
Published in Image Processing On Line on 2012–06–06.
ISSN 2105–1232 c© 2012 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol.2012.XXXXXXXX

PREPRINT July 9, 2013

A Review of Classic Edge Detectors

Haldo Spontón1, Juan Cardelino2

1 IIE, UdelaR, Uruguay (haldos@fing.edu.uy)
2 IIE, UdelaR, Uruguay (juanc@fing.edu.uy)

Abstract

In this paper some of the classic alternatives for edge detection in digital images are studied.
The main idea behind edge detection is to find where abrupt changes in the intensity of an image
have occurred. The first family of algorithms reviewed in this work uses the first derivative to
find the changes of intensity, such as Sobel, Prewitt and Roberts. In the second reviewed family,
second derivatives are used, for example in algorithms like Marr-Hildreth and Haralick.
Results obtained from a qualitative point of view (perceptual) and from a quantitative point
of view (number of operations, execution time) are compared, considering different ways to
convolve an image with a kernel (step required in some of the algorithms).

Source Code

For all the algorithms reviewed, an open source C implementation is provided that can be down-
loaded from the IPOL publication of this article. An online demonstration1 is also available,
where you can test and reproduce our results.

1 Introduction

The basic idea of edge detection algorithms is to detect abrupt changes in image intensity. Detecting
those changes can be accomplished using first or second order derivatives.

In the 70’s, edge detection methods were based on using small operators (such as Sobel masks),
attempting to compute an approximation of the first derivative of the image [1]. Next section
describes such algorithms and serves as an introduction to a more sophisticated analysis of the edge
detection process.

In 1980 Marr and Hildreth [2] argued that intensity changes are not independent of image scale, so
edge detection requires the use of different size operators. They also argued that a sudden intensity
change will be seen as a peak (or trough) in the first derivative or, equivalently, as a zero crossing in the
second derivative. This algorithm is presented in Section 3. Haralick’s algorithm [3] is an alternative
approach based on the second derivative which is also reviewed in Section 3. This algorithm has the
particularity of proposing a model to locally approximate the image around a point; then, using this
model, an approximation to the second derivative of the image can be calculated analytically and
finding edges is achieved by imposing a condition over the model parameters.

Along with this paper, a detailed and well commented source code is presented, which implements
the described algorithms. In section 4 some common mathematical developments are presented.
Results of the implemented algorithms are presented in Section 5, along with examples to compare
their performance. Conclusions are detailed in Section 6.

1http://dev.ipol.im/~haldos/ipol_demo/xxx_edges/

1

http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.5201/ipol.2012.XXXXXXXX
http://dev.ipol.im/~haldos/ipol_demo/xxx_edges/
http://dev.ipol.im/~haldos/ipol_demo/xxx_edges/

2 Algorithms based on first derivative

Algorithms based on first derivative studied in this paper have a common scheme, with the only
difference in the type of filtering. Figure 1 shows a block diagram of these algorithms.

Input image
(grayscale)

Filtering to approximate
first derivative

Computation of
gradient magnitude.

Thresholding
Output image
(binary)

partial derivatives approximation gradient magnitude image

Figure 1: Block diagram of first derivative edge detection algorithms.

The usual tool to find the amplitude and direction of changes in intensity of an image f is the
gradient operator (denoted as ∇), defined as the vector

∇f =

[
fx
fy

]
=

∂f

∂x
∂f

∂y

 . (2.1)

The magnitude (M) and direction (α) of the gradient vector ∇f at location (x, y) are calculated
as M(x, y) =

√
f 2
x + f 2

y

α(x, y) = tan−1
(
fy
fx

)
.

(2.2)

The direction of an edge at an arbitrary location (x, y) of the image is orthogonal to the direction
α(x, y) of the gradient vector.

To obtain the gradient, the partial derivatives ∂f/∂x and ∂f/∂y need to be computed at every
pixel in the image. When dealing with digital images, numerical approximations of the partial
derivatives are required, calculated in a neighborhood of each point. In the following, the methods
of Roberts, Prewitt and Sobel will be studied, whose main difference is how they perform this
calculation.

2.1 The Roberts operators

The most usual approach to approximate the first derivative is to take the Taylor expansion of first
order with a small h. Thus f ′(x) is computed as

f ′(x) ' f(x+ h)− f(x)

h
. (2.3)

The image is composed by discrete points of coordinates (i, j), so taking x = ih and y = jh, the first
derivative of the image is approximated, based on the intensity values at points of the image, as2:

fx =
∂f(x, y)

∂x
∼= f(i+ 1, j)− f(i, j) (2.4)

and

fy =
∂f(x, y)

∂y
∼= f(i, j + 1)− f(i, j). (2.5)

2This approximation considerates h = 1, so the partial derivatives can be computed as intensity difference between
neighbor pixels.

2

Equations 2.4 and 2.5 can be implemented for all values of x and y by filtering the image f(x, y)
with the 1-D masks in Figure 2. The Roberts operators are one of the earliest attempts to use 2-D
masks for this purpose. These operators are based on computing the diagonal diferences implemented
by filtering an image with the masks in Figure 3. By convention in these figures, x-coordinates grow
from left to right and y-coordinates grow top-down. It is also usual to scale the mask values, in order
to have unit derivative when unitary steps in intensity occurs.

-1

1
-1 1

Figure 2: One-dimensional masks
used to implement equations 2.4
and 2.5.

-1 0

0 1

0 -1

1 0

Figure 3: Roberts
cross-gradient 2-D
masks.

Figure 2 shows the simplest way to compute derivatives, but Roberts [5] proposes to compute
them as shown in Figure 3. In order to use the same convolution code for all algorithms, our
implementation uses 3× 3 matrices, adding a row and a column of zeros to the matrices in Figure 3,
what produces the same result.

2.2 The Prewitt operators

Masks of size 2 × 2, although conceptually simple, are not symmetrical with respect to the central
points. Having symmetrical edges is a desirable property and can only be achieved with oddly sized
masks, the smallest of them being the 3x3. These masks provide more information to find the
direction of the edges, because they take into account information on opposite sides of the central
point.

The simplest digital approximation to the partial derivatives using masks of size 3×3 are obtained
by taking the difference between the third and first rows (or columns) of the 3 × 3 region. The
difference between the third and first rows approximates the derivative in the x-direction, and the
difference between the third and first columns approximates the derivative in the y-direction. These
approximations can be implemented by filtering the image with the two masks in Figure 4. These
masks are called Prewitt operators [6].

−1
3
−1

3
−1

3

0 0 0

1
3

1
3

1
3

−1
3

0 1
3

−1
3

0 1
3

−1
3

0 1
3

Figure 4: Normalized Prewitt
2-D masks of size 3× 3.

These masks can be obtained (beyond normalization) as the convolution of a horizontal derivation
mask [−1 0 1] with a vertically moving average [1 1 1]T , and vice versa. Hence, these operators have
smoothing properties in the direction orthogonal to the gradient.

2.3 The Sobel operators

A slight variation of the Prewitt operators uses more weight on the central coefficients of the dif-
ference. It can be shown that using double weight in the center location provides better image
smoothing. This variation is implemented using the masks in Figure 5. These operators are called
Sobel operators.

3

Sobel masks can be seen (beyond normalization) as the convolution of a horizontal derivation mask
[−1 0 1] with a vertical smoothing filter [1 2 1]T (closer to a Gaussian response than Prewitt), and
vice versa. Hence, these operators have better smoothing properties, as mentioned in the preceding
paragraph.

−1
4
−1

2
−1

4

0 0 0

1
4

1
2

1
4

−1
4

0 1
4

−1
2

0 1
2

−1
4

0 1
4

Figure 5: Sobel 2-D masks of
size 3× 3.

The computational difference between Prewitt and Sobel masks is not important, thus It is
preferable to use Sobel operators, because edges are better localized, and their filter are also less
aliased, because of the weighted shape of [1 2 1].

2.4 Computation of the edges

As mentioned before, edges can be seen as abrupt changes in intensity, i.e. higher values of gradient.
An example of this behavior is shown in Figure 6, where gradient was computed using the Sobel
operators.

Then, once the respective operators are applied, an approximation of the gradient (stored in two
matrices) is obtained, containing the approximation of the partial derivatives fx and fy. Gradient
magnitude image M is calculated using the equation 2.2 (Figure 6(c)).

Finally, the edges image is obtained by thresholding the gradient magnitude image, i.e. for pixel
at position i in the image compute

edges[i, j] =

{
1, if M [i, j] ≥ th

0, if M [i, j] < th

approximate where th is the threshold. A black and white image is obtained, in which edge points
are indicated in white (see Figure 7).

Note that different thresholds lead to different results. More and thicker edges for small thresholds
values, and the opposite for large thresholds values. This threshold, and the others mentioned below,
are defined as a percentage of the maximum value of the gradient image3. The advantage of this is
to adapt the threshold to the dynamic range of the image. Therefore, the parameter threshold in
the algorithms takes values between 0 and 1

2.5 Pseudo-code

The pseudo-code of implemented algorithms is shown in Algorithm 1.

3This means no loss of generality in applying the threshold, and makes the threshold adapt to the behavior of
different images.

4

(a) Grayscale image.

(b) Horizontal derivative fx. (c) Vertical derivative fy. (d) Gradient module image

M =
√
f2x + f2y .

Figure 6: Example computation of the gradient. Original image and gradient image computed using
Sobel operators (Operators in Figure 5).

(a) th = 0.1 ∗max(M). (b) th = 0.2 ∗max(M). (c) th = 0.4 ∗max(M).

Figure 7: Thresholded images. Different values of the threshold applied to the magnitude of the
gradient.

5

Algorithm 1: First derivative edge detection algorithms.

Require: input image, threshold th.
1: im← input image
2: Define operatorx and operatory {Roberts, Prewitt or Sobel.}
3: gx ← convolution(im,operatorx)
4: gy ← convolution(im,operatory)
5: maxM ← 0
6: for all pixel i in image do
7: M [i]←

√
g2x + g2y {Gradient magnitude.}

8: if M [i] > maxM then
9: maxM ←M [i]

10: end if
11: end for
12: for all pixel i in image do
13: if M [i] ≥ th×maxM then
14: imOUT [i]← 255
15: else
16: imOUT [i]← 0
17: end if
18: end for
19: return output image ← imOUT

3 Algorithms based on second derivative

The edge detection methods discussed in the previous section are simply based on filtering the image
with different masks, without taking into account the characteristics of the edges or noise in the
image.

The two algorithms presented in this section (Marr-Hildreth [2] and Haralick [3]) are based on
the second derivative of the image, and both take steps to reduce noise before detecting edges in the
image.

3.1 The Marr and Hildreth algorithm

The Marr-Hildreth algorithm is a method of detecting edges in digital images. It is based on finding
zero crossing points of the second derivative of the image. This can be done in several ways. Two
different ways of doing this are implemented in this work (see block diagram in Figure 8): convolving
the image with a Gaussian kernel and then approximating the second derivative (Laplacian) with a
3x3 kernel, or convolving the image with a kernel calculated as the Laplacian of a Gaussian function.
There are more ways to do so, for example, using recursive Gaussian filters [7].

Input image
(grayscale)

Output image
(binary)

Convolution with
Gaussian kernel

Convolution with
Laplacian operator

Convolution with
"Laplacian of a Gaussian" kernel

Zero-Crossing
(with threshold)

smoothed image
approximation to the

laplacian of smoothed image

Figure 8: Block diagram of Marr-Hildreth algorithm.

6

The algorithm is divided in two steps, each one described later:

1. Convolution of the image with:

• a Laplacian of Gaussian (LoG) kernel, (or)

• a Gaussian kernel and then a Laplacian operator.

2. Search of zero crossing points in the filtered image.

Some auxiliary functions are needed such as Gaussian kernel and Laplacian of a Gaussian kernel
generation, and 2-D convolution of an image with a given kernel, with different boundary conditions.
These operations will be discussed in detail in section 4.

3.1.1 Gaussian and LoG kernels

The Marr-Hildreth algorithm consists on convolving the input image f(x, y) with a LoG kernel;

g(x, y) = [∇2G(x, y)] ? f(x, y), (3.1)

and then finding the zero crossings of g(x, y) to determine the location of edges in f(x, y). Because
these are linear processes, equation 3.1 can be written also as

g(x, y) = ∇2[G(x, y) ? f(x, y)] (3.2)

indicating that the image can be smoothed with a Gaussian filter first, and then compute the Lapla-
cian of the result4 .

The Marr-Hildreth edge-detection algorithm may be summarized as follows:

1. Filter the input image with a n×n Gaussian lowpass filter obtained by sampling the Gaussian
kernel (see equation 4.1).

2. Compute the Laplacian of the image resulting from step 1, using, for example, the 3×3 mask5:1 1 1
1 −8 1
1 1 1

3. Find the zero crossings of the image from step 2.

3.1.2 Zero crossing

A zero crossing at pixel p implies that the signs of at least two opposite neighboring pixels are
different. There are four cases to test: left/right, up/down, and the two diagonals. In this case a
threshold is used, so that not only the signs of the opposite pixels must differ, also their difference
in absolute value must be greater than a certain threshold.

The zero-crossing threshold (thZC) is given as a percentage of the maximum value maxL of
the Laplacian image (both Gaussian and LoG kernels). Each pixel p has eight neighbors, named
according to their position as follows.

4The difference between these approaches lies in the compromise between the accuracy in the calculation and the
computational cost (see Section 4.1.3).

5Steps 1 and 2 can be merged into one, using a n× n LoG lowpass filter obtained by sampling equation 4.7.

7

pup,left pup,middle pup,right
↖ ↑ ↗

pmiddle,left ← p → pmiddle,right
↙ ↓ ↘

pdown,left pdown,middle pdown,right.

Then a pixel p is considered as edge pixel if any of the following conditions is true (for simplicity
the Laplacian image is denoted as L):

• (sign(L[pup,left]) 6= sign(L[pdown,right]) & |L[pup,left]− L[pdown,right]| > thZC ∗maxL

• (sign(L[pup,middle]) 6= sign(L[pdown,middle]) & |L[pup,middle]− L[pdown,middle]| > thZC ∗maxL

• (sign(L[pdown,left]) 6= sign(L[pup,right]) & |L[pdown,left]− L[pup,right]| > thZC ∗maxL

• (sign(L[pmiddle,left]) 6= sign(L[pmiddle,right]) & |L[pmiddle,left]− L[pmiddle,right]| > thZC ∗maxL.

Zero crossing detection is the key feature of the Marr-Hildreth edge detection method. The
technique presented in the previous paragraph is attractive for its simplicity of implementation and
its low computational cost. In general it is a technique that yields good results, but if more precision
in finding the zero crossings is needed, more advanced methods for finding zero crossings with subpixel
accuracy could be used (e.g. marching squares [8]).

3.1.3 Pseudo-code

The pseudo-code of Marr-Hildreth’s algorithm is shown in Algorithm 2.

3.2 The Haralick algorithm

In this section the original work of Haralick [3] on edge detection is presented in detail. The main idea
behind this algorithm is identical to that of the previous method: find zeros in the second derivative
of the image. In this method, however, the input image is smoothly approximated through local
bi-cubic polynomial fitting. Then, when calculating the second derivative analytically, it is possible
to find an equivalent expression to find the zeros of the second derivative of the polynomial as a
function of its parameters.

3.2.1 Bi-cubic polynomial fitting

Here, the interpolation method used in the original work of Haralick is presented, although there are
other options to do this [9].

The surrounding neighborhood of a point (x, y) in the image f is approximated using the following
bi-cubic polynomial

f(x, y) = k1 + k2x+ k3y + k4x
2 + k5xy + k6y

2 + k7x
3 + k8x

2y + k9xy
2 + k10y

3. (3.3)

where (x, y) are the offsets of each neighborhood point relative to the center point (e.g. in a neigh-
borhood of size 5× 5, x and y take values between −2 and 2).

To solve this problem, it is necessary to take more neighbors than coefficients to be adjusted.
As there are 10 coefficients to compute, the smallest neighborhood of odd size that accomplishes
this has size 5 × 5. Having 10 coefficients and 25 data points leads to an overdetermined system,
which can be solved using least squares or any other data fitting technique. In Haralick’s work, this
approximation is computed using least squares.

8

Algorithm 2: Marr-Hildreth edge detection algorithm.

Require: input image, standard deviation σ, kernel size n and zero-crossing threshold tzc.
1: im← input image
2: kernel← generate kernel(n,σ) {Generated Gaussian or LoG kernel}
3: imSMOOTHED ← convolution(im,kernel)
4: if Gaussian kernel then
5: Define Laplacian operator laplacian
6: imLAPL ← convolution(im,laplacian)
7: else
8: imLAPL ← imSMOOTHED

9: end if
10: maxL ← 0
11: for all pixel i in image imLAPL do
12: if imLAPL[i] > maxL then
13: maxL ← imLAPL[i]
14: end if
15: end for
16: for all pixel i in image imLAPL, except borders do
17: for all pair (p1, p2) of opposite neighbors of p in imLAPL do
18: if (sign(imLAPL[p1]) 6= sign(imLAPL[p2])) and (|imLAPL[p1]− imLAPL[p2]| > thZC) then
19: imOUT [i]← 255
20: else
21: imOUT [i]← 0
22: end if
23: end for
24: end for
25: return output image ← imOUT

Consider 25 points in a small neighborhood of a point (x, y) in the image. This gives us an equal
number of equations to find 10 coefficients. As mentioned before this leads to an overdetermied
system which can be solved by least squares. By substituting the 25 data points into the polynomial
equation (3.3), the following system of equations is obtained,

f1 = f(x1, y1) = k1 + k2x1 + k3y1 + k4x
2
1 + k5x1y1 + k6y

2
1 + k7x

3
1 + k8x

2
1y1 + k9x1y

2
1 + k10y

3
1

f2 = f(x2, y2) = k1 + k2x2 + k3y2 + k4x
2
2 + k5x2y2 + k6y

2
2 + k7x

3
2 + k8x

2
2y2 + k9x2y

2
2 + k10y

3
2

...
f25 = f(x25, y25) = k1 + k2x25 + k3y25 + k4x

2
25 + k5x25y25 + k6y

2
25 + k7x

3
25 + k8x

2
25y25 + k9x25y

2
25 + k10y

3
25.

Using matrix notation, the system can be rewritten as
f1
f2
...
f25

 =

1 x1 y1 x21 x1y1 y21 . . . y31
1 x2 y2 x22 x2y2 y22 . . . y32
...

...
...

...
...

...
. . .

...
1 x25 y25 x225 x25y25 y225 . . . y325

×

k1
k2
...
k10

⇒ f = Ak.

Then, the least squares problem can be approximately solved by computing the pseudo inverse
of A,

(ATA)−1AT f = k ⇒ k = Bf .

9

B is a 10× 25 matrix,
b1,1 b1,2 · · · b1,25
b2,1 b2,2 · · · b2,25

...
...

. . .
...

b10,1 b10,2 · · · b10,25

×

f1
f2
...
f25

 =

k1
k2
...
k10

 .
For each coefficient (i from 1 to 10),

ki = bi,1f1 + bi,2f2 + bi,3f3 + · · ·+ bi,25f25 (3.4)

where6

bi =

bi,1 bi,2 · · · bi,5
bi,6 bi,7 · · · bi,10
...

...
. . .

...
bi,21 bi,22 · · · bi,25

 . (3.5)

Using equation 3.4 and the masks given in Table 3.1, it is possible to compute the coefficients
k1 . . . k10 for all the points in the image. The elements of the mask bi are the elements of the i-th
row of B = (ATA)−1AT .

In order to speed up the calculations, the solution is computed by convolving the image with
some precomputed masks in Table 3.1, to find the coefficients k1 . . . k10 at each point (x, y).

3.2.2 Analytical calculation of the second derivative

The neighborhood of each point of the image is approximated using the bi-cubic polynomial expres-
sion in equation 3.3. If just the first order terms of this polynomial are taken, the gradient angle θ,
defined with negative x-axis, can be approximated as

sin(θ) = − k2√
k22 + k23

cos(θ) = − k3√
k22 + k23

. (3.6)

Now substituting the variables x and y in polar form as

x = ρ cos θ and y = ρ sin θ

in the bi-cubic polynomial, we obtain

fθ(ρ) = C0 + C1ρ+ C2ρ
2 + C3ρ

3, (3.7)

where

C0 = k1

C1 = k2 sin(θ) + k3 cos(θ)

C2 = k4 sin2(θ) + k5 sin(θ) cos(θ) + k6 cos2(θ)

C3 = k7 sin3(θ) + k8 sin2(θ) cos(θ) + k9 sin(θ) cos2(θ) + k10 cos3(θ). (3.8)

The derivatives are obtained as follows:

f ′θ(ρ) = C1 + 2C2ρ+ 3C3ρ
2

f ′′θ (ρ) = 2C2 + 6C3ρ

f ′′′θ (ρ) = 6C3.

6In this matrix the coefficients bi are simply spatially arranged with the same topology as the pixels they multiply.

10

(a) b1.

425 275 225 275 425
275 125 75 125 275
225 75 25 75 225
275 125 75 125 275
425 275 225 275 425

(b) b2.

-2260 -620 0 620 2260
-1660 -320 0 320 1660
-1460 -220 0 220 1460
-1660 -320 0 320 1660
-2260 -620 0 620 2260

(c) b3.

2260 1660 1460 1660 2260
620 320 220 320 620
0 0 0 0 0

-620 -320 -220 -320 -620
-2260 -1660 -1460 -1660 -2260

(d) b4.

1130 620 450 620 1130
830 320 150 320 830
730 220 50 220 730
830 320 150 320 830
1130 620 450 620 1130

(e) b5.

-400 -200 0 200 400
-200 -100 0 100 200

0 0 0 0 0
200 100 0 -100 -200
400 200 0 -200 -400

(f) b6.

1130 830 730 830 1130
620 320 220 320 620
450 150 50 150 450
620 320 220 320 620
1130 830 730 830 1130

(g) b7.

-8260 -2180 0 2180 8260
-6220 -1160 0 1160 6220
-5540 -820 0 820 5540
-6220 -1160 0 1160 6220
-8260 -2180 0 2180 8260

(h) b8.

5640 3600 2920 3600 5640
1800 780 440 780 1800

0 0 0 0 0
-1800 -780 -440 -780 -1800
-5640 -3600 -2920 -3600 -5640

(i) b9.

-5640 -1800 0 1800 5640
-3600 -780 0 780 3600
-2920 -440 0 440 2920
-3600 -780 0 780 3600
-5640 -1800 0 1800 5640

(j) b10.

8260 6220 5540 6220 8260
2180 1160 820 1160 2180

0 0 0 0 0
-2180 -1160 -820 -1160 -2180
-8260 -6220 -5540 -6220 -8260

Table 3.1: Masks to compute the coefficients of the bicubic fit.

11

Then, the condition that the second derivative is equal to zero becomes

f ′′θ (ρ) = 2C2 + 6C3ρ = 0 ⇒
∣∣∣∣ C2

3C3

∣∣∣∣ < ρ0, (3.9)

where ρ0 is a fixed threshold, passed as an argument to the algorithm. Ideally, the polynomial
function should be zero at ρ = 0, but this condition is relaxed7, allowing the polynomial to become
zero in a neighborhood of ρ = 0 (ρ ≤ ρ0). This parameter must be greater than zero and and less
than 1√

2
. Its optimal value is between 0.4 and 0.6.

The other condition required is that the third derivative to be negative, i.e.

f ′′′θ (ρ) = 6C3 < 0 ⇒ C3 < 0. (3.10)

Given the direction defined by θ, with ρ > 0, an edge will always be an ascending step. This indicates
that the first derivative in this direction has a maximum and that the second derivative has a zero
crossing with negative slope. That is, the third derivative less than zero.

3.2.3 Algorithm

The Haralick edge detection algorithm is summarized in the following 4 steps:

1. For each pixel in the image, find the coefficients k1 . . . k10, as shown in section 3.2.1.

2. Compute sin(θ) and cos(θ) (equations 3.6).

3. Compute C2 and C3 (equations 3.8).

4. If
∣∣∣ C2

3C3

∣∣∣ < ρ0 and C3 < 0, then that point is an edge point.

3.2.4 Pseudo-code

The pseudo-code of Haralick’s algorithm is shown in Algorithm 3.

4 Common Mathematical Operations

All algorithms implemented use some common mathematical operations that are independent of
the algorithms themselves. These operations, although basic, have a great impact on the algorithm
outcome, and thus they need to be implemented with care. In this section those operations are
reviewed.

4.1 Kernel generation

Some of the algorithms presented above require the use of a Gaussian kernel or a LoG kernel. These
kernels are generated by sampling the corresponding analytical function, which in each case depends
on the standard deviation σ of the Gaussian function. The result is an array of size n by n.

7This polynomial being zero at ρ = 0 means that the edge passes right through the exact coordinates of the pixel.
Since the edge may be slightly displaced, other ρ values are permitted as long as the edge is inside the pixel, and for
this, the maximum distance from the center of the pixel may be 1/

√
2.

12

Algorithm 3: Haralick edge detection algorithm.

Require: input image (width w, height h), edge point condition threshold ρ0.BibTex — RIS —
RefWorks

1: im← input image
2: Define the ten 5x5 masks (mask1 . . .mask10) used to determine coefficients k1 to k10 {See Table

3.1.}
3: for all pixel i in image im do
4: neighbors← 5× 5 neighborhood of pixel i in image im
5: for j = 1 to 10 do
6: kj ←

∑
n,m neighbors[n,m]maskj[n,m]

7: end for
8: C2 ← k22k4+k2k3k5+k

2
3k6

k22+k
2
3

9: C3 ← k32k7+k
2
2k3k8+k2k

2
3k9+k

3
3k10

(
√
k22+k

2
3)

3

10: if |C2/3C3| ≤ ρ0 and C3 < 0 then
11: imOUT [i]← 255
12: else
13: imOUT [i]← 0
14: end if
15: end for
16: return output image ← imOUT

4.1.1 Gaussian kernel

Gaussian kernel is generated by sampling the 2-D Gaussian function (centered at (0, 0))

G(x, y) =
1√

2πσ2
e−

x2+y2

2σ2 (4.1)

where σ is the standard deviation (sometimes σ is called the scale space constant).
The size of the kernel n and the standard deviation of the exponential function σ are both input

parameters, but these are not strictly independent of each other. A value of n large enough is needed
to ensure that no information is lost when creating the kernel G. To ensure this, n is taken equal to
the first odd integer greater than 6σ. Larger values of n do not add more significant samples of G,
and increase the number of operations in the convolution.

Figure 9 shows a Gaussian kernel, generated with σ = 4 and n = 25 (first odd integer greater
than 6σ = 24).

4.1.2 LoG kernel

The Laplacian of Gaussian ∇2G(x, y) can be obtained analyically first and then a discrete mask can
be computed by sampling the analytical kernel. Using this kernel for edge detection involves only
one convolution with the input image (unlike the case of Gaussian kernel, in which two convolutions
have to be performed, one with the kernel and another with the Laplacian operator), but the kernel
support must be greater in order to obtain the same precision.

LoG
4
= ∇2G(x, y) =

∂2

∂2x
G(x, y) +

∂2

∂2y
G(x, y) (4.2)

We first compute

∂

∂x
G(x, y) = − 1√

2πσ2

x

σ2
e−(x

2+y2)/2σ2

, (4.3)

13

Figure 9: Gaussian kernel, σ = 4, n = 25. Is easy
to see that the selected value of n is large enough to
have a good approximation of the Gaussian func-
tion in the kernel.

∂

∂y
G(x, y) = − 1√

2πσ2

y

σ2
e−(x

2+y2)/2σ2

, (4.4)

∂2

∂2x
G(x, y) =

1√
2πσ2

x2 − σ2

σ4
e−(x

2+y2)/2σ2

, (4.5)

∂2

∂2y
G(x, y) =

1√
2πσ2

y2 − σ2

σ4
e−(x

2+y2)/2σ2

. (4.6)

Therefore we obtain

LoG(x, y) =
1√

2πσ2

x2 + y2 − 2σ2

σ4
e−(x

2+y2)/2σ2

. (4.7)

Now the LoG kernel is generated by sampling the function defined in equation 4.7. Figure 10
shows a LoG kernel, generated using the values σ = 4 and n = 31.

4.1.3 Gaussian and LoG functions comparison

As mentioned before, the size n of the kernel and the standard deviation σ of the exponential func-
tion are not independent of each one. This is because the function LoG has wider support than
the Gaussian function (i.e. LoG function has a slower decay), so a greater value of n is needed to

Figure 10: Laplacian of a Gaussian kernel, σ = 4,
n = 31. The selected value of n is sufficient to have
a good approximation of the LoG function in the
kernel, but is greater than in the case of Gaussian
kernel.

14

Figure 11: Comparison of the Gaussian and LoG
functions.

generate a correctly sampled LoG kernel than in the case of the Gaussian kernel, with the same σ.

Figure 11 shows both functions generated with the same value of σ. Is clearly required a larger
kernel size in the case of the LoG function (approximately 18% more). For example, using σ = 4,
the optimum value for n in the case of the Gaussian function is the first odd integer greater than 6σ,
which is 25, and for the case of LoG function, would be 29.

4.2 Convolution

When making a convolution, it is necessary to define the boundary conditions used to calculate such
convolution around the edges of the image, and to get a valid output the same size as input image.
In this paper, two methods were implemented: zero-padding and boundary reflection. Zero-padding
implies complete the borders of the image with many zero valued pixels as needed (depending on the
size of the convolution kernel). Reflection involves completing those pixels with the corresponding
symmetric pixel value relative to the edge of the image. Direct convolution is not the only way of
filtering an image with a kernel. There are other methods such as FFT convolution or recursive
filtering.

5 Results

The results of each algorithm are first shown for a simple image composed of a white square on a
black background, see Figure 12.

Figure 12: Test image 1: white square on black background (127×127 pixels).

15

Figures 13(a) to 13(f) show the output of each algorithm (including execution times8).

(a) Roberts. th = 0.1.
Exec-time : 0.02s.

(b) Prewitt. th = 0.1.
Exec-time : 0.02s.

(c) Sobel. th = 0.1.
Exec-time : 0.02s.

(d) Marr-Hildreth
(Gaussian).

σ = 1.5, n = 13,
thZC = 0.1.

Exec-time : 0.03s.

(e) Marr-Hildreth
(LoG). σ = 1.5,

n = 17, thZC = 0.1.
Exec-time : 0.05s.

(f) Haralick. ρ = 0.4.
Exec-time : 0.04s.

Figure 13: Results of the algorithms using the Figure 12 as input image. The first three ((a), (b)
and (c)) correspond to the first derivative methods (Roberts, Prewitt and Sobel), then the following
two ((d) and (e)) are from the Marr-Hildreth algorithm using Gaussian and LoG kernels, and the
last one ((f)) corresponds to the Haralick algorithm. Note the rounded corners on the Marr-Hildreth
results, due to Gaussian blur.

In this simple case, the first derivative edge detection algorithms run better and faster. All
algorithms show consistent results. Thicker edges appear in the results of Haralick, due to smooth
image model that is imposed in this algorithm.

Now the performance of each algorithm is analyzed using a natural image shown in Figure 14.
First the results of the first derivative edge detection algorithms are shown Figures 15(a) to 15(c).
Figures 15(d) and 15(e) show the results obtained using the Marr-Hildreth algorithm (both Gaussian
and LoG kernels), and Figure 15(f) shows the results obtained using the Haralick algorithm. Table
5.1 shows the execution time for each of the algorithms.

In this example the difference in performance between the first derivative edge detection algo-
rithms and the second derivative ones is more significative. It can be seen in Figure 16 an area
of interest of the image, enlarged to have a better view of the detail. Note that none of the first
derivative methods (even with a loose threshold) detect the lower edge of the blade (which is shaded).
Neither the Haralick algorithm is able to detect it. However, the Marr-Hildreth algorithm detects it,
using either a Gaussian or a LoG kernel.

Another observation is that edges detected by Haralick’s algorithm appear to be thicker than
those detected with other ones. This may be due the regularity that Haralick assumes.

8Running on Intel Core i3 CPU (2.53GHz), 3 Gb RAM, standard laptop. Note that the execution time of the
algorithms Roberts, Prewitt and Sobel are the same, because they run simultaneously.

16

Figure 14: Test image 2: windmill (1000×563 pixels).

(a) Roberts. th = 0.1. Exec-time : 0.55s. (b) Prewitt. th = 0.1. Exec-time : 0.55s.

(c) Sobel. th = 0.1. Exec-time : 0.55s. (d) Marr-Hildreth (Gaussian). σ = 3, n = 25,
thZC = 0.07. Exec-time : 1.05s.

(e) Marr-Hildreth (LoG). σ = 3, n = 29,
thZC = 0.13. Exec-time : 1.44s.

(f) Haralick. ρ = 0.4. Exec-time : 0.93s.

Figure 15: Results of the first derivative, Marr-Hildreth and Haralick’s algorithms using Figure 14
as input image.

17

Algorithm Execution time (s)

Roberts, Prewitt and Sobel 0.550 s

Marr-Hildreth (Gaussian) 1.050 s

Marr-Hildreth (LoG) 1.440 s

Haralick 0.930 s

Table 5.1: Execution time of the algorithms (including I/O) using Figure 14 as input image
(1000×563 pixels, 3 channels).

5.1 Further examples

Further examples obtained with the implemented algorithms are shown in Figures 17 and 18. More
examples can be found in the online demo9.

Some observations:

• The first derivative algorithms, although they work properly and quickly, have some problems
like discontinuity of the edges. They are also very affected by noise in images, appearing
unwanted isolated edges (More sophisticated methods help to avoid and improve this, e.g.
Canny edge detector [10]).

• The Marr-Hildreth algorithm (in its two versions) achieved interesting results in the edge detail.
This algorithm provides a first attempt to obtain regular edges, because of the filtering with a
Gaussian kernel. This behavior can be seen in Lena’s hair (Figure 17), or inside the oranges
(example 18).

• As mentioned earlier, Haralick’s algorithm is the first to assume higher degree of regularity
in the neighborhood of a pixel (third order). This causes thicker edges, as shown in both
examples. But, note that some edges are only detected with this algorithm, e.g. the lower
edges of the oranges, which are in the shadow, in Figure 18. These edges are quite smooth, so
that the Haralick model is well suited to them, and they do not represent an abrupt change in
the intensity to be detected by other methods.

5.2 Video

As supplementary material, there are videos testing the frame by frame application of these algo-
rithms.

9http://dev.ipol.im/~haldos/ipol_demo/xxx_edges/

18

http://dev.ipol.im/~haldos/ipol_demo/xxx_edges/
http://dev.ipol.im/~haldos/ipol_demo/xxx_edges/

(a) Original.

(b) Roberts. (c) Prewitt.

(d) Sobel. (e) Marr-Hildreth (Gaussian).

(f) Marr-Hildreth (LoG). (g) Haralick.

Figure 16: Results of the algorithms using Figure 14 as input image, enlarging an interesting area.

19

(a) Original.

(b) Roberts. th = 0.1. (c) Prewitt. th = 0.1. (d) Sobel. th = 0.1.

(e) Marr-Hildreth (Gaussian).
σ = 2, n = 21, thZC = 0.15.

(f) Marr-Hildreth (LoG). σ = 2,
n = 25, thZC = 0.15.

(g) Haralick. ρ = 0.35.

Figure 17: Example: Lena (512×512 pixels).

20

(a) Original.

(b) Roberts. th = 0.1 (c) Prewitt. th = 0.1 (d) Sobel. th = 0.1

(e) Marr-Hildreth (Gaussian).
σ = 2, n = 21, thZC = 0.15.

(f) Marr-Hildreth (LoG). σ = 2,
n = 25, thZC = 0.15.

(g) Haralick. ρ = 0.4.

Figure 18: Example: Oranges (536×480 pixels).

21

6 Conclusions

Some of the most traditional methods of edge detection in digital images were discussed and carefully
implemented in this work. The implemented algorithms were tested with synthetic and real images,
obtaining generally the expected results, taking into account the limitations of these methods.

The first derivative algorithms (Roberts, Prewitt and Sobel) have the advantage of having a very
simple implementation. Also they run extremely fast, because they only consists of a convolution
with a very small kernel (2×2 or 3×3 pixels). The results obtained with these methods are quite
good, considering their simplicity, but they have problems such as noise and discontinuity of the
edges. Gaussian filtering would reduce noise, alleviate (but not solve) the discontinuity of the edges,
and would make more fair the comparison with the second derivative methods.

The second derivative algoritms (Marr-Hildreth & Haralick) involve several more operations, since
convolutions with larger kernels are performed. In real images, they have better behavior than first
derivative algorithms.

Comparing the two versions of the Marr-Hildreth algorithm, the version with Gaussian kernel
runs significative faster that the LoG one. The latter, while slower (since it needs a larger kernel
to achieve similar results) is more accurate, because it makes no approximation to calculate the
Laplacian (it is calculated analytically before creating the kernel). It is also possible to manage the
size of the kernel, which represents a scale parameter of the algorithm, being able to obtain a highly
detailed edge image using small kernels, or just more noticeable edges using larger kernels.

Haralick’s algorithm, although it shares the Marr-Hildreth idea of finding zero crossings of the
second derivative, has some quite different ideas. It is the only one of these algorithms which works
with an approximation of the intensity of the image in the neighborhood of a pixel, using a bicubic
polinomial function. This supposes a certain regularity in the image, which is not always true, and
sometimes leads to detect edges where none of them exist, and get some thicker edges too.

All algorithms have their advantages and disadvantages. Choosing one or the other may depend
on requirements of the application. Furthermore, none of the implemented methods ensure edge
connectivity, as the Canny [10] algorithm does.

22

References

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). Prentice Hall, 3 ed.,
Aug. 2007.

[2] D. Marr and E. Hildreth, “Theory of edge detection,” Tech. Rep. AIM-518, MIT Artificial
Intelligence Laboratory, Apr. 6 1979.

[3] R. M. Haralick, “Digital step edges from zero-crossings of second directional derivatives,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 6, pp. 58–68, Jan. 1984.

[4] “Image Processing On Line.” http://www.ipol.im/. ISSN:2105-1232, DOI:10.5201/ipol10.

[5] L. G. Roberts, “Machine perception of three-dimensional solids,” tech. rep., DTIC Document,
1963.

[6] J. M. Prewitt, “Object enhancement and extraction,” B.S.Lipkin and A.Rosenfeld (eds.) Picture
processing and psychopictorics, pp. 75–149, 1970.

[7] R. Deriche, “Recursively implementing the Gaussian and its derivatives,” Tech. Rep. 1893,
INRIA, May 1993.

[8] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface construction
algorithm,” SIGGRAPH Comput. Graph., vol. 21, pp. 163–169, Aug. 1987.

[9] P. Getreuer, “Linear Methods for Image Interpolation.” http://www.ipol.im/pub/algo/g_

linear_methods_for_image_interpolation/, IPOL 2011. ISSN:2105-1232, DOI:.11

[10] J. Canny, “A Computational Approach to Edge Detection,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. PAMI-8, pp. 679–698, Nov. 1986.

10http://dx.doi.org/10.5201/ipol
11http://dx.doi.org/10.5201/ipol.2011.g_lmii

23

http://www.ipol.im/
http://dx.doi.org/10.5201/ipol
http://www.ipol.im/pub/algo/g_linear_methods_for_image_interpolation/
http://www.ipol.im/pub/algo/g_linear_methods_for_image_interpolation/
http://dx.doi.org/10.5201/ipol.2011.g_lmii
http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol.2011.g_lmii

	Introduction
	Algorithms based on first derivative
	The Roberts operators
	The Prewitt operators
	The Sobel operators
	Computation of the edges
	Pseudo-code

	Algorithms based on second derivative
	The Marr and Hildreth algorithm
	Gaussian and LoG kernels
	Zero crossing
	Pseudo-code

	The Haralick algorithm
	Bi-cubic polynomial fitting
	Analytical calculation of the second derivative
	Algorithm
	Pseudo-code

	Common Mathematical Operations
	Kernel generation
	Gaussian kernel
	LoG kernel
	Gaussian and LoG functions comparison

	Convolution

	Results
	Further examples
	Video

	Conclusions

