AMCS/CS229: Machine Learning

Linear Regression

Xiangliang Zhang

King Abdullah University of Science and Technology

Questions from last class

- What is Machine Learning? Your definition
- What are the main types of learning?
- What is the difference between these types of learning?

Start to Learn

[Christopher M. Bishop. Pattern Recognition and Machine Learning 2007]

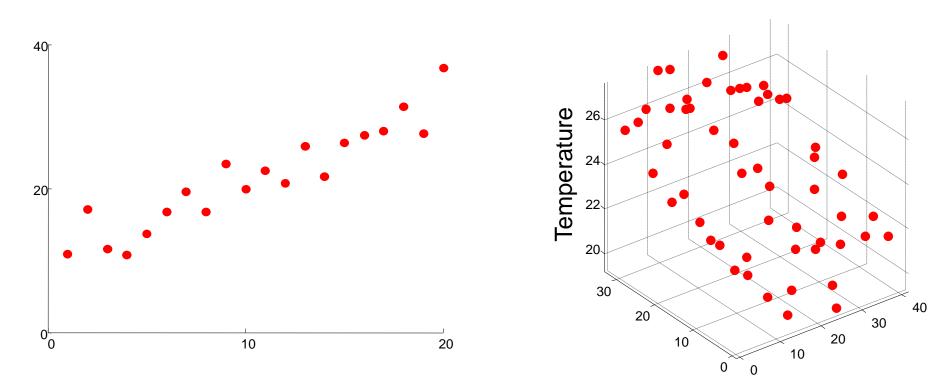
$X \rightarrow Y$

Anything:

• continuous ($\Re, \, \Re^{d}, \, ...$)

• continuous: – R, R^d

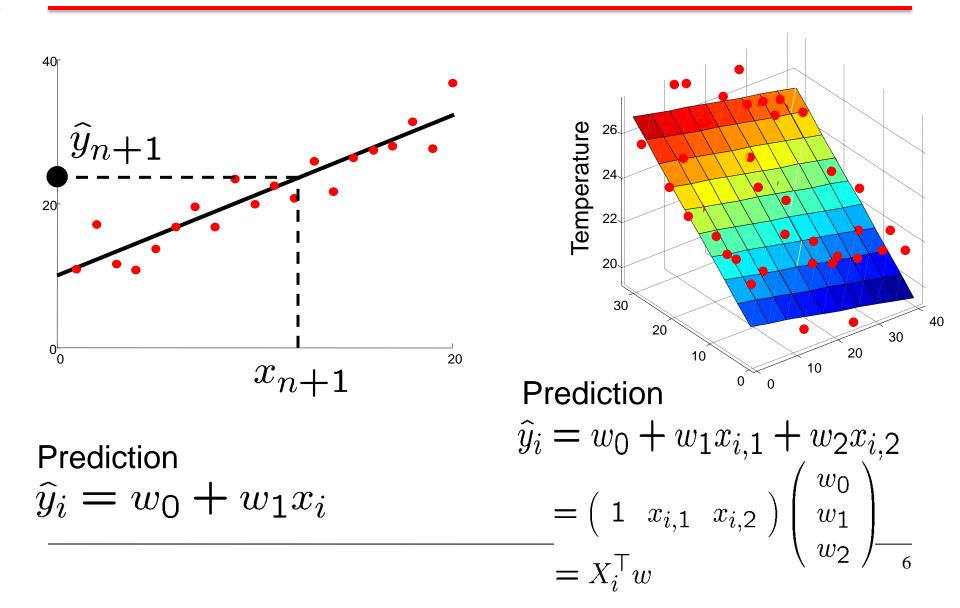
Linear Regression



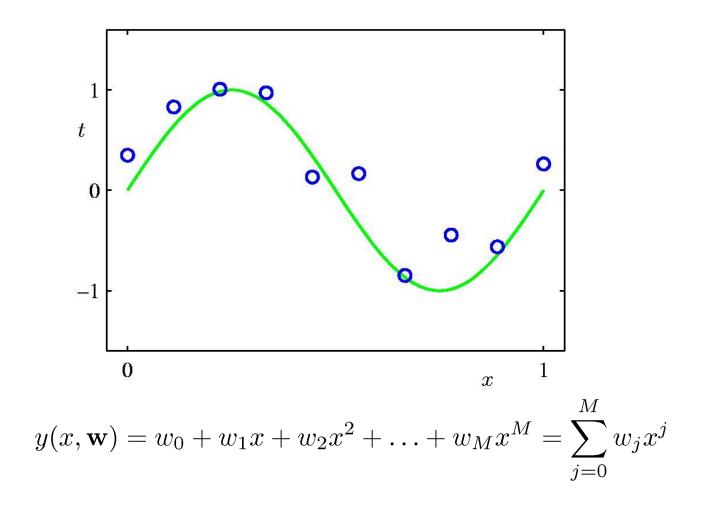
Given examples $(x_i, y_i)_{i=1...n}$

Predict y_{n+1} given a new point x_{n+1}

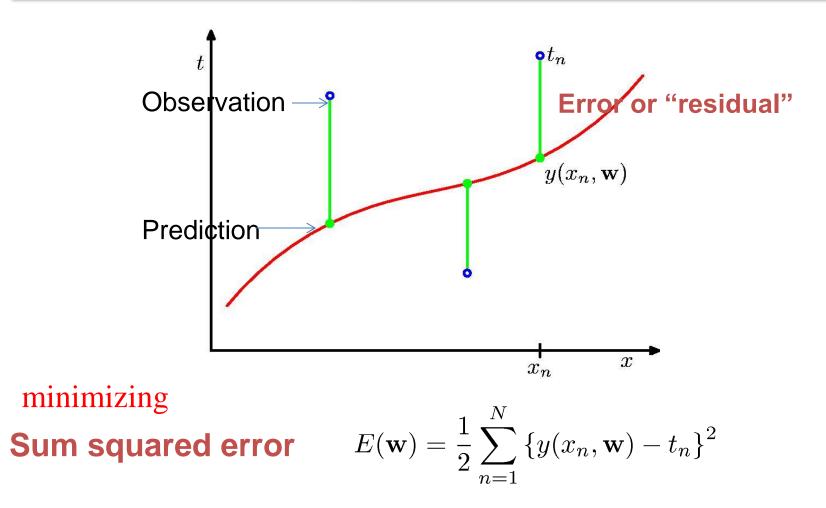
Linear Regression



Polynomial Curve Fitting



Sum-of-Squares Error Function



Sum-of-Squares Error Function

- Minimizing $E(\mathbf{w})$ $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) t_n\}^2$ to find w*
- E(w) ---- quadratic function of w Derivative of E(w) w.r.t. w --- linear of w

 \Rightarrow unique solution for minimizing E(w)

Gradient descent algorithm

1. Batch gradient descent

2. Stochastic gradient descent, or Incremental gradient descent

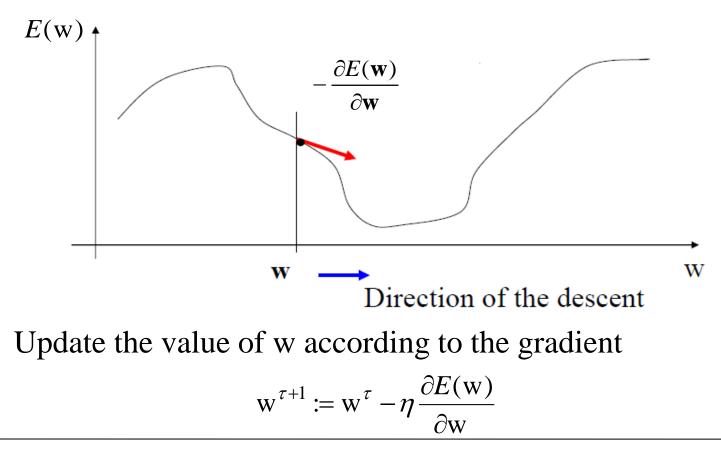
Batch gradient descent algorithm (1)

Batch gradient descent

$$w_i^{\tau+1} \coloneqq w_i^{\tau} - \eta \frac{\partial E(\mathbf{w})}{\partial w_i}$$
$$\coloneqq w_i^{\tau} - \eta \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n) \frac{\partial y(x_n, \mathbf{w})}{\partial w_i}$$

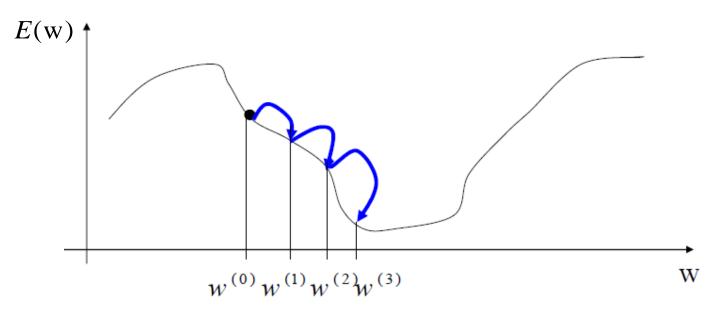
Batch gradient descent algorithm (2)

Batch gradient descent example



Batch gradient descent algorithm (3)

Batch gradient descent example



Iteratively approaches the optimum of the Error function

Stochastic gradient descent algorithm (1)

Stochastic gradient descent, or Incremental gradient descent

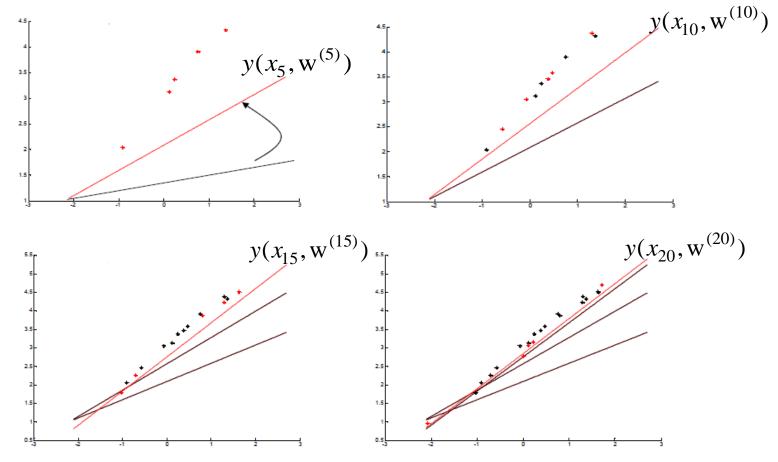
for n = 1: N

$$w_i^n \coloneqq w_i^{n-1} - \eta \frac{\partial E_n(\mathbf{w})}{\partial w_i}$$

$$\coloneqq w_i^{n-1} - \eta (y(x_n, \mathbf{w}) - t_n) \frac{\partial y(x_n, \mathbf{w})}{\partial w_i}$$

Stochastic gradient descent algorithm (2)

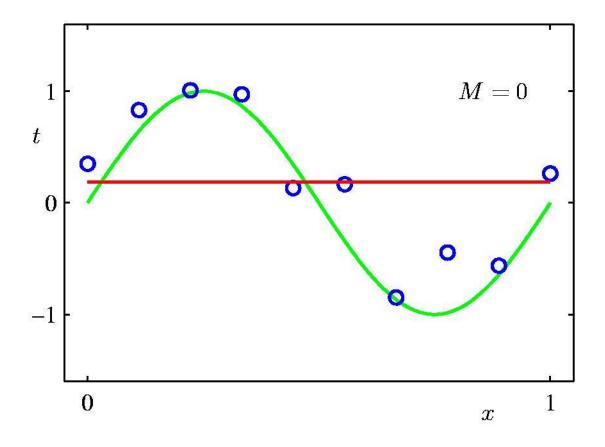
An example:



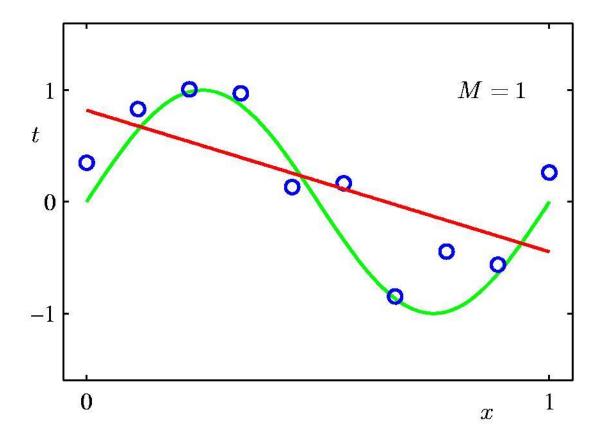
The more data, the closer to the optimum of the Error function ¹⁵

M=? How many coefficient?

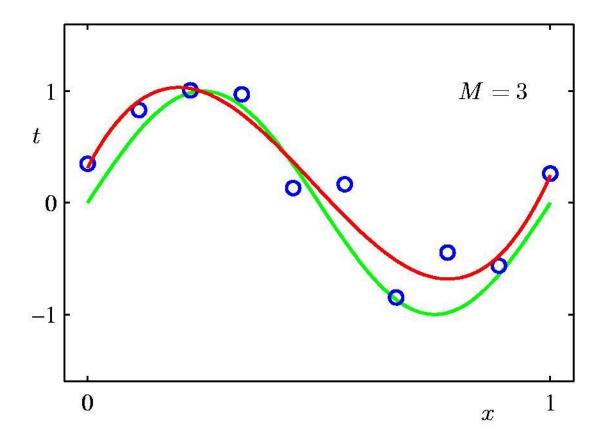
0th Order Polynomial



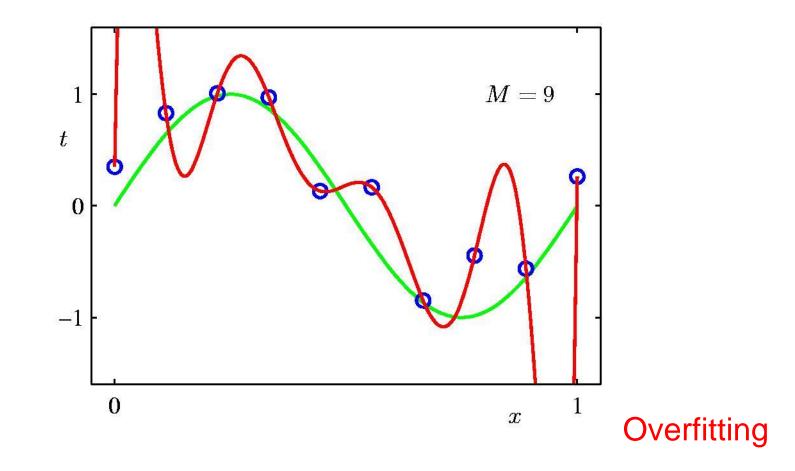
1st Order Polynomial



3rd Order Polynomial



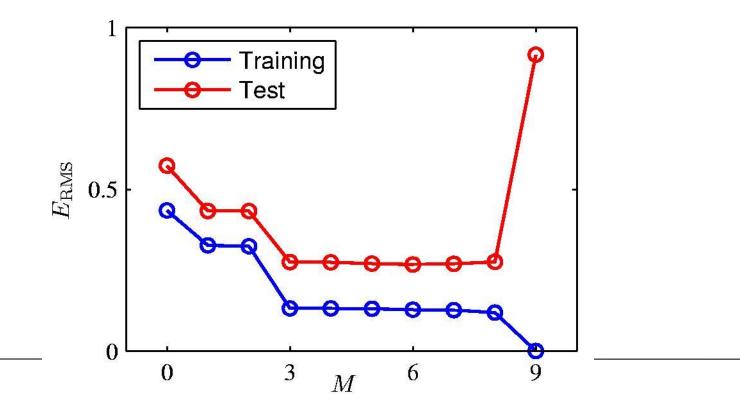
9th Order Polynomial



Over-fitting

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$

- division by N: compare different sizes of data sets on an equal footing
- square root: RMS is **measured on the same scale** (and in the same units) as the target variable *t*.



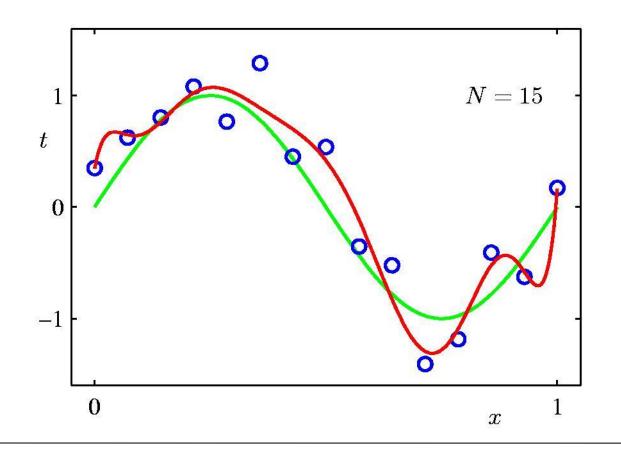
Polynomial Coefficients

	M = 0	M = 1	M=3	M=9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
$w_2^\star w_3^\star w_4^\star$				-231639.30
$w_{5}^{\star} \\ w_{6}^{\star} \\ w_{7}^{\star}$				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
$w_8^\star w_9^\star$				-557682.99
w_9^{\star}				125201.43
Ū				Overfitting,
				complex model
				magnitude of w is la

Increase N? Larger data set?

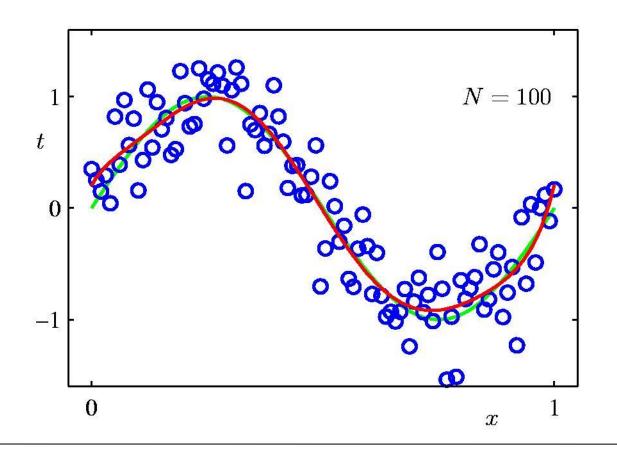
Data Set Size: N = 15

9th Order Polynomial



Data Set Size: N = 100

9th Order Polynomial



data set more complex overfitting less severe

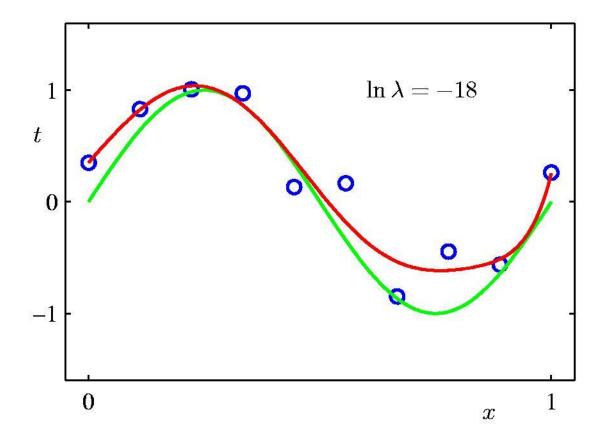
Rough heuristic: N > (5~10) * (number of parameters)

Regularization

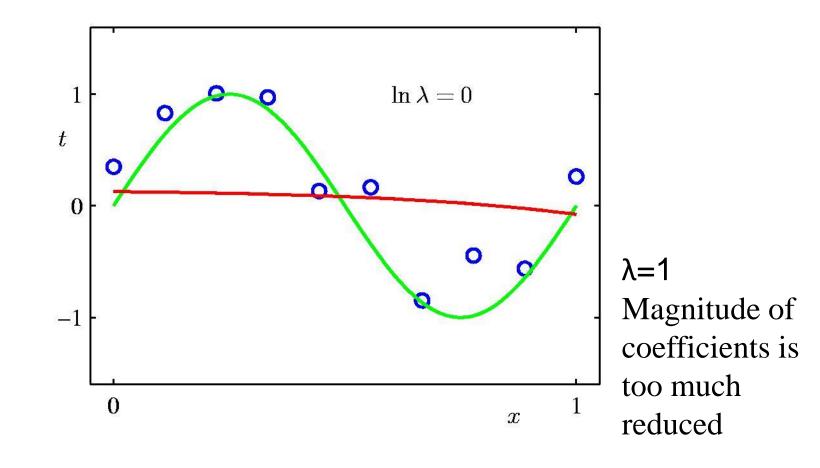
Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

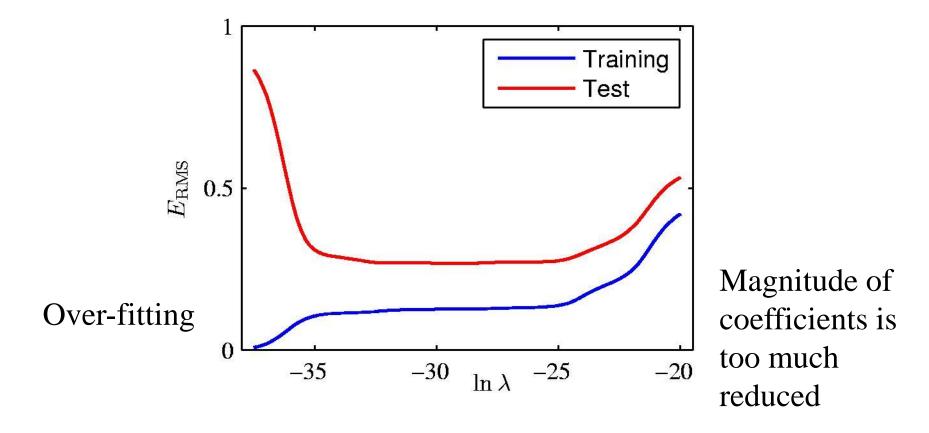
Regularization: $\ln \lambda = -18$



Regularization: $\ln \lambda = 0$



Regularization: $E_{\rm RMS}$ **vs.** $\ln \lambda$



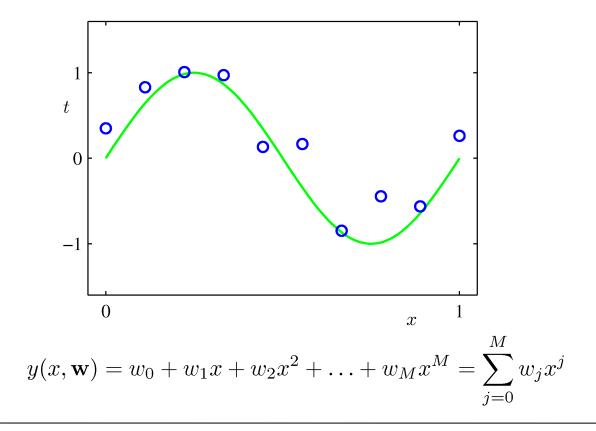
Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^\star	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^\star	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^\star	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Generalization

Linear Basis Function Models (1)

Example: Polynomial Curve Fitting



Linear Basis Function Models (2)

Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

where $\Phi_j(x)$ are known as *basis functions*. Typically, $\Phi_0(x) = 1$, so that w_0 acts as a bias.

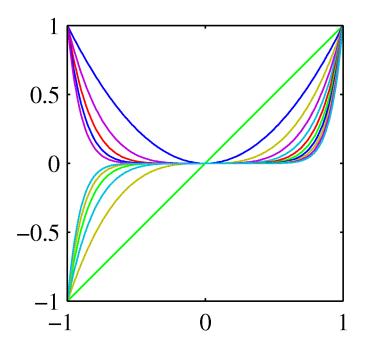
Linear Basis Function Models (3)

Polynomial basis functions:

$$\phi_j(x) = x^j.$$

These are global; a small

change in x affect all basis functions.

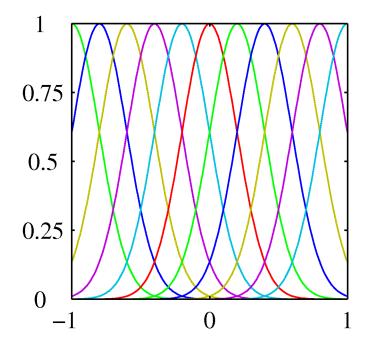


Linear Basis Function Models (4)

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

These are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (width).



Linear Basis Function Models (5)

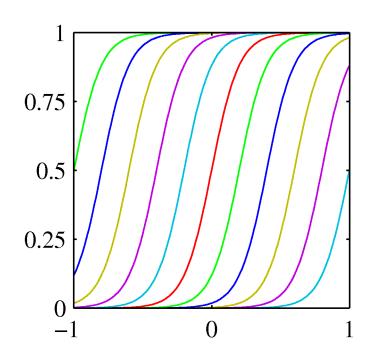
Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x-\mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

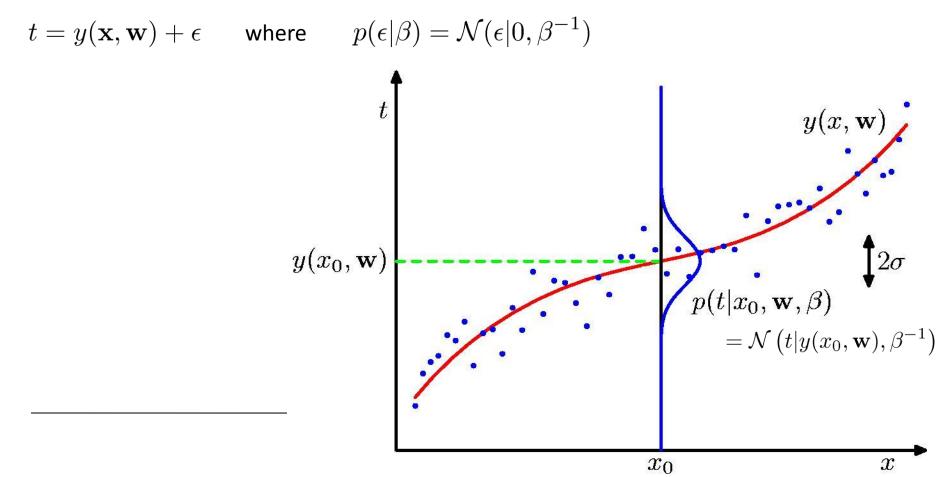
Also these are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (slope).



Maximize Likelihood Solution of w

Curve Fitting Re-visited

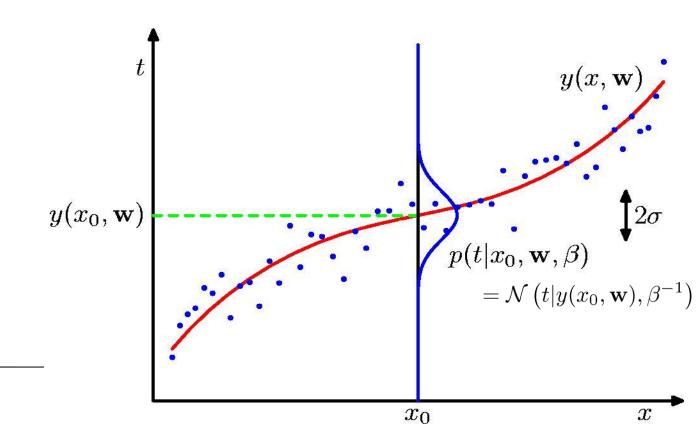
Assume observations from a deterministic function with added Gaussian noise:



Curve Fitting Re-visited

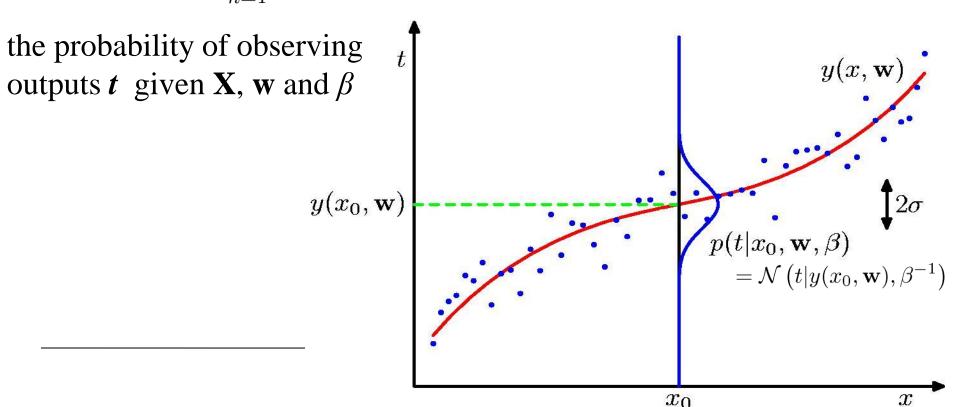
which is the same as saying, the conditional density of t given x, w, β is

 $p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$



Curve Fitting Re-visited

Given observed inputs, $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$, and targets, $\mathbf{t} = [t_1, \dots, t_N]^{\mathrm{T}}$, we obtain the likelihood function $p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^N \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$



The Gaussian Distribution

$$\mathcal{N}\left(x|\mu,\sigma^{2}\right) = \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{-\frac{1}{2\sigma^{2}}(x-\mu)^{2}\right\}$$

$$\mathcal{N}\left(x|\mu,\sigma^{2}\right)$$

$$2\sigma$$

Maximum Likelihood and Least Squares (1)

Taking the logarithm, we get

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

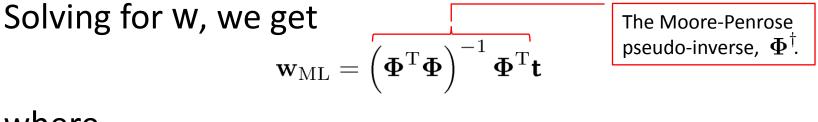
is the sum-of-squares error.

$$\underset{w}{\operatorname{argmax}} L = \underset{w}{\operatorname{argmin}} E$$

Maximum Likelihood and Least Squares (2)

Computing the gradient and setting it to zero yields

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w},\beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$



where

$$\boldsymbol{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

See a demo

Maximum Likelihood and Least Squares (3)

Maximizing with respect to the bias, W_0 , alone, we see that M-1

 $w_{0} = \overline{t} - \sum_{j=1}^{N} w_{j} \overline{\phi_{j}}$ weighted sum of the averages of the target values $= \frac{1}{N} \sum_{n=1}^{N} t_{n} - \sum_{j=1}^{M-1} w_{j} \frac{1}{N} \sum_{n=1}^{N} \phi_{j}(\mathbf{x}_{n}).$

We can also maximize with respect to β , giving

$$\frac{1}{\beta_{\mathrm{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \{t_n - \mathbf{w}_{\mathrm{ML}}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

residual variance of the target values around the regression function

Regularization

Regularized Least Squares (1)

Consider the error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

 λ is called the regularization coefficient.

With the sum-of-squares error function and a quadratic regularizer, we get

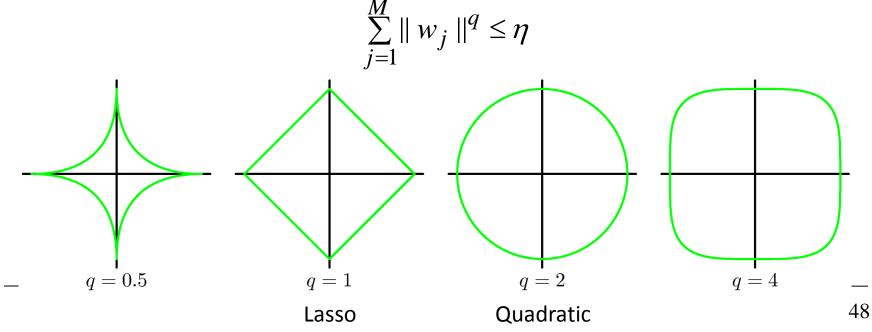
$$\frac{1}{2}\sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$$

Regularized Least Squares (2)

With a more general regularizer, we have

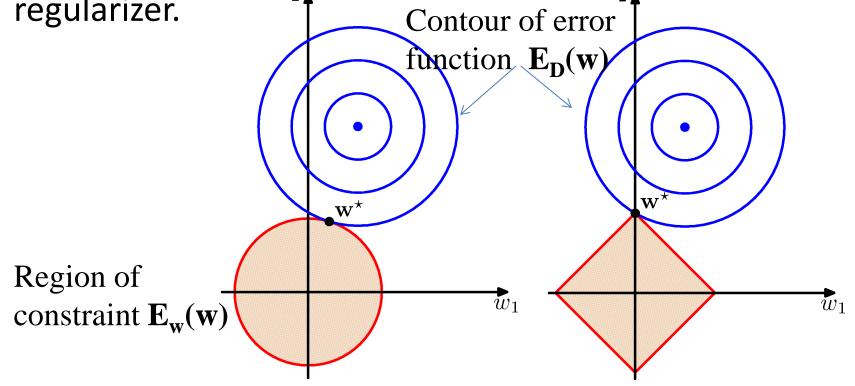
$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Minimizing $E_D(w) + \lambda E_w(w)$ is equivalent to minimizing $E_D(w)$ subject to the constraint



Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a quadratic regularizer. w_2 Contour of error



See a demo at: <u>http://www.lri.fr/~xlzhang/KAUST/CS229_slides/regularization_demo.m</u>

Questions to ask in next class

- What is the task of regression?
- How to solve the regression problem?
- How to minimize the error function?
- The reason of overfitting?
- Maximum likelihood vs least square, same?
- How can the regularization term help the regression model?