
MASSIVE TRACKING ON HETEROGENEOUS PLATFORMS

E. McIntosh, F. Schmidt, CERN, 1211 Geneva 23, Switzerland
Florent de Dinechin LIP, ENS, 46 allée d’Italie, 69364 Lyon cedex 07, France

Abstract

The LHC@home project uses public resource comput-
ing to simulate circulating protons in the future Large
Hadron Collider (LHC). As the motion of the simulated
particles may become chaotic, checking the integrity of the
computation distributed over a heterogeneous network re-
quires totally identical floating–point behaviour, regardless
of the type of computers used. This paper reviews the prob-
lems encountered and the practical solutions.

INTRODUCTION

At CERN, the structures and priorities of the installed
computing facilities have always been dominated by the
needs of the experiments. This is still true today with
the development of the LCG, the Worldwide LHC Com-
puting Grid. In 1992, however, the PaRC cluster of IBM
workstations was established to meet the needs of the engi-
neering community, and then in 1997 when the LHC Ma-
chine Advisory Committee recommended a significant in-
crease in tracking studies, an informal Numerical Acceler-
ator Project (NAP), was established to provide dedicated
computing capacity. The first installation was a ten proces-
sor Digital TurboLaser with 800 CUs, 1 later augmented
by ten Digital workstations to provide more than double
the capacity. More recently, in line with industry trends
and CERN Information Technology policy, this was all re-
placed by sixty–four 2.4GHz dual processor PCs, provid-
ing over 50,000 CUs, and operated on a fair share basis as
part of the central Linux batch service.

A typical LHC Dynamic Aperture study can analyse 5
angles in phase space, 60 random representations of the
magnetic errors called seeds, and a certain number of phase
space amplitude ranges; each case tracking 30 particle pairs
for 105 turns. Such a study requires a few thousand inde-
pendent jobs of approximately two hours CPU each, and
can thus normally be completed in a matter of days.

Half of the NAP capacity was then allocated to Beam
Collimation studies but at the same time there was a de-
sire to perform a tune scan with beam to beam interactions
for one million turns. This would require some six mil-
lion CPU hours and was clearly not feasible on the existing
cluster [1].

1A CU, CERN Unit, is defined as the single CPU power of an IBM
370/168 or Digital VAX 8600 computer on a set of four physics bench-
mark programs.

THE CPSS PROJECT
The CERN Physics ScreenSaver system (CPSS) [2] was

established to use the unused CPU cycles of the some
5,000 WINDOWS desktop PC’s at CERN, a CERN in-
vestment of several million dollars. Assuming a very con-
servative 50% idle time and 50% powered on, this dis-
tributed computing power could provide an order of magni-
tude increase in the available CPU capacity. The SixTrack
program [3] has modest input/output requirements of less
than 1MB/6MB (50KB/2MB when compressed) and has a
working set/memory requirement of 32/65MB and was an
almost ideal application for distribution over a network; it
is portable and part of the SPECFP2000 benchmark suite
[4].

A.Wagner of CERN provided a WEB application con-
taining the job repository, a lightweight screensaver for
WINDOWS and a set of PERL routines callable from
LINUX, for task group creation, task submission, result
retrieval and status enquiry (see Figure 1). A SixTrack
Checkpoint/Restart facility was introduced to allow fre-
quent instantaneous screensaver interruptions without com-
promising the efficiency of long term runs. First tests were
carried out using a Compaq Fortran compiler, the only For-
tran compiler available on WINDOWS at CERN. After re-
solving a couple of minor issues by dummying out the
CERN Library graphics package and removing the Line-
Feeds in the WINDOWS text files, the first major obstacle
was found to be the processing of NaNs and Infs, which
was up to 1000 times slower than normal. As testing and
branching are relatively expensive operations compared to
arithmetic, the application checked only once per turn for
lost particles and the code was modified to check at ev-
ery element of a turn. Several hundred CERN users volun-
teered their desktops and a first 1500 task study was carried
out successfully, with the results for the average DA being
within 3 parts in a thousand of the Linux batch results. In-
vestigation of the differences found that about 1000 of 60
million input parameters were being converted with a one
unit in the last place (ULP) difference between WINDOWS
XP and WINDOWS 2000. Purchase, installation and usage
of the Lahey–Fujistu Fortran 95 lf95 compiler as used on
Linux removed this problem. Further testing then seemed
to show identical results from Linux and WINDOWS. This
should perhaps not be surprising since compilers could use
the same code generation on either system, apart from the
system interface calls. The manufacturer ”strives for this
compatibility” but it is not guaranteed. This was a major
step forward; up to this point a study was always carried
out on completely compatible processors and systems [5].

Suitably encouraged a 300,000 task study of 1000 an-



Figure 1: An overview of the CPSS TaskGroups during the early development

gles for 105 turns was initiated in order to prove the long
term efficiency and reliability of CPSS while generating
some useful results with respect to the resulting DA and
initial angle [6]. In parallel, testing of the more time–
consuming and floating–point intensive beam–beam cases
commenced. Once again a few tasks per thousand gave dif-
ferent results after a million turns. This was quickly discov-
ered to be a difference between 32–bit and 64–bit systems
(Intel IA–32 and Intel IA–64/AMD Athlon 64). Having
verified identical initial conditions, ensuring that the same
accelerator was being simulated, exhaustive analysis traced
back to the turn where the difference first arose, and then to
the relevant step within the turn, to the relevant statement
in the step, and finally to the actual floating–point opera-
tion itself. The analysis required comparison of the actual
binary representations of the floating–point numbers in or-
der to find the first occurrence of a difference as small as 1
ULP. Computing a single particle trajectory requires from
ten to a few hundred floating–point operations for each of
ten thousand steps in a single turn, and even if the smallest
difference is quickly magnified the difficulty is in finding
the initial difference. In this case the trigger was the eval-
uation of an exponential function, as was quickly proven
with a test program of a few lines using the exact argument
in question. A similar difference was traced to the natural
logarithm function. Indeed, in most systems these func-
tions use x86 machine instructions such as fyl2xp1 and
fyl2x, whose microcode implementation give different re-
sults on different processors, for reasons exposed below.

At this point we considered abandoning the goal of ex-
act results reproducibility and restricting a specific study
to either only 32–bit, or only 64–bit, systems. Given the
gradual introduction of the new extremely powerful 64–bit
systems, but also the huge number of existing 32–bit sys-
tems, it seemed that they would co–exist for quite some
years to come. It still seemed very desirable to be able to
use either type indifferently.

FLOATING–POINT ARITHMETIC

Floating–point portability, or rather the lack of it, has
been well studied and debated for many years; see, for
example, Goldberg [7], with the Priest supplement [8], or
Belding [9].

For our application we limit the definition of heteroge-
neous to any Intel Pentium or compatible PC, at least for
the time being. The IEEE 754–1985 standard, to which
almost all modern processors conform, ”specifies basic
and extended floating–point number formats; add, sub-
tract, multiply, divide, square root, remainder, and com-
pare operations; conversions between integer and floating–
point formats; conversions between different floating–point
formats; conversions between basic–format floating–point
numbers and decimal strings; and floating–point excep-
tions and their handling, including nonnumbers”. Of the
options covered by the standard we consider only double
precision arithmetic, with rounding to the nearest even rep-
resentable number.

However this standard is incomplete and open to inter-
pretation. Strict compliance tends to conflict with perfor-
mance and therefore tends to lose out in a competitive mar-
ket. It also needs to be considered in the context of the
relevant programming language standard. For instance the
Fortran standard defines a unique order of evaluation only
for a fully parenthesized expression, so portability may re-
quire some code rewriting. It will also require some ex-
plicit control of the compiler. In our case, we use the lf95
compiler which always disables extended precision, and in
addition we specify the compiler option – –tp ”generate
Pentium code” so that architecture-specific features such
as SSE2 or 3DNow will not be used. Finally, the current
standard does not cover elementary functions such as exp,
log, and the trigonometric functions. In the following the
exp function will be used as an example.



THE CRLIBM SOLUTION
The problem of providing the correctly rounded func-

tion results is known as the ”Table Maker’s Dilemma”. If
we consider the case of rounding to nearest, the problem
arises when the function result lies very close to the mid–
point of two adjacent floating–point numbers, and rounding
an approximation to f(x) may not give the same result as
rounding f(x) itself [10]. As a pathological case for double
precision exp with a 53 bit mantissa, we use the example
of [11] where in binary notation

x = 1.[52]1× 2−53

where the number in square brackets denotes the number
of consecutive occurrences of the following digit. In this
notation

exp(x) = 1.[51]001[104]1010101...
and the correctly rounded to nearest double precision result
is

exp(x) = 1.[51]01
In this particular example even a quadruple precision ap-
proximation, correct to within 1 quad ULP (113 bit man-
tissa) may deliver one of three results:

1.[51]010[58]00
1.[51]001[59]11
1.[51]001[58]10

but rounding the last result will give an incorrect answer.
Software libraries exist that increase the working pre-

cision until correct rounding can be decided. A WWW
search discovered several such libraries for double preci-
sion results. Given that our aim was reproducibility of re-
sults, rather than precision per se, this may seem a very
extreme solution. Its advantage is that all these libraries
will always agree to the last bit, so choosing one of these
also ensures that any of the others would do instead.

The first of these libraries was IBM libultim [13], which
is no longer supported. MPFR [12] is an arbitrary precision
library, and is therefore extremely slow compared to the
default libm of Linux (see Table 1). The crlibm[14] library
from ENS-Lyon is well-supported, is proven theoretically
to deliver the correctly rounded result, and does so with a
modest decrease in performance with respect to a standard
libm[14]. Lately, SUN has also been developing a correctly
rounded libm called libmcr.

Average Maximum
libm 365 5528

crlibm 432 41484
mpfr 23299 204736

Table 1: Relative timings for the exp function on a Pentium
4 Xeon, with gcc 3.3

To illustrate the scope and magnitude of the portability
issue, we use one of our test programs. A simple test of the
exp function, using g77 and libm, with one million argu-
ments between -0.5 and 0.5, found 5 differences IA–32 to

IA–64, 7 differences IA–32 to AMD64, and 2 differences
between the IA–64 and the AMD64. All differences are of
1 ULP in these and following results. Comparing libm and
crlibm we find that libm delivers the correctly rounded re-
sult in all but 304 cases provided Extended Precision is en-
abled; if not, there are 134,623 cases with incorrect round-
ing. Similarly, but using the lf95 compiler and library we
find 7 differences IA–32 to IA–64, 7 differences IA–32
to AMD64, and 4 differences between the IA–64 and the
AMD64. The same test program using crlibm, and com-
piled with five different compilers, gave identical results
on the three architectures.

The crlibm library in 2004 provided exp, log, log10, sin,
cos, tan, atan, sinh, and cosh functions 2 in the four stan-
dard rounding modes. A few simple editor scripts sufficed
to change all SixTrack function calls to their crlibm equiv-
alent for round to nearest, exp to exp rn, sin to sin rn, etc.

With the modified SixTrack, all numerical differences
in our tests now disappeared even in the most demand-
ing beam–beam case, which make multiple calls to exp and
log in each beam–beam interaction. The 1000 angle study
was restarted with the new version and all tasks were run at
least twice. The only numerical differences found were due
to failing processors; two desktop machines and one batch
processor in the Computing Center.

In summary, in order to generate two executables giving
identical results for Linux and for Windows, the task list is
as follows:

• Change all elementary function calls to the crlibm
equivalent

• Download and compile crlibm with portable options 3

• Use the Lahey–Fujitsu Fortran 95 compiler with Ex-
tended Precision disabled by default.

• Generate code for any Pentium with – –tp.

• Make a statically linked executable.

After running over one million 105 and 106 turn jobs, most
of them at least two or three times, we are confident (al-
though we cannot prove it) that any numerical differences
are due to hardware failures or overclocked processors.

LHC@HOME
During this period of development, CERN colleagues

set up a single Berkeley Open Infrastructure for Net-
work Computing (BOINC) server [15], a successor to
SETI@home, and suggested using SixTrack as a pilot ap-
plication. SixTrack was modified to call the BOINC inter-
face routines, and to return only the results summary file

2The functions asin, acos, and atan2 were implemented in terms of
atan, which provided portable, but not necessarily correctly rounded, re-
sults.

3On Windows it is necessary to use either Fujitsu C included with the
lf95 compiler or gcc and CYGWIN as there are difficulties with Microsoft
C and ”long long” variables



of less than 10KB to ensure scalability with the large num-
ber of clients anticipated. The BOINC system was set up
to run each task at least three times and to validate only
results for which two of them are identical. More recent
versions of BOINC include a new feature called ”Homo-
geneous Redundancy” [16] which provides a general solu-
tion for divergent applications like SixTrack by replicating
tasks only on compatible hardware. Our solution allows us
to use any Pentium or compatible hardware and to obtain
identical results.

After successfully completing the initial tests, the gen-
eral public were invited to sign up to the LHC@home
project, SixTrack under BOINC, and over 30,000 people
worldwide have subscribed up to 60,000 machines. Over
the last year some two thirds of the 600,000 jobs for the
LHC tune scan have been completed. This represents an
estimated 300 CPU years, or 3 years dedicated usage of the
NAP cluster. It should be emphasised that one part–time
fellow is responsible for managing the work in reasonable
batches of ten to twenty thousand jobs. The LHC@home
subscribers, to whom we are extremely grateful, tend to
be motivated by the allocation of BOINC credits, and may
well lose motivation, during the periods of result analysis
and the preparation of future runs.

While detailed statistics are not available at the present
time, less than 3% of results are rejected by the BOINC
quorum. This is comparable with the statistics available
from other BOINC projects. We are confident that these
results come from failing computers, network transmission
problems, or other data corruption. Only BOINC validated
results are returned to the end user.

CONCLUSIONS
It is now possible for an Accelerator Physicist to make

LHC Tracking studies with SixTrack on the CERN Batch
System, on BOINC, on CPSS (and soon the GRID) by sim-
ply setting the runtime environment parameter ”platform”
to one of the above and making a cron table entry of a four
line script to return results. A study may use all of the sys-
tems in parallel or on different subsets of the work to speed
up completion of the study. This ten to hundredfold in-
crease in computing capacity has been provided with an ex-
tremely modest hardware investment (a WWW PC server
and backup for CPSS and two PC servers for BOINC) and
a small manpower investment in the server management.
The main cost is not so much in modifying the application
but in testing and verifying the result reproducibility which
is our primary goal. It is particularly important to applica-
tions running in a distributed environment in that it allows
the utilisation of any available processor on which the ap-
plication has been validated.

We believe that the methodology can be extended to
other proprietary IEEE 754 compliant processors, such as
the Apple Macintosh, SUN, or IBM Power PC. The incor-
poration of the necessary parentheses to ensure a unique
order of evaluation in arithmetic assignments should pro-

vide identical results, at any level of optimisation, and with
any Fortran 77/95 compliant compiler. The same technique
could be applied to any C++ C99 standard compliant appli-
cation.

REFERENCES
[1] W. Herr, D. Kaltchev, E. McIntosh and F. Schmidt, “Large

scale beam-beam simulations for the CERN LHC using dis-
tributed computing resources”, EPAC’06, June 2006, Edin-
burgh.

[2] E. McIntosh and A. Wagner,“CERN Modular Physics
Screensaver or Using Spare CPU Cycles of CERN’s Desk-
top PCs”, Computing in High Energy and Nuclear Physics
2004, Interlaken, p. 1055.

[3] F. Schmidt, ”SixTrack – User Reference Manual”, CERN
SL/94-56, March 2000.

[4] J.L. Henning,“SPEC CPU2000: Measuring CPU perfor-
mance in the new millennium”, Computer, July 2000.

[5] M. Hayes, E. McIntosh and F. Schmidt, “The Influence of
Computer Errors on Dynamic Aperture Results Using Six-
Track”, LHC-PROJECT-NOTE-309, CERN, January 2003.

[6] M. Giovannozzi and E. McIntosh, “Parameter scans and ac-
curacy estimates of the dynamical aperture of the CERN
LHC”, EPAC’06, June 2006, Edinburgh.

[7] D. Goldberg, “What every computer scientist should know
about floating-point arithmetic.”, Computing Surveys, 1991,
23(1) p.5.

[8] D. Priest,“Differences among IEE 754 implementations”,
www.validlab.com/goldberg/addendum.html.

[9] T.C. Belding,“Numerical Replication of Computer Simu-
lations: Some Pitfalls and How To Avoid Them”, 2000,
//www.citebase.org/abstract?id=oai:arXiv.org:nlin/0001057.

[10] V. Lefevre, J-M. Muller and A. Tisserand, “The Ta-
ble Maker’s Dilemma”, IEEE Transactions on Computers,
November 1998, Vol. 47 No. 11.

[11] V. Lefevre and J-M. Muller, “Worst Cases for Correct
Rounding of the Elementary Functions in Double Preci-
sion”, August 2003.

[12] P. Zimmermann, “MPFR: A Library for Multiprecision
Floating-Point Arithmetic with Exact Rounding”, 4th Con-
ference on Real Numbers and Computers, 2000, Dagstuhl,
p.89 (see also http://www.loria.fr/projets/mpfr/).

[13] “IBM Accurate Portable MathLib”,
http:/oss.software.ibm.com/mathlib/.

[14] F. de Dinechin, A. Ershov, and N. Gast, “Towards the post-
ultimate libm.”, IEEE 17th Symposium on Computer Arith-
metic, June 2005, p. 288.

[15] D.P. Anderson, “BOINC: A system for public-resource
computing and storage”, IEEE/ACM International Work-
shop on Grid Computing (GRID’04), November 2004, p.4.

[16] M. Taufer, D. Anderson, P. Cicotti, and C.L. Brooks III,
”Homogeneous Redundancy: a Technique to Ensure In-
tegrity of Molecular Simulation Results Using Public Com-
puting”, 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPDS’05) Workshop, p.119a.


