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The Cosmological Constant 5

1 Introduction

1.1 Truth and beauty

Science is rarely tidy. We ultimately seek a unified explanatory framework characterized by ele-
gance and simplicity; along the way, however, our aesthetic impulses must occasionally be sacrificed
to the desire to encompass the largest possible range of phenomena (i.e., to fit the data). It is often
the case that an otherwise compelling theory, in order to be brought into agreement with observa-
tion, requires some apparently unnatural modification. Some such modifications may eventually be
discarded as unnecessary once the phenomena are better understood; at other times, advances in
our theoretical understanding will reveal that a certain theoretical compromise is only superficially
distasteful, when in fact it arises as the consequence of a beautiful underlying structure.

General relativity is a paradigmatic example of a scientific theory of impressive power and
simplicity. The cosmological constant, meanwhile, is a paradigmatic example of a modification,
originally introduced [80] to help fit the data, which appears at least on the surface to be su-
perfluous and unattractive. Its original role, to allow static homogeneous solutions to Einstein’s
equations in the presence of matter, turned out to be unnecessary when the expansion of the
universe was discovered [131], and there have been a number of subsequent episodes in which a
nonzero cosmological constant was put forward as an explanation for a set of observations and
later withdrawn when the observational case evaporated. Meanwhile, particle theorists have real-
ized that the cosmological constant can be interpreted as a measure of the energy density of the
vacuum. This energy density is the sum of a number of apparently unrelated contributions, each
of magnitude much larger than the upper limits on the cosmological constant today; the question
of why the observed vacuum energy is so small in comparison to the scales of particle physics has
become a celebrated puzzle, although it is usually thought to be easier to imagine an unknown
mechanism which would set it precisely to zero than one which would suppress it by just the right
amount to yield an observationally accessible cosmological constant.

This checkered history has led to a certain reluctance to consider further invocations of a nonzero
cosmological constant; however, recent years have provided the best evidence yet that this elusive
quantity does play an important dynamical role in the universe. This possibility, although still far
from a certainty, makes it worthwhile to review the physics and astrophysics of the cosmological
constant (and its modern equivalent, the energy of the vacuum).

There are a number of other reviews of various aspects of the cosmological constant; in the
present article I will outline the most relevant issues, but not try to be completely comprehen-
sive, focusing instead on providing a pedagogical introduction and explaining recent advances.
For astrophysical aspects, I did not try to duplicate much of the material in Carroll, Press and
Turner [48], which should be consulted for numerous useful formulae and a discussion of several
kinds of observational tests not covered here. Some earlier discussions include [85, 50, 221], and
subsequent reviews include [58, 218, 246]. The classic discussion of the physics of the cosmological
constant is by Weinberg [264], with more recent work discussed by [58, 218]. For introductions to
cosmology, see [149, 160, 189].

1.2 Introducing the cosmological constant

Einstein’s original field equations are:

𝑅𝜇𝜈 − 1

2
𝑅𝑔𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 . (1)

(I use conventions in which 𝑐 = 1, and will also set ℎ̄ = 1 in most of the formulae to follow, but
Newton’s constant will be kept explicit.) On very large scales the universe is spatially homogeneous
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6 Sean M. Carroll

and isotropic to an excellent approximation, which implies that its metric takes the Robertson–
Walker form,

d𝑠2 = −d𝑡2 + 𝑎2(𝑡)𝑅2
0

[︂
d𝑟2

1− 𝑘𝑟2
+ 𝑟2dΩ2

]︂
, (2)

where dΩ2 = d𝜃2 + sin2 𝜃d𝜑2 is the metric on a two-sphere. The curvature parameter 𝑘 takes on
values +1, 0, or −1 for positively curved, flat, and negatively curved spatial sections, respectively.
The scale factor characterizes the relative size of the spatial sections as a function of time; we
have written it in a normalized form 𝑎(𝑡) = 𝑅(𝑡)/𝑅0, where the subscript 0 will always refer to a
quantity evaluated at the present time. The redshift 𝑧 undergone by radiation from a comoving
object as it travels to us today is related to the scale factor at which it was emitted by

𝑎 =
1

(1 + 𝑧)
. (3)

The energy-momentum sources may be modeled as a perfect fluid, specified by an energy density
𝜌 and isotropic pressure 𝑝 in its rest frame. The energy-momentum tensor of such a fluid is

𝑇𝜇𝜈 = (𝜌+ 𝑝)𝑈𝜇𝑈𝜈 + 𝑝𝑔𝜇𝜈 , (4)

where 𝑈𝜇 is the fluid four-velocity. To obtain a Robertson–Walker solution to Einstein’s equations,
the rest frame of the fluid must be that of a comoving observer in the metric (2); in that case,
Einstein’s equations reduce to the two Friedmann equations,

𝐻2 ≡
(︂
�̇�

𝑎

)︂2

=
8𝜋𝐺

3
𝜌− 𝑘

𝑎2𝑅2
0

, (5)

where we have introduced the Hubble parameter 𝐻 ≡ �̇�/𝑎, and

�̈�

𝑎
= −4𝜋𝐺

3
(𝜌+ 3𝑝). (6)

Einstein was interested in finding static (�̇� = 0) solutions, both due to his hope that general
relativity would embody Mach’s principle that matter determines inertia, and simply to account
for the astronomical data as they were understood at the time. (This account gives short shrift to
the details of what actually happened; for historical background see [264].) A static universe with a
positive energy density is compatible with (5) if the spatial curvature is positive (𝑘 = +1) and the
density is appropriately tuned; however, (6) implies that �̈� will never vanish in such a spacetime if
the pressure 𝑝 is also nonnegative (which is true for most forms of matter, and certainly for ordinary
sources such as stars and gas). Einstein therefore proposed a modification of his equations, to

𝑅𝜇𝜈 − 1

2
𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 , (7)

where Λ is a new free parameter, the cosmological constant. Indeed, the left-hand side of (7) is
the most general local, coordinate-invariant, divergenceless, symmetric, two-index tensor we can
construct solely from the metric and its first and second derivatives. With this modification, the
Friedmann equations become

𝐻2 =
8𝜋𝐺

3
𝜌+

Λ

3
− 𝑘

𝑎2𝑅2
0

, (8)

and
�̈�

𝑎
= −4𝜋𝐺

3
(𝜌+ 3𝑝) +

Λ

3
. (9)
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The Cosmological Constant 7

These equations admit a static solution with positive spatial curvature and all the parameters 𝜌,
𝑝, and Λ nonnegative. This solution is called the “Einstein static universe.”

The discovery by Hubble that the universe is expanding eliminated the empirical need for a
static world model (although the Einstein static universe continues to thrive in the toolboxes of
theorists, as a crucial step in the construction of conformal diagrams). It has also been criticized on
the grounds that any small deviation from a perfect balance between the terms in (9) will rapidly
grow into a runaway departure from the static solution.

Pandora’s box, however, is not so easily closed. The disappearance of the original motivation
for introducing the cosmological constant did not change its status as a legitimate addition to the
gravitational field equations, or as a parameter to be constrained by observation. The only way to
purge Λ from cosmological discourse would be to measure all of the other terms in (8) to sufficient
precision to be able to conclude that the Λ/3 term is negligibly small in comparison, a feat which
has to date been out of reach. As discussed below, there is better reason than ever before to believe
that Λ is actually nonzero, and Einstein may not have blundered after all.

1.3 Vacuum energy

The cosmological constant Λ is a dimensionful parameter with units of (length)–2. From the point
of view of classical general relativity, there is no preferred choice for what the length scale defined
by Λ might be. Particle physics, however, brings a different perspective to the question. The
cosmological constant turns out to be a measure of the energy density of the vacuum – the state
of lowest energy – and although we cannot calculate the vacuum energy with any confidence,
this identification allows us to consider the scales of various contributions to the cosmological
constant [277, 33].

Consider a single scalar field 𝜑, with potential energy 𝑉 (𝜑). The action can be written

𝑆 =

∫︁
𝑑4𝑥

√
−𝑔

[︂
1

2
𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑− 𝑉 (𝜑)

]︂
(10)

(where 𝑔 is the determinant of the metric tensor 𝑔𝜇𝜈), and the corresponding energy-momentum
tensor is

𝑇𝜇𝜈 =
1

2
𝜕𝜇𝜑𝜕𝜈𝜑+

1

2
(𝑔𝜌𝜎𝜕𝜌𝜑𝜕𝜎𝜑)𝑔𝜇𝜈 − 𝑉 (𝜑)𝑔𝜇𝜈 . (11)

In this theory, the configuration with the lowest energy density (if it exists) will be one in which
there is no contribution from kinetic or gradient energy, implying 𝜕𝜇𝜑 = 0, for which 𝑇𝜇𝜈 =
−𝑉 (𝜑0)𝑔𝜇𝜈 , where 𝜑0 is the value of 𝜑 which minimizes 𝑉 (𝜑). There is no reason in principle why
𝑉 (𝜑0) should vanish. The vacuum energy-momentum tensor can thus be written

𝑇 vac
𝜇𝜈 = −𝜌vac𝑔𝜇𝜈 , (12)

with 𝜌vac in this example given by 𝑉 (𝜑0). (This form for the vacuum energy-momentum tensor
can also be argued for on the more general grounds that it is the only Lorentz-invariant form for
𝑇 vac
𝜇𝜈 .) The vacuum can therefore be thought of as a perfect fluid as in (4), with

𝑝vac = −𝜌vac. (13)

The effect of an energy-momentum tensor of the form (12) is equivalent to that of a cosmological
constant, as can be seen by moving the Λ𝑔𝜇𝜈 term in (7) to the right-hand side and setting

𝜌vac = 𝜌Λ ≡ Λ

8𝜋𝐺
. (14)
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8 Sean M. Carroll

This equivalence is the origin of the identification of the cosmological constant with the energy of
the vacuum. In what follows, I will use the terms “vacuum energy” and “cosmological constant”
essentially interchangeably.

It is not necessary to introduce scalar fields to obtain a nonzero vacuum energy. The action for
general relativity in the presence of a “bare” cosmological constant Λ0 is

𝑆 =
1

16𝜋𝐺

∫︁
𝑑4𝑥

√
−𝑔(𝑅− 2Λ0), (15)

where 𝑅 is the Ricci scalar. Extremizing this action (augmented by suitable matter terms) leads
to the equations (7). Thus, the cosmological constant can be thought of as simply a constant term
in the Lagrange density of the theory. Indeed, (15) is the most general covariant action we can
construct out of the metric and its first and second derivatives, and is therefore a natural starting
point for a theory of gravity.

Classically, then, the effective cosmological constant is the sum of a bare term Λ0 and the
potential energy 𝑉 (𝜑), where the latter may change with time as the universe passes through
different phases. Quantum mechanics adds another contribution, from the zero-point energies
associated with vacuum fluctuations. Consider a simple harmonic oscillator, i.e. a particle moving
in a one-dimensional potential of the form 𝑉 (𝑥) = 1

2𝜔
2𝑥2. Classically, the “vacuum” for this system

is the state in which the particle is motionless and at the minimum of the potential (𝑥 = 0), for
which the energy in this case vanishes. Quantum-mechanically, however, the uncertainty principle
forbids us from isolating the particle both in position and momentum, and we find that the lowest
energy state has an energy 𝐸0 = 1

2 ℎ̄𝜔 (where I have temporarily re-introduced explicit factors of
ℎ̄ for clarity). Of course, in the absence of gravity either system actually has a vacuum energy
which is completely arbitrary; we could add any constant to the potential (including, for example,
− 1

2 ℎ̄𝜔) without changing the theory. It is important, however, that the zero-point energy depends
on the system, in this case on the frequency 𝜔.

A precisely analogous situation holds in field theory. A (free) quantum field can be thought
of as a collection of an infinite number of harmonic oscillators in momentum space. Formally, the
zero-point energy of such an infinite collection will be infinite. (See [264, 48] for further details.)
If, however, we discard the very high-momentum modes on the grounds that we trust our theory
only up to a certain ultraviolet momentum cutoff 𝑘max, we find that the resulting energy density
is of the form

𝜌Λ ∼ ℎ̄𝑘4max. (16)

This answer could have been guessed by dimensional analysis; the numerical constants which have
been neglected will depend on the precise theory under consideration. Again, in the absence of
gravity this energy has no effect, and is traditionally discarded (by a process known as “normal-
ordering”). However, gravity does exist, and the actual value of the vacuum energy has important
consequences. (And the vacuum fluctuations themselves are very real, as evidenced by the Casimir
effect [49].)

The net cosmological constant, from this point of view, is the sum of a number of apparently
disparate contributions, including potential energies from scalar fields and zero-point fluctuations
of each field theory degree of freedom, as well as a bare cosmological constant Λ0. Unlike the last
of these, in the first two cases we can at least make educated guesses at the magnitudes. In the
Weinberg-Salam electroweak model, the phases of broken and unbroken symmetry are distinguished
by a potential energy difference of approximately𝑀EW ∼ 200 GeV (where 1 GeV = 1.6×10−3 erg);
the universe is in the broken-symmetry phase during our current low-temperature epoch, and is
believed to have been in the symmetric phase at sufficiently high temperatures at early times.
The effective cosmological constant is therefore different in the two epochs; absent some form of
prearrangement, we would naturally expect a contribution to the vacuum energy today of order

𝜌EW
Λ ∼ (200 GeV)4 ∼ 3× 1047 erg/cm

3
. (17)
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The Cosmological Constant 9

Similar contributions can arise even without invoking “fundamental” scalar fields. In the strong
interactions, chiral symmetry is believed to be broken by a nonzero expectation value of the quark
bilinear 𝑞𝑞 (which is itself a scalar, although constructed from fermions). In this case the energy
difference between the symmetric and broken phases is of order the QCD scale 𝑀QCD ∼ 0.3 GeV,
and we would expect a corresponding contribution to the vacuum energy of order

𝜌QCD
Λ ∼ (0.3 GeV)4 ∼ 1.6× 1036 erg/cm

3
. (18)

These contributions are joined by those from any number of unknown phase transitions in the
early universe, such as a possible contribution from grand unification of order 𝑀GUT ∼ 1016 GeV.
In the case of vacuum fluctuations, we should choose our cutoff at the energy past which we no
longer trust our field theory. If we are confident that we can use ordinary quantum field theory all
the way up to the Planck scale 𝑀Pl = (8𝜋𝐺)−1/2 ∼ 1018 GeV, we expect a contribution of order

𝜌Pl
Λ ∼ (1018 GeV)4 ∼ 2× 10110 erg/cm

3
. (19)

Field theory may fail earlier, although quantum gravity is the only reason we have to believe it
will fail at any specific scale.

As we will discuss later, cosmological observations imply

|𝜌(obs)Λ | ≤ (10−12 GeV)4 ∼ 2× 10−10 erg/cm
3
, (20)

much smaller than any of the individual effects listed above. The ratio of (19) to (20) is the origin of
the famous discrepancy of 120 orders of magnitude between the theoretical and observational values
of the cosmological constant. There is no obstacle to imagining that all of the large and apparently
unrelated contributions listed add together, with different signs, to produce a net cosmological
constant consistent with the limit (20), other than the fact that it seems ridiculous. We know of
no special symmetry which could enforce a vanishing vacuum energy while remaining consistent
with the known laws of physics; this conundrum is the “cosmological constant problem”. In
Section 4 we will discuss a number of issues related to this puzzle, which at this point remains one
of the most significant unsolved problems in fundamental physics.
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10 Sean M. Carroll

2 Cosmology with a Cosmological Constant

2.1 Cosmological parameters

From the Friedmann equation (5) (where henceforth we take the effects of a cosmological constant
into account by including the vacuum energy density 𝜌Λ into the total density 𝜌), for any value
of the Hubble parameter 𝐻 there is a critical value of the energy density such that the spatial
geometry is flat (𝑘 = 0):

𝜌crit ≡
3𝐻2

8𝜋𝐺
. (21)

It is often most convenient to measure the total energy density in terms of the critical density, by
introducing the density parameter

Ω ≡ 𝜌

𝜌crit
=

(︂
8𝜋𝐺

3𝐻2

)︂
𝜌. (22)

One useful feature of this parameterization is a direct connection between the value of Ω and the
spatial geometry:

𝑘 = sgn(Ω− 1). (23)

[Keep in mind that some references still use “Ω” to refer strictly to the density parameter in matter,
even in the presence of a cosmological constant; with this definition (23) no longer holds.]

In general, the energy density 𝜌 will include contributions from various distinct components.
From the point of view of cosmology, the relevant feature of each component is how its energy
density evolves as the universe expands. Fortunately, it is often (although not always) the case
that individual components 𝑖 have very simple equations of state of the form

𝑝𝑖 = 𝑤𝑖𝜌𝑖, (24)

with 𝑤𝑖 a constant. Plugging this equation of state into the energy-momentum conservation
equation ∇𝜇𝑇

𝜇𝜈 = 0, we find that the energy density has a power-law dependence on the scale
factor,

𝜌𝑖 ∝ 𝑎−𝑛𝑖 , (25)

where the exponent is related to the equation of state parameter by

𝑛𝑖 = 3(1 + 𝑤𝑖). (26)

The density parameter in each component is defined in the obvious way,

Ω𝑖 ≡
𝜌𝑖
𝜌crit

=

(︂
8𝜋𝐺

3𝐻2

)︂
𝜌𝑖, (27)

which has the useful property that
Ω𝑖

Ω𝑗
∝ 𝑎−(𝑛𝑖−𝑛𝑗). (28)

The simplest example of a component of this form is a set of massive particles with negligible
relative velocities, known in cosmology as “dust” or simply “matter”. The energy density of such
particles is given by their number density times their rest mass; as the universe expands, the
number density is inversely proportional to the volume while the rest masses are constant, yielding
𝜌M ∝ 𝑎−3. For relativistic particles, known in cosmology as “radiation” (although any relativistic
species counts, not only photons or even strictly massless particles), the energy density is the
number density times the particle energy, and the latter is proportional to 𝑎−1 (redshifting as the
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The Cosmological Constant 11

universe expands); the radiation energy density therefore scales as 𝜌R ∝ 𝑎−4. Vacuum energy does
not change as the universe expands, so 𝜌Λ ∝ 𝑎0; from (26) this implies a negative pressure, or
positive tension, when the vacuum energy is positive. Finally, for some purposes it is useful to
pretend that the −𝑘𝑎−2𝑅−2

0 term in (5) represents an effective “energy density in curvature”, and
define 𝜌𝑘 ≡ −(3𝑘/8𝜋𝐺𝑅2

0)𝑎
−2. We can define a corresponding density parameter

Ω𝑘 = 1− Ω; (29)

this relation is simply (5) divided by 𝐻2. Note that the contribution from Ω𝑘 is (for obvious
reasons) not included in the definition of Ω. The usefulness of Ω𝑘 is that it contributes to the
expansion rate analogously to the honest density parameters Ω𝑖; we can write

𝐻(𝑎) = 𝐻0

⎛⎝∑︁
𝑖(𝑘)

Ω𝑖0𝑎
−𝑛𝑖

⎞⎠1/2

, (30)

where the notation
∑︀

𝑖(𝑘) reflects the fact that the sum includes Ω𝑘 in addition to the various

components of Ω =
∑︀

𝑖 Ω𝑖. The most popular equations of state for cosmological energy sources
can thus be summarized as follows:

𝑤𝑖 𝑛𝑖
matter 0 3
radiation 1/3 4
“curvature” −1/3 2
vacuum −1 0

(31)

The ranges of values of the Ω𝑖’s which are allowed in principle (as opposed to constrained by
observation) will depend on a complete theory of the matter fields, but lacking that we may still
invoke energy conditions to get a handle on what constitutes sensible values. The most appropriate
condition is the dominant energy condition (DEC), which states that 𝑇𝜇𝜈 𝑙

𝜇𝑙𝜈 ≥ 0, and 𝑇𝜇
𝜈 𝑙

𝜇 is
non-spacelike, for any null vector 𝑙𝜇; this implies that energy does not flow faster than the speed
of light [117]. For a perfect-fluid energy-momentum tensor of the form (4), these two requirements
imply that 𝜌+ 𝑝 ≥ 0 and |𝜌| ≥ |𝑝|, respectively. Thus, either the density is positive and greater in
magnitude than the pressure, or the density is negative and equal in magnitude to a compensating
positive pressure; in terms of the equation-of-state parameter 𝑤, we have either positive 𝜌 and
|𝑤| ≤ 1 or negative 𝜌 and 𝑤 = −1. That is, a negative energy density is allowed only if it is in the
form of vacuum energy. (We have actually modified the conventional DEC somewhat, by using
only null vectors 𝑙𝜇 rather than null or timelike vectors; the traditional condition would rule out a
negative cosmological constant, which there is no physical reason to do.)

There are good reasons to believe that the energy density in radiation today is much less than
that in matter. Photons, which are readily detectable, contribute Ω𝛾 ∼ 5 × 10−5, mostly in the
2.73 K cosmic microwave background [211, 87, 225]. If neutrinos are sufficiently low mass as to
be relativistic today, conventional scenarios predict that they contribute approximately the same
amount [149]. In the absence of sources which are even more exotic, it is therefore useful to
parameterize the universe today by the values of ΩM and ΩΛ, with Ω𝑘 = 1 − ΩM − ΩΛ, keeping
the possibility of surprises always in mind.

One way to characterize a specific Friedmann–Robertson–Walker model is by the values of the
Hubble parameter and the various energy densities 𝜌𝑖. (Of course, reconstructing the history of
such a universe also requires an understanding of the microphysical processes which can exchange
energy between the different states.) It may be difficult, however, to directly measure the differ-
ent contributions to 𝜌, and it is therefore useful to consider extracting these quantities from the
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behavior of the scale factor as a function of time. A traditional measure of the evolution of the
expansion rate is the deceleration parameter

𝑞 ≡ − �̈�𝑎
�̇�2

=
∑︁
𝑖

𝑛𝑖 − 2

2
Ω𝑖 (32)

=
1

2
ΩM − ΩΛ,

where in the last line we have assumed that the universe is dominated by matter and the cosmolog-
ical constant. Under the assumption that ΩΛ = 0, measuring 𝑞0 provides a direct measurement of
the current density parameter ΩM0; however, once ΩΛ is admitted as a possibility there is no single
parameter which characterizes various universes, and for most purposes it is more convenient to
simply quote experimental results directly in terms of ΩM and ΩΛ. [Even this parameterization, of
course, bears a certain theoretical bias which may not be justified; ultimately, the only unbiased
method is to directly quote limits on 𝑎(𝑡).]

Notice that positive-energy-density sources with 𝑛 > 2 cause the universe to decelerate while
𝑛 < 2 leads to acceleration; the more rapidly energy density redshifts away, the greater the tendency
towards universal deceleration. An empty universe (Ω = 0, Ω𝑘 = 1) expands linearly with time;
sometimes called the “Milne universe”, such a spacetime is really flat Minkowski space in an unusual
time-slicing.

2.2 Model universes and their fates

In the remainder of this section we will explore the behavior of universes dominated by matter
and vacuum energy, Ω = ΩM + ΩΛ = 1− Ω𝑘. According to (33), a positive cosmological constant
accelerates the universal expansion, while a negative cosmological constant and/or ordinary matter
tend to decelerate it. The relative contributions of these components change with time; according
to (28) we have

ΩΛ ∝ 𝑎2Ω𝑘 ∝ 𝑎3ΩM. (33)

For ΩΛ < 0, the universe will always recollapse to a Big Crunch, either because there is a sufficiently
high matter density or due to the eventual domination of the negative cosmological constant. For
ΩΛ > 0 the universe will expand forever unless there is sufficient matter to cause recollapse before
ΩΛ becomes dynamically important. For ΩΛ = 0 we have the familiar situation in which ΩM ≤ 1
universes expand forever and ΩM > 1 universes recollapse; notice, however, that in the presence of
a cosmological constant there is no necessary relationship between spatial curvature and the fate of
the universe. (Furthermore, we cannot reliably determine that the universe will expand forever by
any set of measurements of ΩΛ and ΩM; even if we seem to live in a parameter space that predicts
eternal expansion, there is always the possibility of a future phase transition which could change
the equation of state of one or more of the components.)

Given ΩM, the value of ΩΛ for which the universe will expand forever is given by

ΩΛ ≥

⎧⎨⎩0 for 0 ≤ ΩM ≤ 1,

4ΩM cos3
[︂
1

3
cos−1

(︂
1− ΩM

ΩM

)︂
+

4𝜋

3

]︂
for ΩM > 1.

(34)

Conversely, if the cosmological constant is sufficiently large compared to the matter density, the
universe has always been accelerating, and rather than a Big Bang its early history consisted
of a period of gradually slowing contraction to a minimum radius before beginning its current
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expansion. The criterion for there to have been no singularity in the past is

ΩΛ ≥ 4ΩMcoss3
[︂
1

3
coss−1

(︂
1− ΩM

ΩM

)︂]︂
, (35)

where “coss” represents cosh when ΩM < 1/2, and cos when ΩM > 1/2.
The dynamics of universes with Ω = ΩM+ΩΛ are summarized in Figure 1, in which the arrows

indicate the evolution of these parameters in an expanding universe. (In a contracting universe
they would be reversed.) This is not a true phase-space plot, despite the superficial similarities.
One important difference is that a universe passing through one point can pass through the same
point again but moving backwards along its trajectory, by first going to infinity and then turning
around (recollapse).

0 0.5 1 1.5 2
ΩM

− 1

− 0.5

0

0.5

1

ΩΛ

Figure 1: Dynamics for Ω = ΩM +ΩΛ. The arrows indicate the direction of evolution of the parameters
in an expanding universe.

Figure 1 includes three fixed points, at (ΩM,ΩΛ) equal to (0, 0), (0, 1), and (1, 0). The attractor
among these at (0, 1) is known as de Sitter space – a universe with no matter density, dominated by
a cosmological constant, and with scale factor growing exponentially with time. The fact that this
point is an attractor on the diagram is another way of understanding the cosmological constant
problem. A universe with initial conditions located at a generic point on the diagram will, after
several expansion times, flow to de Sitter space if it began above the recollapse line, and flow to
infinity and back to recollapse if it began below that line. Since our universe has expanded by
many orders of magnitude since early times, it must have begun at a non-generic point in order
not to have evolved either to de Sitter space or to a Big Crunch. The only other two fixed points
on the diagram are the saddle point at (ΩM,ΩΛ) = (0, 0), corresponding to an empty universe,
and the repulsive fixed point at (ΩM,ΩΛ) = (1, 0), known as the Einstein–de Sitter solution. Since
our universe is not empty, the favored solution from this combination of theoretical and empirical
arguments is the Einstein–de Sitter universe. The inflationary scenario [113, 159, 6] provides a
mechanism whereby the universe can be driven to the line ΩM + ΩΛ = 1 (spatial flatness), so
Einstein–de Sitter is a natural expectation if we imagine that some unknown mechanism sets
Λ = 0. As discussed below, the observationally favored universe is located on this line but away
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from the fixed points, near (ΩM,ΩΛ) = (0.3, 0.7). It is fair to conclude that naturalness arguments
have a somewhat spotty track record at predicting cosmological parameters.

2.3 Surveying the universe

The lookback time from the present day to an object at redshift 𝑧* is given by

𝑡0 − 𝑡* =

∫︁ 𝑡0

𝑡*

𝑑𝑡

=

∫︁ 1

1/(1+𝑧*)

𝑑𝑎

𝑎𝐻(𝑎)
,

(36)

with 𝐻(𝑎) given by (30). The age of the universe is obtained by taking the 𝑧* → ∞ (𝑡* → 0)
limit. For Ω = ΩM = 1, this yields the familiar answer 𝑡0 = (2/3)𝐻−1

0 ; the age decreases as ΩM is
increased, and increases as ΩΛ is increased. Figure 2 shows the expansion history of the universe
for different values of these parameters and 𝐻0 fixed; it is clear how the acceleration caused by
ΩΛ leads to an older universe. There are analytic approximation formulas which estimate (36) in
various regimes [264, 149, 48], but generally the integral is straightforward to perform numerically.

- 0.5 0 0.5 1 1.5
H0  (t -  t0)

0.25

0.5

0.75

1

1.25

1.5

1.75

2

a(t)

Figure 2: Expansion histories for different values of ΩM and ΩΛ. From top to bottom, the curves describe
(ΩM,ΩΛ) = (0.3, 0.7), (0.3, 0.0), (1.0, 0.0), and (4.0, 0.0).

In a generic curved spacetime, there is no preferred notion of the distance between two objects.
Robertson–Walker spacetimes have preferred foliations, so it is possible to define sensible notions
of the distance between comoving objects – those whose worldlines are normal to the preferred
slices. Placing ourselves at 𝑟 = 0 in the coordinates defined by (2), the coordinate distance 𝑟 to
another comoving object is independent of time. It can be converted to a physical distance at
any specified time 𝑡* by multiplying by the scale factor 𝑅0𝑎(𝑡*), yielding a number which will of
course change as the universe expands. However, intervals along spacelike slices are not accessible
to observation, so it is typically more convenient to use distance measures which can be extracted
from observable quantities. These include the luminosity distance,

𝑑L ≡
√︂

𝐿

4𝜋𝐹
, (37)

where 𝐿 is the intrinsic luminosity and 𝐹 the measured flux; the proper-motion distance,

𝑑M ≡ 𝑢

𝜃
, (38)
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where 𝑢 is the transverse proper velocity and 𝜃 the observed angular velocity; and the angular-
diameter distance,

𝑑A ≡ 𝐷

𝜃
, (39)

where 𝐷 is the proper size of the object and 𝜃 its apparent angular size. All of these definitions
reduce to the usual notion of distance in a Euclidean space. In a Robertson–Walker universe, the
proper-motion distance turns out to equal the physical distance along a spacelike slice at 𝑡 = 𝑡0:

𝑑M = 𝑅0𝑟. (40)

The three measures are related by

𝑑L = (1 + 𝑧)𝑑M = (1 + 𝑧)2𝑑A, (41)

so any one can be converted to any other for sources of known redshift.
The proper-motion distance between sources at redshift 𝑧1 and 𝑧2 can be computed by using

𝑑𝑠2 = 0 along a light ray, where 𝑑𝑠2 is given by (2). We have

𝑑M(𝑧1, 𝑧2) = 𝑅0(𝑟2 − 𝑟1)

= 𝑅0 sinn

[︂∫︁ 𝑡2

𝑡1

𝑑𝑡

𝑅0𝑎(𝑡)

]︂

=
1

𝐻0

√︀
|Ω𝑘0|

sinn

[︃
𝐻0

√︀
|Ω𝑘0|

∫︁ 1/(1+𝑧2)

1/(1+𝑧1)

𝑑𝑎

𝑎2𝐻(𝑎)

]︃
,

(42)

where we have used (5) to solve for 𝑅0 = 1/(𝐻0

√︀
|Ω𝑘0|), 𝐻(𝑎) is again given by (30), and

“sinn(𝑥)” denotes sinh(𝑥) when Ω𝑘0 > 0, sin(𝑥) when Ω𝑘0 < 0, and 𝑥 when Ω𝑘0 = 0. An analytic
approximation formula can be found in [193]. Note that, for large redshifts, the dependence of the
various distance measures on 𝑧 is not necessarily monotonic.

The comoving volume element in a Robertson–Walker universe is given by

𝑑𝑉 =
𝑅3

0𝑟
2

√
1− 𝑘𝑟2

𝑑𝑟𝑑Ω, (43)

which can be integrated analytically to obtain the volume out to a distance 𝑑M:

𝑉 (𝑑M) =
1

2𝐻3
0Ω𝑘0

[︃
𝐻0𝑑M

√︁
1 +𝐻2

0Ω𝑘0𝑑2M − 1√︀
|Ω𝑘0|

sinn−1(𝐻0

√︀
|Ω𝑘0|𝑑M)

]︃
, (44)

where “sinn” is defined as before (42).

2.4 Structure formation

The introduction of a cosmological constant changes the relationship between the matter density
and expansion rate from what it would be in a matter-dominated universe, which in turn influences
the growth of large-scale structure. The effect is similar to that of a nonzero spatial curvature, and
complicated by hydrodynamic and nonlinear effects on small scales, but is potentially detectable
through sufficiently careful observations.

The analysis of the evolution of structure is greatly abetted by the fact that perturbations start
out very small (temperature anisotropies in the microwave background imply that the density
perturbations were of order 10–5 at recombination), and linearized theory is effective. In this
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regime, the fate of the fluctuations is in the hands of two competing effects: the tendency of self-
gravity to make overdense regions collapse, and the tendency of test particles in the background
expansion to move apart. Essentially, the effect of vacuum energy is to contribute to expansion but
not to the self-gravity of overdensities, thereby acting to suppress the growth of perturbations [149,
189].

For sub-Hubble-radius perturbations in a cold dark matter component, a Newtonian analysis
suffices. (We may of course be interested in super-Hubble-radius modes, or the evolution of in-
teracting or relativistic particles, but the simple Newtonian case serves to illustrate the relevant
physical effect.) If the energy density in dynamical matter is dominated by CDM, the linearized
Newtonian evolution equation is

𝛿M + 2
�̇�

𝑎
�̇�M = 4𝜋𝐺𝜌M𝛿M. (45)

The second term represents an effective frictional force due to the expansion of the universe,
characterized by a timescale (�̇�/𝑎)−1 = 𝐻−1, while the right hand side is a forcing term with

characteristic timescale (4𝜋𝐺𝜌M)−1/2 ≈ Ω
−1/2
M 𝐻−1. Thus, when ΩM ≈ 1, these effects are in

balance and CDM perturbations gradually grow; when ΩM dips appreciably below unity (as when
curvature or vacuum energy begin to dominate), the friction term becomes more important and
perturbation growth effectively ends. In fact (45) can be directly solved [119] to yield

𝛿M(𝑎) =
5

2
𝐻2

0ΩM0
�̇�

𝑎

∫︁ 𝑎

0

[𝑎′𝐻(𝑎′)]−3 𝑑𝑎′, (46)

where 𝐻(𝑎) is given by (30). There exist analytic approximations to this formula [48], as well
as analytic expressions for flat universes [81]. Note that this analysis is consistent only in the
linear regime; once perturbations on a given scale become of order unity, they break away from
the Hubble flow and begin to evolve as isolated systems.
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3 Observational Tests

It has been suspected for some time now that there are good reasons to think that a cosmology
with an appreciable cosmological constant is the best fit to what we know about the universe [188,
248, 148, 79, 95, 147, 151, 181, 245]. However, it is only very recently that the observational case
has tightened up considerably, to the extent that, as the year 2000 dawns, more experts than not
believe that there really is a positive vacuum energy exerting a measurable effect on the evolution
of the universe. In this section I review the major approaches which have led to this shift.

3.1 Type Ia supernovae

The most direct and theory-independent way to measure the cosmological constant would be
to actually determine the value of the scale factor as a function of time. Unfortunately, the
appearance of Ω𝑘 in formulae such as (42) renders this difficult. Nevertheless, with sufficiently
precise information about the dependence of a distance measure on redshift we can disentangle the
effects of spatial curvature, matter, and vacuum energy, and methods along these lines have been
popular ways to try to constrain the cosmological constant.

Astronomers measure distance in terms of the “distance modulus” 𝑚 − 𝑀 , where 𝑚 is the
apparent magnitude of the source and 𝑀 its absolute magnitude. The distance modulus is related
to the luminosity distance via

𝑚−𝑀 = 5 log10[𝑑L(Mpc)] + 25. (47)

Of course, it is easy to measure the apparent magnitude, but notoriously difficult to infer the
absolute magnitude of a distant object. Methods to estimate the relative absolute luminosities of
various kinds of objects (such as galaxies with certain characteristics) have been pursued, but most
have been plagued by unknown evolutionary effects or simply large random errors [221].

Recently, significant progress has been made by using Type Ia supernovae as “standardizable
candles”. Supernovae are rare – perhaps a few per century in a Milky-Way-sized galaxy – but
modern telescopes allow observers to probe very deeply into small regions of the sky, covering a
very large number of galaxies in a single observing run. Supernovae are also bright, and Type Ia’s
in particular all seem to be of nearly uniform intrinsic luminosity (absolute magnitude 𝑀 ∼
−19.5, typically comparable to the brightness of the entire host galaxy in which they appear) [36].
They can therefore be detected at high redshifts (𝑧 ∼ 1), allowing in principle a good handle on
cosmological effects [236, 108].

The fact that all SNe Ia are of similar intrinsic luminosities fits well with our understanding of
these events as explosions which occur when a white dwarf, onto which mass is gradually accreting
from a companion star, crosses the Chandrasekhar limit and explodes. (It should be noted that
our understanding of supernova explosions is in a state of development, and theoretical models
are not yet able to accurately reproduce all of the important features of the observed events.
See [274, 114, 121] for some recent work.) The Chandrasekhar limit is a nearly-universal quantity,
so it is not a surprise that the resulting explosions are of nearly-constant luminosity. However,
there is still a scatter of approximately 40% in the peak brightness observed in nearby supernovae,
which can presumably be traced to differences in the composition of the white dwarf atmospheres.
Even if we could collect enough data that statistical errors could be reduced to a minimum, the
existence of such an uncertainty would cast doubt on any attempts to study cosmology using SNe Ia
as standard candles.

Fortunately, the observed differences in peak luminosities of SNe Ia are very closely correlated
with observed differences in the shapes of their light curves: Dimmer SNe decline more rapidly after
maximum brightness, while brighter SNe decline more slowly [200, 213, 115]. There is thus a one-
parameter family of events, and measuring the behavior of the light curve along with the apparent
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Figure 3: Hubble diagram (distance modulus vs. redshift) from the High-Z Supernova Team [214]. The
lines represent predictions from the cosmological models with the specified parameters. The lower plot
indicates the difference between observed distance modulus and that predicted in an open-universe model.
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luminosity allows us to largely correct for the intrinsic differences in brightness, reducing the scatter
from 40% to less than 15% – sufficient precision to distinguish between cosmological models. (It
seems likely that the single parameter can be traced to the amount of 56Ni produced in the
supernova explosion; more nickel implies both a higher peak luminosity and a higher temperature
and thus opacity, leading to a slower decline. It would be an exaggeration, however, to claim that
this behavior is well-understood theoretically.)
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Figure 4: Hubble diagram from the Supernova Cosmology Project [197]. The bottom plot shows the
number of standard deviations of each point from the best-fit curve.

Following pioneering work reported in [180], two independent groups have undertaken searches
for distant supernovae in order to measure cosmological parameters. Figure 3 shows the results
for 𝑚 − 𝑀 vs. 𝑧 for the High-Z Supernova Team [101, 223, 214, 102], and Figure 4 shows the
equivalent results for the Supernova Cosmology Project [195, 196, 197]. Under the assumption
that the energy density of the universe is dominated by matter and vacuum components, these
data can be converted into limits on ΩM and ΩΛ, as shown in Figures 5 and 6.

It is clear that the confidence intervals in the ΩM–ΩΛ plane are consistent for the two groups,
with somewhat tighter constraints obtained by the Supernova Cosmology Project, who have more
data points. The surprising result is that both teams favor a positive cosmological constant, and
strongly rule out the traditional (ΩM,ΩΛ) = (1, 0) favorite universe. They are even inconsistent
with an open universe with zero cosmological constant, given what we know about the matter
density of the universe (see below).

Given the significance of these results, it is natural to ask what level of confidence we should have
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Figure 5: Constraints in the ΩM–ΩΛ plane from the High-Z Supernova Team [214].
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in them. There are a number of potential sources of systematic error which have been considered
by the two teams; see the original papers [223, 214, 197] for a thorough discussion. The two
most worrisome possibilities are intrinsic differences between Type Ia supernovae at high and low
redshifts [75, 212], and possible extinction via intergalactic dust [2, 3, 4, 226, 241]. (There is also
the fact that intervening weak lensing can change the distance-magnitude relation, but this seems
to be a small effect in realistic universes [123, 143].) Both effects have been carefully considered,
and are thought to be unimportant, although a better understanding will be necessary to draw
firm conclusions. Here, I will briefly mention some of the relevant issues.
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Figure 6: Constraints in the ΩM–ΩΛ plane from the Supernova Cosmology Project [197].

As thermonuclear explosions of white dwarfs, Type Ia supernovae can occur in a wide variety of
environments. Consequently, a simple argument against evolution is that the high-redshift environ-
ments, while chronologically younger, should be a subset of all possible low-redshift environments,
which include regions that are “young” in terms of chemical and stellar evolution. Nevertheless,
even a small amount of evolution could ruin our ability to reliably constrain cosmological parame-
ters [75]. In their original papers [223, 214, 197], the supernova teams found impressive consistency
in the spectral and photometric properties of Type Ia supernovae over a variety of redshifts and
environments (e.g., in elliptical vs. spiral galaxies). More recently, however, Riess et al. [212] have
presented tentative evidence for a systematic difference in the properties of high- and low-redshift
supernovae, claiming that the risetimes (from initial explosion to maximum brightness) were higher
in the high-redshift events. Apart from the issue of whether the existing data support this finding,
it is not immediately clear whether such a difference is relevant to the distance determinations:
first, because the risetime is not used in determining the absolute luminosity at peak brightness,
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and second, because a process which only affects the very early stages of the light curve is most
plausibly traced to differences in the outer layers of the progenitor, which may have a negligible
affect on the total energy output. Nevertheless, any indication of evolution could bring into ques-
tion the fundamental assumptions behind the entire program. It is therefore essential to improve
the quality of both the data and the theories so that these issues may be decisively settled.

Other than evolution, obscuration by dust is the leading concern about the reliability of the
supernova results. Ordinary astrophysical dust does not obscure equally at all wavelengths, but
scatters blue light preferentially, leading to the well-known phenomenon of “reddening”. Spectral
measurements by the two supernova teams reveal a negligible amount of reddening, implying that
any hypothetical dust must be a novel “grey” variety. This possibility has been investigated by
a number of authors [2, 3, 4, 226, 241]. These studies have found that even grey dust is highly
constrained by observations: first, it is likely to be intergalactic rather than within galaxies, or it
would lead to additional dispersion in the magnitudes of the supernovae; and second, intergalactic
dust would absorb ultraviolet/optical radiation and re-emit it at far infrared wavelengths, leading
to stringent constraints from observations of the cosmological far-infrared background. Thus, while
the possibility of obscuration has not been entirely eliminated, it requires a novel kind of dust which
is already highly constrained (and may be convincingly ruled out by further observations).

According to the best of our current understanding, then, the supernova results indicating an
accelerating universe seem likely to be trustworthy. Needless to say, however, the possibility of a
heretofore neglected systematic effect looms menacingly over these studies. Future experiments,
including a proposed satellite dedicated to supernova cosmology [154], will both help us improve
our understanding of the physics of supernovae and allow a determination of the distance/redshift
relation to sufficient precision to distinguish between the effects of a cosmological constant and
those of more mundane astrophysical phenomena. In the meantime, it is important to obtain
independent corroboration using other methods.

3.2 Cosmic microwave background

The discovery by the COBE satellite of temperature anisotropies in the cosmic microwave back-
ground [228] inaugurated a new era in the determination of cosmological parameters. To charac-
terize the temperature fluctuations on the sky, we may decompose them into spherical harmonics,

Δ𝑇

𝑇
=

∑︁
𝑙𝑚

𝑎𝑙𝑚𝑌𝑙𝑚(𝜃, 𝜑), (48)

and express the amount of anisotropy at multipole moment 𝑙 via the power spectrum,

𝐶𝑙 = ⟨|𝑎𝑙𝑚|2⟩. (49)

Higher multipoles correspond to smaller angular separations on the sky, 𝜃 = 180∘/𝑙. Within any
given family of models, 𝐶𝑙 vs. 𝑙 will depend on the parameters specifying the particular cosmology.
Although the case is far from closed, evidence has been mounting in favor of a specific class of
models – those based on Gaussian, adiabatic, nearly scale-free perturbations in a universe composed
of baryons, radiation, and cold dark matter. (The inflationary universe scenario [113, 159, 6]
typically predicts these kinds of perturbations.)

Although the dependence of the 𝐶𝑙’s on the parameters can be intricate, nature has chosen not
to test the patience of cosmologists, as one of the easiest features to measure – the location in 𝑙
of the first “Doppler peak”, an increase in power due to acoustic oscillations – provides one of the
most direct handles on the cosmic energy density, one of the most interesting parameters. The first
peak (the one at lowest 𝑙) corresponds to the angular scale subtended by the Hubble radius 𝐻−1

CMB

at the time when the CMB was formed (known variously as “decoupling” or “recombination” or
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Figure 7: CMB data (binned) and two theoretical curves: The model with a peak at 𝑙 ∼ 200 is a flat
matter-dominated universe, while the one with a peak at 𝑙 ∼ 400 is an open matter-dominated universe.
From [35].
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“last scattering”) [129]. The angular scale at which we observe this peak is tied to the geometry of
the universe: In a negatively (positively) curved universe, photon paths diverge (converge), leading
to a larger (smaller) apparent angular size as compared to a flat universe. Since the scale 𝐻−1

CMB

is set mostly by microphysics, this geometrical effect is dominant, and we can relate the spatial
curvature as characterized by Ω to the observed peak in the CMB spectrum via [141, 138, 130]

𝑙peak ∼ 220 Ω−1/2. (50)

More details about the spectrum (height of the peak, features of the secondary peaks) will depend
on other cosmological quantities, such as the Hubble constant and the baryon density [34, 128,
137, 276].

Figure 7 shows a summary of data as of 1998, with various experimental results consolidated into
bins, along with two theoretical models. Since that time, the data have continued to accumulate
(see for example [172, 171]), and the near future should see a wealth of new results of ever-increasing
precision. It is clear from the figure that there is good evidence for a peak at approximately
𝑙peak ∼ 200, as predicted in a spatially-flat universe. This result can be made more quantitative
by fitting the CMB data to models with different values of ΩM and ΩΛ [35, 26, 164, 210, 72], or
by combining the CMB data with other sources, such as supernovae or large-scale structure [268,
238, 102, 127, 237, 78, 38, 18]. Figure 8 shows the constraints from the CMB in the ΩM–ΩΛ

plane, using data from the 1997 test flight of the BOOMERANG experiment [171]. (Although
the data used to make this plot are essentially independent of those shown in the previous figure,
the constraints obtained are nearly the same.) It is clear that the CMB data provide constraints
which are complementary to those obtained using supernovae; the two approaches yield confidence
contours which are nearly orthogonal in the ΩM–ΩΛ plane. The region of overlap is in the vicinity
of (ΩM,ΩΛ) = (0.3, 0.7), which we will see below is also consistent with other determinations.

Figure 8: Constraints in the ΩM–ΩΛ plane from the North American flight of the BOOMERANG mi-
crowave background balloon experiment. From [171].
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3.3 Matter density

Many cosmological tests, such as the two just discussed, will constrain some combination of ΩM

and ΩΛ. It is therefore useful to consider tests of ΩM alone, even if our primary goal is to determine
ΩΛ. (In truth, it is also hard to constrain ΩM alone, as almost all methods actually constrain some
combination of ΩM and the Hubble constant ℎ = 𝐻0/(100 km/sec/Mpc); the HST Key Project
on the extragalactic distance scale finds ℎ = 0.71 ± 0.06 [175], which is consistent with other
methods [88], and what I will assume below.)

For years, determinations of ΩM based on dynamics of galaxies and clusters have yielded values
between approximately 0.1 and 0.4 – noticeably larger than the density parameter in baryons as
inferred from primordial nucleosynthesis, ΩB = (0.019±0.001)ℎ−2 ≈ 0.04 [224, 41], but noticeably
smaller than the critical density. The last several years have witnessed a number of new methods
being brought to bear on the question; the quantitative results have remained unchanged, but our
confidence in them has increased greatly.

A thorough discussion of determinations of ΩM requires a review all its own, and good ones are
available [66, 14, 247, 88, 206]. Here I will just sketch some of the important methods.

The traditional method to estimate the mass density of the universe is to “weigh” a cluster of
galaxies, divide by its luminosity, and extrapolate the result to the universe as a whole. Although
clusters are not representative samples of the universe, they are sufficiently large that such a
procedure has a chance of working. Studies applying the virial theorem to cluster dynamics have
typically obtained values ΩM = 0.2± 0.1 [45, 66, 14]. Although it is possible that the global value
of 𝑀/𝐿 differs appreciably from its value in clusters, extrapolations from small scales do not seem
to reach the critical density [17]. New techniques to weigh the clusters, including gravitational
lensing of background galaxies [227] and temperature profiles of the X-ray gas [155], while not yet
in perfect agreement with each other, reach essentially similar conclusions.

Rather than measuring the mass relative to the luminosity density, which may be different
inside and outside clusters, we can also measure it with respect to the baryon density [269], which
is very likely to have the same value in clusters as elsewhere in the universe, simply because
there is no way to segregate the baryons from the dark matter on such large scales. Most of the
baryonic mass is in the hot intracluster gas [97], and the fraction 𝑓gas of total mass in this form
can be measured either by direct observation of X-rays from the gas [173] or by distortions of the
microwave background by scattering off hot electrons (the Sunyaev–Zeldovich effect) [46], typically
yielding 0.1 ≤ 𝑓gas ≤ 0.2. Since primordial nucleosynthesis provides a determination of ΩB ∼ 0.04,
these measurements imply

ΩM = ΩB/𝑓gas = 0.3± 0.1, (51)

consistent with the value determined from mass to light ratios.
Another handle on the density parameter in matter comes from properties of clusters at high

redshift. The very existence of massive clusters has been used to argue in favor of ΩM ∼ 0.2 [15],
and the lack of appreciable evolution of clusters from high redshifts to the present [16, 44] provides
additional evidence that ΩM < 1.0.

The story of large-scale motions is more ambiguous. The peculiar velocities of galaxies are
sensitive to the underlying mass density, and thus to ΩM, but also to the “bias” describing the
relative amplitude of fluctuations in galaxies and mass [66, 65]. Difficulties both in measuring the
flows and in disentangling the mass density from other effects make it difficult to draw conclusions
at this point, and at present it is hard to say much more than 0.2 ≤ ΩM ≤ 1.0.

Finally, the matter density parameter can be extracted from measurements of the power spec-
trum of density fluctuations (see for example [187]). As with the CMB, predicting the power
spectrum requires both an assumption of the correct theory and a specification of a number of
cosmological parameters. In simple models (e.g., with only cold dark matter and baryons, no
massive neutrinos), the spectrum can be fit (once the amplitude is normalized) by a single “shape
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parameter”, which is found to be equal to Γ = ΩMℎ. (For more complicated models see [82].)
Observations then yield Γ ∼ 0.25, or ΩM ∼ 0.36. For a more careful comparison between models
and observations, see [156, 157, 71, 205].

Thus, we have a remarkable convergence on values for the density parameter in matter:

0.1 ≤ ΩM ≤ 0.4. (52)

Even without the supernova results, this determination in concert with the CMB measurements
favoring a flat universe provide a strong case for a nonzero cosmological constant.

3.4 Gravitational lensing

The volume of space back to a specified redshift, given by (44), depends sensitively on ΩΛ. Con-
sequently, counting the apparent density of observed objects, whose actual density per cubic Mpc
is assumed to be known, provides a potential test for the cosmological constant [109, 96, 244, 48].
Like tests of distance vs. redshift, a significant problem for such methods is the luminosity evolution
of whatever objects one might attempt to count. A modern attempt to circumvent this difficulty
is to use the statistics of gravitational lensing of distant galaxies; the hope is that the number of
condensed objects which can act as lenses is less sensitive to evolution than the number of visible
objects.

In a spatially flat universe, the probability of a source at redshift 𝑧s being lensed, relative to
the fiducial (ΩM = 1, ΩΛ = 0) case, is given by

𝑃lens =
15

4

[︁
1− (1 + 𝑧s)

−1/2
]︁−3

∫︁ 𝑎s

1

𝐻0

𝐻(𝑎)

[︂
𝑑𝐴(0, 𝑎)𝑑𝐴(𝑎, 𝑎s)

𝑑𝐴(0, 𝑎s)

]︂
𝑑𝑎, (53)

where 𝑎s = 1/(1 + 𝑧s).
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Figure 9: Gravitational lens probabilities in a flat universe with ΩM + ΩΛ = 1, relative to ΩM = 1,
ΩΛ = 0, for a source at 𝑧 = 2.

As shown in Figure 9, the probability rises dramatically as ΩΛ is increased to unity as we keep
Ω fixed. Thus, the absence of a large number of such lenses would imply an upper limit on ΩΛ.

Analysis of lensing statistics is complicated by uncertainties in evolution, extinction, and biases
in the lens discovery procedure. It has been argued [146, 83] that the existing data allow us to place
an upper limit of ΩΛ < 0.7 in a flat universe. However, other groups [52, 51] have claimed that the
current data actually favor a nonzero cosmological constant. The near future will bring larger, more
objective surveys, which should allow these ambiguities to be resolved. Other manifestations of
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lensing can also be used to constrain ΩΛ, including statistics of giant arcs [275], deep weak-lensing
surveys [133], and lensing in the Hubble Deep Field [61].

3.5 Other tests

There is a tremendous variety of ways in which a nonzero cosmological constant can manifest itself
in observable phenomena. Here is an incomplete list of additional possibilities; see also [48, 58, 218].

∙ Observations of numbers of objects vs. redshift are a potentially sensitive test of cosmological
parameters if evolutionary effects can be brought under control. Although it is hard to
account for the luminosity evolution of galaxies, it may be possible to indirectly count dark
halos by taking into account the rotation speeds of visible galaxies, and upcoming redshift
surveys could be used to constrain the volume/redshift relation [176].

∙ Alcock and Paczyński [7] showed that the relationship between the apparent transverse and
radial sizes of an object of cosmological size depends on the expansion history of the universe.
Clusters of galaxies would be possible candidates for such a measurement, but they are
insufficiently isotropic; alternatives, however, have been proposed, using for example the
quasar correlation function as determined from redshift surveys [201, 204], or the Lyman-𝛼
forest [134].

∙ In a related effect, the dynamics of large-scale structure can be affected by a nonzero cos-
mological constant; if a protocluster, for example, is anisotropic, it can begin to contract
along a minor axis while the universe is matter-dominated and along its major axis while the
universe is vacuum-dominated. Although small, such effects may be observable in individual
clusters [153] or in redshift surveys [19].

∙ A different version of the distance-redshift test uses extended lobes of radio galaxies as
modified standard yardsticks. Current observations disfavor universes with ΩM near unity
([112], and references therein).

∙ Inspiralling compact binaries at cosmological distances are potential sources of gravitational
waves. It turns out that the redshift distribution of events is sensitive to the cosmological
constant; although speculative, it has been proposed that advanced LIGO (Laser Interfer-
ometric Gravitational Wave Observatory [215]) detectors could use this effect to provide
measurements of ΩΛ [262].

∙ Finally, consistency of the age of the universe and the ages of its oldest constituents is a
classic test of the expansion history. If stars were sufficiently old and 𝐻0 and ΩM were
sufficiently high, a positive ΩΛ would be necessary to reconcile the two, and this situation
has occasionally been thought to hold. Measurements of geometric parallax to nearby stars
from the Hipparcos satellite have, at the least, called into question previous determinations
of the ages of the oldest globular clusters, which are now thought to be perhaps 12 billion
rather than 15 billion years old (see the discussion in [88]). It is therefore unclear whether
the age issue forces a cosmological constant upon us, but by now it seems forced upon us for
other reasons.
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4 Physics Issues

In Section 1.3 we discussed the large difference between the magnitude of the vacuum energy

expected from zero-point fluctuations and scalar potentials, 𝜌
(theory)
Λ ∼ 2 × 10110 erg/cm

3
, and

the value we apparently observe, 𝜌
(obs)
Λ ∼ 2 × 10−10 erg/cm

3
(which may be thought of as an

upper limit, if we wish to be careful). It is somewhat unfair to characterize this discrepancy
as a factor of 10120, since energy density can be expressed as a mass scale to the fourth power.

Writing 𝜌Λ = 𝑀4
vac, we find 𝑀

(theory)
vac ∼ 𝑀Pl ∼ 1018 GeV and 𝑀

(obs)
vac ∼ 10−3 eV, so a more fair

characterization of the problem would be

𝑀
(theory)
vac

𝑀
(obs)
vac

∼ 1030. (54)

Of course, thirty orders of magnitude still constitutes a difference worthy of our attention.

Although the mechanism which suppresses the naive value of the vacuum energy is unknown,
it seems easier to imagine a hypothetical scenario which makes it exactly zero than one which
sets it to just the right value to be observable today. (Keeping in mind that it is the zero-
temperature, late-time vacuum energy which we want to be small; it is expected to change at phase
transitions, and a large value in the early universe is a necessary component of inflationary universe
scenarios [113, 159, 6].) If the recent observations pointing toward a cosmological constant of
astrophysically relevant magnitude are confirmed, we will be faced with the challenge of explaining
not only why the vacuum energy is smaller than expected, but also why it has the specific nonzero
value it does.

4.1 Supersymmetry

Although initially investigated for other reasons, supersymmetry (SUSY) turns out to have a sig-
nificant impact on the cosmological constant problem, and may even be said to solve it halfway.
SUSY is a spacetime symmetry relating fermions and bosons to each other. Just as ordinary sym-
metries are associated with conserved charges, supersymmetry is associated with “supercharges”
𝑄𝛼, where 𝛼 is a spinor index (for introductions see [178, 166, 169]). As with ordinary symme-
tries, a theory may be supersymmetric even though a given state is not supersymmetric; a state
which is annihilated by the supercharges, 𝑄𝛼|𝜓⟩ = 0, preserves supersymmetry, while states with
𝑄𝛼|𝜓⟩ ≠ 0 are said to spontaneously break SUSY.

Let us begin by considering “globally supersymmetric” theories, which are defined in flat space-
time (obviously an inadequate setting in which to discuss the cosmological constant, but we have
to start somewhere). Unlike most non-gravitational field theories, in supersymmetry the total
energy of a state has an absolute meaning; the Hamiltonian is related to the supercharges in a
straightforward way:

𝐻 =
∑︁
𝛼

{𝑄𝛼, 𝑄
†
𝛼}, (55)

where braces represent the anticommutator. Thus, in a completely supersymmetric state (in which
𝑄𝛼|𝜓⟩ = 0 for all 𝛼), the energy vanishes automatically, ⟨𝜓|𝐻|𝜓⟩ = 0 [280]. More concretely, in
a given supersymmetric theory we can explicitly calculate the contributions to the energy from
vacuum fluctuations and from the scalar potential 𝑉 . In the case of vacuum fluctuations, con-
tributions from bosons are exactly canceled by equal and opposite contributions from fermions
when supersymmetry is unbroken. Meanwhile, the scalar-field potential in supersymmetric theo-
ries takes on a special form; scalar fields 𝜑𝑖 must be complex (to match the degrees of freedom of
the fermions), and the potential is derived from a function called the superpotential 𝑊 (𝜑𝑖) which
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is necessarily holomorphic (written in terms of 𝜑𝑖 and not its complex conjugate 𝜑𝑖). In the simple
Wess-Zumino models of spin-0 and spin-1/2 fields, for example, the scalar potential is given by

𝑉 (𝜑𝑖, 𝜑𝑗) =
∑︁
𝑖

|𝜕𝑖𝑊 |2, (56)

where 𝜕𝑖𝑊 = 𝜕𝑊/𝜕𝜑𝑖. In such a theory, one can show that SUSY will be unbroken only for values
of 𝜑𝑖 such that 𝜕𝑖𝑊 = 0, implying 𝑉 (𝜑𝑖, 𝜑𝑗) = 0.

So the vacuum energy of a supersymmetric state in a globally supersymmetric theory will vanish.
This represents rather less progress than it might appear at first sight, since: 1.) Supersymmetric
states manifest a degeneracy in the mass spectrum of bosons and fermions, a feature not apparent
in the observed world; and 2.) The above results imply that non-supersymmetric states have a
positive-definite vacuum energy. Indeed, in a state where SUSY was broken at an energy scale
𝑀SUSY, we would expect a corresponding vacuum energy 𝜌Λ ∼ 𝑀4

SUSY. In the real world, the
fact that accelerator experiments have not discovered superpartners for the known particles of
the Standard Model implies that 𝑀SUSY is of order 103 GeV or higher. Thus, we are left with a
discrepancy

𝑀SUSY

𝑀vac
≥ 1015. (57)

Comparison of this discrepancy with the naive discrepancy (54) is the source of the claim that
SUSY can solve the cosmological constant problem halfway (at least on a log scale).

As mentioned, however, this analysis is strictly valid only in flat space. In curved spacetime, the
global transformations of ordinary supersymmetry are promoted to the position-dependent (gauge)
transformations of supergravity. In this context the Hamiltonian and supersymmetry generators
play different roles than in flat spacetime, but it is still possible to express the vacuum energy in
terms of a scalar field potential 𝑉 (𝜑𝑖, 𝜑𝑗). In supergravity 𝑉 depends not only on the superpotential
𝑊 (𝜑𝑖), but also on a “Kähler potential” 𝐾(𝜑𝑖, 𝜑𝑗), and the Kähler metric 𝐾𝑖𝚥 constructed from
the Kähler potential by 𝐾𝑖𝚥 = 𝜕2𝐾/𝜕𝜑𝑖𝜕𝜑𝑗 . (The basic role of the Kähler metric is to define the

kinetic term for the scalars, which takes the form 𝑔𝜇𝜈𝐾𝑖𝚥𝜕
𝑖
𝜇𝜑𝜕

𝑗

𝜈𝜑
.) The scalar potential is

𝑉 (𝜑𝑖, 𝜑𝑗) = 𝑒𝐾/𝑀2
Pl
[︀
𝐾𝑖𝚥(𝐷𝑖𝑊 )(𝐷𝚥�̄� )− 3𝑀−2

Pl |𝑊 |2
]︀
, (58)

where 𝐷𝑖𝑊 is the Kähler derivative,

𝐷𝑖𝑊 = 𝜕𝑖𝑊 +𝑀−2
Pl (𝜕𝑖𝐾)𝑊. (59)

(In the presence of gauge fields there will also be non-negative “D-terms”, which do not change
the present discussion.) Note that, if we take the canonical Kähler metric 𝐾𝑖𝚥 = 𝛿𝑖𝚥, in the limit
𝑀Pl → ∞ (𝐺→ 0) the first term in square brackets reduces to the flat-space result (56). But with
gravity, in addition to the non-negative first term we find a second term providing a non-positive
contribution. Supersymmetry is unbroken when 𝐷𝑖𝑊 = 0; the effective cosmological constant is
thus non-positive. We are therefore free to imagine a scenario in which supersymmetry is broken in
exactly the right way, such that the two terms in parentheses cancel to fantastic accuracy, but only
at the cost of an unexplained fine-tuning (see for example [63]). At the same time, supergravity
is not by itself a renormalizable quantum theory, and therefore it may not be reasonable to hope
that a solution can be found purely within this context.

4.2 String theory

Unlike supergravity, string theory appears to be a consistent and well-defined theory of quantum
gravity, and therefore calculating the value of the cosmological constant should, at least in principle,
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be possible. On the other hand, the number of vacuum states seems to be quite large, and none
of them (to the best of our current knowledge) features three large spatial dimensions, broken
supersymmetry, and a small cosmological constant. At the same time, there are reasons to believe
that any realistic vacuum of string theory must be strongly coupled [70]; therefore, our inability
to find an appropriate solution may simply be due to the technical difficulty of the problem. (For
general introductions to string theory, see [110, 203]; for cosmological issues, see [167, 21]).

String theory is naturally formulated in more than four spacetime dimensions. Studies of
duality symmetries have revealed that what used to be thought of as five distinct ten-dimensional
superstring theories – Type I, Types IIA and IIB, and heterotic theories based on gauge groups
E(8)×E(8) and SO(32) – are, along with eleven-dimensional supergravity, different low-energy
weak-coupling limits of a single underlying theory, sometimes known as M-theory. In each of these
six cases, the solution with the maximum number of uncompactified, flat spacetime dimensions
is a stable vacuum preserving all of the supersymmetry. To bring the theory closer to the world
we observe, the extra dimensions can be compactified on a manifold whose Ricci tensor vanishes.
There are a large number of possible compactifications, many of which preserve some but not all
of the original supersymmetry. If enough SUSY is preserved, the vacuum energy will remain zero;
generically there will be a manifold of such states, known as the moduli space.

Of course, to describe our world we want to break all of the supersymmetry. Investigations
in contexts where this can be done in a controlled way have found that the induced cosmological
constant vanishes at the classical level, but a substantial vacuum energy is typically induced by
quantum corrections [110]. Moore [174] has suggested that Atkin–Lehner symmetry, which relates
strong and weak coupling on the string worldsheet, can enforce the vanishing of the one-loop
quantum contribution in certain models (see also [67, 68]); generically, however, there would still
be an appreciable contribution at two loops.

Thus, the search is still on for a four-dimensional string theory vacuum with broken supersym-
metry and vanishing (or very small) cosmological constant. (See [69] for a general discussion of
the vacuum problem in string theory.) The difficulty of achieving this in conventional models has
inspired a number of more speculative proposals, which I briefly list here.

∙ In three spacetime dimensions supersymmetry can remain unbroken, maintaining a zero
cosmological constant, in such a way as to break the mass degeneracy between bosons and
fermions [271]. This mechanism relies crucially on special properties of spacetime in (2+1)
dimensions, but in string theory it sometimes happens that the strong-coupling limit of one
theory is another theory in one higher dimension [272, 273].

∙ More generally, it is now understood that (at least in some circumstances) string theory
obeys the “holographic principle”, the idea that a theory with gravity in 𝐷 dimensions is
equivalent to a theory without gravity in 𝐷−1 dimensions [235, 234]. In a holographic theory,
the number of degrees of freedom in a region grows as the area of its boundary, rather than
as its volume. Therefore, the conventional computation of the cosmological constant due
to vacuum fluctuations conceivably involves a vast overcounting of degrees of freedom. We
might imagine that a more correct counting would yield a much smaller estimate of the
vacuum energy [20, 57, 254, 222], although no reliable calculation has been done as yet.

∙ The absence of manifest SUSY in our world leads us to ask whether the beneficial aspect of
canceling contributions to the vacuum energy could be achieved even without a truly super-
symmetric theory. Kachru, Kumar and Silverstein [139] have constructed such a string the-
ory, and argue that the perturbative contributions to the cosmological constant should vanish
(although the actual calculations are somewhat delicate, and not everyone agrees [136]). If
such a model could be made to work, it is possible that small non-perturbative effects could
generate a cosmological constant of an astrophysically plausible magnitude [116].
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∙ A novel approach to compactification starts by imagining that the fields of the Standard
Model are confined to a (3+1)-dimensional manifold (or “brane”, in string theory parlance)
embedded in a larger space. While gravity is harder to confine to a brane, phenomenologically
acceptable scenarios can be constructed if either the extra dimensions are any size less than
a millimeter [216, 10, 124, 13, 140], or if there is significant spacetime curvature in a non-
compact extra dimension [259, 207, 107]. Although these scenarios do not offer a simple
solution to the cosmological constant problem, the relationship between the vacuum energy
and the expansion rate can differ from our conventional expectation (see for example [32,
142]), and one is free to imagine that further study may lead to a solution in this context
(see for example [231, 40]).

Of course, string theory might not be the correct description of nature, or its current formulation
might not be directly relevant to the cosmological constant problem. For example, a solution may
be provided by loop quantum gravity [98], or by a composite graviton [233]. It is probably safe
to believe that a significant advance in our understanding of fundamental physics will be required
before we can demonstrate the existence of a vacuum state with the desired properties. (Not to
mention the equally important question of why our world is based on such a state, rather than one
of the highly supersymmetric states that appear to be perfectly good vacua of string theory.)

4.3 The anthropic principle

The anthropic principle [25, 122] is essentially the idea that some of the parameters characterizing
the universe we observe may not be determined directly by the fundamental laws of physics, but
also by the truism that intelligent observers will only ever experience conditions which allow for
the existence of intelligent observers. Many professional cosmologists view this principle in much
the same way as many traditional literary critics view deconstruction – as somehow simultaneously
empty of content and capable of working great evil. Anthropic arguments are easy to misuse, and
can be invoked as a way out of doing the hard work of understanding the real reasons behind
why we observe the universe we do. Furthermore, a sense of disappointment would inevitably
accompany the realization that there were limits to our ability to unambiguously and directly
explain the observed universe from first principles. It is nevertheless possible that some features
of our world have at best an anthropic explanation, and the value of the cosmological constant is
perhaps the most likely candidate.

In order for the tautology that “observers will only observe conditions which allow for observers”
to have any force, it is necessary for there to be alternative conditions – parts of the universe, either
in space, time, or branches of the wavefunction – where things are different. In such a case, our
local conditions arise as some combination of the relative abundance of different environments and
the likelihood that such environments would give rise to intelligence. Clearly, the current state
of the art doesn’t allow us to characterize the full set of conditions in the entire universe with
any confidence, but modern theories of inflation and quantum cosmology do at least allow for the
possibility of widely disparate parts of the universe in which the “constants of nature” take on very
different values (for recent examples see [100, 161, 256, 163, 118, 162, 251, 258]). We are therefore
faced with the task of estimating quantitatively the likelihood of observing any specific value of Λ
within such a scenario.

The most straightforward anthropic constraint on the vacuum energy is that it must not be so
high that galaxies never form [263]. From the discussion in Section 2.4, we know that overdense
regions do not collapse once the cosmological constant begins to dominate the universe; if this
happens before the epoch of galaxy formation, the universe will be devoid of galaxies, and thus of
stars and planets, and thus (presumably) of intelligent life. The condition that ΩΛ(𝑧gal) ≤ ΩM(𝑧gal)
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implies
ΩΛ0

ΩM0
≤ 𝑎−3

gal = (1 + 𝑧gal)
3 ∼ 125, (60)

where we have taken the redshift of formation of the first galaxies to be 𝑧gal ∼ 4. Thus, the
cosmological constant could be somewhat larger than observation allows and still be consistent
with the existence of galaxies. (This estimate, like the ones below, holds parameters such as the
amplitude of density fluctuations fixed while allowing ΩΛ to vary; depending on one’s model of the
universe of possibilities, it may be more defensible to vary a number of parameters at once. See
for example [239, 104, 122].)

However, it is better to ask what is the most likely value of ΩΛ, i.e. what is the value that would
be experienced by the largest number of observers [257, 76]? Since a universe with ΩΛ0/ΩM0 ∼ 1
will have many more galaxies than one with ΩΛ0/ΩM0 ∼ 100, it is quite conceivable that most
observers will measure something close to the former value. The probability measure for observing
a value of 𝜌Λ can be decomposed as

𝑑𝒫(𝜌Λ) = 𝜈(𝜌Λ)𝒫*(𝜌Λ)𝑑𝜌Λ, (61)

where 𝒫*(𝜌Λ)𝑑𝜌Λ is the a priori probability measure (whatever that might mean) for 𝜌Λ, and
𝜈(𝜌Λ) is the average number of galaxies which form at the specified value of 𝜌Λ. Martel, Shapiro
and Weinberg [168] have presented a calculation of 𝜈(𝜌Λ) using a spherical-collapse model. They
argue that it is natural to take the a priori distribution to be a constant, since the allowed range of
𝜌Λ is very far from what we would expect from particle-physics scales. Garriga and Vilenkin [105]
argue on the basis of quantum cosmology that there can be a significant departure from a constant
a priori distribution. However, in either case the conclusion is that an observed ΩΛ0 of the same
order of magnitude as ΩM0 is by no means extremely unlikely (which is probably the best one can
hope to say given the uncertainties in the calculation).

Thus, if one is willing to make the leap of faith required to believe that the value of the cosmo-
logical constant is chosen from an ensemble of possibilities, it is possible to find an “explanation”
for its current value (which, given its unnaturalness from a variety of perspectives, seems otherwise
hard to understand). Perhaps the most significant weakness of this point of view is the assumption
that there are a continuum of possibilities for the vacuum energy density. Such possibilities corre-
spond to choices of vacuum states with arbitrarily similar energies. If these states were connected
to each other, there would be local fluctuations which would appear to us as massless fields, which
are not observed (see Section 4.5). If on the other hand the vacua are disconnected, it is hard to
understand why all possible values of the vacuum energy are represented, rather than the differ-
ences in energies between different vacua being given by some characteristic particle-physics scale
such as 𝑀Pl or 𝑀SUSY. (For one scenario featuring discrete vacua with densely spaced energies,
see [23].) It will therefore (again) require advances in our understanding of fundamental physics
before an anthropic explanation for the current value of the cosmological constant can be accepted.

4.4 Miscellaneous adjustment mechanisms

The importance of the cosmological constant problem has engendered a wide variety of proposed
solutions. This section will present only a brief outline of some of the possibilities, along with
references to recent work; further discussion and references can be found in [264, 48, 218].

One approach which has received a great deal of attention is the famous suggestion by Cole-
man [59], that effects of virtual wormholes could set the cosmological constant to zero at low
energies. The essential idea is that wormholes (thin tubes of spacetime connecting macroscopically
large regions) can act to change the effective value of all the observed constants of nature. If
we calculate the wave function of the universe by performing a Feynman path integral over all
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possible spacetime metrics with wormholes, the dominant contribution will be from those config-
urations whose effective values for the physical constants extremize the action. These turn out to
be, under a certain set of assumed properties of Euclidean quantum gravity, configurations with
zero cosmological constant at late times. Thus, quantum cosmology predicts that the constants we
observe are overwhelmingly likely to take on values which imply a vanishing total vacuum energy.
However, subsequent investigations have failed to inspire confidence that the desired properties of
Euclidean quantum cosmology are likely to hold, although it is still something of an open question;
see discussions in [264, 48].

Another route one can take is to consider alterations of the classical theory of gravity. The
simplest possibility is to consider adding a scalar field to the theory, with dynamics which cause the
scalar to evolve to a value for which the net cosmological constant vanishes (see for example [74,
230]). Weinberg, however, has pointed out on fairly general grounds that such attempts are unlikely
to work [264, 265]; in models proposed to date, either there is no solution for which the effective
vacuum energy vanishes, or there is a solution but with other undesirable properties (such as
making Newton’s constant 𝐺 also vanish). Rather than adding scalar fields, a related approach
is to remove degrees of freedom by making the determinant of the metric, which multiplies Λ0

in the action (15), a non-dynamical quantity, or at least changing its dynamics in some way
(see [111, 270, 177] for recent examples). While this approach has not led to a believable solution
to the cosmological constant problem, it does change the context in which it appears, and may
induce different values for the effective vacuum energy in different branches of the wavefunction of
the universe.

Along with global supersymmetry, there is one other symmetry which would work to prohibit
a cosmological constant: conformal (or scale) invariance, under which the metric is multiplied by
a spacetime-dependent function, 𝑔𝜇𝜈 → 𝑒𝜆(𝑥)𝑔𝜇𝜈 . Like supersymmetry, conformal invariance is not
manifest in the Standard Model of particle physics. However, it has been proposed that quantum
effects could restore conformal invariance on length scales comparable to the cosmological horizon
size, working to cancel the cosmological constant (for some examples see [240, 12, 11]). At this
point it remains unclear whether this suggestion is compatible with a more complete understanding
of quantum gravity, or with standard cosmological observations.

A final mechanism to suppress the cosmological constant, related to the previous one, relies
on quantum particle production in de Sitter space (analogous to Hawking radiation around black
holes). The idea is that the effective energy-momentum tensor of such particles may act to cancel
out the bare cosmological constant (for recent attempts see [242, 243, 1, 184]). There is currently
no consensus on whether such an effect is physically observable (see for example [252]).

If inventing a theory in which the vacuum energy vanishes is difficult, finding a model that
predicts a vacuum energy which is small but not quite zero is all that much harder. Along these
lines, there are various numerological games one can play. For example, the fact that supersymme-
try solves the problem halfway could be suggestive; a theory in which the effective vacuum energy
scale was given not by 𝑀SUSY ∼ 103 GeV but by 𝑀2

SUSY/𝑀Pl ∼ 10−3 eV would seem to fit the
observations very well. The challenging part of this program, of course, is to devise such a theory.
Alternatively, one could imagine that we live in a “false vacuum” – that the absolute minimum of
the vacuum energy is truly zero, but we live in a state which is only a local minimum of the energy.
Scenarios along these lines have been explored [250, 103, 152]; the major hurdle to be overcome is
explaining why the energy difference between the true and false vacua is so much smaller than one
would expect.

4.5 Other sources of dark energy

Although a cosmological constant is an excellent fit to the current data, the observations can also
be accommodated by any form of “dark energy” which does not cluster on small scales (so as to
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avoid being detected by measurements of ΩM) and redshifts away only very slowly as the universe
expands [to account for the accelerated expansion, as per equation (33)]. This possibility has been
extensively explored of late, and a number of candidates have been put forward.

Figure 10: Limits from supernovae and large-scale structure data on ΩM and the equation-of-state
parameter 𝑤𝑋 , in a flat universe dominated by matter and dark energy. Thin contours (on the left)
represent limits from CMB and large-scale structure measurements, while thick contours are those from
SNe observations; solid lines apply to models with constant 𝑤𝑋 , while dashed lines apply to models of
dynamical scalar fields. The constraints are portrayed separately on the left, and combined on the right.
From [194].

One way to parameterize such a component 𝑋 is by an effective equation of state, 𝑝𝑋 = 𝑤𝑋𝜌𝑋 .
(A large number of phenomenological models of this type have been investigated, starting with
the early work in [183, 89]; see [182, 218] for many more references.) The relevant range for 𝑤𝑋

is between 0 (ordinary matter) and −1 (true cosmological constant); sources with 𝑤𝑋 > 0 redshift
away more rapidly than ordinary matter (and therefore cause extra deceleration), while 𝑤𝑋 < −1
is unphysical by the criteria discussed in Section 2.1 (although see [42]). While not every source
will obey an equation of state with 𝑤𝑋 = constant, it is often the case that a single effective
𝑤𝑋 characterizes the behavior for the redshift range over which the component can potentially be
observed. Current observations of supernovae, large-scale structure, gravitational lensing, and the
CMB already provide interesting limits on 𝑤𝑋 [209, 56, 249, 93, 54, 102, 197, 260, 194, 261, 77, 202],
and future data will be able to do much better [77, 135, 60, 220]. Figure 10 shows an example, in
this case limits from supernovae and large-scale structure on 𝑤𝑋 and ΩM in a universe which is
assumed to be flat and dominated by 𝑋 and ordinary matter. It is clear that the favored value for
the equation-of-state parameter is near −1, that of a true cosmological constant, although other
values are not completely ruled out.

The simplest physical model for an appropriate dark energy component is a single slowly-rolling
scalar field, sometimes referred to as “quintessence” [73, 266, 190, 208, 267, 120, 94, 92, 91, 86, 43,
132]. In an expanding universe, a spatially homogeneous scalar with potential 𝑉 (𝜑) and minimal
coupling to gravity obeys

𝜑+ 3𝐻�̇�+ 𝑉 ′(𝜑) = 0, (62)

where 𝐻 is the Hubble parameter, overdots indicate time derivatives, and primes indicate deriva-
tives with respect to 𝜑. This equation is similar to (45), with analogous solutions. The Hubble
parameter acts as a friction term; for generic potentials, the field will be overdamped (and thus
approximately constant) when 𝐻 >

√︀
𝑉 ′′(𝜑), and underdamped (and thus free to roll) when

𝐻 <
√︀
𝑉 ′′(𝜑). The energy density is 𝜌𝜑 = 1

2 �̇�
2 + 𝑉 (𝜑), and the pressure is 𝑝𝜑 = 1

2 �̇�
2 − 𝑉 (𝜑),

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2001-1

http://www.livingreviews.org/lrr-2001-1


The Cosmological Constant 35

implying an equation of state parameter

𝑤 =
𝑝

𝜌
=

1
2 �̇�

2 − 𝑉 (𝜑)
1
2 �̇�

2 + 𝑉 (𝜑)
, (63)

which will generally vary with time. Thus, when the field is slowly-varying and �̇�2 ≪ 𝑉 (𝜑), we
have 𝑤 ∼ −1, and the scalar field potential acts like a cosmological constant.

There are many reasons to consider dynamical dark energy as an alternative to a cosmolog-
ical constant. First and foremost, it is a logical possibility which might be correct, and can be
constrained by observation. Secondly, it is consistent with the hope that the ultimate vacuum
energy might actually be zero, and that we simply haven’t relaxed all the way to the vacuum as
yet. But most interestingly, one might wonder whether replacing a constant parameter Λ with a
dynamical field could allow us to relieve some of the burden of fine-tuning that inevitably accom-
panies the cosmological constant. To date, investigations have focused on scaling or tracker models
of quintessence, in which the scalar field energy density can parallel that of matter or radiation,
at least for part of its history [86, 62, 279, 158, 232, 278, 219]. (Of course, we do not want the
dark energy density to redshift away as rapidly as that in matter during the current epoch, or
the universe would not be accelerating.) Tracker models can be constructed in which the vacuum
energy density at late times is robust, in the sense that it does not depend sensitively on the initial
conditions for the field. However, the ultimate value 𝜌vac ∼ (10−3 eV)4 still depends sensitively on
the parameters in the potential. Indeed, it is hard to imagine how this could help but be the case;
unlike the case of the axion solution to the strong-CP problem, we have no symmetry to appeal to
that would enforce a small vacuum energy, much less a particular small nonzero number.

Quintessence models also introduce new naturalness problems in addition to those of a cosmo-
logical constant. These can be traced to the fact that, in order for the field to be slowly-rolling
today, we require

√︀
𝑉 ′′(𝜑0) ∼ 𝐻0; but this expression is the effective mass of fluctuations in 𝜑, so

we have
𝑚𝜑 ∼ 𝐻0 ∼ 10−33 eV. (64)

By particle-physics standards, this is an incredibly small number; masses of scalar fields tend
to be large in the absence of a symmetry to protect them. Scalars of such a low mass give
rise to long-range forces if they couple to ordinary matter; since 𝜑 does couple to gravity, we
expect at the very least to have non-renormalizable interactions suppressed by powers of the
Planck scale. Such interactions are potentially observable, both via fifth-force experiments and
searches for time-dependence of the constants of nature, and current limits imply that there must
be suppression of the quintessence couplings by several orders of magnitude over what would
be expected [47, 53, 125]. The only known way to obtain such a suppression is through the
imposition of an approximate global symmetry (which would also help explain the low mass of
the field), of the type characteristic of pseudo-Goldstone boson models of quintessence, which
have been actively explored [92, 91, 144, 55, 145, 179]. (Cosmological pseudo-Goldstone bosons
are potentially detectable through their tendency to rotate polarized radiation from galaxies and
the CMB [47, 165].) See [150] for a discussion of further fine-tuning problems in the context of
supersymmetric models.

Nevertheless, these naturalness arguments are by no means airtight, and it is worth considering
specific particle-physics models for the quintessence field. In addition to the pseudo-Goldstone
boson models just mentioned, these include models based on supersymmetric gauge theories [31,
170], supergravity [37, 5], small extra dimensions [29, 24], large extra dimensions [28, 22], quantum
field theory effects in curved spacetime [185, 186], and non-minimal couplings to the curvature
scalar [217, 253, 8, 198, 199, 64, 30]. Finally, the possibility has been raised that the scalar field
responsible for driving inflation may also serve as quintessence [90, 191, 192, 106], although this
proposal has been criticized for producing unwanted relics and isocurvature fluctuations [84].
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There are other models of dark energy besides those based on nearly-massless scalar fields. One
scenario is “solid” dark matter, typically based on networks of tangled cosmic strings or domain
walls [255, 229, 39, 27]. Strings give an effective equation-of-state parameter 𝑤string = −1/3,
and walls have 𝑤wall = −2/3, so walls are a better fit to the data at present. There is also
the idea of dark matter particles whose masses increase as the universe expands, their energy thus
redshifting away more slowly than that of ordinary matter [99, 9] (see also [126]). The cosmological
consequences of this kind of scenario turn out to be difficult to analyze analytically, and work is
still ongoing.
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5 Conclusions: The Preposterous Universe

Observational evidence from a variety of sources currently points to a universe which is (at least
approximately) spatially flat, with (ΩM,ΩΛ) ≈ (0.3, 0.7). The nucleosynthesis constraint implies
that ΩB ∼ 0.04, so the majority of the matter content must be in an unknown non-baryonic form.

-20 0 20

0

0.5

1

NowBBNEWPlanck

Figure 11: ΩΛ as a function of the scale factor 𝑎, for a universe in which ΩM0 = 0.3, ΩΛ0 = 0.7. Indicated
are the scale factors corresponding to the Planck era, the electroweak phase transition, and Big Bang
Nucleosynthesis.

Nobody would have guessed that we live in such a universe. Figure 11 is a plot of ΩΛ as
a function of the scale factor 𝑎 for this cosmology. At early times, the cosmological constant
would have been negligible, while at later times the density of matter will be essentially zero and
the universe will be empty. We happen to live in that brief era, cosmologically speaking, when
both matter and vacuum are of comparable magnitude. Within the matter component, there are
apparently contributions from baryons and from a non-baryonic source, both of which are also
comparable (although at least their ratio is independent of time). This scenario staggers under the
burden of its unnaturalness, but nevertheless crosses the finish line well ahead of any competitors
by agreeing so well with the data.

Apart from confirming (or disproving) this picture, a major challenge to cosmologists and
physicists in the years to come will be to understand whether these apparently distasteful aspects of
our universe are simply surprising coincidences, or actually reflect a beautiful underlying structure
we do not as yet comprehend. If we are fortunate, what appears unnatural at present will serve as
a clue to a deeper understanding of fundamental physics.
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