSSI +
foot switch observations (red: ground truth, blue: SPKS estimate). Yellow rectangular boxes indicate the position of the foot
switches on the floor plan. First row is for subject 1 and the second row is for subject 2.

4.1. Test Lab-I

The Point-of-care test lab-I was setup with 5 access points lo-
cated at the four corners and at the center. The size of the test
lab-I is 60 feet by 20 feet. In the entire environment, calibra-
tion was performed first in order to measure RSSI variability
emanating from each access point. The floor plan was divided
into P = 15 sections. Each room was considered a section
and the long corridors were divided into multiple sections. In
each section 9 points were chosen to perform calibration in

such a way that 8 points formed the periphery of an octagon
and the remaining point was at the center of the octagon. At
each calibration point, a person carrying a RSSI tag spends
around one minute to collect training RSSI data. Roughly
8 − 10 RSSI measurements are recorded at each calibration
points for a total of 1065 measurements. As described earlier,
an RBF network is used to fit a nonlinear map between known
calibration locations and the collected RSSI values. The raw
RSSI at each calibration point and the RSSI calibrated maps
for 5 access points were shown in Fig. 4(a)- 4(j).



(a) (b)

Fig. 6. (a) FBSL-SPKS estimates, (b) FL-SPKS estimates (red: ground truth, blue: SPKS estimates). All estimates used only
RSSI sensors.

(a) (b) (c)

Fig. 7. Tracking performance in test lab-II, (a) Ekahau estimates (red: ground truth, brown: Ekahau estimate), (b) SPKS
estimates using RSSI measurements (red: ground truth, blue: SPKS estimate), (c) SPKS estimates using RSSI + foot switch
observations (red: ground truth, blue: SPKS estimate). Small yellow rectangular boxes indicate the location of the motion
sensors on the floorplan. The furniture positions are shown as magenta rectangular boxes.

We conducted two trials of moving test in which subjects
walked at a normal speed following a predefined path. Two
different subjects were chosen as RSSI variability is observed
to be subject dependent. Subject 1 took 174 seconds to com-
plete the path and 25 RSSI observations were recorded during
that time period. Subject 2 completed the same path in 169
seconds and recorded 21 RSSI observations. The rate var-
ied between 4 − 8 seconds during tracking. Multi-rate filter-
ing was implemented so that the time-updates equations still
provide estimates of the position and velocity every second.
Approximate ground truth was collected periodically during
the walking and is also shown in the plots. Fig. 5(a)- 5(f)
compares the estimates obtained from the Ekahau engine and
SPKS tracker. From Fig. 5(a) and 5(d), it can be seen that
the estimates from Ekahau tracking engine are very inaccu-
rate and often fails to even localize the person in the correct
region/room. The SPKS tracker with RSSI only observations
clearly tracked the person with greater accuracy (see Fig. 5(b)
and 5(e)).

Only the FBSL-SPKS estimates are shown in the previous
figures. The tracking performance of the FBSL-SPKS and
FL-SPKS are compared in Fig. 6(a)- 6(b). As shown, the FL-
SPKS estimates were slightly less accurate compared to the
FBSL-SPKS estimates.

When RSSI observations were integrated with foot-switch
signals, the accuracy of the SPKS based tracker improved

even further (Fig. 5(c) and 5(f)). Note that we set the variance
of the foot-switch sensors to be 10 feet in our experiments.
While this is clearly larger than necessary, the goal was to
simulate an accuracy closer to that of the IR motion sensors
rather than provide exact localization as would be possible
with the foot-switches.

4.2. Test Lab-II

Similar to POCL test lab-I, calibration was performed in the
other POCL test lab for each of the 5 Wi-Fi access points. The
lab is also fitted with a number of IR motion sensors instead
of foot switches. There are two varieties of motion sensor in-
stalled in the houses depending on the beam width. The full
beam width unconstrained sensors generally installed one per
room and has variability that matches the full dimension of
the room. The constrained sensors have limited beam width
and are generally installed along corridors. The variability
of the constrained sensors is thus significantly lower than the
unconstrained. In 7(a)- 7(c), we demonstrate a walking ex-
periment comparing the Ekahau performance to the SPKS
tracker. The Ekahau estimates as observed in Fig. 7(a) are
mostly stuck in one portion of the house. The SPKS tracker
performance with RSSI and RSSI with IR motion sensors are
depicted in Fig. 7(b) and 7(c). While still superior to the Eka-
hau estimates, the small size of the POCL lab-II (30 feet by
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Fig. 8. Tracking performance in test lab-III, (a) Ekahau estimates (brown: Ekahau estimate), (b) SPKS estimates using RSSI
only measurements (blue: SPKS estimate).

20 feet) and the existence of a large number of furniture lim-
ited the performance of the SPKS tracker compared to lab-
I. Adding the motion sensors with RSSI improved the SPKS
tracker accuracy in spite of the high false alarm and large vari-
ability of the motion sensors.

4.3. Test Lab-III

In 8(a)- 8(b), we demonstrate an additional moving test at a
third location. The size of lab-III is 55 feet by 25 feet. Sim-
ilar to test lab I and II, this living lab is also equipped with 5
wireless access points placed at four corners and at the cen-
ter. The entire floorplan is divided into 9 sections. In each
section, an octagonal grid is formed to perform calibration.
Due to a problem with the RSSI tags, a limited amount of
calibration data was collected (only 212 RSSI measurements
for the entire house). We would thus expect worse track-
ing performance corresponding to only room level localiza-
tion accuracy. During the moving test, a subject walked on
the calibration grid points at each section along the counter
clockwise direction. Fig. 8(a) shows the Ekahau localization
performance. As seen in Fig. 8(a)), the Ekahau tracking en-
gine failed to localize the person in the correct section except
for a single case (as marked in Fig. 8(a)). Most of the Eka-
hau estimates are randomly centered around the middle of the
entire floor plan. However, the proposed FBSL-SPKS based
tracker correctly localized the person in all of the sections as
observed in Fig. 8(b).

5. CONCLUSION

A new method and system has been developed for RSSI based
indoor localization and tracking. Instead of using simple fin-
gerprinting or a fixed a priori distribution for the RSSI tags,
an observation function is generated from RSSI calibration
data by fitting nonlinear maps between known calibration lo-
cations and RSSI mean values. The RSSI maps are incorpo-
rating into a Bayesian framework that fuses all sensor mea-
surements with a simple dynamic model of walking. The
dynamic model consists of a random walk model augmented
with repulsive forces to account for room-wall configurations.

Table 1. Performance comparison of the SPKS with other es-
timators. Average error is calculated relative to the observed
true trajectory over 15 different trials.

Estimator Average Error (ft)
Ekahau (RSSI) 12.22
EKF(RSSI) 6.58
EKS(RSSI) 4.80
SPKF(RSSI) 5.31
SPKS(RSSI) 3.45
SPKS(RSSI+IR motion sensor) 3.24
SPKS(RSSI+footswitch) 1.24

For the Bayesian inference, we use sigma point Kalman fil-
ters (SPKF), which provide improved performance over stan-
dard extended Kalman filters (EKF) while maintaining com-
putational efficiency. We further developed two sigma-point
Kalman smoother (SPKS) based implementations (forward-
backward and fixed-lag) that provide considerable improve-
ment in tracking accuracy compared with the standard SPKF.
The SPKS tracker can accommodate multi-rate processing
where state estimates are determined at a higher rate (e.g.,
every second) while RSSI observations occur at slower up-
date rate. Missing observations are also easily handled by the
approach. While the primary sensors are Wi-Fi tags, the ap-
proach can also incorporate multiple types of sensors. In the
current implementation, both IR motion sensors and simple
foot-switches were incorporated. Table 1 summarizes the per-
formance and superiority of the proposed SPKS based tracker
over other popular estimation techniques in terms of aver-
age position error. The trials used in table 1 were performed
in a number of different living laboratories. As a predomi-
nantly software solution, the approach provides the flexibil-
ity to incorporate sensors from multiple manufacturers. Per-
formance was evaluated in a number of ”living laboratories”,
where tracking accuracy was demonstrated to be superior to
the available industry positioning engine developed by Eka-
hau Inc. The proposed system is currently being deployed
into a number of houses in order to continuously monitor el-
derly for clinical purposes. Additional planned research in-



cludes refined models of walking motion and better likeli-
hood models for the IR motion sensors. We also plan to in-
vestigate self calibration (i.e., simultaneous localization and
mapping), whereby the parameters of the RSSI maps are con-
tinuously updated to account for changes in environment or
to even avoid the initial off-line calibration procedure. Wall
mounted sonar range sensors are also being investigated that
would provide an alternative to RSSI, allowing for unobtru-
sive localization without the use of body worn tags.
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