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 What is Machine Learning? Your definition 

 What are the main types of learning? 

 What is the difference between these types of learning? 
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Start to Learn 

 

 
[Christopher M. Bishop.  

Pattern Recognition and Machine Learning 

2007] 
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Regression 

X  Y 
Anything: 

• continuous (, d, …) • continuous: 

–  , d 
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Linear Regression 
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Linear Regression 

Prediction 

Prediction 
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Polynomial Curve Fitting  
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Sum-of-Squares Error Function 

Error or “residual” Observation 

 

 

 

Prediction 

Sum squared error 

minimizing 
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Sum-of-Squares Error Function 

Minimizing E(w) 

to find w* 

E(w) ---- quadratic function of w 

Derivative of E(w) w.r.t. w ---  linear of w 

 

           unique solution for minimizing E(w) 
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Gradient descent algorithm  

1. Batch gradient descent 

 

2. Stochastic gradient descent, or 

Incremental gradient descent 
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Batch gradient descent algorithm (1) 

Batch gradient descent 
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Batch gradient descent algorithm (2) 

Batch gradient descent example 

 

 

 

 

 
Update the value of w according to the gradient 
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Batch gradient descent algorithm (3) 

Batch gradient descent example 

 

 

 

 

 
Iteratively approaches the optimum of the Error function 
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Stochastic gradient descent algorithm (1) 

Stochastic gradient descent, or 

Incremental gradient descent 
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Stochastic gradient descent algorithm (2) 
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An example: 

The more data, the closer to the optimum of the Error function 15 



M=? 

How many coefficient? 

 

 
 

  

16 



0th Order Polynomial 
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1st Order Polynomial 
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3rd Order Polynomial 
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9th Order Polynomial 

Overfitting 
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Over-fitting 
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• division by N: compare different sizes of data sets on an equal footing 

• square root:     RMS is measured on the same scale (and in the same units) as the 

target variable t. 

Root-Mean-Square (RMS) Error: 



Polynomial Coefficients    

Overfitting,  

complex model 

magnitude of w is large 
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Increase N? 

Larger data set? 
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Data Set Size:  

9th Order Polynomial 
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Data Set Size:  

9th Order Polynomial 
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data set more complex 

          overfitting less severe 

 

Rough heuristic: 

N > (5~10) * (number of parameters) 
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Regularization 

Penalize large coefficient values 
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Regularization:  
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Regularization:  

λ=1 

Magnitude of 

coefficients is 

too much 

reduced 
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Regularization:           vs.  

Over-fitting 
Magnitude of 

coefficients is 

too much 

reduced 

30 



Polynomial Coefficients    
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Generalization 
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Linear Basis Function Models (1) 

Example: Polynomial Curve Fitting 
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Linear Basis Function Models (2) 

Generally 

 

 

where Фj(x) are known as basis functions. 

Typically, Ф0(x) = 1, so that w0 acts as a bias. 
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Linear Basis Function Models (3) 

Polynomial basis functions: 

 

 

These are global; a small 

change in x affect all basis 

functions. 
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Linear Basis Function Models (4) 

Gaussian basis functions: 

 

 

 

These are local; a small change 

in x only affect nearby basis 
functions.  μj and s control 
location and scale (width). 
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Linear Basis Function Models (5) 

Sigmoidal basis functions: 

 

 

where 

 

 

Also these are local; a small 

change in  x  only affect nearby 
basis functions. μj  and s 
control location and scale 
(slope). 
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Maximize Likelihood 

Solution of w 
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Curve Fitting Re-visited 

Assume observations from a deterministic function with added 

Gaussian noise: 

where 



Curve Fitting Re-visited 

which is the same as saying, the conditional density of t 

given x, w, β is 



Curve Fitting Re-visited 

Given observed inputs,                               , and targets, 

                      ,  we obtain the likelihood function   

 

the probability of observing 

outputs t  given X, w and β 



The Gaussian Distribution 
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Maximum Likelihood and Least Squares (1) 

Taking the logarithm, we get 

 

 

 

where 

 

 

is the sum-of-squares error. 
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Computing the gradient and setting it to zero yields 

 

 

Solving for w, we get  

 

where 

Maximum Likelihood and Least Squares (2) 

The Moore-Penrose 
pseudo-inverse,       . 
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Maximum Likelihood and Least Squares (3) 

Maximizing with respect to the bias, w0, alone, we 
see that 

 

 

 

We can also maximize with respect to β, giving 
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averages (over the training 

set) of the target values 

weighted sum of the averages 

of the basis function values 

residual variance of the target values 

around the regression function 



Regularization 
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Regularized Least Squares (1) 

Consider the error function: 

 

With the sum-of-squares error function and a 
quadratic regularizer, we get   

 
 

Data term + Regularization term 

λ is called the 
regularization 
coefficient. 
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Regularized Least Squares (2) 

With a more general regularizer, we have 

 
 

Minimizing ED(w)+λEw(w) is equivalent to minimizing 
ED(w) subject to the constraint 

 

Lasso Quadratic 48 
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Regularized Least Squares (3) 

Lasso tends to generate sparser solutions than a 
quadratic  
regularizer.  
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Contour of error 

function  ED(w) 

Region of 

constraint Ew(w) 

See a demo at: http://www.lri.fr/~xlzhang/KAUST/CS229_slides/regularization_demo.m   

http://www.lri.fr/~xlzhang/KAUST/CS229_slides/regularization_demo.m


 What is the task of regression?  

 How to solve the regression problem? 

 How to minimize the error function? 

 The reason of overfitting? 

 Maximum likelihood vs least square, same? 

 How can the regularization term help the regression 

model? 
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Questions to ask in next class 


